1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
(* This line is read by the Makefile's dist target: do not remove. *)
DECLARE PLUGIN "ssreflect_plugin"
let ssrversion = "1.6";;
let ssrAstVersion = 1;;
let () = Mltop.add_known_plugin (fun () ->
if Flags.is_verbose () && not !Flags.batch_mode then begin
Printf.printf "\nSmall Scale Reflection version %s loaded.\n" ssrversion;
Printf.printf "Copyright 2005-2016 Microsoft Corporation and INRIA.\n";
Printf.printf "Distributed under the terms of the CeCILL-B license.\n\n"
end)
"ssreflect_plugin"
;;
(* Defining grammar rules with "xx" in it automatically declares keywords too,
* we thus save the lexer to restore it at the end of the file *)
let frozen_lexer = CLexer.freeze () ;;
(*i camlp4use: "pa_extend.cmo" i*)
(*i camlp4deps: "grammar/grammar.cma" i*)
open Names
open Pp
open Feedback
open Pcoq
open Pcoq.Prim
open Pcoq.Constr
open Genarg
open Stdarg
open Constrarg
open Term
open Vars
open Context
open Topconstr
open Libnames
open Tactics
open Tacticals
open Termops
open Namegen
open Recordops
open Tacmach
open Coqlib
open Glob_term
open Util
open Evd
open Sigma.Notations
open Extend
open Goptions
open Tacexpr
open Tacinterp
open Pretyping
open Constr
open Tactic
open Extraargs
open Ppconstr
open Printer
open Globnames
open Misctypes
open Decl_kinds
open Evar_kinds
open Constrexpr
open Constrexpr_ops
open Notation_term
open Notation_ops
open Locus
open Locusops
open Compat
open Tok
open Ssrmatching_plugin
open Ssrmatching
module RelDecl = Context.Rel.Declaration
module NamedDecl = Context.Named.Declaration
(* Tentative patch from util.ml *)
let array_fold_right_from n f v a =
let rec fold n =
if n >= Array.length v then a else f v.(n) (fold (succ n))
in
fold n
let array_app_tl v l =
if Array.length v = 0 then invalid_arg "array_app_tl";
array_fold_right_from 1 (fun e l -> e::l) v l
let array_list_of_tl v =
if Array.length v = 0 then invalid_arg "array_list_of_tl";
array_fold_right_from 1 (fun e l -> e::l) v []
(* end patch *)
module Intset = Evar.Set
type loc = Loc.t
let dummy_loc = Loc.ghost
let errorstrm = CErrors.errorlabstrm "ssreflect"
let loc_error loc msg = CErrors.user_err_loc (loc, msg, str msg)
let anomaly s = CErrors.anomaly (str s)
(* Compatibility with Coq 8.6 *)
let ppnl = msg_info
let msgnl = msg_info
let mk_reldecl name obody ty =
match obody with
| None -> RelDecl.LocalAssum (name, ty)
| Some bo -> RelDecl.LocalDef (name, bo, ty)
(** look up a name in the ssreflect internals module *)
let ssrdirpath = make_dirpath [id_of_string "ssreflect"]
let ssrqid name = make_qualid ssrdirpath (id_of_string name)
let ssrtopqid name = make_short_qualid (id_of_string name)
let locate_reference qid =
Smartlocate.global_of_extended_global (Nametab.locate_extended qid)
let mkSsrRef name =
try locate_reference (ssrqid name) with Not_found ->
try locate_reference (ssrtopqid name) with Not_found ->
CErrors.error "Small scale reflection library not loaded"
let mkSsrRRef name = GRef (dummy_loc, mkSsrRef name,None), None
let mkSsrConst name env sigma =
Sigma.fresh_global env sigma (mkSsrRef name)
let pf_mkSsrConst name gl =
let sigma, env, it = project gl, pf_env gl, sig_it gl in
let sigma = Sigma.Unsafe.of_evar_map sigma in
let Sigma (t, sigma, _) = mkSsrConst name env sigma in
let sigma = Sigma.to_evar_map sigma in
t, re_sig it sigma
let pf_fresh_global name gl =
let sigma, env, it = project gl, pf_env gl, sig_it gl in
let sigma,t = Evd.fresh_global env sigma name in
t, re_sig it sigma
(** Ssreflect load check. *)
(* To allow ssrcoq to be fully compatible with the "plain" Coq, we only *)
(* turn on its incompatible features (the new rewrite syntax, and the *)
(* reserved identifiers) when the theory library (ssreflect.v) has *)
(* has actually been required, or is being defined. Because this check *)
(* needs to be done often (for each identifier lookup), we implement *)
(* some caching, repeating the test only when the environment changes. *)
(* We check for protect_term because it is the first constant loaded; *)
(* ssr_have would ultimately be a better choice. *)
let ssr_loaded = Summary.ref ~name:"SSR:loaded" false
let is_ssr_loaded () =
!ssr_loaded ||
(if CLexer.is_keyword "SsrSyntax_is_Imported" then ssr_loaded:=true;
!ssr_loaded)
(* 0 cost pp function. Active only if env variable SSRDEBUG is set *)
(* or if SsrDebug is Set *)
let pp_ref = ref (fun _ -> ())
let ssr_pp s = msg_error (str"SSR: "++Lazy.force s)
let _ = try ignore(Sys.getenv "SSRDEBUG"); pp_ref := ssr_pp with Not_found -> ()
let _ =
Goptions.declare_bool_option
{ Goptions.optsync = false;
Goptions.optname = "ssreflect debugging";
Goptions.optkey = ["SsrDebug"];
Goptions.optdepr = false;
Goptions.optread = (fun _ -> !pp_ref == ssr_pp);
Goptions.optwrite = (fun b ->
Ssrmatching.debug b;
if b then pp_ref := ssr_pp else pp_ref := fun _ -> ()) }
let pp s = !pp_ref s
(** Utils {{{ *****************************************************************)
let env_size env = List.length (Environ.named_context env)
let safeDestApp c =
match kind_of_term c with App (f, a) -> f, a | _ -> c, [| |]
let get_index = function ArgArg i -> i | _ ->
anomaly "Uninterpreted index"
(* Toplevel constr must be globalized twice ! *)
let glob_constr ist genv = function
| _, Some ce ->
let vars = Id.Map.fold (fun x _ accu -> Id.Set.add x accu) ist.lfun Id.Set.empty in
let ltacvars = {
Constrintern.empty_ltac_sign with Constrintern.ltac_vars = vars } in
Constrintern.intern_gen WithoutTypeConstraint ~ltacvars genv ce
| rc, None -> rc
(* Term printing utilities functions for deciding bracketing. *)
let pr_paren prx x = hov 1 (str "(" ++ prx x ++ str ")")
(* String lexing utilities *)
let skip_wschars s =
let rec loop i = match s.[i] with '\n'..' ' -> loop (i + 1) | _ -> i in loop
let skip_numchars s =
let rec loop i = match s.[i] with '0'..'9' -> loop (i + 1) | _ -> i in loop
(* We also guard characters that might interfere with the ssreflect *)
(* tactic syntax. *)
let guard_term ch1 s i = match s.[i] with
| '(' -> false
| '{' | '/' | '=' -> true
| _ -> ch1 = '('
(* The call 'guard s i' should return true if the contents of s *)
(* starting at i need bracketing to avoid ambiguities. *)
let pr_guarded guard prc c =
msg_with Format.str_formatter (prc c);
let s = Format.flush_str_formatter () ^ "$" in
if guard s (skip_wschars s 0) then pr_paren prc c else prc c
(* More sensible names for constr printers *)
let prl_constr = pr_lconstr
let pr_constr = pr_constr
let prl_glob_constr c = pr_lglob_constr_env (Global.env ()) c
let pr_glob_constr c = pr_glob_constr_env (Global.env ()) c
let prl_constr_expr = pr_lconstr_expr
let pr_constr_expr = pr_constr_expr
let prl_glob_constr_and_expr = function
| _, Some c -> prl_constr_expr c
| c, None -> prl_glob_constr c
let pr_glob_constr_and_expr = function
| _, Some c -> pr_constr_expr c
| c, None -> pr_glob_constr c
let pr_term (k, c) = pr_guarded (guard_term k) pr_glob_constr_and_expr c
let prl_term (k, c) = pr_guarded (guard_term k) prl_glob_constr_and_expr c
(** Adding a new uninterpreted generic argument type *)
let add_genarg tag pr =
let wit = Genarg.make0 tag in
let tag = Geninterp.Val.create tag in
let glob ist x = (ist, x) in
let subst _ x = x in
let interp ist x = Ftactic.return (Geninterp.Val.Dyn (tag, x)) in
let gen_pr _ _ _ = pr in
let () = Genintern.register_intern0 wit glob in
let () = Genintern.register_subst0 wit subst in
let () = Geninterp.register_interp0 wit interp in
let () = Geninterp.register_val0 wit (Some (Geninterp.Val.Base tag)) in
Pptactic.declare_extra_genarg_pprule wit gen_pr gen_pr gen_pr;
wit
(** Constructors for cast type *)
let dC t = CastConv t
(** Constructors for constr_expr *)
let mkCProp loc = CSort (loc, GProp)
let mkCType loc = CSort (loc, GType [])
let mkCVar loc id = CRef (Ident (loc, id),None)
let isCVar = function CRef (Ident _,_) -> true | _ -> false
let destCVar = function CRef (Ident (_, id),_) -> id | _ ->
anomaly "not a CRef"
let rec mkCHoles loc n =
if n <= 0 then [] else CHole (loc, None, IntroAnonymous, None) :: mkCHoles loc (n - 1)
let mkCHole loc = CHole (loc, None, IntroAnonymous, None)
let rec isCHoles = function CHole _ :: cl -> isCHoles cl | cl -> cl = []
let mkCExplVar loc id n =
CAppExpl (loc, (None, Ident (loc, id), None), mkCHoles loc n)
let mkCLambda loc name ty t =
CLambdaN (loc, [[loc, name], Default Explicit, ty], t)
