diff options
| author | Pierre Roux | 2020-09-03 13:18:00 +0200 |
|---|---|---|
| committer | Pierre Roux | 2020-11-05 00:20:19 +0100 |
| commit | 11f8d8fca374565b4cad542e131fd32a50a70440 (patch) | |
| tree | 3bc5ce2ac955fe170cbf86a1d62498c5145dcd27 | |
| parent | 398dc5e41a25b5488a648782946a408e5312c1dc (diff) | |
[numeral notation] Prove Q
| -rw-r--r-- | theories/Numbers/DecimalFacts.v | 607 | ||||
| -rw-r--r-- | theories/Numbers/DecimalN.v | 4 | ||||
| -rw-r--r-- | theories/Numbers/DecimalNat.v | 4 | ||||
| -rw-r--r-- | theories/Numbers/DecimalQ.v | 396 | ||||
| -rw-r--r-- | theories/Numbers/DecimalZ.v | 27 | ||||
| -rw-r--r-- | theories/Numbers/HexadecimalFacts.v | 627 | ||||
| -rw-r--r-- | theories/Numbers/HexadecimalN.v | 4 | ||||
| -rw-r--r-- | theories/Numbers/HexadecimalNat.v | 4 | ||||
| -rw-r--r-- | theories/Numbers/HexadecimalQ.v | 393 | ||||
| -rw-r--r-- | theories/Numbers/HexadecimalZ.v | 27 |
10 files changed, 1742 insertions, 351 deletions
diff --git a/theories/Numbers/DecimalFacts.v b/theories/Numbers/DecimalFacts.v index dd361562ba..87a9f704cd 100644 --- a/theories/Numbers/DecimalFacts.v +++ b/theories/Numbers/DecimalFacts.v @@ -10,175 +10,425 @@ (** * DecimalFacts : some facts about Decimal numbers *) -Require Import Decimal Arith. +Require Import Decimal Arith ZArith. + +Variant digits := d0 | d1 | d2 | d3 | d4 | d5 | d6 | d7 | d8 | d9. + +Fixpoint to_list (u : uint) : list digits := + match u with + | Nil => nil + | D0 u => cons d0 (to_list u) + | D1 u => cons d1 (to_list u) + | D2 u => cons d2 (to_list u) + | D3 u => cons d3 (to_list u) + | D4 u => cons d4 (to_list u) + | D5 u => cons d5 (to_list u) + | D6 u => cons d6 (to_list u) + | D7 u => cons d7 (to_list u) + | D8 u => cons d8 (to_list u) + | D9 u => cons d9 (to_list u) + end. -Lemma uint_dec (d d' : uint) : { d = d' } + { d <> d' }. -Proof. - decide equality. -Defined. +Fixpoint of_list (l : list digits) : uint := + match l with + | nil => Nil + | cons d0 l => D0 (of_list l) + | cons d1 l => D1 (of_list l) + | cons d2 l => D2 (of_list l) + | cons d3 l => D3 (of_list l) + | cons d4 l => D4 (of_list l) + | cons d5 l => D5 (of_list l) + | cons d6 l => D6 (of_list l) + | cons d7 l => D7 (of_list l) + | cons d8 l => D8 (of_list l) + | cons d9 l => D9 (of_list l) + end. -Lemma rev_revapp d d' : - rev (revapp d d') = revapp d' d. +Lemma of_list_to_list u : of_list (to_list u) = u. +Proof. now induction u; [|simpl; rewrite IHu..]. Qed. + +Lemma to_list_of_list l : to_list (of_list l) = l. +Proof. now induction l as [|h t IHl]; [|case h; simpl; rewrite IHl]. Qed. + +Lemma to_list_inj u u' : to_list u = to_list u' -> u = u'. Proof. - revert d'. induction d; simpl; intros; now rewrite ?IHd. + now intro H; rewrite <-(of_list_to_list u), <-(of_list_to_list u'), H. Qed. -Lemma rev_rev d : rev (rev d) = d. +Lemma of_list_inj u u' : of_list u = of_list u' -> u = u'. Proof. - apply rev_revapp. + now intro H; rewrite <-(to_list_of_list u), <-(to_list_of_list u'), H. Qed. -Lemma revapp_rev_nil d : revapp (rev d) Nil = d. -Proof. now fold (rev (rev d)); rewrite rev_rev. Qed. +Lemma nb_digits_spec u : nb_digits u = length (to_list u). +Proof. now induction u; [|simpl; rewrite IHu..]. Qed. -Lemma app_nil_r d : app d Nil = d. -Proof. now unfold app; rewrite revapp_rev_nil. Qed. +Fixpoint lnzhead l := + match l with + | nil => nil + | cons d l' => + match d with + | d0 => lnzhead l' + | _ => l + end + end. -Lemma app_int_nil_r d : app_int d Nil = d. -Proof. now case d; intro d'; simpl; rewrite app_nil_r. Qed. +Lemma nzhead_spec u : to_list (nzhead u) = lnzhead (to_list u). +Proof. now induction u; [|simpl; rewrite IHu|..]. Qed. + +Definition lzero := cons d0 nil. + +Definition lunorm l := + match lnzhead l with + | nil => lzero + | d => d + end. + +Lemma unorm_spec u : to_list (unorm u) = lunorm (to_list u). +Proof. now unfold unorm, lunorm; rewrite <-nzhead_spec; case (nzhead u). Qed. -Lemma revapp_revapp_1 d d' d'' : - nb_digits d <= 1 -> - revapp (revapp d d') d'' = revapp d' (revapp d d''). +Lemma revapp_spec d d' : + to_list (revapp d d') = List.rev_append (to_list d) (to_list d'). +Proof. now revert d'; induction d; intro d'; [|simpl; rewrite IHd..]. Qed. + +Lemma rev_spec d : to_list (rev d) = List.rev (to_list d). +Proof. now unfold rev; rewrite revapp_spec, List.rev_alt; simpl. Qed. + +Lemma app_spec d d' : + to_list (app d d') = Datatypes.app (to_list d) (to_list d'). Proof. - now case d; clear d; intro d; - [|case d; clear d; intro d; - [|simpl; case nb_digits; [|intros n]; intros Hn; exfalso; - [apply (Nat.nle_succ_diag_l _ Hn)| - apply (Nat.nle_succ_0 _ (le_S_n _ _ Hn))]..]..]. + unfold app. + now rewrite revapp_spec, List.rev_append_rev, rev_spec, List.rev_involutive. Qed. -Lemma nb_digits_pos d : d <> Nil -> 0 < nb_digits d. -Proof. now case d; [|intros d' _; apply Nat.lt_0_succ..]. Qed. +Definition lnztail l := + let fix aux l_rev := + match l_rev with + | cons d0 l_rev => let (r, n) := aux l_rev in pair r (S n) + | _ => pair l_rev O + end in + let (r, n) := aux (List.rev l) in pair (List.rev r) n. -Lemma nb_digits_revapp d d' : - nb_digits (revapp d d') = nb_digits d + nb_digits d'. +Lemma nztail_spec d : + let (r, n) := nztail d in + let (r', n') := lnztail (to_list d) in + to_list r = r' /\ n = n'. Proof. - now revert d'; induction d; [|intro d'; simpl; rewrite IHd; simpl..]. + unfold nztail, lnztail. + set (f := fix aux d_rev := match d_rev with + | D0 d_rev => let (r, n) := aux d_rev in (r, S n) + | _ => (d_rev, 0) end). + set (f' := fix aux (l_rev : list digits) : list digits * nat := + match l_rev with + | cons d0 l_rev => let (r, n) := aux l_rev in (r, S n) + | _ => (l_rev, 0) + end). + rewrite <-(of_list_to_list (rev d)), rev_spec. + induction (List.rev _) as [|h t IHl]; [now simpl|]. + case h; simpl; [|now rewrite rev_spec; simpl; rewrite to_list_of_list..]. + now revert IHl; case f; intros r n; case f'; intros r' n' [-> ->]. Qed. -Lemma nb_digits_rev u : nb_digits (rev u) = nb_digits u. -Proof. now unfold rev; rewrite nb_digits_revapp. Qed. +Lemma del_head_spec_0 d : del_head 0 d = d. +Proof. now simpl. Qed. -Lemma nb_digits_nzhead u : nb_digits (nzhead u) <= nb_digits u. -Proof. now induction u; [|apply le_S|..]. Qed. +Lemma del_head_spec_small n d : + n <= length (to_list d) -> to_list (del_head n d) = List.skipn n (to_list d). +Proof. + revert d; induction n as [|n IHn]; intro d; [now simpl|]. + now case d; [|intros d' H; apply IHn, le_S_n..]. +Qed. -Lemma del_head_nb_digits (u:uint) : del_head (nb_digits u) u = Nil. -Proof. now induction u. Qed. +Lemma del_head_spec_large n d : length (to_list d) < n -> del_head n d = zero. +Proof. + revert d; induction n; intro d; [now case d|]. + now case d; [|intro d'; simpl; intro H; rewrite (IHn _ (lt_S_n _ _ H))..]. +Qed. -Lemma nb_digits_del_head n u : - n <= nb_digits u -> nb_digits (del_head n u) = nb_digits u - n. +Lemma nb_digits_0 d : nb_digits d = 0 -> d = Nil. Proof. - revert u; induction n; intros u; [now rewrite Nat.sub_0_r|]. - now case u; clear u; intro u; [|intro Hn; apply IHn, le_S_n..]. + rewrite nb_digits_spec, <-(of_list_to_list d). + now case (to_list d) as [|h t]; [|rewrite to_list_of_list]. Qed. +Lemma nb_digits_n0 d : nb_digits d <> 0 -> d <> Nil. +Proof. now case d; [|intros u _..]. Qed. + Lemma nb_digits_iter_D0 n d : nb_digits (Nat.iter n D0 d) = n + nb_digits d. Proof. now induction n; simpl; [|rewrite IHn]. Qed. -Fixpoint nth n u := - match n with - | O => - match u with - | Nil => Nil - | D0 d => D0 Nil - | D1 d => D1 Nil - | D2 d => D2 Nil - | D3 d => D3 Nil - | D4 d => D4 Nil - | D5 d => D5 Nil - | D6 d => D6 Nil - | D7 d => D7 Nil - | D8 d => D8 Nil - | D9 d => D9 Nil - end - | S n => - match u with - | Nil => Nil - | D0 d | D1 d | D2 d | D3 d | D4 d | D5 d | D6 d | D7 d | D8 d | D9 d => - nth n d - end - end. +Lemma length_lnzhead l : length (lnzhead l) <= length l. +Proof. now induction l as [|h t IHl]; [|case h; [apply le_S|..]]. Qed. + +Lemma nb_digits_nzhead u : nb_digits (nzhead u) <= nb_digits u. +Proof. now induction u; [|apply le_S|..]. Qed. + +Lemma unorm_nzhead u : nzhead u <> Nil -> unorm u = nzhead u. +Proof. now unfold unorm; case nzhead. Qed. -Lemma nb_digits_nth n u : nb_digits (nth n u) <= 1. +Lemma nb_digits_unorm u : u <> Nil -> nb_digits (unorm u) <= nb_digits u. Proof. - revert u; induction n. - - now intro u; case u; [apply Nat.le_0_1|..]. - - intro u; case u; [apply Nat.le_0_1|intro u'; apply IHn..]. + intro Hu; case (uint_eq_dec (nzhead u) Nil). + { unfold unorm; intros ->; simpl. + now revert Hu; case u; [|intros u' _; apply le_n_S, Nat.le_0_l..]. } + intro H; rewrite (unorm_nzhead _ H); apply nb_digits_nzhead. Qed. -Lemma del_head_nth n u : - n < nb_digits u -> - del_head n u = revapp (nth n u) (del_head (S n) u). -Proof. - revert u; induction n; intro u; [now case u|]. - now case u; [|intro u'; intro H; apply IHn, le_S_n..]. -Qed. - -Lemma nth_revapp_r n d d' : - nb_digits d <= n -> - nth n (revapp d d') = nth (n - nb_digits d) d'. -Proof. - revert d d'; induction n; intro d. - - now case d; intro d'; - [case d'|intros d'' H; exfalso; revert H; apply Nat.nle_succ_0..]. - - now induction d; - [intro d'; case d'| - intros d' H; - simpl revapp; rewrite IHd; [|now apply le_Sn_le]; - rewrite Nat.sub_succ_l; [|now apply le_S_n]; - simpl; rewrite <-(IHn _ _ (le_S_n _ _ H))..]. -Qed. - -Lemma nth_revapp_l n d d' : - n < nb_digits d -> - nth n (revapp d d') = nth (nb_digits d - n - 1) d. -Proof. - revert d d'; induction n; intro d. - - rewrite Nat.sub_0_r. - now induction d; - [|intros d' _; simpl revapp; - revert IHd; case d; clear d; [|intro d..]; intro IHd; - [|rewrite IHd; [simpl nb_digits; rewrite (Nat.sub_succ_l _ (S _))|]; - [|apply le_n_S, Nat.le_0_l..]..]..]. - - now induction d; - [|intros d' H; - simpl revapp; simpl nb_digits; - simpl in H; generalize (lt_S_n _ _ H); clear H; intro H; - case (le_lt_eq_dec _ _ H); clear H; intro H; - [rewrite (IHd _ H), Nat.sub_succ_l; - [rewrite Nat.sub_succ_l; [|apply Nat.le_add_le_sub_r]| - apply le_Sn_le]| - rewrite nth_revapp_r; rewrite <-H; - [rewrite Nat.sub_succ, Nat.sub_succ_l; [rewrite !Nat.sub_diag|]|]]..]. -Qed. - -Lemma app_del_tail_head (u:uint) n : - n <= nb_digits u -> - app (del_tail n u) (del_head (nb_digits u - n) u) = u. -Proof. - unfold app, del_tail; rewrite rev_rev. - induction n. - - intros _; rewrite Nat.sub_0_r, del_head_nb_digits; simpl. - now rewrite revapp_rev_nil. - - intro Hn. - rewrite (del_head_nth (_ - _)); - [|now apply Nat.sub_lt; [|apply Nat.lt_0_succ]]. - rewrite Nat.sub_succ_r, <-Nat.sub_1_r. - rewrite <-(nth_revapp_l _ _ Nil Hn); fold (rev u). - rewrite <-revapp_revapp_1; [|now apply nb_digits_nth]. - rewrite <-(del_head_nth _ _); [|now rewrite nb_digits_rev]. - rewrite Nat.sub_1_r, Nat.succ_pred_pos; [|now apply Nat.lt_add_lt_sub_r]. - apply (IHn (le_Sn_le _ _ Hn)). +Lemma nb_digits_rev d : nb_digits (rev d) = nb_digits d. +Proof. now rewrite !nb_digits_spec, rev_spec, List.rev_length. Qed. + +Lemma nb_digits_del_head_sub d n : + n <= nb_digits d -> + nb_digits (del_head (nb_digits d - n) d) = n. +Proof. + rewrite !nb_digits_spec; intro Hn. + rewrite del_head_spec_small; [|now apply Nat.le_sub_l]. + rewrite List.skipn_length, <-(Nat2Z.id (_ - _)). + rewrite Nat2Z.inj_sub; [|now apply Nat.le_sub_l]. + rewrite (Nat2Z.inj_sub _ _ Hn). + rewrite Z.sub_sub_distr, Z.sub_diag; apply Nat2Z.id. +Qed. + +Lemma unorm_D0 u : unorm (D0 u) = unorm u. +Proof. reflexivity. Qed. + +Lemma app_nil_l d : app Nil d = d. +Proof. now simpl. Qed. + +Lemma app_nil_r d : app d Nil = d. +Proof. now apply to_list_inj; rewrite app_spec, List.app_nil_r. Qed. + +Lemma abs_app_int d d' : abs (app_int d d') = app (abs d) d'. +Proof. now case d. Qed. + +Lemma abs_norm d : abs (norm d) = unorm (abs d). +Proof. now case d as [u|u]; [|simpl; unfold unorm; case nzhead]. Qed. + +Lemma iter_D0_nzhead d : + Nat.iter (nb_digits d - nb_digits (nzhead d)) D0 (nzhead d) = d. +Proof. + induction d; [now simpl| |now rewrite Nat.sub_diag..]