blob: dd1486fec38cf665c1c2b510b4006c60d85a9b60 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Lemma test_dup1 : forall n : nat, odd n.
Proof. move=> /[dup] m n; suff: odd n by []. Abort.
Lemma test_dup2 : let n := 1 in False.
Proof. move=> /[dup] m n; have : m = n := erefl. Abort.
Lemma test_swap1 : forall (n : nat) (b : bool), odd n = b.
Proof. move=> /[swap] b n; suff: odd n = b by []. Abort.
Lemma test_swap1 : let n := 1 in let b := true in False.
Proof. move=> /[swap] b n; have : odd n = b := erefl. Abort.
Lemma test_apply A B : forall (f : A -> B) (a : A), False.
Proof.
move=> /[apply] b.
Check (b : B).
Abort.
|