let mkCLetIn loc name bo t =
CLetIn (loc, (loc, name), bo, t)
let mkCArrow loc ty t =
CProdN (loc, [[dummy_loc,Anonymous], Default Explicit, ty], t)
let mkCCast loc t ty = CCast (loc,t, dC ty)
(** Constructors for rawconstr *)
let mkRHole = GHole (dummy_loc, InternalHole, IntroAnonymous, None)
let rec mkRHoles n = if n > 0 then mkRHole :: mkRHoles (n - 1) else []
let rec isRHoles = function GHole _ :: cl -> isRHoles cl | cl -> cl = []
let mkRApp f args = if args = [] then f else GApp (dummy_loc, f, args)
let mkRVar id = GRef (dummy_loc, VarRef id,None)
let mkRltacVar id = GVar (dummy_loc, id)
let mkRCast rc rt = GCast (dummy_loc, rc, dC rt)
let mkRType = GSort (dummy_loc, GType [])
let mkRProp = GSort (dummy_loc, GProp)
let mkRArrow rt1 rt2 = GProd (dummy_loc, Anonymous, Explicit, rt1, rt2)
let mkRConstruct c = GRef (dummy_loc, ConstructRef c,None)
let mkRInd mind = GRef (dummy_loc, IndRef mind,None)
let mkRLambda n s t = GLambda (dummy_loc, n, Explicit, s, t)
(** Constructors for constr *)
let pf_e_type_of gl t =
let sigma, env, it = project gl, pf_env gl, sig_it gl in
let sigma, ty = Typing.type_of env sigma t in
re_sig it sigma, ty
let mkAppRed f c = match kind_of_term f with
| Lambda (_, _, b) -> subst1 c b
| _ -> mkApp (f, [|c|])
let mkProt t c gl =
let prot, gl = pf_mkSsrConst "protect_term" gl in
mkApp (prot, [|t; c|]), gl
let mkRefl t c gl =
let refl, gl = pf_fresh_global (build_coq_eq_data()).refl gl in
mkApp (refl, [|t; c|]), gl
(* Application to a sequence of n rels (for building eta-expansions). *)
(* The rel indices decrease down to imin (inclusive), unless n < 0, *)
(* in which case they're incresing (from imin). *)
let mkEtaApp c n imin =
if n = 0 then c else
let nargs, mkarg =
if n < 0 then -n, (fun i -> mkRel (imin + i)) else
let imax = imin + n - 1 in n, (fun i -> mkRel (imax - i)) in
mkApp (c, Array.init nargs mkarg)
(* Same, but optimizing head beta redexes *)
let rec whdEtaApp c n =
if n = 0 then c else match kind_of_term c with
| Lambda (_, _, c') -> whdEtaApp c' (n - 1)
| _ -> mkEtaApp (lift n c) n 1
let mkType () = Universes.new_Type (Lib.cwd ())
(* ssrterm conbinators *)
let combineCG t1 t2 f g = match t1, t2 with
| (x, (t1, None)), (_, (t2, None)) -> x, (g t1 t2, None)
| (x, (_, Some t1)), (_, (_, Some t2)) -> x, (mkRHole, Some (f t1 t2))
| _, (_, (_, None)) -> anomaly "have: mixed C-G constr"
| _ -> anomaly "have: mixed G-C constr"
let loc_ofCG = function
| (_, (s, None)) -> Glob_ops.loc_of_glob_constr s
| (_, (_, Some s)) -> Constrexpr_ops.constr_loc s
let mk_term k c = k, (mkRHole, Some c)
let mk_lterm c = mk_term ' ' c
let pf_type_of gl t = let sigma, ty = pf_type_of gl t in re_sig (sig_it gl) sigma, ty
let map_fold_constr g f ctx acc cstr =
let array_f ctx acc x = let x, acc = f ctx acc x in acc, x in
match kind_of_term cstr with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) ->
cstr, acc
| Proj (x,c) ->
let c', acc = f ctx acc c in
(if c == c' then cstr else mkProj (x,c')), acc
| Cast (c,k, t) ->
let c', acc = f ctx acc c in
let t', acc = f ctx acc t in
(if c==c' && t==t' then cstr else mkCast (c', k, t')), acc
| Prod (na,t,c) ->
let t', acc = f ctx acc t in
let c', acc = f (g (na,None,t) ctx) acc c in
(if t==t' && c==c' then cstr else mkProd (na, t', c')), acc
| Lambda (na,t,c) ->
let t', acc = f ctx acc t in
let c', acc = f (g (na,None,t) ctx) acc c in
(if t==t' && c==c' then cstr else mkLambda (na, t', c')), acc
| LetIn (na,b,t,c) ->
let b', acc = f ctx acc b in
let t', acc = f ctx acc t in
let c', acc = f (g (na,Some b,t) ctx) acc c in
(if b==b' && t==t' && c==c' then cstr else mkLetIn (na, b', t', c')), acc
| App (c,al) ->
let c', acc = f ctx acc c in
let acc, al' = CArray.smartfoldmap (array_f ctx) acc al in
(if c==c' && Array.for_all2 (==) al al' then cstr else mkApp (c', al')),
acc
| Evar (e,al) ->
let acc, al' = CArray.smartfoldmap (array_f ctx) acc al in
(if Array.for_all2 (==) al al' then cstr else mkEvar (e, al')), acc
| Case (ci,p,c,bl) ->
let p', acc = f ctx acc p in
let c', acc = f ctx acc c in
let acc, bl' = CArray.smartfoldmap (array_f ctx) acc bl in
(if p==p' && c==c' && Array.for_all2 (==) bl bl' then cstr else
mkCase (ci, p', c', bl')),
acc
| Fix (ln,(lna,tl,bl)) ->
let acc, tl' = CArray.smartfoldmap (array_f ctx) acc tl in
let ctx' = Array.fold_left2 (fun l na t -> g (na,None,t) l) ctx lna tl in
let acc, bl' = CArray.smartfoldmap (array_f ctx') acc bl in
(if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl'
then cstr
else mkFix (ln,(lna,tl',bl'))), acc
| CoFix(ln,(lna,tl,bl)) ->
let acc, tl' = CArray.smartfoldmap (array_f ctx) acc tl in
let ctx' = Array.fold_left2 (fun l na t -> g (na,None,t) l) ctx lna tl in
let acc,bl' = CArray.smartfoldmap (array_f ctx') acc bl in
(if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl'
then cstr
else mkCoFix (ln,(lna,tl',bl'))), acc
let pf_merge_uc_of sigma gl =
let ucst = Evd.evar_universe_context sigma in
pf_merge_uc ucst gl
(* }}} *)
(** Profiling {{{ *************************************************************)
type profiler = {
profile : 'a 'b. ('a -> 'b) -> 'a -> 'b;
reset : unit -> unit;
print : unit -> unit }
let profile_now = ref false
let something_profiled = ref false
let profilers = ref []
let add_profiler f = profilers := f :: !profilers;;
let _ =
Goptions.declare_bool_option
{ Goptions.optsync = false;
Goptions.optname = "ssreflect profiling";
Goptions.optkey = ["SsrProfiling"];
Goptions.optread = (fun _ -> !profile_now);
Goptions.optdepr = false;
Goptions.optwrite = (fun b ->
Ssrmatching.profile b;
profile_now := b;
if b then List.iter (fun f -> f.reset ()) !profilers;
if not b then List.iter (fun f -> f.print ()) !profilers) }
let () =
let prof_total =
let init = ref 0.0 in {
profile = (fun f x -> assert false);
reset = (fun () -> init := Unix.gettimeofday ());
print = (fun () -> if !something_profiled then
prerr_endline
(Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f"
"total" 0 (Unix.gettimeofday() -. !init) 0.0 0.0)) } in
let prof_legenda = {
profile = (fun f x -> assert false);
reset = (fun () -> ());
print = (fun () -> if !something_profiled then begin
prerr_endline
(Printf.sprintf "!! %39s ---------- --------- --------- ---------"
(String.make 39 '-'));
prerr_endline
(Printf.sprintf "!! %-39s %10s %9s %9s %9s"
"function" "#calls" "total" "max" "average") end) } in
add_profiler prof_legenda;
add_profiler prof_total
;;
let mk_profiler s =
let total, calls, max = ref 0.0, ref 0, ref 0.0 in
let reset () = total := 0.0; calls := 0; max := 0.0 in
let profile f x =
if not !profile_now then f x else
let before = Unix.gettimeofday () in
try
incr calls;
let res = f x in
let after = Unix.gettimeofday () in
let delta = after -. before in
total := !total +. delta;
if delta > !max then max := delta;
res
with exc ->
let after = Unix.gettimeofday () in
let delta = after -. before in
total := !total +. delta;
if delta > !max then max := delta;
raise exc in
let print () =
if !calls <> 0 then begin
something_profiled := true;
prerr_endline
(Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f"
s !calls !total !max (!total /. (float_of_int !calls))) end in
let prof = { profile = profile; reset = reset; print = print } in
add_profiler prof;
prof
;;
(* }}} *)
let inVersion = Libobject.declare_object {
(Libobject.default_object "SSRASTVERSION") with
Libobject.load_function = (fun _ (_,v) ->
if v <> ssrAstVersion then CErrors.error "Please recompile your .vo files");
Libobject.classify_function = (fun v -> Libobject.Keep v);
}
let _ =
Goptions.declare_bool_option
{ Goptions.optsync = false;
Goptions.optname = "ssreflect version";
Goptions.optkey = ["SsrAstVersion"];
Goptions.optread = (fun _ -> true);
Goptions.optdepr = false;
Goptions.optwrite = (fun _ ->
Lib.add_anonymous_leaf (inVersion ssrAstVersion)) }
let tactic_expr = Tactic.tactic_expr
let gallina_ext = Vernac_.gallina_ext
let sprintf = Printf.sprintf
let tactic_mode = G_ltac.tactic_mode
(** 1. Utilities *)
let ssroldreworder = Summary.ref ~name:"SSR:oldreworder" true
let _ =
Goptions.declare_bool_option
{ Goptions.optsync = false;
Goptions.optname = "ssreflect 1.3 compatibility flag";
Goptions.optkey = ["SsrOldRewriteGoalsOrder"];
Goptions.optread = (fun _ -> !ssroldreworder);
Goptions.optdepr = false;
Goptions.optwrite = (fun b -> ssroldreworder := b) }
let ssrhaveNOtcresolution = Summary.ref ~name:"SSR:havenotcresolution" false
