diff options
| author | Jasper Hugunin | 2020-09-09 10:44:43 -0700 |
|---|---|---|
| committer | Jasper Hugunin | 2020-09-16 12:46:57 -0700 |
| commit | 13a9a7f16acb520b1e38aeac9480f7d298a62bc7 (patch) | |
| tree | db02930772c41cb56226cbe5ee3ccebfe246df98 | |
| parent | 2128f623d1d9f26b5791d65e95c8d624ac7e48b9 (diff) | |
Modify Numbers/Natural/Abstract/NGcd.v to compile with -mangle-names
| -rw-r--r-- | theories/Numbers/Natural/Abstract/NGcd.v | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/theories/Numbers/Natural/Abstract/NGcd.v b/theories/Numbers/Natural/Abstract/NGcd.v index a80ae8dc45..c1d8308e34 100644 --- a/theories/Numbers/Natural/Abstract/NGcd.v +++ b/theories/Numbers/Natural/Abstract/NGcd.v @@ -53,7 +53,7 @@ Definition divide_gcd_iff' n m := divide_gcd_iff n m (le_0_l n). Lemma gcd_add_mult_diag_r : forall n m p, gcd n (m+p*n) == gcd n m. Proof. - intros. apply gcd_unique_alt'. + intros n m p. apply gcd_unique_alt'. intros. rewrite gcd_divide_iff. split; intros (U,V); split; trivial. apply divide_add_r; trivial. now apply divide_mul_r. apply divide_add_cancel_r with (p*n); trivial. @@ -98,11 +98,11 @@ Lemma gcd_bezout_pos_pos : forall n, 0<n -> forall m, 0<m -> Bezout n m (gcd n m) /\ Bezout m n (gcd n m). Proof. intros n Hn. rewrite <- le_succ_l, <- one_succ in Hn. - pattern n. apply strong_right_induction with (z:=1); trivial. + pattern n. apply (fun H => strong_right_induction _ H 1); trivial. unfold Bezout. solve_proper. clear n Hn. intros n Hn IHn. intros m Hm. rewrite <- le_succ_l, <- one_succ in Hm. - pattern m. apply strong_right_induction with (z:=1); trivial. + pattern m. apply (fun H => strong_right_induction _ H 1); trivial. unfold Bezout. solve_proper. clear m Hm. intros m Hm IHm. destruct (lt_trichotomy n m) as [LT|[EQ|LT]]. @@ -156,7 +156,7 @@ Qed. Theorem bezout_comm : forall a b g, b ~= 0 -> Bezout a b g -> Bezout b a g. Proof. - intros * Hbz (u & v & Huv). + intros a b g Hbz (u & v & Huv). destruct (eq_0_gt_0_cases a) as [Haz| Haz]. -rewrite Haz in Huv |-*. rewrite mul_0_r in Huv; symmetry in Huv. @@ -260,7 +260,7 @@ Qed. Lemma gcd_mul_mono_r : forall n m p, gcd (n*p) (m*p) == gcd n m * p. Proof. - intros. rewrite !(mul_comm _ p). apply gcd_mul_mono_l. + intros n m p. rewrite !(mul_comm _ p). apply gcd_mul_mono_l. Qed. Lemma gauss : forall n m p, (n | m * p) -> gcd n m == 1 -> (n | p). |