. + simpl nzhead; simpl nb_digits. + rewrite (Nat.sub_succ_l _ _ (nb_digits_nzhead _)). + now rewrite <-IHd at 4. +Qed. + +Lemma iter_D0_unorm d : + d <> Nil -> + Nat.iter (nb_digits d - nb_digits (unorm d)) D0 (unorm d) = d. +Proof. + case (uint_eq_dec (nzhead d) Nil); intro Hn. + { unfold unorm; rewrite Hn; simpl; intro H. + revert H Hn; induction d; [now simpl|intros _|now intros _..]. + case (uint_eq_dec d Nil); simpl; intros H Hn; [now rewrite H|]. + rewrite Nat.sub_0_r, (le_plus_minus 1 (nb_digits d)). + { now simpl; rewrite IHd. } + revert H; case d; [now simpl|intros u _; apply le_n_S, Nat.le_0_l..]. } + intros _; rewrite (unorm_nzhead _ Hn); apply iter_D0_nzhead. +Qed. + +Lemma nzhead_app_l d d' : + nb_digits d' < nb_digits (nzhead (app d d')) -> + nzhead (app d d') = app (nzhead d) d'. +Proof. + intro Hl; apply to_list_inj; revert Hl. + rewrite !nb_digits_spec, app_spec, !nzhead_spec, app_spec. + induction (to_list d) as [|h t IHl]. + { now simpl; intro H; exfalso; revert H; apply le_not_lt, length_lnzhead. } + rewrite <-List.app_comm_cons. + now case h; [simpl; intro Hl; apply IHl|..]. +Qed. + +Lemma nzhead_app_r d d' : + nb_digits (nzhead (app d d')) <= nb_digits d' -> + nzhead (app d d') = nzhead d'. +Proof. + intro Hl; apply to_list_inj; revert Hl. + rewrite !nb_digits_spec, !nzhead_spec, app_spec. + induction (to_list d) as [|h t IHl]; [now simpl|]. + rewrite <-List.app_comm_cons. + now case h; [| simpl; rewrite List.app_length; intro Hl; exfalso; revert Hl; + apply le_not_lt, le_plus_r..]. +Qed. + +Lemma nzhead_app_nil_r d d' : nzhead (app d d') = Nil -> nzhead d' = Nil. +Proof. +now intro H; generalize H; rewrite nzhead_app_r; [|rewrite H; apply Nat.le_0_l]. +Qed. + +Lemma nzhead_app_nil d d' : + nb_digits (nzhead (app d d')) <= nb_digits d' -> nzhead d = Nil. +Proof. + intro H; apply to_list_inj; revert H. + rewrite !nb_digits_spec, !nzhead_spec, app_spec. + induction (to_list d) as [|h t IHl]; [now simpl|]. + now case h; [now simpl|..]; + simpl;intro H; exfalso; revert H; apply le_not_lt; + rewrite List.app_length; apply le_plus_r. +Qed. + +Lemma nzhead_app_nil_l d d' : nzhead (app d d') = Nil -> nzhead d = Nil. +Proof. + intro H; apply to_list_inj; generalize (f_equal to_list H); clear H. + rewrite !nzhead_spec, app_spec. + induction (to_list d) as [|h t IHl]; [now simpl|]. + now rewrite <-List.app_comm_cons; case h. +Qed. + +Lemma unorm_app_zero d d' : + nb_digits (unorm (app d d')) <= nb_digits d' -> unorm d = zero. +Proof. + unfold unorm. + case (uint_eq_dec (nzhead (app d d')) Nil). + { now intro Hn; rewrite Hn, (nzhead_app_nil_l _ _ Hn). } + intro H; fold (unorm (app d d')); rewrite (unorm_nzhead _ H); intro H'. + case (uint_eq_dec (nzhead d) Nil); [now intros->|]. + intro H''; fold (unorm d); rewrite (unorm_nzhead _ H''). + exfalso; apply H''; revert H'; apply nzhead_app_nil. +Qed. + +Lemma app_int_nil_r d : app_int d Nil = d. +Proof. + now case d; intro d'; simpl; + rewrite <-(of_list_to_list (app _ _)), app_spec; + rewrite List.app_nil_r, of_list_to_list. +Qed. + +Lemma unorm_app_l d d' : + nb_digits d' < nb_digits (unorm (app d d')) -> + unorm (app d d') = app (unorm d) d'. +Proof. + case (uint_eq_dec d' Nil); [now intros->; rewrite !app_nil_r|intro Hd']. + case (uint_eq_dec (nzhead (app d d')) Nil). + { unfold unorm; intros->; simpl; intro H; exfalso; revert H; apply le_not_lt. + now revert Hd'; case d'; [|intros d'' _; apply le_n_S, Peano.le_0_n..]. } + intro Ha; rewrite (unorm_nzhead _ Ha). + intro Hn; generalize Hn; rewrite (nzhead_app_l _ _ Hn). + rewrite !nb_digits_spec, app_spec, List.app_length. + case (uint_eq_dec (nzhead d) Nil). + { intros->; simpl; intro H; exfalso; revert H; apply Nat.lt_irrefl. } + now intro H; rewrite (unorm_nzhead _ H). +Qed. + +Lemma unorm_app_r d d' : + nb_digits (unorm (app d d')) <= nb_digits d' -> + unorm (app d d') = unorm d'. +Proof. + case (uint_eq_dec (nzhead (app d d')) Nil). + { now unfold unorm; intro H; rewrite H, (nzhead_app_nil_r _ _ H). } + intro Ha; rewrite (unorm_nzhead _ Ha). + case (uint_eq_dec (nzhead d') Nil). + { now intros H H'; exfalso; apply Ha; rewrite nzhead_app_r. } + intro Hd'; rewrite (unorm_nzhead _ Hd'); apply nzhead_app_r. +Qed. + +Lemma norm_app_int d d' : + nb_digits d' < nb_digits (unorm (app (abs d) d')) -> + norm (app_int d d') = app_int (norm d) d'. +Proof. + case (uint_eq_dec d' Nil); [now intros->; rewrite !app_int_nil_r|intro Hd']. + case d as [d|d]; [now simpl; intro H; apply f_equal, unorm_app_l|]. + simpl; unfold unorm. + case (uint_eq_dec (nzhead (app d d')) Nil). + { intros->; simpl; intro H; exfalso; revert H; apply le_not_lt. + now revert Hd'; case d'; [|intros d'' _; apply le_n_S, Peano.le_0_n..]. } + set (m := match nzhead _ with Nil => _ | _ => _ end). + intro Ha. + replace m with (nzhead (app d d')). + 2:{ now unfold m; revert Ha; case nzhead. } + intro Hn; generalize Hn; rewrite (nzhead_app_l _ _ Hn). + case (uint_eq_dec (app (nzhead d) d') Nil). + { intros->; simpl; intro H; exfalso; revert H; apply le_not_lt, Nat.le_0_l. } + clear m; set (m := match app _ _ with Nil => _ | _ => _ end). + intro Ha'. + replace m with (Neg (app (nzhead d) d')); [|now unfold m; revert Ha'; case app]. + case (uint_eq_dec (nzhead d) Nil). + { intros->; simpl; intro H; exfalso; revert H; apply Nat.lt_irrefl. } + clear m; set (m := match nzhead _ with Nil => _ | _ => _ end). + intro Hd. + now replace m with (Neg (nzhead d)); [|unfold m; revert Hd; case nzhead]. +Qed. + +Lemma del_head_nb_digits d : del_head (nb_digits d) d = Nil. +Proof. + apply to_list_inj. + rewrite nb_digits_spec, del_head_spec_small; [|now simpl]. + now rewrite List.skipn_all. +Qed. + +Lemma del_tail_nb_digits d : del_tail (nb_digits d) d = Nil. +Proof. now unfold del_tail; rewrite <-nb_digits_rev, del_head_nb_digits. Qed. + +Lemma del_head_app n d d' : + n <= nb_digits d -> del_head n (app d d') = app (del_head n d) d'. +Proof. + rewrite nb_digits_spec; intro Hn. + apply to_list_inj. + rewrite del_head_spec_small. + 2:{ now rewrite app_spec, List.app_length; apply le_plus_trans. } + rewrite !app_spec, (del_head_spec_small _ _ Hn). + rewrite List.skipn_app. + now rewrite (proj2 (Nat.sub_0_le _ _) Hn). +Qed. + +Lemma del_tail_app n d d' : + n <= nb_digits d' -> del_tail n (app d d') = app d (del_tail n d'). +Proof. + rewrite nb_digits_spec; intro Hn. + unfold del_tail. + rewrite <-(of_list_to_list (rev (app d d'))), rev_spec, app_spec. + rewrite List.rev_app_distr, <-!rev_spec, <-app_spec, of_list_to_list. + rewrite del_head_app; [|now rewrite nb_digits_spec, rev_spec, List.rev_length]. + apply to_list_inj. + rewrite rev_spec, !app_spec, !rev_spec. + now rewrite List.rev_app_distr, List.rev_involutive. +Qed. + +Lemma del_tail_app_int n d d' : + n <= nb_digits d' -> del_tail_int n (app_int d d') = app_int d (del_tail n d'). +Proof. now case d as [d|d]; simpl; intro H; rewrite del_tail_app. Qed. + +Lemma app_del_tail_head n (d:uint) : + n <= nb_digits d -> app (del_tail n d) (del_head (nb_digits d - n) d) = d. +Proof. + rewrite nb_digits_spec; intro Hn; unfold del_tail. + rewrite <-(of_list_to_list (app _ _)), app_spec, rev_spec. + rewrite del_head_spec_small; [|now rewrite rev_spec, List.rev_length]. + rewrite del_head_spec_small; [|now apply Nat.le_sub_l]. + rewrite rev_spec. + set (n' := _ - n). + assert (Hn' : n = length (to_list d) - n'). + { now apply plus_minus; rewrite Nat.add_comm; symmetry; apply le_plus_minus_r. } + now rewrite Hn', <-List.firstn_skipn_rev, List.firstn_skipn, of_list_to_list. Qed. Lemma app_int_del_tail_head n (d:int) : - let ad := match d with Pos d | Neg d => d end in - n <= nb_digits ad -> - app_int (del_tail_int n d) (del_head (nb_digits ad - n) ad) = d. + n <= nb_digits (abs d) -> + app_int (del_tail_int n d) (del_head (nb_digits (abs d) - n) (abs d)) = d. Proof. now case d; clear d; simpl; intros u Hu; rewrite app_del_tail_head. Qed. +Lemma del_head_app_int_exact i f : + nb_digits f < nb_digits (unorm (app (abs i) f)) -> + del_head (nb_digits (unorm (app (abs i) f)) - nb_digits f) (unorm (app (abs i) f)) = f. +Proof. + simpl; intro Hnb; generalize Hnb; rewrite (unorm_app_l _ _ Hnb); clear Hnb. + replace (_ - _) with (nb_digits (unorm (abs i))). + - now rewrite del_head_app; [rewrite del_head_nb_digits|]. + - rewrite !nb_digits_spec, app_spec, List.app_length. + now rewrite Nat.add_comm, minus_plus. +Qed. + +Lemma del_tail_app_int_exact i f : + nb_digits f < nb_digits (unorm (app (abs i) f)) -> + del_tail_int (nb_digits f) (norm (app_int i f)) = norm i. +Proof. + simpl; intro Hnb. + rewrite (norm_app_int _ _ Hnb). + rewrite del_tail_app_int; [|now simpl]. + now rewrite del_tail_nb_digits, app_int_nil_r. +Qed. + (** Normalization on little-endian numbers *) Fixpoint nztail d := @@ -224,10 +474,13 @@ Proof. apply nzhead_revapp. Qed. +Lemma rev_rev d : rev (rev d) = d. +Proof. now apply to_list_inj; rewrite !rev_spec, List.rev_involutive. Qed. + Lemma rev_nztail_rev d : rev (nztail (rev d)) = nzhead d. Proof. - destruct (uint_dec (nztail (rev d)) Nil) as [H|H]. + destruct (uint_eq_dec (nztail (rev d)) Nil) as [H|H]. - rewrite H. unfold rev; simpl. rewrite <- (rev_rev d). symmetry. now apply nzhead_revapp_0. @@ -278,21 +531,9 @@ Proof. unfold unorm. now destruct nzhead. Qed. -Lemma unorm_D0 u : unorm (D0 u) = unorm u. -Proof. reflexivity. Qed. - Lemma unorm_iter_D0 n u : unorm (Nat.iter n D0 u) = unorm u. Proof. now induction n. Qed. -Lemma nb_digits_unorm u : - u <> Nil -> nb_digits (unorm u) <= nb_digits u. -Proof. - case u; clear u; [now simpl|intro u..]; [|now simpl..]. - intros _; unfold unorm. - case_eq (nzhead (D0 u)); [|now intros u' <-; apply nb_digits_nzhead..]