let inHaveTCResolution = Libobject.declare_object {
(Libobject.default_object "SSRHAVETCRESOLUTION") with
Libobject.cache_function = (fun (_,v) -> ssrhaveNOtcresolution := v);
Libobject.load_function = (fun _ (_,v) -> ssrhaveNOtcresolution := v);
Libobject.classify_function = (fun v -> Libobject.Keep v);
}
let _ =
Goptions.declare_bool_option
{ Goptions.optsync = false;
Goptions.optname = "have type classes";
Goptions.optkey = ["SsrHave";"NoTCResolution"];
Goptions.optread = (fun _ -> !ssrhaveNOtcresolution);
Goptions.optdepr = false;
Goptions.optwrite = (fun b ->
Lib.add_anonymous_leaf (inHaveTCResolution b)) }
(** Primitive parsing to avoid syntax conflicts with basic tactics. *)
let accept_before_syms syms strm =
match Compat.get_tok (stream_nth 1 strm) with
| Tok.KEYWORD sym when List.mem sym syms -> ()
| _ -> raise Stream.Failure
let accept_before_syms_or_any_id syms strm =
match Compat.get_tok (stream_nth 1 strm) with
| Tok.KEYWORD sym when List.mem sym syms -> ()
| Tok.IDENT _ -> ()
| _ -> raise Stream.Failure
let accept_before_syms_or_ids syms ids strm =
match Compat.get_tok (stream_nth 1 strm) with
| Tok.KEYWORD sym when List.mem sym syms -> ()
| Tok.IDENT id when List.mem id ids -> ()
| _ -> raise Stream.Failure
(** Pretty-printing utilities *)
let pr_id = Ppconstr.pr_id
let pr_name = function Name id -> pr_id id | Anonymous -> str "_"
let pr_spc () = str " "
let pr_bar () = Pp.cut() ++ str "|"
let pr_list = prlist_with_sep
let tacltop = (5,Ppextend.E)
(** Tactic-level diagnosis *)
let pf_pr_constr gl = pr_constr_env (pf_env gl)
let pf_pr_glob_constr gl = pr_glob_constr_env (pf_env gl)
(* debug *)
let pf_msg gl =
let ppgl = pr_lconstr_env (pf_env gl) (project gl) (pf_concl gl) in
msgnl (str "goal is " ++ ppgl)
let msgtac gl = pf_msg gl; tclIDTAC gl
(** Tactic utilities *)
let last_goal gls = let sigma, gll = Refiner.unpackage gls in
Refiner.repackage sigma (List.nth gll (List.length gll - 1))
let pf_type_id gl t = id_of_string (hdchar (pf_env gl) t)
let not_section_id id = not (is_section_variable id)
let is_pf_var c = isVar c && not_section_id (destVar c)
let pf_ids_of_proof_hyps gl =
let add_hyp decl ids =
let id = NamedDecl.get_id decl in
if not_section_id id then id :: ids else ids in
Context.Named.fold_outside add_hyp (pf_hyps gl) ~init:[]
let pf_nf_evar gl e = Reductionops.nf_evar (project gl) e
let pf_partial_solution gl t evl =
let sigma, g = project gl, sig_it gl in
let sigma = Goal.V82.partial_solution sigma g t in
re_sig (List.map (fun x -> (fst (destEvar x))) evl) sigma
let pf_new_evar gl ty =
let sigma, env, it = project gl, pf_env gl, sig_it gl in
let sigma = Sigma.Unsafe.of_evar_map sigma in
let Sigma (extra, sigma, _) = Evarutil.new_evar env sigma ty in
let sigma = Sigma.to_evar_map sigma in
re_sig it sigma, extra
(* Basic tactics *)
let convert_concl_no_check t = convert_concl_no_check t DEFAULTcast
let convert_concl t = convert_concl t DEFAULTcast
let reduct_in_concl t = reduct_in_concl (t, DEFAULTcast)
let havetac id c = Proofview.V82.of_tactic (pose_proof (Name id) c)
let settac id c = letin_tac None (Name id) c None
let posetac id cl = Proofview.V82.of_tactic (settac id cl nowhere)
let basecuttac name c gl =
let hd, gl = pf_mkSsrConst name gl in
let t = mkApp (hd, [|c|]) in
let gl, _ = pf_e_type_of gl t in
Proofview.V82.of_tactic (apply t) gl
let apply_type x xs = Proofview.V82.of_tactic (apply_type x xs)
(* we reduce head beta redexes *)
let betared env =
CClosure.create_clos_infos
(CClosure.RedFlags.mkflags [CClosure.RedFlags.fBETA])
env
;;
let introid name = tclTHEN (fun gl ->
let g, env = pf_concl gl, pf_env gl in
match kind_of_term g with
| App (hd, _) when isLambda hd ->
let g = CClosure.whd_val (betared env) (CClosure.inject g) in
Proofview.V82.of_tactic (convert_concl_no_check g) gl
| _ -> tclIDTAC gl)
(Proofview.V82.of_tactic (intro_mustbe_force name))
;;
(** Name generation {{{ *******************************************************)
(* Since Coq now does repeated internal checks of its external lexical *)
(* rules, we now need to carve ssreflect reserved identifiers out of *)
(* out of the user namespace. We use identifiers of the form _id_ for *)
(* this purpose, e.g., we "anonymize" an identifier id as _id_, adding *)
(* an extra leading _ if this might clash with an internal identifier. *)
(* We check for ssreflect identifiers in the ident grammar rule; *)
(* when the ssreflect Module is present this is normally an error, *)
(* but we provide a compatibility flag to reduce this to a warning. *)
let ssr_reserved_ids = Summary.ref ~name:"SSR:idents" true
let _ =
Goptions.declare_bool_option
{ Goptions.optsync = true;
Goptions.optname = "ssreflect identifiers";
Goptions.optkey = ["SsrIdents"];
Goptions.optdepr = false;
Goptions.optread = (fun _ -> !ssr_reserved_ids);
Goptions.optwrite = (fun b -> ssr_reserved_ids := b)
}
let is_ssr_reserved s =
let n = String.length s in n > 2 && s.[0] = '_' && s.[n - 1] = '_'
let internal_names = ref []
let add_internal_name pt = internal_names := pt :: !internal_names
let is_internal_name s = List.exists (fun p -> p s) !internal_names
let ssr_id_of_string loc s =
if is_ssr_reserved s && is_ssr_loaded () then begin
if !ssr_reserved_ids then
loc_error loc ("The identifier " ^ s ^ " is reserved.")
else if is_internal_name s then
msg_warning (str ("Conflict between " ^ s ^ " and ssreflect internal names."))
else msg_warning (str (
"The name " ^ s ^ " fits the _xxx_ format used for anonymous variables.\n"
^ "Scripts with explicit references to anonymous variables are fragile."))
end; id_of_string s
let ssr_null_entry = Gram.Entry.of_parser "ssr_null" (fun _ -> ())
let (!@) = Compat.to_coqloc
GEXTEND Gram
GLOBAL: Prim.ident;
Prim.ident: [[ s = IDENT; ssr_null_entry -> ssr_id_of_string !@loc s ]];
END
let mk_internal_id s =
let s' = sprintf "_%s_" s in
for i = 1 to String.length s do if s'.[i] = ' ' then s'.[i] <- '_' done;
add_internal_name ((=) s'); id_of_string s'
let same_prefix s t n =
let rec loop i = i = n || s.[i] = t.[i] && loop (i + 1) in loop 0
let skip_digits s =
let n = String.length s in
let rec loop i = if i < n && is_digit s.[i] then loop (i + 1) else i in loop
let mk_tagged_id t i = id_of_string (sprintf "%s%d_" t i)
let is_tagged t s =
let n = String.length s - 1 and m = String.length t in
m < n && s.[n] = '_' && same_prefix s t m && skip_digits s m = n
let perm_tag = "_perm_Hyp_"
let _ = add_internal_name (is_tagged perm_tag)
let mk_perm_id =
let salt = ref 1 in
fun () -> salt := !salt mod 10000 + 1; mk_tagged_id perm_tag !salt
let evar_tag = "_evar_"
let _ = add_internal_name (is_tagged evar_tag)
let mk_evar_name n = Name (mk_tagged_id evar_tag n)
let nb_evar_deps = function
| Name id ->
let s = string_of_id id in
if not (is_tagged evar_tag s) then 0 else
let m = String.length evar_tag in
(try int_of_string (String.sub s m (String.length s - 1 - m)) with _ -> 0)
| _ -> 0
let discharged_tag = "_discharged_"
let mk_discharged_id id =
id_of_string (sprintf "%s%s_" discharged_tag (string_of_id id))
let has_discharged_tag s =
let m = String.length discharged_tag and n = String.length s - 1 in
m < n && s.[n] = '_' && same_prefix s discharged_tag m
let _ = add_internal_name has_discharged_tag
let is_discharged_id id = has_discharged_tag (string_of_id id)
let wildcard_tag = "_the_"
let wildcard_post = "_wildcard_"
let mk_wildcard_id i =
id_of_string (sprintf "%s%s%s" wildcard_tag (String.ordinal i) wildcard_post)
let has_wildcard_tag s =
let n = String.length s in let m = String.length wildcard_tag in
let m' = String.length wildcard_post in
n < m + m' + 2 && same_prefix s wildcard_tag m &&
String.sub s (n - m') m' = wildcard_post &&
skip_digits s m = n - m' - 2
let _ = add_internal_name has_wildcard_tag
let max_suffix m (t, j0 as tj0) id =
let s = string_of_id id in let n = String.length s - 1 in
let dn = String.length t - 1 - n in let i0 = j0 - dn in
if not (i0 >= m && s.[n] = '_' && same_prefix s t m) then tj0 else
let rec loop i =
if i < i0 && s.[i] = '0' then loop (i + 1) else
if (if i < i0 then skip_digits s i = n else le_s_t i) then s, i else tj0
and le_s_t i =
let ds = s.[i] and dt = t.[i + dn] in
if ds = dt then i = n || le_s_t (i + 1) else
dt < ds && skip_digits s i = n in
loop m
let mk_anon_id t gl =
let m, si0, id0 =
let s = ref (sprintf "_%s_" t) in
if is_internal_name !s then s := "_" ^ !s;
let n = String.length !s - 1 in
