diff options
| author | Maxime Dénès | 2019-08-02 11:11:33 +0200 |
|---|---|---|
| committer | Maxime Dénès | 2019-08-02 11:11:33 +0200 |
| commit | 12463d6d8064a79577efe0c231a768b3ef786cec (patch) | |
| tree | d4db40e39e70f41834e91371c50b84250efc029e | |
| parent | 8f52956f5b19b3b80b1cd6155e28e0af265f2d79 (diff) | |
| parent | 654254ca2e6ac94d3e0c62a127f92caff4b5938c (diff) | |
Merge PR #10553: Use a more traditional definition for uint63_div21 (fixes #10551).
Reviewed-by: maximedenes
Reviewed-by: proux01
| -rw-r--r-- | kernel/byterun/coq_uint63_native.h | 55 | ||||
| -rw-r--r-- | kernel/uint63_amd64_63.ml | 67 | ||||
| -rw-r--r-- | kernel/uint63_i386_31.ml | 63 | ||||
| -rw-r--r-- | test-suite/arithmetic/diveucl_21.v | 12 | ||||
| -rw-r--r-- | theories/Numbers/Cyclic/Int63/Int63.v | 23 |
5 files changed, 66 insertions, 154 deletions
diff --git a/kernel/byterun/coq_uint63_native.h b/kernel/byterun/coq_uint63_native.h index 1fdafc9d8f..9fbd3f83d8 100644 --- a/kernel/byterun/coq_uint63_native.h +++ b/kernel/byterun/coq_uint63_native.h @@ -111,51 +111,26 @@ value uint63_mulc(value x, value y, value* h) { #define le128(xh,xl,yh,yl) (uint63_lt(xh,yh) || (uint63_eq(xh,yh) && uint63_leq(xl,yl))) #define maxuint63 ((uint64_t)0x7FFFFFFFFFFFFFFF) -/* precondition: y <> 0 */ -/* outputs r and sets ql to q % 2^63 s.t. x = q * y + r, r < y */ +/* precondition: xh < y */ +/* outputs r and sets ql to q s.t. x = q * y + r, r < y */ static value uint63_div21_aux(value xh, value xl, value y, value* ql) { - xh = uint63_of_value(xh); - xl = uint63_of_value(xl); + uint64_t nh = uint63_of_value(xh); + uint64_t nl = uint63_of_value(xl); y = uint63_of_value(y); - uint64_t maskh = 0; - uint64_t maskl = 1; - uint64_t dh = 0; - uint64_t dl = y; - int cmp = 1; - /* int n = 0 */ - /* loop invariant: mask = 2^n, d = mask * y, (2 * d <= x -> cmp), n >= 0, d < 2^(2*63) */ - while (!(dh >> (63 - 1)) && cmp) { - dh = (dh << 1) | (dl >> (63 - 1)); - dl = (dl << 1) & maxuint63; - maskh = (maskh << 1) | (maskl >> (63 - 1)); - maskl = (maskl << 1) & maxuint63; - /* ++n */ - cmp = lt128(dh,dl,xh,xl); + uint64_t q = 0; + for (int i = 0; i < 63; ++i) { + // invariants: 0 <= nh < y, nl = (xl*2^i) % 2^64, + // (q*y + nh) * 2^(63-i) + (xl % 2^(63-i)) = (xh%y) * 2^63 + xl + nl <<= 1; + nh = (nh << 1) | (nl >> 63); + q <<= 1; + if (nh >= y) { q |= 1; nh -= y; } } - uint64_t remh = xh; - uint64_t reml = xl; - /* uint64_t quotienth = 0; */ - uint64_t quotientl = 0; - /* loop invariant: x = quotient * y + rem, y * 2^(n+1) > r, - mask = floor(2^n), d = mask * y, n >= -1 */ - while (maskh | maskl) { - if (le128(dh,dl,remh,reml)) { /* if rem >= d, add one bit and subtract d */ - /* quotienth = quotienth | maskh */ - quotientl = quotientl | maskl; - remh = (uint63_lt(reml,dl)) ? (remh - dh - 1) : (remh - dh); - reml = reml - dl; - } - maskl = (maskl >> 1) | ((maskh << (63 - 1)) & maxuint63); - maskh = maskh >> 1; - dl = (dl >> 1) | ((dh << (63 - 1)) & maxuint63); - dh = dh >> 1; - /* decr n */ - } - *ql = Val_int(quotientl); - return Val_int(reml); + *ql = Val_int(q); + return Val_int(nh); } value uint63_div21(value xh, value xl, value y, value* ql) { - if (uint63_of_value(y) == 0) { + if (uint63_leq(y, xh)) { *ql = Val_int(0); return Val_int(0); } else { diff --git a/kernel/uint63_amd64_63.ml b/kernel/uint63_amd64_63.ml index d6b077a9f5..5c4028e1c8 100644 --- a/kernel/uint63_amd64_63.ml +++ b/kernel/uint63_amd64_63.ml @@ -96,55 +96,32 @@ let le (x : int) (y : int) = (x lxor 0x4000000000000000) <= (y lxor 0x4000000000000000) [@@ocaml.inline always] -(* A few helper functions on 128 bits *) -let lt128 xh xl yh yl = - lt xh yh || (xh = yh && lt xl yl) - -let le128 xh xl yh yl = - lt xh yh || (xh = yh && le xl yl) - (* division of two numbers by one *) -(* precondition: y <> 0 *) -(* outputs: q % 2^63, r s.t. x = q * y + r, r < y *) +(* precondition: xh < y *) +(* outputs: q, r s.t. x = q * y + r, r < y *) let div21 xh xl y = - let maskh = ref 0 in - let maskl = ref 1 in - let dh = ref 0 in - let dl = ref y in - let cmp = ref true in - (* n = ref 0 *) - (* loop invariant: mask = 2^n, d = mask * y, (2 * d <= x -> cmp), n >= 0 *) - while !dh >= 0 && !cmp do (* dh >= 0 tests that dh highest bit is zero *) - (* We don't use addmuldiv below to avoid checks on 1 *) - dh := (!dh lsl 1) lor (!dl lsr (uint_size - 1)); - dl := !dl lsl 1; - maskh := (!maskh lsl 1) lor (!maskl lsr (uint_size - 1)); - maskl := !maskl lsl 1; - (* incr n *) - cmp := lt128 !dh !dl xh xl; - done; (* mask = 2^n, d = 2^n * y, 2 * d > x *) - let remh = ref xh in - let reml = ref xl in - (* quotienth = ref 0 *) - let quotientl = ref 0 in - (* loop invariant: x = quotient * y + rem, y * 2^(n+1) > r, - mask = floor(2^n), d = mask * y, n >= -1 *) - while !maskh lor !maskl <> 0 do - if le128 !dh !dl !remh !reml then begin (* if rem >= d, add one bit and subtract d *) - (* quotienth := !quotienth lor !maskh *) - quotientl := !quotientl lor !maskl; - remh := if lt !reml !dl then !remh - !dh - 1 else !remh - !dh; - reml := !reml - !dl; - end; - maskl := (!maskl lsr 1) lor (!maskh lsl (uint_size - 1)); - maskh := !maskh lsr 1; - dl := (!dl lsr 1) lor (!dh lsl (uint_size - 1)); - dh := !dh lsr 1; - (* decr n *) + (* nh might temporarily grow as large as 2*y - 1 in the loop body, + so we store it as a 64-bit unsigned integer *) + let nh = ref xh in + let nl = ref xl in + let q = ref 0 in + for _i = 0 to 62 do + (* invariants: 0 <= nh < y, nl = (xl*2^i) % 2^63, + (q*y + nh) * 2^(63-i) + (xl % 2^(63-i)) = (xh%y) * 2^63 + xl *) + nh := Int64.logor (Int64.shift_left !nh 1) (Int64.of_int (!nl lsr 62)); + nl := !nl lsl 1; + q := !q lsl 1; + (* TODO: use "Int64.unsigned_compare !nh y >= 0", + once OCaml 4.08 becomes the minimal required version *) + if Int64.compare !nh 0L < 0 || Int64.compare !nh y >= 0 then + begin q := !q lor 1; nh := Int64.sub !nh y; end done; - !quotientl, !reml + !q, Int64.to_int !nh -let div21 xh xl y = if y = 0 then 0, 0 else div21 xh xl y +let div21 xh xl y = + let xh = to_uint64 xh in + let y = to_uint64 y in + if Int64.compare y xh <= 0 then 0, 0 else div21 xh xl y (* exact multiplication *) (* TODO: check that none of these additions could be a logical or *) diff --git a/kernel/uint63_i386_31.ml b/kernel/uint63_i386_31.ml index 2a3fc75ec1..b8eccd19fb 100644 --- a/kernel/uint63_i386_31.ml +++ b/kernel/uint63_i386_31.ml @@ -88,55 +88,28 @@ let diveucl x y = (div x y, rem x y) let addmuldiv p x y = l_or (l_sl x p) (l_sr y Int64.