. - intros _; apply le_n_S, Nat.le_0_l. -Qed. - Lemma del_head_nonnil n u : n < nb_digits u -> del_head n u <> Nil. Proof. @@ -311,73 +552,78 @@ Proof. now apply del_head_nonnil. Qed. -Lemma nzhead_invol d : nzhead (nzhead d) = nzhead d. +Lemma nzhead_involutive d : nzhead (nzhead d) = nzhead d. Proof. now induction d. Qed. +#[deprecated(since="8.13",note="Use nzhead_involutive instead.")] +Notation nzhead_invol := nzhead_involutive (only parsing). -Lemma nztail_invol d : nztail (nztail d) = nztail d. +Lemma nztail_involutive d : nztail (nztail d) = nztail d. Proof. rewrite <-(rev_rev (nztail _)), <-(rev_rev (nztail d)), <-(rev_rev d). - now rewrite !rev_nztail_rev, nzhead_invol. + now rewrite !rev_nztail_rev, nzhead_involutive. Qed. +#[deprecated(since="8.13",note="Use nztail_involutive instead.")] +Notation nztail_invol := nztail_involutive (only parsing). -Lemma unorm_invol d : unorm (unorm d) = unorm d. +Lemma unorm_involutive d : unorm (unorm d) = unorm d. Proof. unfold unorm. destruct (nzhead d) eqn:E; trivial. destruct (nzhead_nonzero _ _ E). Qed. +#[deprecated(since="8.13",note="Use unorm_involutive instead.")] +Notation unorm_invol := unorm_involutive (only parsing). -Lemma norm_invol d : norm (norm d) = norm d. +Lemma norm_involutive d : norm (norm d) = norm d. Proof. unfold norm. destruct d. - - f_equal. apply unorm_invol. + - f_equal. apply unorm_involutive. - destruct (nzhead d) eqn:E; auto. destruct (nzhead_nonzero _ _ E). Qed. +#[deprecated(since="8.13",note="Use norm_involutive instead.")] +Notation norm_invol := norm_involutive (only parsing). + +Lemma lnzhead_neq_d0_head l l' : ~(lnzhead l = cons d0 l'). +Proof. now induction l as [|h t Il]; [|case h]. Qed. + +Lemma lnzhead_head_nd0 h t : h <> d0 -> lnzhead (cons h t) = cons h t. +Proof. now case h. Qed. Lemma nzhead_del_tail_nzhead_eq n u : nzhead u = u -> n < nb_digits u -> nzhead (del_tail n u) = del_tail n u. Proof. + rewrite nb_digits_spec, <-List.rev_length. intros Hu Hn. - assert (Hhd : forall u, - nzhead u = u <-> match nth 0 u with D0 _ => False | _ => True end). - { clear n u Hu Hn; intro u. - case u; clear u; [|intro u..]; [now simpl| |now simpl..]; simpl. - split; [|now simpl]. - apply nzhead_nonzero. } - assert (Hhd' : nth 0 (del_tail n u) = nth 0 u). - { rewrite <-(app_del_tail_head _ _ (le_Sn_le _ _ Hn)) at 2. - unfold app. - rewrite nth_revapp_l. - - rewrite <-(nth_revapp_l _ _ Nil). - + now fold (rev (rev (del_tail n u))); rewrite rev_rev. - + unfold del_tail; rewrite rev_rev. - rewrite nb_digits_del_head; rewrite nb_digits_rev. - * now rewrite <-Nat.lt_add_lt_sub_r. - * now apply Nat.lt_le_incl. - - unfold del_tail; rewrite rev_rev. - rewrite nb_digits_del_head; rewrite nb_digits_rev. - + now rewrite <-Nat.lt_add_lt_sub_r. - + now apply Nat.lt_le_incl. } - revert Hu; rewrite Hhd; intro Hu. - now rewrite Hhd, Hhd'. + apply to_list_inj; unfold del_tail. + rewrite nzhead_spec, rev_spec. + rewrite del_head_spec_small; [|now rewrite rev_spec; apply Nat.lt_le_incl]. + rewrite rev_spec. + rewrite List.skipn_rev, List.rev_involutive. + generalize (f_equal to_list Hu) Hn; rewrite nzhead_spec; intro Hu'. + case (to_list u) as [|h t]. + { simpl; intro H; exfalso; revert H; apply le_not_lt, Peano.le_0_n. } + intro Hn'; generalize (Nat.sub_gt _ _ Hn'); rewrite List.rev_length. + case (_ - _); [now simpl|]; intros n' _. + rewrite List.firstn_cons, lnzhead_head_nd0; [now simpl|]. + intro Hh; revert Hu'; rewrite Hh; apply lnzhead_neq_d0_head. Qed. Lemma nzhead_del_tail_nzhead n u : n < nb_digits (nzhead u) -> nzhead (del_tail n (nzhead u)) = del_tail n (nzhead u). -Proof. apply nzhead_del_tail_nzhead_eq, nzhead_invol. Qed. +Proof. apply nzhead_del_tail_nzhead_eq, nzhead_involutive. Qed. Lemma unorm_del_tail_unorm n u : n < nb_digits (unorm u) -> unorm (del_tail n (unorm u)) = del_tail n (unorm u). Proof. - case (uint_dec (nzhead u) Nil). + case (uint_eq_dec (nzhead u) Nil). - unfold unorm; intros->; case n; [now simpl|]; intro n'. now simpl; intro H; exfalso; generalize (lt_S_n _ _ H). - unfold unorm. @@ -396,7 +642,7 @@ Lemma norm_del_tail_int_norm n d : Proof. case d; clear d; intros u; simpl. - now intro H; simpl; rewrite unorm_del_tail_unorm. - - case (uint_dec (nzhead u) Nil); intro Hu. + - case (uint_eq_dec (nzhead u) Nil); intro Hu. + now rewrite Hu; case n; [|intros n' Hn'; generalize (lt_S_n _ _ Hn')]. + set (m := match nzhead u with Nil => Pos zero | _ => _ end). replace m with (Neg (nzhead u)); [|now unfold m; revert Hu; case nzhead]. @@ -418,7 +664,7 @@ Proof. generalize (nzhead_revapp d d'). generalize (nzhead_revapp_0 (nztail d) d'). generalize (nzhead_revapp (nztail d) d'). - rewrite nztail_invol. + rewrite nztail_involutive. now case nztail; [intros _ H _ H'; rewrite (H eq_refl), (H' eq_refl) |intros d'' H _ H' _; rewrite H; [rewrite H'|]..]. @@ -455,5 +701,10 @@ Proof. |rewrite H'; unfold r; clear m r H']; unfold norm; rewrite rev_rev, <-Hd''; - rewrite nzhead_revapp; rewrite nztail_invol; [|rewrite Hd'']..]. + rewrite nzhead_revapp; rewrite nztail_involutive; [|rewrite Hd'']..]. +Qed. + +Lemma unorm_app_l_nil d d' : nzhead d = Nil -> unorm (app d d') = unorm d'. +Proof. + now unfold unorm; rewrite <-nzhead_app_nzhead; intros->; rewrite app_nil_l. Qed. diff --git a/theories/Numbers/DecimalN.v b/theories/Numbers/DecimalN.v index 8bc5c38fb5..a5dd97f24b 100644 --- a/theories/Numbers/DecimalN.v +++ b/theories/Numbers/DecimalN.v @@ -74,7 +74,7 @@ Proof. destruct (norm d) eqn:Hd; intros [= <-]. unfold N.to_int. rewrite Unsigned.to_of. f_equal. revert Hd; destruct d; simpl. - - intros [= <-]. apply unorm_invol. + - intros [= <-]. apply unorm_involutive. - destruct (nzhead d); now intros [= <-]. Qed. @@ -93,7 +93,7 @@ Qed. Lemma of_int_norm d : N.of_int (norm d) = N.of_int d. Proof. - unfold N.of_int. now rewrite norm_invol. + unfold N.of_int. now rewrite norm_involutive. Qed. Lemma of_inj_pos d d' : diff --git a/theories/Numbers/DecimalNat.v b/theories/Numbers/DecimalNat.v index 1962ac5d9d..4fee40caa2 100644 --- a/theories/Numbers/DecimalNat.v +++ b/theories/Numbers/DecimalNat.v @@ -270,7 +270,7 @@ Proof. destruct (norm d) eqn:Hd; intros [= <-]. unfold Nat.to_int. rewrite Unsigned.to_of. f_equal. revert Hd; destruct d; simpl. - - intros [= <-]. apply unorm_invol. + - intros [= <-]. apply unorm_involutive. - destruct (nzhead d); now intros [= <-]. Qed. @@ -289,7 +289,7 @@ Qed. Lemma of_int_norm d : Nat.of_int (norm d) = Nat.of_int d. Proof. - unfold Nat.of_int. now rewrite norm_invol. + unfold Nat.of_int. now rewrite norm_involutive. Qed. Lemma of_inj_pos d d' : diff --git a/theories/Numbers/DecimalQ.v b/theories/Numbers/DecimalQ.v index d9642d7b02..2027813eec 100644 --- a/theories/Numbers/DecimalQ.v +++ b/theories/Numbers/DecimalQ.v @@ -15,8 +15,112 @@ Require Import Decimal DecimalFacts DecimalPos DecimalN DecimalZ QArith. +Lemma of_IQmake_to_decimal num den : + match IQmake_to_decimal num den with + | None => True + | Some (DecimalExp _ _ _) => False + | Some (Decimal i f) => of_decimal (Decimal i f) = IQmake (IZ_of_Z num) den + end. +Proof. + unfold IQmake_to_decimal. + generalize (Unsigned.nztail_to_uint den). + case Decimal.nztail; intros den' e_den'. + case den'; [now simpl|now simpl| |now simpl..]; clear den'; intro den'. + case den'; [ |now simpl..]; clear den'. + case e_den' as [|e_den']; simpl; intro H; injection H; clear H; intros->. + { now unfold of_decimal; simpl; rewrite app_int_nil_r, DecimalZ.of_to. } + replace (10 ^ _)%positive with (Nat.iter (S e_den') (Pos.mul 10) 1%positive). + 2:{ induction e_den' as [|n IHn]; [now simpl| ]. + now rewrite SuccNat2Pos.inj_succ, Pos.pow_succ_r, <-IHn. } + case Nat.ltb_spec; intro He_den'. + - unfold of_decimal; simpl. + rewrite app_int_del_tail_head; [|now apply Nat.lt_le_incl]. + rewrite DecimalZ.of_to. + now rewrite nb_digits_del_head_sub; [|now apply Nat.lt_le_incl]. + - unfold of_decimal; simpl. + rewrite nb_digits_iter_D0. + apply f_equal2. + + apply f_equal, DecimalZ.to_int_inj. + rewrite DecimalZ.to_of. + rewrite <-(DecimalZ.of_to num), DecimalZ.to_of. + case (Z.to_int num); clear He_den' num; intro num; simpl. + * unfold app; simpl. + now rewrite unorm_D0, unorm_iter_D0, unorm_involutive. + * case (uint_eq_dec (nzhead num) Nil); [|intro Hn]. + { intros->; simpl; unfold app; simpl. + now rewrite unorm_D0, unorm_iter_D0. } + replace (match nzhead num with Nil => _ | _ => _ end) + with (Neg (nzhead num)); [|now revert Hn; case nzhead]. + simpl. + rewrite nzhead_iter_D0, nzhead_involutive. + now revert Hn; case nzhead. + + revert He_den'; case nb_digits as [|n]; [now simpl; rewrite Nat.add_0_r|]. + intro Hn. + rewrite Nat.add_succ_r, Nat.add_comm. + now rewrite <-le_plus_minus; [|apply le_S_n]. +Qed. + +Lemma IZ_of_Z_IZ_to_Z z z' : IZ_to_Z z = Some z' -> IZ_of_Z z' = z. +Proof. now case z as [| |p|p]; [|intro H; injection H; intros<-..]. Qed. + +Lemma of_IQmake_to_decimal' num den : + match IQmake_to_decimal' num den with + | None => True + | Some (DecimalExp _ _ _) => False + | Some (Decimal i f) => of_decimal (Decimal i f) = IQmake num den + end. +Proof. + unfold IQmake_to_decimal'. + case_eq (IZ_to_Z num); [intros num' Hnum'|now simpl]. + generalize (of_IQmake_to_decimal num' den). + case IQmake_to_decimal as [d|]; [|now simpl]. + case d as [i f|]; [|now simpl]. + now rewrite (IZ_of_Z_IZ_to_Z _ _ Hnum'). +Qed. + Lemma of_to (q:IQ) : forall d, to_decimal q = Some d -> of_decimal d = q. -Admitted. +Proof. + intro d. + case q as [num den|q q'|q q']; simpl. + - generalize (of_IQmake_to_decimal' num den). + case IQmake_to_decimal' as [d'|]; [|now simpl]. + case d' as [i f|]; [|now simpl]. + now intros H H'; injection H'; clear H'; intros <-. + - case q as [num den| |]; [|now simpl..]. + case q' as [num' den'| |]; [|now simpl..]. + case num' as [z p| | |]; [|now simpl..]. + case (Z.eq_dec z 10); [intros->|]. + 2:{ case z; [now simpl| |now simpl]; intro pz'. + case pz'; [intros d0..| ]; [now simpl| |now simpl]. + case d0; [intros d1..| ]; [ |now simpl..]. + case d1; [intros d2..| ]; [now simpl| |now simpl]. + now case d2. } + case (Pos.eq_dec den' 1%positive); [intros->|now case den']. + generalize (of_IQmake_to_decimal' num den). + case IQmake_to_decimal' as [d'|]; [|now simpl]. + case d' as [i f|]; [|now simpl]. + intros <-; clear num den. + intros H; injection H; clear H; intros<-. + unfold of_decimal; simpl. + now unfold Z.of_uint; rewrite DecimalPos.Unsigned.of_to; simpl. + - case q as [num den| |]; [|now simpl..]. + case q' as [num' den'| |]; [|now simpl..]. + case num' as [z p| | |]; [|now simpl..]. + case (Z.eq_dec z 10); [intros->|]. + 2:{ case z; [now simpl| |now simpl]; intro pz'. + case pz'; [intros d0..| ]; [now simpl| |now simpl]. + case d0; [intros d1..| ]; [ |now simpl..]. + case d1; [intros d2..| ]; [now simpl| |now simpl]. + now case d2. } + case (Pos.eq_dec den' 1%positive); [intros->|now case den']. + generalize (of_IQmake_to_decimal' num den). + case IQmake_to_decimal' as [d'|]; [|now simpl]. + case d' as [i f|]; [|now simpl]. + intros <-; clear num den. + intros H; injection H; clear H; intros<-. + unfold of_decimal; simpl. + now unfold Z.of_uint; rewrite DecimalPos.Unsigned.of_to; simpl. +Qed. Definition dnorm (d:decimal) : decimal := let norm_i i f := @@ -43,13 +147,50 @@ Lemma dnorm_spec_i d : (i' = Neg (unorm i) /\ (nzhead i <> Nil \/ nzhead f <> Nil)) \/ (i' = Pos zero /\ (nzhead i = Nil /\ nzhead f = Nil)) end. -Admitted. +Proof. + case d as [i f|i f e]; case i as [i|i]. + - now simpl. + - simpl; case (uint_eq_dec (nzhead (app i f)) Nil); intro Ha. + + rewrite Ha; right; split; [now simpl|split]. + * now unfold unorm; rewrite (nzhead_app_nil_l _ _ Ha). + * now unfold unorm; rewrite (nzhead_app_nil_r _ _ Ha). + + left; split; [now revert Ha; case nzhead|]. + case (uint_eq_dec (nzhead i) Nil). + * intro Hi; right; intro Hf; apply Ha. + now rewrite <-nzhead_app_nzhead, Hi, app_nil_l. + * now intro H; left. + - simpl; case (norm e); clear e; intro e; [|now simpl]. + now case e; clear e; [|intro e..]; [|case e|..]. + - simpl. + set (m := match nzhead _ with Nil => _ | _ => _ end). + set (m' := match _ with Decimal _ _ => _ | _ => _ end). + replace m' with m. + 2:{ unfold m'; case (norm e); clear m' e; intro e; [|now simpl]. + now case e; clear e; [|intro e..]; [|case e|..]. } + unfold m; case (uint_eq_dec (nzhead (app i f)) Nil); intro Ha. + + rewrite Ha; right; split; [now simpl|split]. + * now unfold unorm; rewrite (nzhead_app_nil_l _ _ Ha). + * now unfold unorm; rewrite (nzhead_app_nil_r _ _ Ha). + + left; split; [now revert Ha; case nzhead|]. + case (uint_eq_dec (nzhead i) Nil). + * intro Hi; right; intro Hf; apply Ha. + now rewrite <-nzhead_app_nzhead, Hi, app_nil_l. + * now intro H; left. +Qed. Lemma dnorm_spec_f d : let f := match d with Decimal _ f => f | DecimalExp _ f _ => f end in let f' := match dnorm d with Decimal _ f => f | DecimalExp _ f _ => f end in f' = f. -Admitted. +Proof. + case d as [i f|i f e]; [now simpl|]. + simpl; case (int_eq_dec (norm e) (Pos zero)); [now intros->|intro He]. + set (i' := match i with Pos _ => _ | _ => _ end). + set (m := match norm e with Pos Nil => _ | _ => _ end). + replace m with (DecimalExp i' f (norm e)); [now simpl|]. + unfold m; revert He; case (norm e); clear m e; intro e; [|now simpl]. + now case e; clear e; [|intro e; case e|..]