let rec loop i j =
let d = !s.[i] in if not (is_digit d) then i + 1, j else
loop (i - 1) (if d = '0' then j else i) in
let m, j = loop (n - 1) n in m, (!s, j), id_of_string !s in
let gl_ids = pf_ids_of_hyps gl in
if not (List.mem id0 gl_ids) then id0 else
let s, i = List.fold_left (max_suffix m) si0 gl_ids in
let n = String.length s - 1 in
let rec loop i =
if s.[i] = '9' then (s.[i] <- '0'; loop (i - 1)) else
if i < m then (s.[n] <- '0'; s.[m] <- '1'; s ^ "_") else
(s.[i] <- Char.chr (Char.code s.[i] + 1); s) in
id_of_string (loop (n - 1))
(* We must not anonymize context names discharged by the "in" tactical. *)
let ssr_anon_hyp = "Hyp"
let anontac decl gl =
let id = match RelDecl.get_name decl with
| Name id ->
if is_discharged_id id then id else mk_anon_id (string_of_id id) gl
| _ -> mk_anon_id ssr_anon_hyp gl in
introid id gl
let rec constr_name c = match kind_of_term c with
| Var id -> Name id
| Cast (c', _, _) -> constr_name c'
| Const (cn,_) -> Name (id_of_label (con_label cn))
| App (c', _) -> constr_name c'
| _ -> Anonymous
(* }}} *)
(** Open term to lambda-term coercion {{{ ************************************)
(* This operation takes a goal gl and an open term (sigma, t), and *)
(* returns a term t' where all the new evars in sigma are abstracted *)
(* with the mkAbs argument, i.e., for mkAbs = mkLambda then there is *)
(* some duplicate-free array args of evars of sigma such that the *)
(* term mkApp (t', args) is convertible to t. *)
(* This makes a useful shorthand for local definitions in proofs, *)
(* i.e., pose succ := _ + 1 means pose succ := fun n : nat => n + 1, *)
(* and, in context of the the 4CT library, pose mid := maps id means *)
(* pose mid := fun d : detaSet => @maps d d (@id (datum d)) *)
(* Note that this facility does not extend to set, which tries *)
(* instead to fill holes by matching a goal subterm. *)
(* The argument to "have" et al. uses product abstraction, e.g. *)
(* have Hmid: forall s, (maps id s) = s. *)
(* stands for *)
(* have Hmid: forall (d : dataSet) (s : seq d), (maps id s) = s. *)
(* We also use this feature for rewrite rules, so that, e.g., *)
(* rewrite: (plus_assoc _ 3). *)
(* will execute as *)
(* rewrite (fun n => plus_assoc n 3) *)
(* i.e., it will rewrite some subterm .. + (3 + ..) to .. + 3 + ... *)
(* The convention is also used for the argument of the congr tactic, *)
(* e.g., congr (x + _ * 1). *)
(* Replace new evars with lambda variables, retaining local dependencies *)
(* but stripping global ones. We use the variable names to encode the *)
(* the number of dependencies, so that the transformation is reversible. *)
let pf_abs_evars gl (sigma, c0) =
let sigma0, ucst = project gl, Evd.evar_universe_context sigma in
let nenv = env_size (pf_env gl) in
let abs_evar n k =
let evi = Evd.find sigma k in
let dc = List.firstn n (evar_filtered_context evi) in
let abs_dc c decl = match NamedDecl.to_tuple decl with
| x, Some b, t -> mkNamedLetIn x b t (mkArrow t c)
| x, None, t -> mkNamedProd x t c in
let t = Context.Named.fold_inside abs_dc ~init:evi.evar_concl dc in
Evarutil.nf_evar sigma t in
let rec put evlist c = match kind_of_term c with
| Evar (k, a) ->
if List.mem_assoc k evlist || Evd.mem sigma0 k then evlist else
let n = max 0 (Array.length a - nenv) in
let t = abs_evar n k in (k, (n, t)) :: put evlist t
| _ -> fold_constr put evlist c in
let evlist = put [] c0 in
if evlist = [] then 0, c0,[], ucst else
let rec lookup k i = function
| [] -> 0, 0
| (k', (n, _)) :: evl -> if k = k' then i, n else lookup k (i + 1) evl in
let rec get i c = match kind_of_term c with
| Evar (ev, a) ->
let j, n = lookup ev i evlist in
if j = 0 then map_constr (get i) c else if n = 0 then mkRel j else
mkApp (mkRel j, Array.init n (fun k -> get i a.(n - 1 - k)))
| _ -> map_constr_with_binders ((+) 1) get i c in
let rec loop c i = function
| (_, (n, t)) :: evl ->
loop (mkLambda (mk_evar_name n, get (i - 1) t, c)) (i - 1) evl
| [] -> c in
List.length evlist, loop (get 1 c0) 1 evlist, List.map fst evlist, ucst
(* As before but if (?i : T(?j)) and (?j : P : Prop), then the lambda for i
* looks like (fun evar_i : (forall pi : P. T(pi))) thanks to "loopP" and all
* occurrences of evar_i are replaced by (evar_i evar_j) thanks to "app".
*
* If P can be solved by ssrautoprop (that defaults to trivial), then
* the corresponding lambda looks like (fun evar_i : T(c)) where c is
* the solution found by ssrautoprop.
*)
let ssrautoprop_tac = ref (fun gl -> assert false)
(* Thanks to Arnaud Spiwack for this snippet *)
let call_on_evar tac e s =
let { it = gs ; sigma = s } =
tac { it = e ; sigma = s; } in
gs, s
let pf_abs_evars_pirrel gl (sigma, c0) =
pp(lazy(str"==PF_ABS_EVARS_PIRREL=="));
pp(lazy(str"c0= " ++ pr_constr c0));
let sigma0 = project gl in
let c0 = Evarutil.nf_evar sigma0 (Evarutil.nf_evar sigma c0) in
let nenv = env_size (pf_env gl) in
let abs_evar n k =
let evi = Evd.find sigma k in
let dc = List.firstn n (evar_filtered_context evi) in
let abs_dc c decl = match NamedDecl.to_tuple decl with
| x, Some b, t -> mkNamedLetIn x b t (mkArrow t c)
| x, None, t -> mkNamedProd x t c in
let t = Context.Named.fold_inside abs_dc ~init:evi.evar_concl dc in
Evarutil.nf_evar sigma0 (Evarutil.nf_evar sigma t) in
let rec put evlist c = match kind_of_term c with
| Evar (k, a) ->
if List.mem_assoc k evlist || Evd.mem sigma0 k then evlist else
let n = max 0 (Array.length a - nenv) in
let k_ty =
Retyping.get_sort_family_of
(pf_env gl) sigma (Evd.evar_concl (Evd.find sigma k)) in
let is_prop = k_ty = InProp in
let t = abs_evar n k in (k, (n, t, is_prop)) :: put evlist t
| _ -> fold_constr put evlist c in
let evlist = put [] c0 in
if evlist = [] then 0, c0 else
let pr_constr t = pr_constr (Reductionops.nf_beta (project gl) t) in
pp(lazy(str"evlist=" ++ pr_list (fun () -> str";")
(fun (k,_) -> str(Evd.string_of_existential k)) evlist));
let evplist =
let depev = List.fold_left (fun evs (_,(_,t,_)) ->
Intset.union evs (Evarutil.undefined_evars_of_term sigma t)) Intset.empty evlist in
List.filter (fun (i,(_,_,b)) -> b && Intset.mem i depev) evlist in
let evlist, evplist, sigma =
if evplist = [] then evlist, [], sigma else
List.fold_left (fun (ev, evp, sigma) (i, (_,t,_) as p) ->
try
let ng, sigma = call_on_evar !ssrautoprop_tac i sigma in
if (ng <> []) then errorstrm (str "Should we tell the user?");
List.filter (fun (j,_) -> j <> i) ev, evp, sigma
with _ -> ev, p::evp, sigma) (evlist, [], sigma) (List.rev evplist) in
let c0 = Evarutil.nf_evar sigma c0 in
let evlist =
List.map (fun (x,(y,t,z)) -> x,(y,Evarutil.nf_evar sigma t,z)) evlist in
let evplist =
List.map (fun (x,(y,t,z)) -> x,(y,Evarutil.nf_evar sigma t,z)) evplist in
pp(lazy(str"c0= " ++ pr_constr c0));
let rec lookup k i = function
| [] -> 0, 0
| (k', (n,_,_)) :: evl -> if k = k' then i,n else lookup k (i + 1) evl in
let rec get evlist i c = match kind_of_term c with
| Evar (ev, a) ->
let j, n = lookup ev i evlist in
if j = 0 then map_constr (get evlist i) c else if n = 0 then mkRel j else
mkApp (mkRel j, Array.init n (fun k -> get evlist i a.(n - 1 - k)))
| _ -> map_constr_with_binders ((+) 1) (get evlist) i c in
let rec app extra_args i c = match decompose_app c with
| hd, args when isRel hd && destRel hd = i ->
let j = destRel hd in
mkApp (mkRel j, Array.of_list (List.map (lift (i-1)) extra_args @ args))
| _ -> map_constr_with_binders ((+) 1) (app extra_args) i c in
let rec loopP evlist c i = function
| (_, (n, t, _)) :: evl ->
let t = get evlist (i - 1) t in
let n = Name (id_of_string (ssr_anon_hyp ^ string_of_int n)) in
loopP evlist (mkProd (n, t, c)) (i - 1) evl
| [] -> c in
let rec loop c i = function
| (_, (n, t, _)) :: evl ->
let evs = Evarutil.undefined_evars_of_term sigma t in
let t_evplist = List.filter (fun (k,_) -> Intset.mem k evs) evplist in
let t = loopP t_evplist (get t_evplist 1 t) 1 t_evplist in
let t = get evlist (i - 1) t in
let extra_args =
List.map (fun (k,_) -> mkRel (fst (lookup k i evlist)))
(List.rev t_evplist) in
let c = if extra_args = [] then c else app extra_args 1 c in
loop (mkLambda (mk_evar_name n, t, c)) (i - 1) evl
| [] -> c in
let res = loop (get evlist 1 c0) 1 evlist in
pp(lazy(str"res= " ++ pr_constr res));
List.length evlist, res
(* Strip all non-essential dependencies from an abstracted term, generating *)
(* standard names for the abstracted holes. *)
let pf_abs_cterm gl n c0 =
if n <= 0 then c0 else