(sub (of_int uint_size) p)) -(* A few helper functions on 128 bits *) -let lt128 xh xl yh yl = - lt xh yh || (xh = yh && lt xl yl) - -let le128 xh xl yh yl = - lt xh yh || (xh = yh && le xl yl) - (* division of two numbers by one *) -(* precondition: y <> 0 *) -(* outputs: q % 2^63, r s.t. x = q * y + r, r < y *) +(* precondition: xh < y *) +(* outputs: q, r s.t. x = q * y + r, r < y *) let div21 xh xl y = - let maskh = ref zero in - let maskl = ref one in - let dh = ref zero in - let dl = ref y in - let cmp = ref true in - (* n = ref 0 *) - (* loop invariant: mask = 2^n, d = mask * y, (2 * d <= x -> cmp), n >= 0 *) - while Int64.equal (l_sr !dh (of_int (uint_size - 1))) zero && !cmp do - (* We don't use addmuldiv below to avoid checks on 1 *) - dh := l_or (l_sl !dh one) (l_sr !dl (of_int (uint_size - 1))); - dl := l_sl !dl one; - maskh := l_or (l_sl !maskh one) (l_sr !maskl (of_int (uint_size - 1))); - maskl := l_sl !maskl one; - (* incr n *) - cmp := lt128 !dh !dl xh xl; - done; (* mask = 2^n, d = 2^n * d, 2 * d > x *) - let remh = ref xh in - let reml = ref xl in - (* quotienth = ref 0 *) - let quotientl = ref zero in - (* loop invariant: x = quotient * y + rem, y * 2^(n+1) > r, - mask = floor(2^n), d = mask * y, n >= -1 *) - while not (Int64.equal (l_or !maskh !maskl) zero) do - if le128 !dh !dl !remh !reml then begin (* if rem >= d, add one bit and subtract d *) - (* quotienth := !quotienth lor !maskh *) - quotientl := l_or !quotientl !maskl; - remh := if lt !reml !dl then sub (sub !remh !dh) one else sub !remh !dh; - reml := sub !reml !dl - end; - maskl := l_or (l_sr !maskl one) (l_sl !maskh (of_int (uint_size - 1))); - maskh := l_sr !maskh one; - dl := l_or (l_sr !dl one) (l_sl !dh (of_int (uint_size - 1))); - dh := l_sr !dh one - (* decr n *) + let nh = ref xh in + let nl = ref xl in + let q = ref 0L in + for _i = 0 to 62 do + (* invariants: 0 <= nh < y, nl = (xl*2^i) % 2^64, + (q*y + nh) * 2^(63-i) + (xl % 2^(63-i)) = (xh%y) * 2^63 + xl *) + nl := Int64.shift_left !nl 1; + nh := Int64.logor (Int64.shift_left !nh 1) (Int64.shift_right_logical !nl 63); + q := Int64.shift_left !q 1; + (* TODO: use "Int64.unsigned_compare !nh y >= 0", + once OCaml 4.08 becomes the minimal required version *) + if Int64.compare !nh 0L < 0 || Int64.compare !nh y >= 0 then + begin q := Int64.logor !q 1L; nh := Int64.sub !nh y; end done; - !quotientl, !reml + !q, !nh -let div21 xh xl y = if Int64.equal y zero then zero, zero else div21 xh xl y +let div21 xh xl y = + if Int64.compare y xh <= 0 then zero, zero else div21 xh xl y (* exact multiplication *) let mulc x y = diff --git a/test-suite/arithmetic/diveucl_21.v b/test-suite/arithmetic/diveucl_21.v index b888c97be3..b12dba429c 100644 --- a/test-suite/arithmetic/diveucl_21.v +++ b/test-suite/arithmetic/diveucl_21.v @@ -10,11 +10,11 @@ Check (eq_refl (4611686018427387904,1) <<: diveucl_21 1 1 2 = (46116860184273879 Definition compute1 := Eval compute in diveucl_21 1 1 2. Check (eq_refl compute1 : (4611686018427387904,1) = (4611686018427387904,1)). -Check (eq_refl : diveucl_21 3 1 2 = (4611686018427387904, 1)). -Check (eq_refl (4611686018427387904, 1) <: diveucl_21 3 1 2 = (4611686018427387904, 1)). -Check (eq_refl (4611686018427387904, 1) <<: diveucl_21 3 1 2 = (4611686018427387904, 1)). +Check (eq_refl : diveucl_21 3 1 2 = (0, 0)). +Check (eq_refl (0, 0) <: diveucl_21 3 1 2 = (0, 0)). +Check (eq_refl (0, 0) <<: diveucl_21 3 1 2 = (0, 0)). Definition compute2 := Eval compute in diveucl_21 3 1 2. -Check (eq_refl compute2 : (4611686018427387904, 1) = (4611686018427387904, 1)). +Check (eq_refl compute2 : (0, 0) = (0, 0)). Check (eq_refl : diveucl_21 1 1 0 = (0,0)). Check (eq_refl (0,0) <: diveucl_21 1 1 0 = (0,0)). @@ -23,3 +23,7 @@ Check (eq_refl (0,0) <<: diveucl_21 1 1 0 = (0,0)). Check (eq_refl : diveucl_21 9223372036854775807 0 1 = (0,0)). Check (eq_refl (0,0) <: diveucl_21 9223372036854775807 0 1 = (0,0)). Check (eq_refl (0,0) <<: diveucl_21 9223372036854775807 0 1 = (0,0)). + +Check (eq_refl : diveucl_21 9305446873517 1793572051078448654 4930380657631323783 = (17407905077428, 3068214991893055266)). +Check (eq_refl (17407905077428, 3068214991893055266) <: diveucl_21 9305446873517 1793572051078448654 4930380657631323783 = (17407905077428, 3068214991893055266)). +Check (eq_refl (17407905077428, 3068214991893055266) <<: diveucl_21 9305446873517 1793572051078448654 4930380657631323783 = (17407905077428, 3068214991893055266)). diff --git a/theories/Numbers/Cyclic/Int63/Int63.v b/theories/Numbers/Cyclic/Int63/Int63.v index c81ba02230..9e9481341f 100644 --- a/theories/Numbers/Cyclic/Int63/Int63.v +++ b/theories/Numbers/Cyclic/Int63/Int63.v @@ -388,7 +388,7 @@ Axiom diveucl_def_spec : forall x y, diveucl x y = diveucl_def x y. Axiom diveucl_21_spec : forall a1 a2 b, let (q,r) := diveucl_21 a1 a2 b in let (q',r') := Z.div_eucl ([|a1|] * wB + [|a2|]) [|b|] in - [|q|] = Z.modulo q' wB /\ [|r|] = r'. + [|a1|] < [|b|] -> [|q|] = q' /\ [|r|] = r'. Axiom addmuldiv_def_spec : forall p x y, addmuldiv p x y = addmuldiv_def p x y. @@ -1421,26 +1421,9 @@ Proof. generalize (Z_div_mod ([|a1|]*wB+[|a2|]) [|b|] H). revert W. destruct (diveucl_21 a1 a2 b); destruct (Z.div_eucl ([|a1|]*wB+[|a2|]) [|b|]). - intros (H', H''); rewrite H', H''; clear H' H''. + intros (H', H''); auto; rewrite H', H''; clear H' H''. intros (H', H''); split; [ |exact H'']. - rewrite H', Zmult_comm, Z.mod_small; [reflexivity| ]. - split. - { revert H'; case z; [now simpl..|intros p H']. - exfalso; apply (Z.lt_irrefl 0), (Z.le_lt_trans _ ([|a1|] * wB + [|a2|])). - { now apply Z.add_nonneg_nonneg; [apply Z.mul_nonneg_nonneg| ]. } - rewrite H'; apply (Zplus_lt_reg_r _ _ (- z0)); ring_simplify. - apply (Z.le_lt_trans _ (- [|b|])); [ |now auto with zarith]. - rewrite Z.opp_eq_mul_m1; apply Zmult_le_compat_l; [ |now apply Wb]. - rewrite <-!Pos2Z.opp_pos, <-Z.opp_le_mono. - now change 1 with (Z.succ 0); apply Zlt_le_succ. } - rewrite <-Z.nle_gt; intro Hz; revert H2; apply Zle_not_lt. - rewrite (Z.div_unique_pos (wB * [|a1|] + [|a2|]) wB [|a1|] [|a2|]); - [ |now simpl..]. - rewrite Z.mul_comm, H'. - rewrite (Z.div_unique_pos (wB * [|b|] + z0) wB [|b|] z0) at 1; - [ |split; [ |apply (Z.lt_trans _ [|b|])]; now simpl|reflexivity]. - apply Z_div_le; [now simpl| ]; rewrite Z.mul_comm; apply Zplus_le_compat_r. - now apply Zmult_le_compat_l. + now rewrite H', Zmult_comm. Qed. Lemma div2_phi ih il j: (2^62 <= [|j|] -> [|ih|] < [|j|] -> |