. +Qed. Lemma dnorm_spec_e d : match d, dnorm d with @@ -58,24 +199,241 @@ Lemma dnorm_spec_e d : | DecimalExp _ _ e, DecimalExp _ _ e' => e' = norm e /\ e' <> Pos zero | Decimal _ _, DecimalExp _ _ _ => False end. -Admitted. +Proof. + case d as [i f|i f e]; [now simpl|]. + simpl; case (int_eq_dec (norm e) (Pos zero)); [now intros->|intro He]. + set (i' := match i with Pos _ => _ | _ => _ end). + set (m := match norm e with Pos Nil => _ | _ => _ end). + replace m with (DecimalExp i' f (norm e)); [now simpl|]. + unfold m; revert He; case (norm e); clear m e; intro e; [|now simpl]. + now case e; clear e; [|intro e; case e|..]. +Qed. -Lemma dnorm_invol d : dnorm (dnorm d) = dnorm d. -Admitted. +Lemma dnorm_involutive d : dnorm (dnorm d) = dnorm d. +Proof. + case d as [i f|i f e]; case i as [i|i]. + - now simpl; rewrite unorm_involutive. + - simpl; case (uint_eq_dec (nzhead (app i f)) Nil); [now intros->|intro Ha]. + set (m := match nzhead _ with Nil =>_ | _ => _ end). + replace m with (Neg (unorm i)). + 2:{ now unfold m; revert Ha; case nzhead. } + case (uint_eq_dec (nzhead i) Nil); intro Hi. + + unfold unorm; rewrite Hi; simpl. + case (uint_eq_dec (nzhead f) Nil). + * intro Hf; exfalso; apply Ha. + now rewrite <-nzhead_app_nzhead, Hi, app_nil_l. + * now case nzhead. + + rewrite unorm_involutive, (unorm_nzhead _ Hi), nzhead_app_nzhead. + now revert Ha; case nzhead. + - simpl; case (int_eq_dec (norm e) (Pos zero)); intro He. + + now rewrite He; simpl; rewrite unorm_involutive. + + set (m := match norm e with Pos Nil => _ | _ => _ end). + replace m with (DecimalExp (Pos (unorm i)) f (norm e)). + 2:{ unfold m; revert He; case (norm e); clear m e; intro e; [|now simpl]. + now case e; clear e; [|intro e; case e|..]. } + simpl; rewrite norm_involutive, unorm_involutive. + revert He; case (norm e); clear m e; intro e; [|now simpl]. + now case e; clear e; [|intro e; case e|..]. + - simpl; case (int_eq_dec (norm e) (Pos zero)); intro He. + + rewrite He; simpl. + case (uint_eq_dec (nzhead (app i f)) Nil); [now intros->|intro Ha]. + set (m := match nzhead _ with Nil =>_ | _ => _ end). + replace m with (Neg (unorm i)). + 2:{ now unfold m; revert Ha; case nzhead. } + case (uint_eq_dec (nzhead i) Nil); intro Hi. + * unfold unorm; rewrite Hi; simpl. + case (uint_eq_dec (nzhead f) Nil). + -- intro Hf; exfalso; apply Ha. + now rewrite <-nzhead_app_nzhead, Hi, app_nil_l. + -- now case nzhead. + * rewrite unorm_involutive, (unorm_nzhead _ Hi), nzhead_app_nzhead. + now revert Ha; case nzhead. + + set (m := match norm e with Pos Nil => _ | _ => _ end). + pose (i' := match nzhead (app i f) with Nil => Pos zero | _ => Neg (unorm i) end). + replace m with (DecimalExp i' f (norm e)). + 2:{ unfold m; revert He; case (norm e); clear m e; intro e; [|now simpl]. + now case e; clear e; [|intro e; case e|..]. } + simpl; rewrite norm_involutive. + set (i'' := match i' with Pos _ => _ | _ => _ end). + clear m; set (m := match norm e with Pos Nil => _ | _ => _ end). + replace m with (DecimalExp i'' f (norm e)). + 2:{ unfold m; revert He; case (norm e); clear m e; intro e; [|now simpl]. + now case e; clear e; [|intro e; case e|..]. } + unfold i'', i'. + case (uint_eq_dec (nzhead (app i f)) Nil); [now intros->|intro Ha]. + fold i'; replace i' with (Neg (unorm i)). + 2:{ now unfold i'; revert Ha; case nzhead. } + case (uint_eq_dec (nzhead i) Nil); intro Hi. + * unfold unorm; rewrite Hi; simpl. + case (uint_eq_dec (nzhead f) Nil). + -- intro Hf; exfalso; apply Ha. + now rewrite <-nzhead_app_nzhead, Hi, app_nil_l. + -- now case nzhead. + * rewrite unorm_involutive, (unorm_nzhead _ Hi), nzhead_app_nzhead. + now revert Ha; case nzhead. +Qed. + +Lemma IZ_to_Z_IZ_of_Z z : IZ_to_Z (IZ_of_Z z) = Some z. +Proof. now case z. Qed. + +Lemma dnorm_i_exact i f : + (nb_digits f < nb_digits (unorm (app (abs i) f)))%nat -> + match i with + | Pos i => Pos (unorm i) + | Neg i => + match nzhead (app i f) with + | Nil => Pos zero + | _ => Neg (unorm i) + end + end = norm i. +Proof. + case i as [ni|ni]; [now simpl|]; simpl. + case (uint_eq_dec (nzhead (app ni f)) Nil); intro Ha. + { now rewrite Ha, (nzhead_app_nil_l _ _ Ha). } + rewrite (unorm_nzhead _ Ha). + set (m := match nzhead _ with Nil => _ | _ => _ end). + replace m with (Neg (unorm ni)); [|now unfold m; revert Ha; case nzhead]. + case (uint_eq_dec (nzhead ni) Nil); intro Hni. + { rewrite <-nzhead_app_nzhead, Hni, app_nil_l. + intro H; exfalso; revert H; apply le_not_lt, nb_digits_nzhead. } + clear m; set (m := match nzhead ni with Nil => _ | _ => _ end). + replace m with (Neg (nzhead ni)); [|now unfold m; revert Hni; case nzhead]. + now rewrite (unorm_nzhead _ Hni). +Qed. + +Lemma dnorm_i_exact' i f : + (nb_digits (unorm (app (abs i) f)) <= nb_digits f)%nat -> + match i with + | Pos i => Pos (unorm i) + | Neg i => + match nzhead (app i f) with + | Nil => Pos zero + | _ => Neg (unorm i) + end + end = + match norm (app_int i f) with + | Pos _ => Pos zero + | Neg _ => Neg zero + end. +Proof. + case i as [ni|ni]; simpl. + { now intro Hnb; rewrite (unorm_app_zero _ _ Hnb). } + unfold unorm. + case (uint_eq_dec (nzhead (app ni f)) Nil); intro Hn. + { now rewrite Hn. } + set (m := match nzhead _ with Nil => _ | _ => _ end). + replace m with (nzhead (app ni f)). + 2:{ now unfold m; revert Hn; case nzhead. } + clear m; set (m := match nzhead _ with Nil => _ | _ => _ end). + replace m with (Neg (unorm ni)). + 2:{ now unfold m, unorm; revert Hn; case nzhead. } + clear m; set (m := match nzhead _ with Nil => _ | _ => _ end). + replace m with (Neg (nzhead (app ni f))). + 2:{ now unfold m; revert Hn; case nzhead. } + rewrite <-(unorm_nzhead _ Hn). + now intro H; rewrite (unorm_app_zero _ _ H). +Qed. Lemma to_of (d:decimal) : to_decimal (of_decimal d) = Some (dnorm d). -Admitted. +Proof. + case d as [i f|i f e]. + - unfold of_decimal; simpl; unfold IQmake_to_decimal'. + rewrite IZ_to_Z_IZ_of_Z. + unfold IQmake_to_decimal; simpl. + change (fun _ : positive => _) with (Pos.mul 10). + rewrite nztail_to_uint_pow10, to_of. + case_eq (nb_digits f); [|intro nb]; intro Hnb. + + rewrite (nb_digits_0 _ Hnb), app_int_nil_r. + case i as [ni|ni]; [now simpl|]. + rewrite app_nil_r; simpl; unfold unorm. + now case (nzhead ni). + + rewrite <-Hnb. + rewrite abs_norm, abs_app_int. + case Nat.ltb_spec; intro Hnb'. + * rewrite (del_tail_app_int_exact _ _ Hnb'). + rewrite (del_head_app_int_exact _ _ Hnb'). + now rewrite (dnorm_i_exact _ _ Hnb'). + * rewrite (unorm_app_r _ _ Hnb'). + rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb]. + now rewrite dnorm_i_exact'. + - unfold of_decimal; simpl. + rewrite <-to_of. + case (Z.of_int e); clear e; [|intro e..]; simpl. + + unfold IQmake_to_decimal'. + rewrite IZ_to_Z_IZ_of_Z. + unfold IQmake_to_decimal; simpl. + change (fun _ : positive => _) with (Pos.mul 10). + rewrite nztail_to_uint_pow10, to_of. + case_eq (nb_digits f); [|intro nb]; intro Hnb. + * rewrite (nb_digits_0 _ Hnb), app_int_nil_r. + case i as [ni|ni]; [now simpl|]. + rewrite app_nil_r; simpl; unfold unorm. + now case (nzhead ni). + * rewrite <-Hnb. + rewrite abs_norm, abs_app_int. + case Nat.ltb_spec; intro Hnb'. + -- rewrite (del_tail_app_int_exact _ _ Hnb'). + rewrite (del_head_app_int_exact _ _ Hnb'). + now rewrite (dnorm_i_exact _ _ Hnb'). + -- rewrite (unorm_app_r _ _ Hnb'). + rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb]. + now rewrite dnorm_i_exact'. + + unfold IQmake_to_decimal'. + rewrite IZ_to_Z_IZ_of_Z. + unfold IQmake_to_decimal; simpl. + change (fun _ : positive => _) with (Pos.mul 10). + rewrite nztail_to_uint_pow10, to_of. + generalize (Unsigned.to_uint_nonzero e); intro He. + set (dnorm_i := match i with Pos _ => _ | _ => _ end). + set (m := match Pos.to_uint e with Nil => _ | _ => _ end). + replace m with (DecimalExp dnorm_i f (Pos (Pos.to_uint e))). + 2:{ now unfold m; revert He; case (Pos.to_uint e); [|intro u; case u|..]. } + clear m; unfold dnorm_i. + case_eq (nb_digits f); [|intro nb]; intro Hnb. + * rewrite (nb_digits_0 _ Hnb), app_int_nil_r. + case i as [ni|ni]; [now simpl|]. + rewrite app_nil_r; simpl; unfold unorm. + now case (nzhead ni). + * rewrite <-Hnb. + rewrite abs_norm, abs_app_int. + case Nat.ltb_spec; intro Hnb'. + -- rewrite (del_tail_app_int_exact _ _ Hnb'). + rewrite (del_head_app_int_exact _ _ Hnb'). + now rewrite (dnorm_i_exact _ _ Hnb'). + -- rewrite (unorm_app_r _ _ Hnb'). + rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb]. + now rewrite dnorm_i_exact'. + + unfold IQmake_to_decimal'. + rewrite IZ_to_Z_IZ_of_Z. + unfold IQmake_to_decimal; simpl. + change (fun _ : positive => _) with (Pos.mul 10). + rewrite nztail_to_uint_pow10, to_of. + case_eq (nb_digits f); [|intro nb]; intro Hnb. + * rewrite (nb_digits_0 _ Hnb), app_int_nil_r. + case i as [ni|ni]; [now simpl|]. + rewrite app_nil_r; simpl; unfold unorm. + now case (nzhead ni). + * rewrite <-Hnb. + rewrite abs_norm, abs_app_int. + case Nat.ltb_spec; intro Hnb'. + -- rewrite (del_tail_app_int_exact _ _ Hnb'). + rewrite (del_head_app_int_exact _ _ Hnb'). + now rewrite (dnorm_i_exact _ _ Hnb'). + -- rewrite (unorm_app_r _ _ Hnb'). + rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb]. + now rewrite dnorm_i_exact'. +Qed. (** Some consequences *) Lemma to_decimal_inj q q' : to_decimal q <> None -> to_decimal q = to_decimal q' -> q = q'. Proof. -intros Hnone EQ. -generalize (of_to q) (of_to q'). -rewrite <-EQ. -revert Hnone; case to_decimal; [|now simpl]. -now intros d _ H1 H2; rewrite <-(H1 d eq_refl), <-(H2 d eq_refl). + intros Hnone EQ. + generalize (of_to q) (of_to q'). + rewrite <-EQ. + revert Hnone; case to_decimal; [|now simpl]. + now intros d _ H1 H2; rewrite <-(H1 d eq_refl), <-(H2 d eq_refl). Qed. Lemma to_decimal_surj d : exists q, to_decimal q = Some (dnorm d). @@ -84,18 +442,18 @@ Proof. Qed. Lemma of_decimal_dnorm d : of_decimal (dnorm d) = of_decimal d. -Proof. now apply to_decimal_inj; rewrite !to_of; [|rewrite dnorm_invol]. Qed. +Proof. now apply to_decimal_inj; rewrite !to_of; [|rewrite dnorm_involutive]. Qed. Lemma of_inj d d' : of_decimal d = of_decimal d' -> dnorm d = dnorm d'. Proof. -intro H. -apply (@f_equal _ _ (fun x => match x with Some x => x | _ => d end) - (Some (dnorm d)) (Some (dnorm d'))). -now rewrite <- !to_of, H. + intro H. + apply (@f_equal _ _ (fun x => match x with Some x => x | _ => d end) + (Some (dnorm d)) (Some (dnorm d'))). + now rewrite <- !to_of, H. Qed. Lemma of_iff d d' : of_decimal d = of_decimal d' <-> dnorm d = dnorm d'. Proof. -split. apply of_inj. intros E. rewrite <- of_decimal_dnorm, E. -apply of_decimal_dnorm. + split. apply of_inj. intros E. rewrite <- of_decimal_dnorm, E. + apply of_decimal_dnorm. Qed. diff --git a/theories/Numbers/DecimalZ.v b/theories/Numbers/DecimalZ.v index 69d8073fc7..faaf8a3932 100644 --- a/theories/Numbers/DecimalZ.v +++ b/theories/Numbers/DecimalZ.v @@ -79,9 +79,11 @@ Qed. Lemma of_uint_iter_D0 d n : Z.of_uint (app d (Nat.iter n D0 Nil)) = Nat.iter n (Z.mul 10) (Z.of_uint d). Proof. - unfold Z.of_uint. - unfold app; rewrite <-rev_revapp. - rewrite Unsigned.of_lu_rev, Unsigned.of_lu_revapp. + rewrite <-(rev_rev (app _ _)), <-(of_list_to_list (rev (app _ _))). + rewrite rev_spec, app_spec, List.rev_app_distr. + rewrite <-!rev_spec, <-app_spec, of_list_to_list. + unfold Z.of_uint; rewrite Unsigned.of_lu_rev. + unfold app; rewrite Unsigned.of_lu_revapp, !rev_rev. rewrite <-!Unsigned.of_lu_rev, !rev_rev. assert (H' : Pos.of_uint (Nat.iter n D0 Nil) = 0%N). { now induction n; [|rewrite Unsigned.nat_iter_S]. } @@ -100,3 +102,22 @@ Proof. - rewrite of_uint_iter_D0; induction n; [now simpl|]. rewrite !Unsigned.nat_iter_S, <-IHn; ring. Qed. + +Lemma nztail_to_uint_pow10 n : + Decimal.nztail (Pos.to_uint (Nat.iter n (Pos.mul 10) 1%positive)) + = (D1 Nil, n). +Proof. + case n as [|n]; [now simpl|]. + rewrite <-(Nat2Pos.id (S n)); [|now simpl]. + generalize (Pos.of_nat (S n)); clear n; intro p. + induction (Pos.to_nat p); [now simpl|]. + rewrite Unsigned.nat_iter_S. + unfold Pos.to_uint. + change (Pos.to_little_uint _) + with (Unsigned.to_lu (10 * N.pos (Nat.iter n (Pos.mul 10) 1%positive))). + rewrite Unsigned.to_ldec_tenfold. + revert IHn; unfold Pos.to_uint. + unfold Decimal.nztail; rewrite !rev_rev; simpl. + set (f'' := _ (Pos.to_little_uint _)). + now case f''; intros r n' H; inversion H. +Qed. diff --git a/theories/Numbers/HexadecimalFacts.v b/theories/Numbers/HexadecimalFacts.v index 7328b2303d..c624b4e6b9 100644 --- a/theories/Numbers/HexadecimalFacts.v +++ b/theories/Numbers/HexadecimalFacts.v @@ -10,136 +10,437 @@ (** * HexadecimalFacts : some facts about Hexadecimal numbers *) -Require Import Hexadecimal Arith. +Require Import Hexadecimal Arith ZArith. + +Variant digits := + | d0 | d1 | d2 | d3 | d4 | d5 | d6 | d7 | d8 | d9 + | da | db | dc | dd | de | df. + +Fixpoint to_list (u : uint) : list digits := + match u with + | Nil => nil + | D0 u => cons d0 (to_list u) + | D1 u => cons d1 (to_list u) + | D2 u => cons d2 (to_list u) + | D3 u => cons d3 (to_list u) + | D4 u => cons d4 (to_list u) + | D5 u => cons d5 (to_list u) + | D6 u => cons d6 (to_list u) + | D7 u => cons d7 (to_list u) + | D8 u => cons d8 (to_list u) + | D9 u => cons d9 (to_list u) + | Da u => cons da (to_list u) + | Db u => cons db (to_list u) + | Dc u => cons dc (to_list u) + | Dd u => cons dd (to_list u) + | De u => cons de (to_list u) + | Df u => cons df (to_list u) + end. + +Fixpoint of_list (l : list digits) : uint := + match l with + | nil => Nil + | cons d0 l => D0 (of_list l) + | cons d1 l => D1 (of_list l) + | cons d2 l => D2 (of_list l) + | cons d3 l => D3 (of_list l) + | cons d4 l => D4 (of_list l) + | cons d5 l => D5 (of_list l) + | cons d6 l => D6 (of_list l) + | cons d7 l => D7 (of_list l) + | cons d8 l => D8 (of_list l) + | cons d9 l => D9 (of_list l) + | cons da l => Da (of_list l) + | cons db l => Db (of_list l) + | cons dc l => Dc (of_list l) + | cons dd l => Dd (of_list l) + | cons de l => De (of_list l) + | cons df l => Df (of_list l) + end. -Scheme Equality for uint. +Lemma of_list_to_list u : of_list (to_list u) = u. +Proof. now induction u; [|simpl; rewrite IHu..]. Qed. -Scheme Equality for int. +Lemma to_list_of_list l : to_list (of_list l) = l. +Proof. now induction l as [|h t IHl]; [|case h; simpl; rewrite IHl]. Qed. -Lemma rev_revapp d d' : - rev (revapp d d') = revapp d' d. +Lemma to_list_inj u u' : to_list u = to_list u' -> u = u'. Proof. - revert d'. induction d; simpl; intros; now rewrite ?IHd. + now intro H; rewrite <-(of_list_to_list u), <-(of_list_to_list u'), H. Qed. -Lemma rev_rev d : rev (rev d) = d. +Lemma of_list_inj u u' : of_list u = of_list u' -> u = u'. Proof. - apply rev_revapp. + now intro H; rewrite <-(to_list_of_list u), <-(to_list_of_list u'), H. Qed. -Lemma revapp_rev_nil d : revapp (rev d) Nil = d. -Proof. now fold (rev (rev d)); rewrite rev_rev. Qed. +Lemma nb_digits_spec u : nb_digits u = length (to_list u). +Proof. now induction u; [|simpl; rewrite IHu..]. Qed. -Lemma app_nil_r d : app d Nil = d. -Proof. now unfold app; rewrite revapp_rev_nil. Qed. +Fixpoint lnzhead l := + match l with + | nil => nil + | cons d l' => + match d with + | d0 => lnzhead l' + | _ => l + end + end. -Lemma app_int_nil_r d : app_int d Nil = d. -Proof. now case d; intro d'; simpl; rewrite app_nil_r. Qed. +Lemma nzhead_spec u : to_list (nzhead u) = lnzhead (to_list u). +Proof. now induction u; [|simpl; rewrite IHu|..]. Qed. + +Definition lzero := cons d0 nil. + +Definition lunorm l := + match lnzhead l with + | nil => lzero + | d => d + end. + +Lemma unorm_spec u : to_list (unorm u) = lunorm (to_list u). +Proof. now unfold unorm, lunorm; rewrite <-nzhead_spec; case (nzhead u). Qed. + +Lemma revapp_spec d d' : + to_list (revapp d d') = List.rev_append (to_list d) (to_list d'). +Proof. now revert d'; induction d; intro d'; [|simpl; rewrite IHd..]. Qed. + +Lemma rev_spec d : to_list (rev d) = List.rev (to_list d). +Proof. now unfold rev; rewrite revapp_spec, List.rev_alt; simpl. Qed. + +Lemma app_spec d d' : + to_list (app d d') = Datatypes.app (to_list d) (to_list d'). +Proof. + unfold app. + now rewrite revapp_spec, List.rev_append_rev, rev_spec, List.rev_involutive. +Qed. -Lemma revapp_revapp_1 d d' d'' : - nb_digits d <= 1 -> - revapp (revapp d d') d'' = revapp d' (revapp d d''). +Definition lnztail l := + let fix aux l_rev := + match l_rev with + | cons d0 l_rev => let (r, n) := aux l_rev in pair r (S n) + | _ => pair l_rev O + end in + let (r, n) := aux (List.rev l) in pair (List.rev r) n. + +Lemma nztail_spec d : + let (r, n) := nztail d in + let (r', n') := lnztail (to_list d) in + to_list r = r' /\ n = n'. Proof. - now case d; clear d; intro d; - [|case d; clear d; intro d; - [|simpl; case nb_digits; [|intros n]; intros Hn; exfalso; - [apply (Nat.nle_succ_diag_l _ Hn)| - apply (Nat.nle_succ_0 _ (le_S_n _ _ Hn))]..]..]. + unfold nztail, lnztail. + set (f := fix aux d_rev := match d_rev with + | D0 d_rev => let (r, n) := aux d_rev in (r, S n) + | _ => (d_rev, 0) end). + set (f' := fix aux (l_rev : list digits) : list digits * nat := + match l_rev with + | cons d0 l_rev => let (r, n) := aux l_rev in (r, S n) + | _ => (l_rev, 0) + end). + rewrite <-(of_list_to_list (rev d)), rev_spec. + induction (List.rev _) as [|h t IHl]; [now simpl|]. + case h; simpl; [|now rewrite rev_spec; simpl; rewrite to_list_of_list..]. + now revert IHl; case f; intros r n; case f'; intros r' n' [-> ->]. Qed. -Lemma nb_digits_pos d : d <> Nil -> 0 < nb_digits d. -Proof. now case d; [|intros d' _; apply Nat.lt_0_succ..]. Qed. +Lemma del_head_spec_0 d : del_head 0 d = d. +Proof. now simpl. Qed. -Lemma nb_digits_revapp d d' : - nb_digits (revapp d d') = nb_digits d + nb_digits d'. +Lemma del_head_spec_small n d : + n <= length (to_list d) -> to_list (del_head n d) = List.skipn n (to_list d). Proof. - now revert d'; induction d; [|intro d'; simpl; rewrite IHd; simpl..]. + revert d; induction n as [|n IHn]; intro d; [now simpl|]. + now case d; [|intros d' H; apply IHn, le_S_n..]. Qed. -Lemma nb_digits_rev u : nb_digits (rev u) = nb_digits u. -Proof. now unfold rev; rewrite nb_digits_revapp. Qed. +Lemma del_head_spec_large n d : length (to_list d) < n -> del_head n d = zero. +Proof. + revert d; induction n; intro d; [now case d|]. + now case d; [|intro d'; simpl; intro H; rewrite (IHn _ (lt_S_n _ _ H))..]. +Qed. -Lemma nb_digits_nzhead u : nb_digits (nzhead u) <= nb_digits u. -Proof. now induction u; [|apply le_S|..]. Qed. +Lemma nb_digits_0 d : nb_digits d = 0 -> d = Nil. +Proof. + rewrite nb_digits_spec, <-(of_list_to_list d). + now case (to_list d) as [|h t]; [|rewrite to_list_of_list]. +Qed. + +Lemma nb_digits_n0 d : nb_digits d <> 0 -> d <> Nil. +Proof. now case d; [|intros u _..]. Qed. Lemma nb_digits_iter_D0 n d : nb_digits (Nat.iter n D0 d) = n + nb_digits d. Proof. now induction n; simpl; [|rewrite IHn]. Qed. -Fixpoint nth n u := - match n with - | O => - match u with - | Nil => Nil - | D0 d => D0 Nil - | D1 d => D1 Nil - | D2 d => D2 Nil - | D3 d => D3 Nil - | D4 d => D4 Nil - | D5 d => D5 Nil - | D6 d => D6 Nil - | D7 d => D7 Nil - | D8 d => D8 Nil - | D9 d => D9 Nil - | Da d => Da Nil - | Db d => Db Nil - | Dc d => Dc Nil - | Dd d => Dd Nil - | De d => De Nil - | Df d => Df Nil - end - | S n => - match u with - | Nil => Nil - | D0 d | D1 d | D2 d | D3 d | D4 d | D5 d | D6 d | D7 d | D8 d | D9 d - | Da d | Db d | Dc d | Dd d | De d | Df d => - nth n d - end - end. +Lemma length_lnzhead l : length (lnzhead l) <= length l. +Proof. now induction l as [|h t IHl]; [|case h; [apply le_S|..]]. Qed. + +Lemma nb_digits_nzhead u : nb_digits (nzhead u) <= nb_digits u. +Proof. now induction u; [|apply le_S|..]. Qed. -Lemma nb_digits_nth n u : nb_digits (nth n u) <= 1. -Proof. - revert u; induction n. - - now intro u; case u; [apply Nat.le_0_1|..]. - - intro u; case u; [apply Nat.le_0_1|intro u'; apply IHn..]. -Qed. - -Lemma nth_revapp_r n d d' : - nb_digits d <= n -> - nth n (revapp d d') = nth (n - nb_digits d) d'. -Proof. - revert d d'; induction n; intro d. - - now case d; intro d'; - [case d'|intros d'' H; exfalso; revert H; apply Nat.nle_succ_0..]. - - now induction d; - [intro d'; case d'| - intros d' H; - simpl revapp; rewrite IHd; [|now apply le_Sn_le]; - rewrite Nat.sub_succ_l; [|now apply le_S_n]; - simpl; rewrite <-(IHn _ _ (le_S_n _ _ H))..]. -Qed. - -Lemma nth_revapp_l n d d' : - n < nb_digits d -> - nth n (revapp d d') = nth (nb_digits d - n - 1) d. -Proof. - revert d d'; induction n; intro d. - - rewrite Nat.sub_0_r. - now induction d; - [|intros d' _; simpl revapp; - revert IHd; case d; clear d; [|intro d..]; intro IHd; - [|rewrite IHd; [simpl nb_digits; rewrite (Nat.sub_succ_l _ (S _))|]; - [|apply le_n_S, Nat.le_0_l..]..]..]. - - now induction d; - [|intros d' H; - simpl revapp; simpl nb_digits; - simpl in H; generalize (lt_S_n _ _ H); clear H; intro H; - case (le_lt_eq_dec _ _ H); clear H; intro H; - [rewrite (IHd _ H), Nat.sub_succ_l; - [rewrite Nat.sub_succ_l; [|apply Nat.le_add_le_sub_r]| - apply le_Sn_le]| - rewrite nth_revapp_r; rewrite <-H; - [rewrite Nat.sub_succ, Nat.sub_succ_l; [rewrite !Nat.sub_diag|]|]]..]. +Lemma unorm_nzhead u : nzhead u <> Nil -> unorm u = nzhead u. +Proof. now unfold unorm; case nzhead. Qed. + +Lemma nb_digits_unorm u : u <> Nil -> nb_digits (unorm u) <= nb_digits u. +Proof. + intro Hu; case (uint_eq_dec (nzhead u) Nil). + { unfold unorm; intros ->; simpl. + now revert Hu; case u; [|intros u' _; apply le_n_S, Nat.le_0_l..]. } + intro H; rewrite (unorm_nzhead _ H); apply nb_digits_nzhead. +Qed. + +Lemma nb_digits_rev d : nb_digits (rev d) = nb_digits d. +Proof. now rewrite !nb_digits_spec, rev_spec, List.rev_length. Qed. + +Lemma nb_digits_del_head_sub d n : + n <= nb_digits d -> + nb_digits (del_head (nb_digits d - n) d) = n. +Proof. + rewrite !nb_digits_spec; intro Hn. + rewrite del_head_spec_small; [|now apply Nat.le_sub_l]. + rewrite List.skipn_length, <-(Nat2Z.id (_ - _)). + rewrite Nat2Z.inj_sub; [|now apply Nat.le_sub_l]. + rewrite (Nat2Z.inj_sub _ _ Hn). + rewrite Z.sub_sub_distr, Z.sub_diag; apply Nat2Z.id. +Qed. + +Lemma unorm_D0 u : unorm (D0 u) = unorm u. +Proof. reflexivity. Qed. + +Lemma app_nil_l d : app Nil d = d. +Proof. now simpl. Qed. + +Lemma app_nil_r d : app d Nil = d. +Proof. now apply to_list_inj; rewrite app_spec, List.app_nil_r. Qed. + +Lemma abs_app_int d d' : abs (app_int d d') = app (abs d) d'. +Proof. now case d. Qed. + +Lemma abs_norm d : abs (norm d) = unorm (abs d). +Proof. now case d as [u|u]; [|simpl; unfold unorm; case nzhead]. Qed. + +Lemma iter_D0_nzhead d : + Nat.iter (nb_digits d - nb_digits (nzhead d)) D0 (nzhead d) = d. +Proof. + induction d; [now simpl| |now rewrite Nat.sub_diag..]. + simpl nzhead; simpl nb_digits. + rewrite (Nat.sub_succ_l _ _ (nb_digits_nzhead _)). + now rewrite <-IHd at 4. +Qed. + +Lemma iter_D0_unorm d : + d <> Nil -> + Nat.iter (nb_digits d - nb_digits (unorm d)) D0 (unorm d) = d. +Proof. + case (uint_eq_dec (nzhead d) Nil); intro Hn. + { unfold unorm; rewrite Hn; simpl; intro H. + revert H Hn; induction d; [now simpl|intros _|now intros _..]