let noargs = [|0|] in
let eva = Array.make n noargs in
let rec strip i c = match kind_of_term c with
| App (f, a) when isRel f ->
let j = i - destRel f in
if j >= n || eva.(j) = noargs then mkApp (f, Array.map (strip i) a) else
let dp = eva.(j) in
let nd = Array.length dp - 1 in
let mkarg k = strip i a.(if k < nd then dp.(k + 1) - j else k + dp.(0)) in
mkApp (f, Array.init (Array.length a - dp.(0)) mkarg)
| _ -> map_constr_with_binders ((+) 1) strip i c in
let rec strip_ndeps j i c = match kind_of_term c with
| Prod (x, t, c1) when i < j ->
let dl, c2 = strip_ndeps j (i + 1) c1 in
if noccurn 1 c2 then dl, lift (-1) c2 else
i :: dl, mkProd (x, strip i t, c2)
| LetIn (x, b, t, c1) when i < j ->
let _, _, c1' = destProd c1 in
let dl, c2 = strip_ndeps j (i + 1) c1' in
if noccurn 1 c2 then dl, lift (-1) c2 else
i :: dl, mkLetIn (x, strip i b, strip i t, c2)
| _ -> [], strip i c in
let rec strip_evars i c = match kind_of_term c with
| Lambda (x, t1, c1) when i < n ->
let na = nb_evar_deps x in
let dl, t2 = strip_ndeps (i + na) i t1 in
let na' = List.length dl in
eva.(i) <- Array.of_list (na - na' :: dl);
let x' =
if na' = 0 then Name (pf_type_id gl t2) else mk_evar_name na' in
mkLambda (x', t2, strip_evars (i + 1) c1)
(* if noccurn 1 c2 then lift (-1) c2 else
mkLambda (Name (pf_type_id gl t2), t2, c2) *)
| _ -> strip i c in
strip_evars 0 c0
(* Undo the evar abstractions. Also works for non-evar variables. *)
let pf_unabs_evars gl ise n c0 =
if n = 0 then c0 else
let evv = Array.make n mkProp in
let nev = ref 0 in
let env0 = pf_env gl in
let nenv0 = env_size env0 in
let rec unabs i c = match kind_of_term c with
| Rel j when i - j < !nev -> evv.(i - j)
| App (f, a0) when isRel f ->
let a = Array.map (unabs i) a0 in
let j = i - destRel f in
if j >= !nev then mkApp (f, a) else
let ev, eva = destEvar evv.(j) in
let nd = Array.length eva - nenv0 in
if nd = 0 then mkApp (evv.(j), a) else
let evarg k = if k < nd then a.(nd - 1 - k) else eva.(k) in
let c' = mkEvar (ev, Array.init (nd + nenv0) evarg) in
let na = Array.length a - nd in
if na = 0 then c' else mkApp (c', Array.sub a nd na)
| _ -> map_constr_with_binders ((+) 1) unabs i c in
let push_rel = Environ.push_rel in
let rec mk_evar j env i c = match kind_of_term c with
| Prod (x, t, c1) when i < j ->
mk_evar j (push_rel (RelDecl.LocalAssum (x, unabs i t)) env) (i + 1) c1
| LetIn (x, b, t, c1) when i < j ->
let _, _, c2 = destProd c1 in
mk_evar j (push_rel (RelDecl.LocalDef (x, unabs i b, unabs i t)) env) (i + 1) c2
| _ -> Evarutil.e_new_evar env ise (unabs i c) in
let rec unabs_evars c =
if !nev = n then unabs n c else match kind_of_term c with
| Lambda (x, t, c1) when !nev < n ->
let i = !nev in
evv.(i) <- mk_evar (i + nb_evar_deps x) env0 i t;
incr nev; unabs_evars c1
| _ -> unabs !nev c in
unabs_evars c0
(* }}} *)
(** Tactical extensions. {{{ **************************************************)
(* The TACTIC EXTEND facility can't be used for defining new user *)
(* tacticals, because: *)
(* - the concrete syntax must start with a fixed string *)
(* We use the following workaround: *)
(* - We use the (unparsable) "YouShouldNotTypeThis" token for tacticals that *)
(* don't start with a token, then redefine the grammar and *)
(* printer using GEXTEND and set_pr_ssrtac, respectively. *)
type ssrargfmt = ArgSsr of string | ArgCoq of argument_type | ArgSep of string
let ssrtac_name name = {
mltac_plugin = "ssreflect_plugin";
mltac_tactic = "ssr" ^ name;
}
let ssrtac_entry name n = {
mltac_name = ssrtac_name name;
mltac_index = n;
}
let set_pr_ssrtac name prec afmt =
let fmt = List.map (function
| ArgSep s -> Egramml.GramTerminal s
| ArgSsr s -> Egramml.GramTerminal s
| ArgCoq at -> Egramml.GramTerminal "COQ_ARG") afmt in
let tacname = ssrtac_name name in ()
let ssrtac_atom loc name args = TacML (loc, ssrtac_entry name 0, args)
let ssrtac_expr = ssrtac_atom
let ssrevaltac ist gtac =
Proofview.V82.of_tactic (tactic_of_value ist gtac)
(* fun gl -> let lfun = [tacarg_id, val_interp ist gl gtac] in
interp_tac_gen lfun [] ist.debug tacarg_expr gl *)
(** Generic argument-based globbing/typing utilities *)
let of_ftactic ftac gl =
let r = ref None in
let tac = Ftactic.run ftac (fun ans -> r := Some ans; Proofview.tclUNIT ()) in
let tac = Proofview.V82.of_tactic tac in
let { sigma = sigma } = tac gl in
let ans = match !r with
| None -> assert false (** If the tactic failed we should not reach this point *)
| Some ans -> ans
in
(sigma, ans)
let interp_wit wit ist gl x =
let globarg = in_gen (glbwit wit) x in
let arg = interp_genarg ist globarg in
let (sigma, arg) = of_ftactic arg gl in
sigma, Value.cast (topwit wit) arg
let interp_intro_pattern = interp_wit wit_intro_pattern
let interp_constr = interp_wit wit_constr
let interp_open_constr ist gl gc =
let (sigma, (c, _)) = Tacinterp.interp_open_constr_with_bindings ist (pf_env gl) (project gl) (gc, NoBindings) in
(project gl, (sigma, c))
let interp_refine ist gl rc =
let constrvars = extract_ltac_constr_values ist (pf_env gl) in
let vars = { Pretyping.empty_lvar with
Pretyping.ltac_constrs = constrvars; ltac_genargs = ist.lfun
} in
let kind = OfType (pf_concl gl) in
let flags = {
use_typeclasses = true;
solve_unification_constraints = true;
use_hook = None;
fail_evar = false;
expand_evars = true }
in
let sigma, c = understand_ltac flags (pf_env gl) (project gl) vars kind rc in
(* pp(lazy(str"sigma@interp_refine=" ++ pr_evar_map None sigma)); *)
pp(lazy(str"c@interp_refine=" ++ pr_constr c));
(sigma, (sigma, c))
let pf_match = pf_apply (fun e s c t -> understand_tcc e s ~expected_type:t c)
(* Estimate a bound on the number of arguments of a raw constr. *)
(* This is not perfect, because the unifier may fail to *)
(* typecheck the partial application, so we use a minimum of 5. *)
(* Also, we don't handle delayed or iterated coercions to *)
(* FUNCLASS, which is probably just as well since these can *)
(* lead to infinite arities. *)
let splay_open_constr gl (sigma, c) =
let env = pf_env gl in let t = Retyping.get_type_of env sigma c in
Reductionops.splay_prod env sigma t
let nbargs_open_constr gl oc =
let pl, _ = splay_open_constr gl oc in List.length pl
let interp_nbargs ist gl rc =
try
let rc6 = mkRApp rc (mkRHoles 6) in
let sigma, t = interp_open_constr ist gl (rc6, None) in
let si = sig_it gl in
let gl = re_sig si sigma in
6 + nbargs_open_constr gl t
with _ -> 5
let pf_nbargs gl c = nbargs_open_constr gl (project gl, c)
let isAppInd gl c =
try ignore (pf_reduce_to_atomic_ind gl c); true with _ -> false
let interp_view_nbimps ist gl rc =
try
let sigma, t = interp_open_constr ist gl (rc, None) in
let si = sig_it gl in
let gl = re_sig si sigma in
let pl, c = splay_open_constr gl t in
if isAppInd gl c then List.length pl else ~-(List.length pl)
with _ -> 0
(* }}} *)
(** Vernacular commands: Prenex Implicits and Search {{{ **********************)
(* This should really be implemented as an extension to the implicit *)
(* arguments feature, but unfortuately that API is sealed. The current *)
(* workaround uses a combination of notations that works reasonably, *)
(* with the following caveats: *)
(* - The pretty-printing always elides prenex implicits, even when *)
(* they are obviously needed. *)
(* - Prenex Implicits are NEVER exported from a module, because this *)
(* would lead to faulty pretty-printing and scoping errors. *)
(* - The command "Import Prenex Implicits" can be used to reassert *)
(* Prenex Implicits for all the visible constants that had been *)
(* declared as Prenex Implicits. *)
let declare_one_prenex_implicit locality f =
let fref =
try Smartlocate.global_with_alias f
with _ -> errorstrm (pr_reference f ++ str " is not declared") in
let rec loop = function
| a :: args' when Impargs.is_status_implicit a ->
(ExplByName (Impargs.name_of_implicit a), (true, true, true)) :: loop args'
| args' when List.exists Impargs.is_status_implicit args' ->
errorstrm (str "Expected prenex implicits for " ++ pr_reference f)
| _ -> [] in
let impls =
match Impargs.implicits_of_global fref with
| [cond,impls] -> impls
| [] -> errorstrm (str "Expected some implicits for " ++ pr_reference f)
| _ -> errorstrm (str "Multiple implicits not supported") in
match loop impls with
| [] ->
errorstrm (str "Expected some implicits for " ++ pr_reference f)
| impls ->
Impargs.declare_manual_implicits locality fref ~enriching:false [impls]
