aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJasper Hugunin2020-09-09 10:44:43 -0700
committerJasper Hugunin2020-09-16 12:46:57 -0700
commit13a9a7f16acb520b1e38aeac9480f7d298a62bc7 (patch)
treedb02930772c41cb56226cbe5ee3ccebfe246df98
parent2128f623d1d9f26b5791d65e95c8d624ac7e48b9 (diff)
Modify Numbers/Natural/Abstract/NGcd.v to compile with -mangle-names
-rw-r--r--theories/Numbers/Natural/Abstract/NGcd.v10
1 files changed, 5 insertions, 5 deletions
diff --git a/theories/Numbers/Natural/Abstract/NGcd.v b/theories/Numbers/Natural/Abstract/NGcd.v
index a80ae8dc45..c1d8308e34 100644
--- a/theories/Numbers/Natural/Abstract/NGcd.v
+++ b/theories/Numbers/Natural/Abstract/NGcd.v
@@ -53,7 +53,7 @@ Definition divide_gcd_iff' n m := divide_gcd_iff n m (le_0_l n).
Lemma gcd_add_mult_diag_r : forall n m p, gcd n (m+p*n) == gcd n m.
Proof.
- intros. apply gcd_unique_alt'.
+ intros n m p. apply gcd_unique_alt'.
intros. rewrite gcd_divide_iff. split; intros (U,V); split; trivial.
apply divide_add_r; trivial. now apply divide_mul_r.
apply divide_add_cancel_r with (p*n); trivial.
@@ -98,11 +98,11 @@ Lemma gcd_bezout_pos_pos : forall n, 0<n -> forall m, 0<m ->
Bezout n m (gcd n m) /\ Bezout m n (gcd n m).
Proof.
intros n Hn. rewrite <- le_succ_l, <- one_succ in Hn.
- pattern n. apply strong_right_induction with (z:=1); trivial.
+ pattern n. apply (fun H => strong_right_induction _ H 1); trivial.
unfold Bezout. solve_proper.
clear n Hn. intros n Hn IHn.
intros m Hm. rewrite <- le_succ_l, <- one_succ in Hm.
- pattern m. apply strong_right_induction with (z:=1); trivial.
+ pattern m. apply (fun H => strong_right_induction _ H 1); trivial.
unfold Bezout. solve_proper.
clear m Hm. intros m Hm IHm.
destruct (lt_trichotomy n m) as [LT|[EQ|LT]].
@@ -156,7 +156,7 @@ Qed.
Theorem bezout_comm : forall a b g,
b ~= 0 -> Bezout a b g -> Bezout b a g.
Proof.
- intros * Hbz (u & v & Huv).
+ intros a b g Hbz (u & v & Huv).
destruct (eq_0_gt_0_cases a) as [Haz| Haz].
-rewrite Haz in Huv |-*.
rewrite mul_0_r in Huv; symmetry in Huv.
@@ -260,7 +260,7 @@ Qed.
Lemma gcd_mul_mono_r :
forall n m p, gcd (n*p) (m*p) == gcd n m * p.
Proof.
- intros. rewrite !(mul_comm _ p). apply gcd_mul_mono_l.
+ intros n m p. rewrite !(mul_comm _ p). apply gcd_mul_mono_l.
Qed.
Lemma gauss : forall n m p, (n | m * p) -> gcd n m == 1 -> (n | p).