. + case (uint_eq_dec d Nil); simpl; intros H Hn; [now rewrite H|]. + rewrite Nat.sub_0_r, (le_plus_minus 1 (nb_digits d)). + { now simpl; rewrite IHd. } + revert H; case d; [now simpl|intros u _; apply le_n_S, Nat.le_0_l..]. } + intros _; rewrite (unorm_nzhead _ Hn); apply iter_D0_nzhead. +Qed. + +Lemma nzhead_app_l d d' : + nb_digits d' < nb_digits (nzhead (app d d')) -> + nzhead (app d d') = app (nzhead d) d'. +Proof. + intro Hl; apply to_list_inj; revert Hl. + rewrite !nb_digits_spec, app_spec, !nzhead_spec, app_spec. + induction (to_list d) as [|h t IHl]. + { now simpl; intro H; exfalso; revert H; apply le_not_lt, length_lnzhead. } + rewrite <-List.app_comm_cons. + now case h; [simpl; intro Hl; apply IHl|..]. +Qed. + +Lemma nzhead_app_r d d' : + nb_digits (nzhead (app d d')) <= nb_digits d' -> + nzhead (app d d') = nzhead d'. +Proof. + intro Hl; apply to_list_inj; revert Hl. + rewrite !nb_digits_spec, !nzhead_spec, app_spec. + induction (to_list d) as [|h t IHl]; [now simpl|]. + rewrite <-List.app_comm_cons. + now case h; [| simpl; rewrite List.app_length; intro Hl; exfalso; revert Hl; + apply le_not_lt, le_plus_r..]. +Qed. + +Lemma nzhead_app_nil_r d d' : nzhead (app d d') = Nil -> nzhead d' = Nil. +Proof. +now intro H; generalize H; rewrite nzhead_app_r; [|rewrite H; apply Nat.le_0_l]. +Qed. + +Lemma nzhead_app_nil d d' : + nb_digits (nzhead (app d d')) <= nb_digits d' -> nzhead d = Nil. +Proof. + intro H; apply to_list_inj; revert H. + rewrite !nb_digits_spec, !nzhead_spec, app_spec. + induction (to_list d) as [|h t IHl]; [now simpl|]. + now case h; [now simpl|..]; + simpl;intro H; exfalso; revert H; apply le_not_lt; + rewrite List.app_length; apply le_plus_r. +Qed. + +Lemma nzhead_app_nil_l d d' : nzhead (app d d') = Nil -> nzhead d = Nil. +Proof. + intro H; apply to_list_inj; generalize (f_equal to_list H); clear H. + rewrite !nzhead_spec, app_spec. + induction (to_list d) as [|h t IHl]; [now simpl|]. + now rewrite <-List.app_comm_cons; case h. +Qed. + +Lemma unorm_app_zero d d' : + nb_digits (unorm (app d d')) <= nb_digits d' -> unorm d = zero. +Proof. + unfold unorm. + case (uint_eq_dec (nzhead (app d d')) Nil). + { now intro Hn; rewrite Hn, (nzhead_app_nil_l _ _ Hn). } + intro H; fold (unorm (app d d')); rewrite (unorm_nzhead _ H); intro H'. + case (uint_eq_dec (nzhead d) Nil); [now intros->|]. + intro H''; fold (unorm d); rewrite (unorm_nzhead _ H''). + exfalso; apply H''; revert H'; apply nzhead_app_nil. +Qed. + +Lemma app_int_nil_r d : app_int d Nil = d. +Proof. + now case d; intro d'; simpl; + rewrite <-(of_list_to_list (app _ _)), app_spec; + rewrite List.app_nil_r, of_list_to_list. +Qed. + +Lemma unorm_app_l d d' : + nb_digits d' < nb_digits (unorm (app d d')) -> + unorm (app d d') = app (unorm d) d'. +Proof. + case (uint_eq_dec d' Nil); [now intros->; rewrite !app_nil_r|intro Hd']. + case (uint_eq_dec (nzhead (app d d')) Nil). + { unfold unorm; intros->; simpl; intro H; exfalso; revert H; apply le_not_lt. + now revert Hd'; case d'; [|intros d'' _; apply le_n_S, Peano.le_0_n..]. } + intro Ha; rewrite (unorm_nzhead _ Ha). + intro Hn; generalize Hn; rewrite (nzhead_app_l _ _ Hn). + rewrite !nb_digits_spec, app_spec, List.app_length. + case (uint_eq_dec (nzhead d) Nil). + { intros->; simpl; intro H; exfalso; revert H; apply Nat.lt_irrefl. } + now intro H; rewrite (unorm_nzhead _ H). +Qed. + +Lemma unorm_app_r d d' : + nb_digits (unorm (app d d')) <= nb_digits d' -> + unorm (app d d') = unorm d'. +Proof. + case (uint_eq_dec (nzhead (app d d')) Nil). + { now unfold unorm; intro H; rewrite H, (nzhead_app_nil_r _ _ H). } + intro Ha; rewrite (unorm_nzhead _ Ha). + case (uint_eq_dec (nzhead d') Nil). + { now intros H H'; exfalso; apply Ha; rewrite nzhead_app_r. } + intro Hd'; rewrite (unorm_nzhead _ Hd'); apply nzhead_app_r. +Qed. + +Lemma norm_app_int d d' : + nb_digits d' < nb_digits (unorm (app (abs d) d')) -> + norm (app_int d d') = app_int (norm d) d'. +Proof. + case (uint_eq_dec d' Nil); [now intros->; rewrite !app_int_nil_r|intro Hd']. + case d as [d|d]; [now simpl; intro H; apply f_equal, unorm_app_l|]. + simpl; unfold unorm. + case (uint_eq_dec (nzhead (app d d')) Nil). + { intros->; simpl; intro H; exfalso; revert H; apply le_not_lt. + now revert Hd'; case d'; [|intros d'' _; apply le_n_S, Peano.le_0_n..]. } + set (m := match nzhead _ with Nil => _ | _ => _ end). + intro Ha. + replace m with (nzhead (app d d')). + 2:{ now unfold m; revert Ha; case nzhead. } + intro Hn; generalize Hn; rewrite (nzhead_app_l _ _ Hn). + case (uint_eq_dec (app (nzhead d) d') Nil). + { intros->; simpl; intro H; exfalso; revert H; apply le_not_lt, Nat.le_0_l. } + clear m; set (m := match app _ _ with Nil => _ | _ => _ end). + intro Ha'. + replace m with (Neg (app (nzhead d) d')); [|now unfold m; revert Ha'; case app]. + case (uint_eq_dec (nzhead d) Nil). + { intros->; simpl; intro H; exfalso; revert H; apply Nat.lt_irrefl. } + clear m; set (m := match nzhead _ with Nil => _ | _ => _ end). + intro Hd. + now replace m with (Neg (nzhead d)); [|unfold m; revert Hd; case nzhead]. +Qed. + +Lemma del_head_nb_digits d : del_head (nb_digits d) d = Nil. +Proof. + apply to_list_inj. + rewrite nb_digits_spec, del_head_spec_small; [|now simpl]. + now rewrite List.skipn_all. +Qed. + +Lemma del_tail_nb_digits d : del_tail (nb_digits d) d = Nil. +Proof. now unfold del_tail; rewrite <-nb_digits_rev, del_head_nb_digits. Qed. + +Lemma del_head_app n d d' : + n <= nb_digits d -> del_head n (app d d') = app (del_head n d) d'. +Proof. + rewrite nb_digits_spec; intro Hn. + apply to_list_inj. + rewrite del_head_spec_small. + 2:{ now rewrite app_spec, List.app_length; apply le_plus_trans. } + rewrite !app_spec, (del_head_spec_small _ _ Hn). + rewrite List.skipn_app. + now rewrite (proj2 (Nat.sub_0_le _ _) Hn). +Qed. + +Lemma del_tail_app n d d' : + n <= nb_digits d' -> del_tail n (app d d') = app d (del_tail n d'). +Proof. + rewrite nb_digits_spec; intro Hn. + unfold del_tail. + rewrite <-(of_list_to_list (rev (app d d'))), rev_spec, app_spec. + rewrite List.rev_app_distr, <-!rev_spec, <-app_spec, of_list_to_list. + rewrite del_head_app; [|now rewrite nb_digits_spec, rev_spec, List.rev_length]. + apply to_list_inj. + rewrite rev_spec, !app_spec, !rev_spec. + now rewrite List.rev_app_distr, List.rev_involutive. +Qed. + +Lemma del_tail_app_int n d d' : + n <= nb_digits d' -> del_tail_int n (app_int d d') = app_int d (del_tail n d'). +Proof. now case d as [d|d]; simpl; intro H; rewrite del_tail_app. Qed. + +Lemma app_del_tail_head n (d:uint) : + n <= nb_digits d -> app (del_tail n d) (del_head (nb_digits d - n) d) = d. +Proof. + rewrite nb_digits_spec; intro Hn; unfold del_tail. + rewrite <-(of_list_to_list (app _ _)), app_spec, rev_spec. + rewrite del_head_spec_small; [|now rewrite rev_spec, List.rev_length]. + rewrite del_head_spec_small; [|now apply Nat.le_sub_l]. + rewrite rev_spec. + set (n' := _ - n). + assert (Hn' : n = length (to_list d) - n'). + { now apply plus_minus; rewrite Nat.add_comm; symmetry; apply le_plus_minus_r. } + now rewrite Hn', <-List.firstn_skipn_rev, List.firstn_skipn, of_list_to_list. +Qed. + +Lemma app_int_del_tail_head n (d:int) : + n <= nb_digits (abs d) -> + app_int (del_tail_int n d) (del_head (nb_digits (abs d) - n) (abs d)) = d. +Proof. now case d; clear d; simpl; intros u Hu; rewrite app_del_tail_head. Qed. + +Lemma del_head_app_int_exact i f : + nb_digits f < nb_digits (unorm (app (abs i) f)) -> + del_head (nb_digits (unorm (app (abs i) f)) - nb_digits f) (unorm (app (abs i) f)) = f. +Proof. + simpl; intro Hnb; generalize Hnb; rewrite (unorm_app_l _ _ Hnb); clear Hnb. + replace (_ - _) with (nb_digits (unorm (abs i))). + - now rewrite del_head_app; [rewrite del_head_nb_digits|]. + - rewrite !nb_digits_spec, app_spec, List.app_length. + now rewrite Nat.add_comm, minus_plus. +Qed. + +Lemma del_tail_app_int_exact i f : + nb_digits f < nb_digits (unorm (app (abs i) f)) -> + del_tail_int (nb_digits f) (norm (app_int i f)) = norm i. +Proof. + simpl; intro Hnb. + rewrite (norm_app_int _ _ Hnb). + rewrite del_tail_app_int; [|now simpl]. + now rewrite del_tail_nb_digits, app_int_nil_r. Qed. (** Normalization on little-endian numbers *) @@ -193,6 +494,9 @@ Proof. apply nzhead_revapp. Qed. +Lemma rev_rev d : rev (rev d) = d. +Proof. now apply to_list_inj; rewrite !rev_spec, List.rev_involutive. Qed. + Lemma rev_nztail_rev d : rev (nztail (rev d)) = nzhead d. Proof. @@ -247,47 +551,128 @@ Proof. unfold unorm. now destruct nzhead. Qed. -Lemma unorm_D0 u : unorm (D0 u) = unorm u. -Proof. reflexivity. Qed. - Lemma unorm_iter_D0 n u : unorm (Nat.iter n D0 u) = unorm u. Proof. now induction n. Qed. -Lemma nb_digits_unorm u : - u <> Nil -> nb_digits (unorm u) <= nb_digits u. +Lemma del_head_nonnil n u : + n < nb_digits u -> del_head n u <> Nil. Proof. - case u; clear u; [now simpl|intro u..]; [|now simpl..]. - intros _; unfold unorm. - case_eq (nzhead (D0 u)); [|now intros u' <-; apply nb_digits_nzhead..]. - intros _; apply le_n_S, Nat.le_0_l. + now revert n; induction u; intro n; + [|case n; [|intro n'; simpl; intro H; apply IHu, lt_S_n]..]. Qed. -Lemma nzhead_invol d : nzhead (nzhead d) = nzhead d. +Lemma del_tail_nonnil n u : + n < nb_digits u -> del_tail n u <> Nil. +Proof. + unfold del_tail. + rewrite <-nb_digits_rev. + generalize (rev u); clear u; intro u. + intros Hu H. + generalize (rev_nil_inv _ H); clear H. + now apply del_head_nonnil. +Qed. + +Lemma nzhead_involutive d : nzhead (nzhead d) = nzhead d. Proof. now induction d. Qed. +#[deprecated(since="8.13",note="Use nzhead_involutive instead.")] +Notation nzhead_invol := nzhead_involutive (only parsing). -Lemma nztail_invol d : nztail (nztail d) = nztail d. +Lemma nztail_involutive d : nztail (nztail d) = nztail d. Proof. rewrite <-(rev_rev (nztail _)), <-(rev_rev (nztail d)), <-(rev_rev d). - now rewrite !rev_nztail_rev, nzhead_invol. + now rewrite !rev_nztail_rev, nzhead_involutive. Qed. +#[deprecated(since="8.13",note="Use nztail_involutive instead.")] +Notation nztail_invol := nztail_involutive (only parsing). -Lemma unorm_invol d : unorm (unorm d) = unorm d. +Lemma unorm_involutive d : unorm (unorm d) = unorm d. Proof. unfold unorm. destruct (nzhead d) eqn:E; trivial. destruct (nzhead_nonzero _ _ E). Qed. +#[deprecated(since="8.13",note="Use unorm_involutive instead.")] +Notation unorm_invol := unorm_involutive (only parsing). -Lemma norm_invol d : norm (norm d) = norm d. +Lemma norm_involutive d : norm (norm d) = norm d. Proof. unfold norm. destruct d. - - f_equal. apply unorm_invol. + - f_equal. apply unorm_involutive. - destruct (nzhead d) eqn:E; auto. destruct (nzhead_nonzero _ _ E). Qed. +#[deprecated(since="8.13",note="Use norm_involutive instead.")] +Notation norm_invol := norm_involutive (only parsing). + +Lemma lnzhead_neq_d0_head l l' : ~(lnzhead l = cons d0 l'). +Proof. now induction l as [|h t Il]; [|case h]. Qed. + +Lemma lnzhead_head_nd0 h t : h <> d0 -> lnzhead (cons h t) = cons h t. +Proof. now case h. Qed. + +Lemma nzhead_del_tail_nzhead_eq n u : + nzhead u = u -> + n < nb_digits u -> + nzhead (del_tail n u) = del_tail n u. +Proof. + rewrite nb_digits_spec, <-List.rev_length. + intros Hu Hn. + apply to_list_inj; unfold del_tail. + rewrite nzhead_spec, rev_spec. + rewrite del_head_spec_small; [|now rewrite rev_spec; apply Nat.lt_le_incl]. + rewrite rev_spec. + rewrite List.skipn_rev, List.rev_involutive. + generalize (f_equal to_list Hu) Hn; rewrite nzhead_spec; intro Hu'. + case (to_list u) as [|h t]. + { simpl; intro H; exfalso; revert H; apply le_not_lt, Peano.le_0_n. } + intro Hn'; generalize (Nat.sub_gt _ _ Hn'); rewrite List.rev_length. + case (_ - _); [now simpl|]; intros n' _. + rewrite