VERNAC COMMAND EXTEND Ssrpreneximplicits CLASSIFIED AS SIDEFF
| [ "Prenex" "Implicits" ne_global_list(fl) ]
-> [ let locality =
Locality.make_section_locality (Locality.LocalityFixme.consume ()) in
List.iter (declare_one_prenex_implicit locality) fl ]
END
(* Vernac grammar visibility patch *)
GEXTEND Gram
GLOBAL: gallina_ext;
gallina_ext:
[ [ IDENT "Import"; IDENT "Prenex"; IDENT "Implicits" ->
Vernacexpr.VernacUnsetOption (["Printing"; "Implicit"; "Defensive"])
] ]
;
END
(** Extend Search to subsume SearchAbout, also adding hidden Type coercions. *)
(* Main prefilter *)
type raw_glob_search_about_item =
| RGlobSearchSubPattern of constr_expr
| RGlobSearchString of Loc.t * string * string option
let pr_search_item = function
| RGlobSearchString (_,s,_) -> str s
| RGlobSearchSubPattern p -> pr_constr_expr p
let wit_ssr_searchitem = add_genarg "ssr_searchitem" pr_search_item
let interp_search_notation loc s opt_scope =
try
let interp = Notation.interp_notation_as_global_reference loc in
let ref = interp (fun _ -> true) s opt_scope in
Search.GlobSearchSubPattern (Pattern.PRef ref)
with _ ->
let diagnosis =
try
let ntns = Notation.locate_notation pr_glob_constr s opt_scope in
let ambig = "This string refers to a complex or ambiguous notation." in
str ambig ++ str "\nTry searching with one of\n" ++ ntns
with _ -> str "This string is not part of an identifier or notation." in
CErrors.user_err_loc (loc, "interp_search_notation", diagnosis)
let pr_ssr_search_item _ _ _ = pr_search_item
(* Workaround the notation API that can only print notations *)
let is_ident s = try CLexer.check_ident s; true with _ -> false
let is_ident_part s = is_ident ("H" ^ s)
let interp_search_notation loc tag okey =
let err msg = CErrors.user_err_loc (loc, "interp_search_notation", msg) in
let mk_pntn s for_key =
let n = String.length s in
let s' = String.make (n + 2) ' ' in
let rec loop i i' =
if i >= n then s', i' - 2 else if s.[i] = ' ' then loop (i + 1) i' else
let j = try String.index_from s (i + 1) ' ' with _ -> n in
let m = j - i in
if s.[i] = '\'' && i < j - 2 && s.[j - 1] = '\'' then
(String.blit s (i + 1) s' i' (m - 2); loop (j + 1) (i' + m - 1))
else if for_key && is_ident (String.sub s i m) then
(s'.[i'] <- '_'; loop (j + 1) (i' + 2))
else (String.blit s i s' i' m; loop (j + 1) (i' + m + 1)) in
loop 0 1 in
let trim_ntn (pntn, m) = String.sub pntn 1 (max 0 m) in
let pr_ntn ntn = str "(" ++ str ntn ++ str ")" in
let pr_and_list pr = function
| [x] -> pr x
| x :: lx -> pr_list pr_comma pr lx ++ pr_comma () ++ str "and " ++ pr x
| [] -> mt () in
let pr_sc sc = str (if sc = "" then "independently" else sc) in
let pr_scs = function
| [""] -> pr_sc ""
| scs -> str "in " ++ pr_and_list pr_sc scs in
let generator, pr_tag_sc =
let ign _ = mt () in match okey with
| Some key ->
let sc = Notation.find_delimiters_scope loc key in
let pr_sc s_in = str s_in ++ spc() ++ str sc ++ pr_comma() in
Notation.pr_scope ign sc, pr_sc
| None -> Notation.pr_scopes ign, ign in
let qtag s_in = pr_tag_sc s_in ++ qstring tag ++ spc()in
let ptag, ttag =
let ptag, m = mk_pntn tag false in
if m <= 0 then err (str "empty notation fragment");
ptag, trim_ntn (ptag, m) in
let last = ref "" and last_sc = ref "" in
let scs = ref [] and ntns = ref [] in
let push_sc sc = match !scs with
| "" :: scs' -> scs := "" :: sc :: scs'
| scs' -> scs := sc :: scs' in
let get s _ _ = match !last with
| "Scope " -> last_sc := s; last := ""
| "Lonely notation" -> last_sc := ""; last := ""
| "\"" ->
let pntn, m = mk_pntn s true in
if String.string_contains pntn ptag then begin
let ntn = trim_ntn (pntn, m) in
match !ntns with
| [] -> ntns := [ntn]; scs := [!last_sc]
| ntn' :: _ when ntn' = ntn -> push_sc !last_sc
| _ when ntn = ttag -> ntns := ntn :: !ntns; scs := [!last_sc]
| _ :: ntns' when List.mem ntn ntns' -> ()
| ntn' :: ntns' -> ntns := ntn' :: ntn :: ntns'
end;
last := ""
| _ -> last := s in
pp_with (Format.make_formatter get (fun _ -> ())) generator;
let ntn = match !ntns with
| [] ->
err (hov 0 (qtag "in" ++ str "does not occur in any notation"))
| ntn :: ntns' when ntn = ttag ->
if ntns' <> [] then begin
let pr_ntns' = pr_and_list pr_ntn ntns' in
msg_warning (hov 4 (qtag "In" ++ str "also occurs in " ++ pr_ntns'))
end; ntn
| [ntn] ->
msgnl (hov 4 (qtag "In" ++ str "is part of notation " ++ pr_ntn ntn)); ntn
| ntns' ->
let e = str "occurs in" ++ spc() ++ pr_and_list pr_ntn ntns' in
err (hov 4 (str "ambiguous: " ++ qtag "in" ++ e)) in
let (nvars, body), ((_, pat), osc) = match !scs with
| [sc] -> Notation.interp_notation loc ntn (None, [sc])
| scs' ->
try Notation.interp_notation loc ntn (None, []) with _ ->
let e = pr_ntn ntn ++ spc() ++ str "is defined " ++ pr_scs scs' in
err (hov 4 (str "ambiguous: " ++ pr_tag_sc "in" ++ e)) in
let sc = Option.default "" osc in
let _ =
let m_sc =
if osc <> None then str "In " ++ str sc ++ pr_comma() else mt() in
let ntn_pat = trim_ntn (mk_pntn pat false) in
let rbody = glob_constr_of_notation_constr loc body in
let m_body = hov 0 (Constrextern.without_symbols prl_glob_constr rbody) in
let m = m_sc ++ pr_ntn ntn_pat ++ spc () ++ str "denotes " ++ m_body in
msgnl (hov 0 m) in
if List.length !scs > 1 then
let scs' = List.remove (=) sc !scs in
let w = pr_ntn ntn ++ str " is also defined " ++ pr_scs scs' in
msg_warning (hov 4 w)
else if String.string_contains ntn " .. " then
err (pr_ntn ntn ++ str " is an n-ary notation");
let nvars = List.filter (fun (_,(_,typ)) -> typ = NtnTypeConstr) nvars in
let rec sub () = function
| NVar x when List.mem_assoc x nvars -> GPatVar (loc, (false, x))
| c ->
glob_constr_of_notation_constr_with_binders loc (fun _ x -> (), x) sub () c in
let _, npat = Patternops.pattern_of_glob_constr (sub () body) in
Search.GlobSearchSubPattern npat
ARGUMENT EXTEND ssr_search_item TYPED AS ssr_searchitem
PRINTED BY pr_ssr_search_item
| [ string(s) ] -> [ RGlobSearchString (loc,s,None) ]
| [ string(s) "%" preident(key) ] -> [ RGlobSearchString (loc,s,Some key) ]
| [ constr_pattern(p) ] -> [ RGlobSearchSubPattern p ]
END
let pr_ssr_search_arg _ _ _ =
let pr_item (b, p) = str (if b then "-" else "") ++ pr_search_item p in
pr_list spc pr_item
ARGUMENT EXTEND ssr_search_arg TYPED AS (bool * ssr_searchitem) list
PRINTED BY pr_ssr_search_arg
| [ "-" ssr_search_item(p) ssr_search_arg(a) ] -> [ (false, p) :: a ]
| [ ssr_search_item(p) ssr_search_arg(a) ] -> [ (true, p) :: a ]
| [ ] -> [ [] ]
END
(* Main type conclusion pattern filter *)
let rec splay_search_pattern na = function
| Pattern.PApp (fp, args) -> splay_search_pattern (na + Array.length args) fp
| Pattern.PLetIn (_, _, bp) -> splay_search_pattern na bp
| Pattern.PRef hr -> hr, na
| _ -> CErrors.error "no head constant in head search pattern"
let coerce_search_pattern_to_sort hpat =
let env = Global.env () and sigma = Evd.empty in
let mkPApp fp n_imps args =
let args' = Array.append (Array.make n_imps (Pattern.PMeta None)) args in
Pattern.PApp (fp, args') in
let hr, na = splay_search_pattern 0 hpat in
let dc, ht =
Reductionops.splay_prod env sigma (Universes.unsafe_type_of_global hr) in
let np = List.length dc in
if np < na then CErrors.error "too many arguments in head search pattern" else
let hpat' = if np = na then hpat else mkPApp hpat (np - na) [||] in
let warn () =
msg_warning (str "Listing only lemmas with conclusion matching " ++
pr_constr_pattern hpat') in
if isSort ht then begin warn (); true, hpat' end else
let filter_head, coe_path =
try
let _, cp =
Classops.lookup_path_to_sort_from (push_rels_assum dc env) sigma ht in
warn ();
true, cp
with _ -> false, [] in
let coerce hp coe_index =
let coe = Classops.get_coercion_value coe_index in
try
let coe_ref = reference_of_constr coe in
let n_imps = Option.get (Classops.hide_coercion coe_ref) in
mkPApp (Pattern.PRef coe_ref) n_imps [|hp|]
with _ ->
errorstrm (str "need explicit coercion " ++ pr_constr coe ++ spc ()
++ str "to interpret head search pattern as type") in
filter_head, List.fold_left coerce hpat' coe_path
let rec interp_head_pat hpat =
let filter_head, p = coerce_search_pattern_to_sort hpat in
let rec loop c = match kind_of_term c with
| Cast (c', _, _) -> loop c'
| Prod (_, _, c') -> loop c'
| LetIn (_, _, _, c') -> loop c'
| _ -> Constr_matching.is_matching (Global.env()) Evd.empty p c in
filter_head, loop
let all_true _ = true
let rec interp_search_about args accu = match args with
| [] -> accu
| (flag, arg) :: rem ->
