diff options
| author | Jasper Hugunin | 2020-12-15 20:45:01 -0800 |
|---|---|---|
| committer | Jasper Hugunin | 2020-12-15 20:45:01 -0800 |
| commit | 0f8d5745a3edd428aa5677880b5dcc5077f5b91b (patch) | |
| tree | b4ddd8077bb2be4bea39a78ef6f6682055e8e0d0 | |
| parent | 25b41bb9f84a3420878a9284cd7c8cae7f4f4e5b (diff) | |
Modify Numbers/Cyclic/Int63/Int63.v to compile with -mangle-names
| -rw-r--r-- | theories/Numbers/Cyclic/Int63/Int63.v | 34 |
1 files changed, 17 insertions, 17 deletions
diff --git a/theories/Numbers/Cyclic/Int63/Int63.v b/theories/Numbers/Cyclic/Int63/Int63.v index c469a49903..f324bbf52b 100644 --- a/theories/Numbers/Cyclic/Int63/Int63.v +++ b/theories/Numbers/Cyclic/Int63/Int63.v @@ -226,7 +226,7 @@ Proof. apply Z.lt_le_trans with (1:= H5); auto with zarith. apply Zpower_le_monotone; auto with zarith. rewrite Zplus_mod; auto with zarith. - rewrite -> Zmod_small with (a := t); auto with zarith. + rewrite -> (Zmod_small t); auto with zarith. apply Zmod_small; auto with zarith. split; auto with zarith. assert (0 <= 2 ^a * r); auto with zarith. @@ -489,15 +489,15 @@ Definition cast i j := Lemma cast_refl : forall i, cast i i = Some (fun P H => H). Proof. - unfold cast;intros. + unfold cast;intros i. generalize (eqb_correct i i). - rewrite eqb_refl;intros. + rewrite eqb_refl;intros e. rewrite (Eqdep_dec.eq_proofs_unicity eq_dec (e (eq_refl true)) (eq_refl i));trivial. Qed. Lemma cast_diff : forall i j, i =? j = false -> cast i j = None. Proof. - intros;unfold cast;intros; generalize (eqb_correct i j). + intros i j H;unfold cast;intros; generalize (eqb_correct i j). rewrite H;trivial. Qed. @@ -509,15 +509,15 @@ Definition eqo i j := Lemma eqo_refl : forall i, eqo i i = Some (eq_refl i). Proof. - unfold eqo;intros. + unfold eqo;intros i. generalize (eqb_correct i i). - rewrite eqb_refl;intros. + rewrite eqb_refl;intros e. rewrite (Eqdep_dec.eq_proofs_unicity eq_dec (e (eq_refl true)) (eq_refl i));trivial. Qed. Lemma eqo_diff : forall i j, i =? j = false -> eqo i j = None. Proof. - unfold eqo;intros; generalize (eqb_correct i j). + unfold eqo;intros i j H; generalize (eqb_correct i j). rewrite H;trivial. Qed. @@ -651,7 +651,7 @@ Proof. apply Zgcdn_is_gcd. unfold Zgcd_bound. generalize (to_Z_bounded b). - destruct φ b. + destruct φ b as [|p|p]. unfold size; auto with zarith. intros (_,H). cut (Psize p <= size)%nat; [ lia | rewrite <- Zpower2_Psize; auto]. @@ -727,7 +727,7 @@ Proof. replace ((φ m + φ n) mod wB)%Z with ((((φ m + φ n) - wB) + wB) mod wB)%Z. rewrite -> Zplus_mod, Z_mod_same_full, Zplus_0_r, !Zmod_small; auto with zarith. rewrite !Zmod_small; auto with zarith. - apply f_equal2 with (f := Zmod); auto with zarith. + apply (f_equal2 Zmod); auto with zarith. case_eq (n <=? m + n)%int63; auto. rewrite leb_spec, H1; auto with zarith. assert (H1: (φ (m + n) = φ m + φ n)%Z). @@ -805,7 +805,7 @@ Lemma lsl_add_distr x y n: (x + y) << n = ((x << n) + (y << n))%int63. Proof. apply to_Z_inj; rewrite -> !lsl_spec, !add_spec, Zmult_mod_idemp_l. rewrite -> !lsl_spec, <-Zplus_mod. - apply f_equal2 with (f := Zmod); auto with zarith. + apply (f_equal2 Zmod); auto with zarith. Qed. Lemma lsr_M_r x i (H: (digits <=? i = true)%int63) : x >> i = 0%int63. @@ -973,14 +973,14 @@ Proof. case H2; intros _ H3; case (Zle_or_lt φ i φ j); intros F2. 2: generalize (H3 F2); discriminate. clear H2 H3. - apply f_equal with (f := negb). - apply f_equal with (f := is_zero). + apply (f_equal negb). + apply (f_equal is_zero). apply to_Z_inj. rewrite -> !lsl_spec, !lsr_spec, !lsl_spec. pattern wB at 2 3; replace wB with (2^(1+ φ (digits - 1))); auto. rewrite -> Zpower_exp, Z.pow_1_r; auto with zarith. rewrite !Zmult_mod_distr_r. - apply f_equal2 with (f := Zmult); auto. + apply (f_equal2 Zmult); auto. replace wB with (2^ d); auto with zarith. replace d with ((d - φ i) + φ i)%Z by ring. case (to_Z_bounded i); intros H1i H2i. @@ -1078,8 +1078,8 @@ Proof. 2: generalize (Hn 0%int63); do 2 case bit; auto; intros [ ]; auto. rewrite lsl_add_distr. rewrite (bit_split x) at 1; rewrite (bit_split y) at 1. - rewrite <-!add_assoc; apply f_equal2 with (f := add); auto. - rewrite add_comm, <-!add_assoc; apply f_equal2 with (f := add); auto. + rewrite <-!add_assoc; apply (f_equal2 add); auto. + rewrite add_comm, <-!add_assoc; apply (f_equal2 add); auto. rewrite add_comm; auto. intros Heq. generalize (add_le_r x y); rewrite Heq, lor_le; intro Hb. @@ -1360,7 +1360,7 @@ Lemma sqrt2_step_def rec ih il j: else j else j. Proof. - unfold sqrt2_step; case diveucl_21; intros;simpl. + unfold sqrt2_step; case diveucl_21; intros i j';simpl. case (j +c i);trivial. Qed. @@ -1390,7 +1390,7 @@ Proof. assert (W1:= to_Z_bounded a1). assert (W2:= to_Z_bounded a2). assert (Wb:= to_Z_bounded b). - assert (φ b>0) by (auto with zarith). + assert (φ b>0) as H by (auto with zarith). generalize (Z_div_mod (φ a1*wB+φ a2) φ b H). revert W. destruct (diveucl_21 a1 a2 b); destruct (Z.div_eucl (φ a1*wB+φ a2) φ b). |