List.firstn_cons, lnzhead_head_nd0; [now simpl|]. + intro Hh; revert Hu'; rewrite Hh; apply lnzhead_neq_d0_head. +Qed. + +Lemma nzhead_del_tail_nzhead n u : + n < nb_digits (nzhead u) -> + nzhead (del_tail n (nzhead u)) = del_tail n (nzhead u). +Proof. apply nzhead_del_tail_nzhead_eq, nzhead_involutive. Qed. + +Lemma unorm_del_tail_unorm n u : + n < nb_digits (unorm u) -> + unorm (del_tail n (unorm u)) = del_tail n (unorm u). +Proof. + case (uint_eq_dec (nzhead u) Nil). + - unfold unorm; intros->; case n; [now simpl|]; intro n'. + now simpl; intro H; exfalso; generalize (lt_S_n _ _ H). + - unfold unorm. + set (m := match nzhead u with Nil => zero | _ => _ end). + intros H. + replace m with (nzhead u). + + intros H'. + rewrite (nzhead_del_tail_nzhead _ _ H'). + now generalize (del_tail_nonnil _ _ H'); case del_tail. + + now unfold m; revert H; case nzhead. +Qed. + +Lemma norm_del_tail_int_norm n d : + n < nb_digits (match norm d with Pos d | Neg d => d end) -> + norm (del_tail_int n (norm d)) = del_tail_int n (norm d). +Proof. + case d; clear d; intros u; simpl. + - now intro H; simpl; rewrite unorm_del_tail_unorm. + - case (uint_eq_dec (nzhead u) Nil); intro Hu. + + now rewrite Hu; case n; [|intros n' Hn'; generalize (lt_S_n _ _ Hn')]. + + set (m := match nzhead u with Nil => Pos zero | _ => _ end). + replace m with (Neg (nzhead u)); [|now unfold m; revert Hu; case nzhead]. + unfold del_tail_int. + clear m Hu. + simpl. + intro H; generalize (del_tail_nonnil _ _ H). + rewrite (nzhead_del_tail_nzhead _ _ H). + now case del_tail. +Qed. Lemma nzhead_app_nzhead d d' : nzhead (app (nzhead d) d') = nzhead (app d d'). @@ -299,7 +684,7 @@ Proof. generalize (nzhead_revapp d d'). generalize (nzhead_revapp_0 (nztail d) d'). generalize (nzhead_revapp (nztail d) d'). - rewrite nztail_invol. + rewrite nztail_involutive. now case nztail; [intros _ H _ H'; rewrite (H eq_refl), (H' eq_refl) |intros d'' H _ H' _; rewrite H; [rewrite H'|]..]. @@ -336,5 +721,5 @@ Proof. |rewrite H'; unfold r; clear m r H']; unfold norm; rewrite rev_rev, <-Hd''; - rewrite nzhead_revapp; rewrite nztail_invol; [|rewrite Hd'']..]. + rewrite nzhead_revapp; rewrite nztail_involutive; [|rewrite Hd'']..]. Qed. diff --git a/theories/Numbers/HexadecimalN.v b/theories/Numbers/HexadecimalN.v index f333e2b7f6..93ba82d14a 100644 --- a/theories/Numbers/HexadecimalN.v +++ b/theories/Numbers/HexadecimalN.v @@ -74,7 +74,7 @@ Proof. destruct (norm d) eqn:Hd; intros [= <-]. unfold N.to_hex_int. rewrite Unsigned.to_of. f_equal. revert Hd; destruct d; simpl. - - intros [= <-]. apply unorm_invol. + - intros [= <-]. apply unorm_involutive. - destruct (nzhead d); now intros [= <-]. Qed. @@ -93,7 +93,7 @@ Qed. Lemma of_int_norm d : N.of_hex_int (norm d) = N.of_hex_int d. Proof. - unfold N.of_hex_int. now rewrite norm_invol. + unfold N.of_hex_int. now rewrite norm_involutive. Qed. Lemma of_inj_pos d d' : diff --git a/theories/Numbers/HexadecimalNat.v b/theories/Numbers/HexadecimalNat.v index b05184e821..94a14b90bd 100644 --- a/theories/Numbers/HexadecimalNat.v +++ b/theories/Numbers/HexadecimalNat.v @@ -289,7 +289,7 @@ Proof. destruct (norm d) eqn:Hd; intros [= <-]. unfold Nat.to_hex_int. rewrite Unsigned.to_of. f_equal. revert Hd; destruct d; simpl. - - intros [= <-]. apply unorm_invol. + - intros [= <-]. apply unorm_involutive. - destruct (nzhead d); now intros [= <-]. Qed. @@ -308,7 +308,7 @@ Qed. Lemma of_int_norm d : Nat.of_hex_int (norm d) = Nat.of_hex_int d. Proof. - unfold Nat.of_hex_int. now rewrite norm_invol. + unfold Nat.of_hex_int. now rewrite norm_involutive. Qed. Lemma of_inj_pos d d' : diff --git a/theories/Numbers/HexadecimalQ.v b/theories/Numbers/HexadecimalQ.v index bbafa7ddc1..a32019767c 100644 --- a/theories/Numbers/HexadecimalQ.v +++ b/theories/Numbers/HexadecimalQ.v @@ -16,8 +16,109 @@ Require Import Decimal DecimalFacts DecimalPos DecimalN DecimalZ. Require Import Hexadecimal HexadecimalFacts HexadecimalPos HexadecimalN HexadecimalZ QArith. +Lemma of_IQmake_to_hexadecimal num den : + match IQmake_to_hexadecimal num den with + | None => True + | Some (HexadecimalExp _ _ _) => False + | Some (Hexadecimal i f) => of_hexadecimal (Hexadecimal i f) = IQmake (IZ_of_Z num) den + end. +Proof. + unfold IQmake_to_hexadecimal. + generalize (Unsigned.nztail_to_hex_uint den). + case Hexadecimal.nztail; intros den' e_den'. + case den'; [now simpl|now simpl| |now simpl..]; clear den'; intro den'. + case den'; [ |now simpl..]; clear den'. + case e_den' as [|e_den']; simpl; intro H; injection H; clear H; intros->. + { now unfold of_hexadecimal; simpl; rewrite app_int_nil_r, HexadecimalZ.of_to. } + replace (16 ^ _)%positive with (Nat.iter (S e_den') (Pos.mul 16) 1%positive). + 2:{ induction e_den' as [|n IHn]; [now simpl| ]. + now rewrite SuccNat2Pos.inj_succ, Pos.pow_succ_r, <-IHn. } + case Nat.ltb_spec; intro He_den'. + - unfold of_hexadecimal; simpl. + rewrite app_int_del_tail_head; [|now apply Nat.lt_le_incl]. + rewrite HexadecimalZ.of_to. + now rewrite nb_digits_del_head_sub; [|now apply Nat.lt_le_incl]. + - unfold of_hexadecimal; simpl. + rewrite nb_digits_iter_D0. + apply f_equal2. + + apply f_equal, HexadecimalZ.to_int_inj. + rewrite HexadecimalZ.to_of. + rewrite <-(HexadecimalZ.of_to num), HexadecimalZ.to_of. + case (Z.to_hex_int num); clear He_den' num; intro num; simpl. + * unfold app; simpl. + now rewrite unorm_D0, unorm_iter_D0, unorm_involutive. + * case (uint_eq_dec (nzhead num) Nil); [|intro Hn]. + { intros->; simpl; unfold app; simpl. + now rewrite unorm_D0, unorm_iter_D0. } + replace (match nzhead num with Nil => _ | _ => _ end) + with (Neg (nzhead num)); [|now revert Hn; case nzhead]. + simpl. + rewrite nzhead_iter_D0, nzhead_involutive. + now revert Hn; case nzhead. + + revert He_den'; case nb_digits as [|n]; [now simpl; rewrite Nat.add_0_r|]. + intro Hn. + rewrite Nat.add_succ_r, Nat.add_comm. + now rewrite <-le_plus_minus; [|apply le_S_n]. +Qed. + +Lemma IZ_of_Z_IZ_to_Z z z' : IZ_to_Z z = Some z' -> IZ_of_Z z' = z. +Proof. now case z as [| |p|p]; [|intro H; injection H; intros<-..]. Qed. + +Lemma of_IQmake_to_hexadecimal' num den : + match IQmake_to_hexadecimal' num den with + | None => True + | Some (HexadecimalExp _ _ _) => False + | Some (Hexadecimal i f) => of_hexadecimal (Hexadecimal i f) = IQmake num den + end. +Proof. + unfold IQmake_to_hexadecimal'. + case_eq (IZ_to_Z num); [intros num' Hnum'|now simpl]. + generalize (of_IQmake_to_hexadecimal num' den). + case IQmake_to_hexadecimal as [d|]; [|now simpl]. + case d as [i f|]; [|now simpl]. + now rewrite (IZ_of_Z_IZ_to_Z _ _ Hnum'). +Qed. + Lemma of_to (q:IQ) : forall d, to_hexadecimal q = Some d -> of_hexadecimal d = q. -Admitted. +Proof. + intro d. + case q as [num den|q q'|q q']; simpl. + - generalize (of_IQmake_to_hexadecimal' num den). + case IQmake_to_hexadecimal' as [d'|]; [|now simpl]. + case d' as [i f|]; [|now simpl]. + now intros H H'; injection H'; clear H'; intros <-. + - case q as [num den| |]; [|now simpl..]. + case q' as [num' den'| |]; [|now simpl..]. + case num' as [z p| | |]; [|now simpl..]. + case (Z.eq_dec z 2); [intros->|]. + 2:{ case z; [now simpl| |now simpl]; intro pz'. + case pz'; [intros d0..| ]; [now simpl| |now simpl]. + now case d0. } + case (Pos.eq_dec den' 1%positive); [intros->|now case den']. + generalize (of_IQmake_to_hexadecimal' num den). + case IQmake_to_hexadecimal' as [d'|]; [|now simpl]. + case d' as [i f|]; [|now simpl]. + intros <-; clear num den. + intros H; injection H; clear H; intros<-. + unfold of_hexadecimal; simpl. + now unfold Z.of_uint; rewrite DecimalPos.Unsigned.of_to; simpl. + - case q as [num den| |]; [|now simpl..]. + case q' as [num' den'| |]; [|now simpl..]. + case num' as [z p| | |]; [|now simpl..]. + case (Z.eq_dec z 2); [intros->|]. + 2:{ case z; [now simpl| |now simpl]; intro pz'. + case pz'; [intros d0..| ]; [now simpl| |now simpl]. + now case d0. } + case (Pos.eq_dec den' 1%positive); [intros->|now case den']. + generalize (of_IQmake_to_hexadecimal' num den). + case IQmake_to_hexadecimal' as [d'|]; [|now simpl]. + case d' as [i f|]; [|now simpl]. + intros <-; clear num den. + intros H; injection H; clear H; intros<-. + unfold of_hexadecimal; simpl. + now unfold Z.of_uint; rewrite DecimalPos.Unsigned.of_to; simpl. +Qed. + Definition dnorm (d:hexadecimal) : hexadecimal := let norm_i i f := @@ -44,13 +145,50 @@ Lemma dnorm_spec_i d : (i' = Neg (unorm i) /\ (nzhead i <> Nil \/ nzhead f <> Nil)) \/ (i' = Pos zero /\ (nzhead i = Nil /\ nzhead f = Nil)) end. -Admitted. +Proof. + case d as [i f|i f e]; case i as [i|i]. + - now simpl. + - simpl; case (uint_eq_dec (nzhead (app i f)) Nil); intro Ha. + + rewrite Ha; right; split; [now simpl|split]. + * now unfold unorm; rewrite (nzhead_app_nil_l _ _ Ha). + * now unfold unorm; rewrite (nzhead_app_nil_r _ _ Ha). + + left; split; [now revert Ha; case nzhead|]. + case (uint_eq_dec (nzhead i) Nil). + * intro Hi; right; intro Hf; apply Ha. + now rewrite <-nzhead_app_nzhead, Hi, app_nil_l. + * now intro H; left. + - simpl; case (Decimal.norm e); clear e; intro e; [|now simpl]. + now case e; clear e; [|intro e..]; [|case e|..]. + - simpl. + set (m := match nzhead _ with Nil => _ | _ => _ end). + set (m' := match _ with Hexadecimal _ _ => _ | _ => _ end). + replace m' with m. + 2:{ unfold m'; case (Decimal.norm e); clear m' e; intro e; [|now simpl]. + now case e; clear e; [|intro e..]; [|case e|..]. } + unfold m; case (uint_eq_dec (nzhead (app i f)) Nil); intro Ha. + + rewrite Ha; right; split; [now simpl|split]. + * now unfold unorm; rewrite (nzhead_app_nil_l _ _ Ha). + * now unfold unorm; rewrite (nzhead_app_nil_r _ _ Ha). + + left; split; [now revert Ha; case nzhead|]. + case (uint_eq_dec (nzhead i) Nil). + * intro Hi; right; intro Hf; apply Ha. + now rewrite <-nzhead_app_nzhead, Hi, app_nil_l. + * now intro H; left. +Qed. Lemma dnorm_spec_f d : let f := match d with Hexadecimal _ f => f | HexadecimalExp _ f _ => f end in let f' := match dnorm d with Hexadecimal _ f => f | HexadecimalExp _ f _ => f end in f' = f. -Admitted. +Proof. + case d as [i f|i f e]; [now simpl|]. + simpl; case (Decimal.int_eq_dec (Decimal.norm e) (Decimal.Pos Decimal.zero)); [now intros->|intro He]. + set (i' := match i with Pos _ => _ | _ => _ end). + set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end). + replace m with (HexadecimalExp i' f (Decimal.norm e)); [now simpl|]. + unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl]. + now case e; clear e; [|intro e; case e|..]. +Qed. Lemma dnorm_spec_e d : match d, dnorm d with @@ -61,24 +199,241 @@ Lemma dnorm_spec_e d : e' = Decimal.norm e /\ e' <> Decimal.Pos Decimal.zero | Hexadecimal _ _, HexadecimalExp _ _ _ => False end. -Admitted. +Proof. + case d as [i f|i f e]; [now simpl|]. + simpl; case (Decimal.int_eq_dec (Decimal.norm e) (Decimal.Pos Decimal.zero)); [now intros->|intro He]. + set (i' := match i with Pos _ => _ | _ => _ end). + set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end). + replace m with (HexadecimalExp i' f (Decimal.norm e)); [now simpl|]. + unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl]. + now case e; clear e; [|intro e; case e|..]