fun gr env typ ->
let ans = Search.search_about_filter arg gr env typ in
(if flag then ans else not ans) && interp_search_about rem accu gr env typ
let interp_search_arg arg =
let arg = List.map (fun (x,arg) -> x, match arg with
| RGlobSearchString (loc,s,key) ->
if is_ident_part s then Search.GlobSearchString s else
interp_search_notation loc s key
| RGlobSearchSubPattern p ->
try
let intern = Constrintern.intern_constr_pattern in
Search.GlobSearchSubPattern (snd (intern (Global.env()) p))
with e -> let e = CErrors.push e in iraise (ExplainErr.process_vernac_interp_error e)) arg in
let hpat, a1 = match arg with
| (_, Search.GlobSearchSubPattern (Pattern.PMeta _)) :: a' -> all_true, a'
| (true, Search.GlobSearchSubPattern p) :: a' ->
let filter_head, p = interp_head_pat p in
if filter_head then p, a' else all_true, arg
| _ -> all_true, arg in
let is_string =
function (_, Search.GlobSearchString _) -> true | _ -> false in
let a2, a3 = List.partition is_string a1 in
interp_search_about (a2 @ a3) (fun gr env typ -> hpat typ)
(* Module path postfilter *)
let pr_modloc (b, m) = if b then str "-" ++ pr_reference m else pr_reference m
let wit_ssrmodloc = add_genarg "ssrmodloc" pr_modloc
let pr_ssr_modlocs _ _ _ ml =
if ml = [] then str "" else spc () ++ str "in " ++ pr_list spc pr_modloc ml
ARGUMENT EXTEND ssr_modlocs TYPED AS ssrmodloc list PRINTED BY pr_ssr_modlocs
| [ ] -> [ [] ]
END
GEXTEND Gram
GLOBAL: ssr_modlocs;
modloc: [[ "-"; m = global -> true, m | m = global -> false, m]];
ssr_modlocs: [[ "in"; ml = LIST1 modloc -> ml ]];
END
let interp_modloc mr =
let interp_mod (_, mr) =
let (loc, qid) = qualid_of_reference mr in
try Nametab.full_name_module qid with Not_found ->
CErrors.user_err_loc (loc, "interp_modloc", str "No Module " ++ pr_qualid qid) in
let mr_out, mr_in = List.partition fst mr in
let interp_bmod b = function
| [] -> fun _ _ _ -> true
| rmods -> Search.module_filter (List.map interp_mod rmods, b) in
let is_in = interp_bmod false mr_in and is_out = interp_bmod true mr_out in
fun gr env typ -> is_in gr env typ && is_out gr env typ
(* The unified, extended vernacular "Search" command *)
let ssrdisplaysearch gr env t =
let pr_res = pr_global gr ++ str ":" ++ spc () ++ pr_lconstr_env env Evd.empty t in
msg_info (hov 2 pr_res ++ fnl ())
VERNAC COMMAND EXTEND SsrSearchPattern CLASSIFIED AS QUERY
| [ "Search" ssr_search_arg(a) ssr_modlocs(mr) ] ->
[ let hpat = interp_search_arg a in
let in_mod = interp_modloc mr in
let post_filter gr env typ = in_mod gr env typ && hpat gr env typ in
let display gr env typ =
if post_filter gr env typ then ssrdisplaysearch gr env typ
in
Search.generic_search None display ]
END
(* }}} *)
(** Alternative notations for "match" and anonymous arguments. {{{ ************)
(* Syntax: *)
(* if <term> is <pattern> then ... else ... *)
(* if <term> is <pattern> [in ..] return ... then ... else ... *)
(* let: <pattern> := <term> in ... *)
(* let: <pattern> [in ...] := <term> return ... in ... *)
(* The scope of a top-level 'as' in the pattern extends over the *)
(* 'return' type (dependent if/let). *)
(* Note that the optional "in ..." appears next to the <pattern> *)
(* rather than the <term> in then "let:" syntax. The alternative *)
(* would lead to ambiguities in, e.g., *)
(* let: p1 := (*v---INNER LET:---v *) *)
(* let: p2 := let: p3 := e3 in k return t in k2 in k1 return t' *)
(* in b (*^--ALTERNATIVE INNER LET--------^ *) *)
(* Caveat : There is no pretty-printing support, since this would *)
(* require a modification to the Coq kernel (adding a new match *)
(* display style -- why aren't these strings?); also, the v8.1 *)
(* pretty-printer only allows extension hooks for printing *)
(* integer or string literals. *)
(* Also note that in the v8 grammar "is" needs to be a keyword; *)
(* as this can't be done from an ML extension file, the new *)
(* syntax will only work when ssreflect.v is imported. *)
let no_ct = None, None and no_rt = None in
let aliasvar = function
| [_, [CPatAlias (loc, _, id)]] -> Some (loc,Name id)
| _ -> None in
let mk_cnotype mp = aliasvar mp, None in
let mk_ctype mp t = aliasvar mp, Some t in
let mk_rtype t = Some t in
let mk_dthen loc (mp, ct, rt) c = (loc, mp, c), ct, rt in
let mk_let loc rt ct mp c1 =
CCases (loc, LetPatternStyle, rt, ct, [loc, mp, c1]) in
let mk_pat c (na, t) = (c, na, t) in
GEXTEND Gram
GLOBAL: binder_constr;
ssr_rtype: [[ "return"; t = operconstr LEVEL "100" -> mk_rtype t ]];
ssr_mpat: [[ p = pattern -> [!@loc, [p]] ]];
ssr_dpat: [
[ mp = ssr_mpat; "in"; t = pattern; rt = ssr_rtype -> mp, mk_ctype mp t, rt
| mp = ssr_mpat; rt = ssr_rtype -> mp, mk_cnotype mp, rt
| mp = ssr_mpat -> mp, no_ct, no_rt
] ];
ssr_dthen: [[ dp = ssr_dpat; "then"; c = lconstr -> mk_dthen !@loc dp c ]];
ssr_elsepat: [[ "else" -> [!@loc, [CPatAtom (!@loc, None)]] ]];
ssr_else: [[ mp = ssr_elsepat; c = lconstr -> !@loc, mp, c ]];
binder_constr: [
[ "if"; c = operconstr LEVEL "200"; "is"; db1 = ssr_dthen; b2 = ssr_else ->
let b1, ct, rt = db1 in CCases (!@loc, MatchStyle, rt, [mk_pat c ct], [b1; b2])
| "if"; c = operconstr LEVEL "200";"isn't";db1 = ssr_dthen; b2 = ssr_else ->
let b1, ct, rt = db1 in
let b1, b2 =
let (l1, p1, r1), (l2, p2, r2) = b1, b2 in (l1, p1, r2), (l2, p2, r1) in
CCases (!@loc, MatchStyle, rt, [mk_pat c ct], [b1; b2])
| "let"; ":"; mp = ssr_mpat; ":="; c = lconstr; "in"; c1 = lconstr ->
mk_let (!@loc) no_rt [mk_pat c no_ct] mp c1
| "let"; ":"; mp = ssr_mpat; ":="; c = lconstr;
rt = ssr_rtype; "in"; c1 = lconstr ->
mk_let (!@loc) rt [mk_pat c (mk_cnotype mp)] mp c1
| "let"; ":"; mp = ssr_mpat; "in"; t = pattern; ":="; c = lconstr;
rt = ssr_rtype; "in"; c1 = lconstr ->
mk_let (!@loc) rt [mk_pat c (mk_ctype mp t)] mp c1
] ];
END
GEXTEND Gram
GLOBAL: closed_binder;
closed_binder: [
[ ["of" | "&"]; c = operconstr LEVEL "99" ->
[LocalRawAssum ([!@loc, Anonymous], Default Explicit, c)]
] ];
END
(* }}} *)
(** Tacticals (+, -, *, done, by, do, =>, first, and last). {{{ ***************)
(** Bracketing tactical *)
(* The tactic pretty-printer doesn't know that some extended tactics *)
(* are actually tacticals. To prevent it from improperly removing *)
(* parentheses we override the parsing rule for bracketed tactic *)
(* expressions so that the pretty-print always reflects the input. *)
(* (Removing user-specified parentheses is dubious anyway). *)
GEXTEND Gram
GLOBAL: tactic_expr;
ssrparentacarg: [[ "("; tac = tactic_expr; ")" -> !@loc, Tacexp tac ]];
tactic_expr: LEVEL "0" [[ arg = ssrparentacarg -> TacArg arg ]];
END
(** The internal "done" and "ssrautoprop" tactics. *)
(* For additional flexibility, "done" and "ssrautoprop" are *)
(* defined in Ltac. *)
(* Although we provide a default definition in ssreflect, *)
(* we look up the definition dynamically at each call point, *)
(* to allow for user extensions. "ssrautoprop" defaults to *)
(* trivial. *)
let donetac gl =
let tacname =
try Nametab.locate_tactic (qualid_of_ident (id_of_string "done"))
with Not_found -> try Nametab.locate_tactic (ssrqid "done")
with Not_found -> CErrors.error "The ssreflect library was not loaded" in
let tacexpr = dummy_loc, Tacexpr.Reference (ArgArg (dummy_loc, tacname)) in
Proofview.V82.of_tactic (eval_tactic (Tacexpr.TacArg tacexpr)) gl
let prof_donetac = mk_profiler "donetac";;
let donetac gl = prof_donetac.profile donetac gl;;
let ssrautoprop gl =
try
let tacname =
try Nametab.locate_tactic (qualid_of_ident (id_of_string "ssrautoprop"))
with Not_found -> Nametab.locate_tactic (ssrqid "ssrautoprop") in
let tacexpr = dummy_loc, Tacexpr.Reference (ArgArg (dummy_loc, tacname)) in
Proofview.V82.of_tactic (eval_tactic (Tacexpr.TacArg tacexpr)) gl
with Not_found -> Proofview.V82.of_tactic (Auto.full_trivial []) gl
let () = ssrautoprop_tac := ssrautoprop
let tclBY tac = tclTHEN tac donetac
(** Tactical arguments. *)
(* We have four kinds: simple tactics, [|]-bracketed lists, hints, and swaps *)
(* The latter two are used in forward-chaining tactics (have, suffice, wlog) *)
(* and subgoal reordering tacticals (; first & ; last), respectively. *)
(* Force use of the tactic_expr parsing entry, to rule out tick marks. *)
let pr_ssrtacarg _ _ prt = prt tacltop
ARGUMENT EXTEND ssrtacarg TYPED AS tactic PRINTED BY pr_ssrtacarg
| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ]
END
GEXTEND Gram
GLOBAL: ssrtacarg;
ssrtacarg: [[ tac = tactic_expr LEVEL "5" -> tac ]];
END