. +Qed. -Lemma dnorm_invol d : dnorm (dnorm d) = dnorm d. -Admitted. +Lemma dnorm_involutive d : dnorm (dnorm d) = dnorm d. +Proof. + case d as [i f|i f e]; case i as [i|i]. + - now simpl; rewrite unorm_involutive. + - simpl; case (uint_eq_dec (nzhead (app i f)) Nil); [now intros->|intro Ha]. + set (m := match nzhead _ with Nil =>_ | _ => _ end). + replace m with (Neg (unorm i)). + 2:{ now unfold m; revert Ha; case nzhead. } + case (uint_eq_dec (nzhead i) Nil); intro Hi. + + unfold unorm; rewrite Hi; simpl. + case (uint_eq_dec (nzhead f) Nil). + * intro Hf; exfalso; apply Ha. + now rewrite <-nzhead_app_nzhead, Hi, app_nil_l. + * now case nzhead. + + rewrite unorm_involutive, (unorm_nzhead _ Hi), nzhead_app_nzhead. + now revert Ha; case nzhead. + - simpl; case (Decimal.int_eq_dec (Decimal.norm e) (Decimal.Pos Decimal.zero)); intro He. + + now rewrite He; simpl; rewrite unorm_involutive. + + set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end). + replace m with (HexadecimalExp (Pos (unorm i)) f (Decimal.norm e)). + 2:{ unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl]. + now case e; clear e; [|intro e; case e|..]. } + simpl; rewrite DecimalFacts.norm_involutive, unorm_involutive. + revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl]. + now case e; clear e; [|intro e; case e|..]. + - simpl; case (Decimal.int_eq_dec (Decimal.norm e) (Decimal.Pos Decimal.zero)); intro He. + + rewrite He; simpl. + case (uint_eq_dec (nzhead (app i f)) Nil); [now intros->|intro Ha]. + set (m := match nzhead _ with Nil =>_ | _ => _ end). + replace m with (Neg (unorm i)). + 2:{ now unfold m; revert Ha; case nzhead. } + case (uint_eq_dec (nzhead i) Nil); intro Hi. + * unfold unorm; rewrite Hi; simpl. + case (uint_eq_dec (nzhead f) Nil). + -- intro Hf; exfalso; apply Ha. + now rewrite <-nzhead_app_nzhead, Hi, app_nil_l. + -- now case nzhead. + * rewrite unorm_involutive, (unorm_nzhead _ Hi), nzhead_app_nzhead. + now revert Ha; case nzhead. + + set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end). + pose (i' := match nzhead (app i f) with Nil => Pos zero | _ => Neg (unorm i) end). + replace m with (HexadecimalExp i' f (Decimal.norm e)). + 2:{ unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl]. + now case e; clear e; [|intro e; case e|..]. } + simpl; rewrite DecimalFacts.norm_involutive. + set (i'' := match i' with Pos _ => _ | _ => _ end). + clear m; set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end). + replace m with (HexadecimalExp i'' f (Decimal.norm e)). + 2:{ unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl]. + now case e; clear e; [|intro e; case e|..]. } + unfold i'', i'. + case (uint_eq_dec (nzhead (app i f)) Nil); [now intros->|intro Ha]. + fold i'; replace i' with (Neg (unorm i)). + 2:{ now unfold i'; revert Ha; case nzhead. } + case (uint_eq_dec (nzhead i) Nil); intro Hi. + * unfold unorm; rewrite Hi; simpl. + case (uint_eq_dec (nzhead f) Nil). + -- intro Hf; exfalso; apply Ha. + now rewrite <-nzhead_app_nzhead, Hi, app_nil_l. + -- now case nzhead. + * rewrite unorm_involutive, (unorm_nzhead _ Hi), nzhead_app_nzhead. + now revert Ha; case nzhead. +Qed. + +Lemma IZ_to_Z_IZ_of_Z z : IZ_to_Z (IZ_of_Z z) = Some z. +Proof. now case z. Qed. + +Lemma dnorm_i_exact i f : + (nb_digits f < nb_digits (unorm (app (abs i) f)))%nat -> + match i with + | Pos i => Pos (unorm i) + | Neg i => + match nzhead (app i f) with + | Nil => Pos zero + | _ => Neg (unorm i) + end + end = norm i. +Proof. + case i as [ni|ni]; [now simpl|]; simpl. + case (uint_eq_dec (nzhead (app ni f)) Nil); intro Ha. + { now rewrite Ha, (nzhead_app_nil_l _ _ Ha). } + rewrite (unorm_nzhead _ Ha). + set (m := match nzhead _ with Nil => _ | _ => _ end). + replace m with (Neg (unorm ni)); [|now unfold m; revert Ha; case nzhead]. + case (uint_eq_dec (nzhead ni) Nil); intro Hni. + { rewrite <-nzhead_app_nzhead, Hni, app_nil_l. + intro H; exfalso; revert H; apply le_not_lt, nb_digits_nzhead. } + clear m; set (m := match nzhead ni with Nil => _ | _ => _ end). + replace m with (Neg (nzhead ni)); [|now unfold m; revert Hni; case nzhead]. + now rewrite (unorm_nzhead _ Hni). +Qed. + +Lemma dnorm_i_exact' i f : + (nb_digits (unorm (app (abs i) f)) <= nb_digits f)%nat -> + match i with + | Pos i => Pos (unorm i) + | Neg i => + match nzhead (app i f) with + | Nil => Pos zero + | _ => Neg (unorm i) + end + end = + match norm (app_int i f) with + | Pos _ => Pos zero + | Neg _ => Neg zero + end. +Proof. + case i as [ni|ni]; simpl. + { now intro Hnb; rewrite (unorm_app_zero _ _ Hnb). } + unfold unorm. + case (uint_eq_dec (nzhead (app ni f)) Nil); intro Hn. + { now rewrite Hn. } + set (m := match nzhead _ with Nil => _ | _ => _ end). + replace m with (nzhead (app ni f)). + 2:{ now unfold m; revert Hn; case nzhead. } + clear m; set (m := match nzhead _ with Nil => _ | _ => _ end). + replace m with (Neg (unorm ni)). + 2:{ now unfold m, unorm; revert Hn; case nzhead. } + clear m; set (m := match nzhead _ with Nil => _ | _ => _ end). + replace m with (Neg (nzhead (app ni f))). + 2:{ now unfold m; revert Hn; case nzhead. } + rewrite <-(unorm_nzhead _ Hn). + now intro H; rewrite (unorm_app_zero _ _ H). +Qed. Lemma to_of (d:hexadecimal) : to_hexadecimal (of_hexadecimal d) = Some (dnorm d). -Admitted. +Proof. + case d as [i f|i f e]. + - unfold of_hexadecimal; simpl; unfold IQmake_to_hexadecimal'. + rewrite IZ_to_Z_IZ_of_Z. + unfold IQmake_to_hexadecimal; simpl. + change (fun _ : positive => _) with (Pos.mul 16). + rewrite nztail_to_hex_uint_pow16, to_of. + case_eq (nb_digits f); [|intro nb]; intro Hnb. + + rewrite (nb_digits_0 _ Hnb), app_int_nil_r. + case i as [ni|ni]; [now simpl|]. + rewrite app_nil_r; simpl; unfold unorm. + now case (nzhead ni). + + rewrite <-Hnb. + rewrite abs_norm, abs_app_int. + case Nat.ltb_spec; intro Hnb'. + * rewrite (del_tail_app_int_exact _ _ Hnb'). + rewrite (del_head_app_int_exact _ _ Hnb'). + now rewrite (dnorm_i_exact _ _ Hnb'). + * rewrite (unorm_app_r _ _ Hnb'). + rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb]. + now rewrite dnorm_i_exact'. + - unfold of_hexadecimal; simpl. + rewrite <-DecimalZ.to_of. + case (Z.of_int e); clear e; [|intro e..]; simpl. + + unfold IQmake_to_hexadecimal'. + rewrite IZ_to_Z_IZ_of_Z. + unfold IQmake_to_hexadecimal; simpl. + change (fun _ : positive => _) with (Pos.mul 16). + rewrite nztail_to_hex_uint_pow16, to_of. + case_eq (nb_digits f); [|intro nb]; intro Hnb. + * rewrite (nb_digits_0 _ Hnb), app_int_nil_r. + case i as [ni|ni]; [now simpl|]. + rewrite app_nil_r; simpl; unfold unorm. + now case (nzhead ni). + * rewrite <-Hnb. + rewrite abs_norm, abs_app_int. + case Nat.ltb_spec; intro Hnb'. + -- rewrite (del_tail_app_int_exact _ _ Hnb'). + rewrite (del_head_app_int_exact _ _ Hnb'). + now rewrite (dnorm_i_exact _ _ Hnb'). + -- rewrite (unorm_app_r _ _ Hnb'). + rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb]. + now rewrite dnorm_i_exact'. + + unfold IQmake_to_hexadecimal'. + rewrite IZ_to_Z_IZ_of_Z. + unfold IQmake_to_hexadecimal; simpl. + change (fun _ : positive => _) with (Pos.mul 16). + rewrite nztail_to_hex_uint_pow16, to_of. + generalize (DecimalPos.Unsigned.to_uint_nonzero e); intro He. + set (dnorm_i := match i with Pos _ => _ | _ => _ end). + set (m := match Pos.to_uint e with Decimal.Nil => _ | _ => _ end). + replace m with (HexadecimalExp dnorm_i f (Decimal.Pos (Pos.to_uint e))). + 2:{ now unfold m; revert He; case (Pos.to_uint e); [|intro u; case u|..]. } + clear m; unfold dnorm_i. + case_eq (nb_digits f); [|intro nb]; intro Hnb. + * rewrite (nb_digits_0 _ Hnb), app_int_nil_r. + case i as [ni|ni]; [now simpl|]. + rewrite app_nil_r; simpl; unfold unorm. + now case (nzhead ni). + * rewrite <-Hnb. + rewrite abs_norm, abs_app_int. + case Nat.ltb_spec; intro Hnb'. + -- rewrite (del_tail_app_int_exact _ _ Hnb'). + rewrite (del_head_app_int_exact _ _ Hnb'). + now rewrite (dnorm_i_exact _ _ Hnb'). + -- rewrite (unorm_app_r _ _ Hnb'). + rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb]. + now rewrite dnorm_i_exact'. + + unfold IQmake_to_hexadecimal'. + rewrite IZ_to_Z_IZ_of_Z. + unfold IQmake_to_hexadecimal; simpl. + change (fun _ : positive => _) with (Pos.mul 16). + rewrite nztail_to_hex_uint_pow16, to_of. + case_eq (nb_digits f); [|intro nb]; intro Hnb. + * rewrite (nb_digits_0 _ Hnb), app_int_nil_r. + case i as [ni|ni]; [now simpl|]. + rewrite app_nil_r; simpl; unfold unorm. + now case (nzhead ni). + * rewrite <-Hnb. + rewrite abs_norm, abs_app_int. + case Nat.ltb_spec; intro Hnb'. + -- rewrite (del_tail_app_int_exact _ _ Hnb'). + rewrite (del_head_app_int_exact _ _ Hnb'). + now rewrite (dnorm_i_exact _ _ Hnb'). + -- rewrite (unorm_app_r _ _ Hnb'). + rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb]. + now rewrite dnorm_i_exact'. +Qed. (** Some consequences *) Lemma to_hexadecimal_inj q q' : to_hexadecimal q <> None -> to_hexadecimal q = to_hexadecimal q' -> q = q'. Proof. -intros Hnone EQ. -generalize (of_to q) (of_to q'). -rewrite <-EQ. -revert Hnone; case to_hexadecimal; [|now simpl]. -now intros d _ H1 H2; rewrite <-(H1 d eq_refl), <-(H2 d eq_refl). + intros Hnone EQ. + generalize (of_to q) (of_to q'). + rewrite <-EQ. + revert Hnone; case to_hexadecimal; [|now simpl]. + now intros d _ H1 H2; rewrite <-(H1 d eq_refl), <-(H2 d eq_refl). Qed. Lemma to_hexadecimal_surj d : exists q, to_hexadecimal q = Some (dnorm d). @@ -87,18 +442,18 @@ Proof. Qed. Lemma of_hexadecimal_dnorm d : of_hexadecimal (dnorm d) = of_hexadecimal d. -Proof. now apply to_hexadecimal_inj; rewrite !to_of; [|rewrite dnorm_invol]. Qed. +Proof. now apply to_hexadecimal_inj; rewrite !to_of; [|rewrite dnorm_involutive]. Qed. Lemma of_inj d d' : of_hexadecimal d = of_hexadecimal d' -> dnorm d = dnorm d'. Proof. -intro H. -apply (@f_equal _ _ (fun x => match x with Some x => x | _ => d end) - (Some (dnorm d)) (Some (dnorm d'))). -now rewrite <- !to_of, H. + intro H. + apply (@f_equal _ _ (fun x => match x with Some x => x | _ => d end) + (Some (dnorm d)) (Some (dnorm d'))). + now rewrite <- !to_of, H. Qed. Lemma of_iff d d' : of_hexadecimal d = of_hexadecimal d' <-> dnorm d = dnorm d'. Proof. -split. apply of_inj. intros E. rewrite <- of_hexadecimal_dnorm, E. -apply of_hexadecimal_dnorm. + split. apply of_inj. intros E. rewrite <- of_hexadecimal_dnorm, E. + apply of_hexadecimal_dnorm. Qed. diff --git a/theories/Numbers/HexadecimalZ.v b/theories/Numbers/HexadecimalZ.v index c5ed0b5b28..1d78ad1ad2 100644 --- a/theories/Numbers/HexadecimalZ.v +++ b/theories/Numbers/HexadecimalZ.v @@ -80,9 +80,11 @@ Lemma of_hex_uint_iter_D0 d n : Z.of_hex_uint (app d (Nat.iter n D0 Nil)) = Nat.iter n (Z.mul 0x10) (Z.of_hex_uint d). Proof. - unfold Z.of_hex_uint. - unfold app; rewrite <-rev_revapp. - rewrite Unsigned.of_lu_rev, Unsigned.of_lu_revapp. + rewrite <-(rev_rev (app _ _)), <-(of_list_to_list (rev (app _ _))). + rewrite rev_spec, app_spec, List.rev_app_distr. + rewrite <-!rev_spec, <-app_spec, of_list_to_list. + unfold Z.of_hex_uint; rewrite Unsigned.of_lu_rev. + unfold app; rewrite Unsigned.of_lu_revapp, !rev_rev. rewrite <-!Unsigned.of_lu_rev, !rev_rev. assert (H' : Pos.of_hex_uint (Nat.iter n D0 Nil) = 0%N). { now induction n; [|rewrite Unsigned.nat_iter_S]. } @@ -140,3 +142,22 @@ Qed. Lemma double_to_hex_int n : double (Z.to_hex_int n) = Z.to_hex_int (Z.double n). Proof. now rewrite <-(of_to n), <-of_hex_int_double, !to_of, double_norm. Qed. + +Lemma nztail_to_hex_uint_pow16 n : + Hexadecimal.nztail (Pos.to_hex_uint (Nat.iter n (Pos.mul 16) 1%positive)) + = (D1 Nil, n). +Proof. + case n as [|n]; [now simpl|]. + rewrite <-(Nat2Pos.id (S n)); [|now simpl]. + generalize (Pos.of_nat (S n)); clear n; intro p. + induction (Pos.to_nat p); [now simpl|]. + rewrite Unsigned.nat_iter_S. + unfold Pos.to_hex_uint. + change (Pos.to_little_hex_uint _) + with (Unsigned.to_lu (16 * N.pos (Nat.iter n (Pos.mul 16) 1%positive))). + rewrite Unsigned.to_lhex_tenfold. + revert IHn; unfold Pos.to_hex_uint. + unfold Hexadecimal.nztail; rewrite !rev_rev; simpl. + set (f'' := _ (Pos.to_little_hex_uint _)). + now case f''; intros r n' H; inversion H. +Qed. |