(* Lexically closed tactic for tacticals. *)
let pr_ssrtclarg _ _ prt tac = prt tacltop tac
ARGUMENT EXTEND ssrtclarg TYPED AS ssrtacarg
PRINTED BY pr_ssrtclarg
| [ ssrtacarg(tac) ] -> [ tac ]
END
let eval_tclarg ist tac = ssrevaltac ist tac
let pr_ortacs prt =
let rec pr_rec = function
| [None] -> spc() ++ str "|" ++ spc()
| None :: tacs -> spc() ++ str "|" ++ pr_rec tacs
| Some tac :: tacs -> spc() ++ str "| " ++ prt tacltop tac ++ pr_rec tacs
| [] -> mt() in
function
| [None] -> spc()
| None :: tacs -> pr_rec tacs
| Some tac :: tacs -> prt tacltop tac ++ pr_rec tacs
| [] -> mt()
let pr_ssrortacs _ _ = pr_ortacs
ARGUMENT EXTEND ssrortacs TYPED AS tactic option list PRINTED BY pr_ssrortacs
| [ ssrtacarg(tac) "|" ssrortacs(tacs) ] -> [ Some tac :: tacs ]
| [ ssrtacarg(tac) "|" ] -> [ [Some tac; None] ]
| [ ssrtacarg(tac) ] -> [ [Some tac] ]
| [ "|" ssrortacs(tacs) ] -> [ None :: tacs ]
| [ "|" ] -> [ [None; None] ]
END
let pr_hintarg prt = function
| true, tacs -> hv 0 (str "[ " ++ pr_ortacs prt tacs ++ str " ]")
| false, [Some tac] -> prt tacltop tac
| _, _ -> mt()
let pr_ssrhintarg _ _ = pr_hintarg
let mk_hint tac = false, [Some tac]
let mk_orhint tacs = true, tacs
let nullhint = true, []
let nohint = false, []
ARGUMENT EXTEND ssrhintarg TYPED AS bool * ssrortacs PRINTED BY pr_ssrhintarg
| [ "[" "]" ] -> [ nullhint ]
| [ "[" ssrortacs(tacs) "]" ] -> [ mk_orhint tacs ]
| [ ssrtacarg(arg) ] -> [ mk_hint arg ]
END
ARGUMENT EXTEND ssrortacarg TYPED AS ssrhintarg PRINTED BY pr_ssrhintarg
| [ "[" ssrortacs(tacs) "]" ] -> [ mk_orhint tacs ]
END
let hinttac ist is_by (is_or, atacs) =
let dtac = if is_by then donetac else tclIDTAC in
let mktac = function
| Some atac -> tclTHEN (ssrevaltac ist atac) dtac
| _ -> dtac in
match List.map mktac atacs with
| [] -> if is_or then dtac else tclIDTAC
| [tac] -> tac
| tacs -> tclFIRST tacs
(** The "-"/"+"/"*" tacticals. *)
(* These are just visual cues to flag the beginning of the script for *)
(* new subgoals, when indentation is not appropriate (typically after *)
(* tactics that generate more than two subgoals). *)
TACTIC EXTEND ssrtclplus
| [ "YouShouldNotTypeThis" "+" ssrtclarg(arg) ] -> [ Proofview.V82.tactic (eval_tclarg ist arg) ]
END
set_pr_ssrtac "tclplus" 5 [ArgSep "+ "; ArgSsr "tclarg"]
TACTIC EXTEND ssrtclminus
| [ "YouShouldNotTypeThis" "-" ssrtclarg(arg) ] -> [ Proofview.V82.tactic (eval_tclarg ist arg) ]
END
set_pr_ssrtac "tclminus" 5 [ArgSep "- "; ArgSsr "tclarg"]
TACTIC EXTEND ssrtclstar
| [ "YouShouldNotTypeThis" "*" ssrtclarg(arg) ] -> [ Proofview.V82.tactic (eval_tclarg ist arg) ]
END
set_pr_ssrtac "tclstar" 5 [ArgSep "- "; ArgSsr "tclarg"]
let gen_tclarg tac = TacGeneric (in_gen (rawwit wit_ssrtclarg) tac)
GEXTEND Gram
GLOBAL: tactic tactic_mode;
tactic: [
[ "+"; tac = ssrtclarg -> ssrtac_expr !@loc "tclplus" [gen_tclarg tac]
| "-"; tac = ssrtclarg -> ssrtac_expr !@loc "tclminus" [gen_tclarg tac]
| "*"; tac = ssrtclarg -> ssrtac_expr !@loc "tclstar" [gen_tclarg tac]
] ];
tactic_mode: [
[ "+"; tac = G_vernac.subgoal_command -> tac None
| "-"; tac = G_vernac.subgoal_command -> tac None
| "*"; tac = G_vernac.subgoal_command -> tac None
] ];
END
(** The "by" tactical. *)
let pr_hint prt arg =
if arg = nohint then mt() else str "by " ++ pr_hintarg prt arg
let pr_ssrhint _ _ = pr_hint
ARGUMENT EXTEND ssrhint TYPED AS ssrhintarg PRINTED BY pr_ssrhint
| [ ] -> [ nohint ]
END
TACTIC EXTEND ssrtclby
| [ "by" ssrhintarg(tac) ] -> [ Proofview.V82.tactic (hinttac ist true tac) ]
END
(* We can't parse "by" in ARGUMENT EXTEND because it will only be made *)
(* into a keyword in ssreflect.v; so we anticipate this in GEXTEND. *)
GEXTEND Gram
GLOBAL: ssrhint simple_tactic;
ssrhint: [[ "by"; arg = ssrhintarg -> arg ]];
END
(* }}} *)
(** Bound assumption argument *)
(* The Ltac API does have a type for assumptions but it is level-dependent *)
(* and therefore impratical to use for complex arguments, so we substitute *)
(* our own to have a uniform representation. Also, we refuse to intern *)
(* idents that match global/section constants, since this would lead to *)
(* fragile Ltac scripts. *)
type ssrhyp = SsrHyp of loc * identifier
let hyp_id (SsrHyp (_, id)) = id
let pr_hyp (SsrHyp (_, id)) = pr_id id
let pr_ssrhyp _ _ _ = pr_hyp
let wit_ssrhyprep = add_genarg "ssrhyprep" pr_hyp
let hyp_err loc msg id =
CErrors.user_err_loc (loc, "ssrhyp", str msg ++ pr_id id)
let intern_hyp ist (SsrHyp (loc, id) as hyp) =
let _ = Tacintern.intern_genarg ist (in_gen (rawwit wit_var) (loc, id)) in
if not_section_id id then hyp else
hyp_err loc "Can't clear section hypothesis " id
let interp_hyp ist gl (SsrHyp (loc, id)) =
let s, id' = interp_wit wit_var ist gl (loc, id) in
if not_section_id id' then s, SsrHyp (loc, id') else
hyp_err loc "Can't clear section hypothesis " id'
ARGUMENT EXTEND ssrhyp TYPED AS ssrhyprep PRINTED BY pr_ssrhyp
INTERPRETED BY interp_hyp
GLOBALIZED BY intern_hyp
| [ ident(id) ] -> [ SsrHyp (loc, id) ]
END
type ssrhyp_or_id = Hyp of ssrhyp | Id of ssrhyp
let hoik f = function Hyp x -> f x | Id x -> f x
let hoi_id = hoik hyp_id
let pr_hoi = hoik pr_hyp
let pr_ssrhoi _ _ _ = pr_hoi
let wit_ssrhoirep = add_genarg "ssrhoirep" pr_hoi
let intern_ssrhoi ist = function
| Hyp h -> Hyp (intern_hyp ist h)
| Id (SsrHyp (_, id)) as hyp ->
let _ = Tacintern.intern_genarg ist (in_gen (rawwit wit_ident) id) in
hyp
let interp_ssrhoi ist gl = function
| Hyp h -> let s, h' = interp_hyp ist gl h in s, Hyp h'
| Id (SsrHyp (loc, id)) ->
let s, id' = interp_wit wit_ident ist gl id in
s, Id (SsrHyp (loc, id'))
ARGUMENT EXTEND ssrhoi_hyp TYPED AS ssrhoirep PRINTED BY pr_ssrhoi
INTERPRETED BY interp_ssrhoi
GLOBALIZED BY intern_ssrhoi
| [ ident(id) ] -> [ Hyp (SsrHyp(loc, id)) ]
END
ARGUMENT EXTEND ssrhoi_id TYPED AS ssrhoirep PRINTED BY pr_ssrhoi
INTERPRETED BY interp_ssrhoi
GLOBALIZED BY intern_ssrhoi
| [ ident(id) ] -> [ Id (SsrHyp(loc, id)) ]
END
type ssrhyps = ssrhyp list
let pr_hyps = pr_list pr_spc pr_hyp
let pr_ssrhyps _ _ _ = pr_hyps
let hyps_ids = List.map hyp_id
let rec check_hyps_uniq ids = function
| SsrHyp (loc, id) :: _ when List.mem id ids ->
hyp_err loc "Duplicate assumption " id
| SsrHyp (_, id) :: hyps -> check_hyps_uniq (id :: ids) hyps
| [] -> ()
let check_hyp_exists hyps (SsrHyp(_, id)) =
try ignore(Context.Named.lookup id hyps)
with Not_found -> errorstrm (str"No assumption is named " ++ pr_id id)
let interp_hyps ist gl ghyps =
let hyps = List.map snd (List.map (interp_hyp ist gl) ghyps) in
check_hyps_uniq [] hyps; Tacmach.project gl, hyps
ARGUMENT EXTEND ssrhyps TYPED AS ssrhyp list PRINTED BY pr_ssrhyps
INTERPRETED BY interp_hyps
| [ ssrhyp_list(hyps) ] -> [ check_hyps_uniq [] hyps; hyps ]
END
(** Terms parsing. {{{ ********************************************************)
(* Because we allow wildcards in term references, we need to stage the *)
(* interpretation of terms so that it occurs at the right time during *)
(* the execution of the tactic (e.g., so that we don't report an error *)
(* for a term that isn't actually used in the execution). *)
(* The term representation tracks whether the concrete initial term *)
(* started with an opening paren, which might avoid a conflict between *)
(* the ssrreflect term syntax and Gallina notation. *)
(* kinds of terms *)
type ssrtermkind = char (* print flag *)
let input_ssrtermkind strm = match Compat.get_tok (stream_nth 0 strm) with
| Tok.KEYWORD "(" -> '('
| Tok.KEYWORD "@" -> '@'
| _ -> ' '
let ssrtermkind = Gram.Entry.of_parser "ssrtermkind" input_ssrtermkind
(* terms *)
let pr_ssrterm _ _ _ = pr_term
let pf_intern_term ist gl (_, c) = glob_constr ist (pf_env gl) c
let intern_term ist sigma env (_, c) = glob_constr ist env c
let interp_term ist gl (_, c) = snd (interp_open_constr ist gl c)
let force_term ist gl (_, c) = interp_constr ist gl c
let glob_ssrterm gs = function
| k, (_, Some c) -> k, Tacintern.intern_constr gs c
| ct -> ct
let subst_ssrterm s (k, c) = k, Tacsubst.subst_glob_constr_and_expr s c
let interp_ssrterm _ gl t = Tacmach.project gl, t
ARGUMENT EXTEND ssrterm
PRINTED BY pr_ssrterm
INTERPRETED BY interp_ssrterm
GLOBALIZED BY glob_ssrterm SUBSTITUTED BY subst_ssrterm
RAW_PRINTED BY pr_ssrterm
GLOB_PRINTED BY pr_ssrterm
| [ "YouShouldNotTypeThis" constr(c) ] -> [ mk_lterm c ]
END
GEXTEND Gram
GLOBAL: ssrterm;
ssrterm: [[ k = ssrtermkind; c = constr -> mk_term k c ]];
END
(* }}} *)
(** The "in" pseudo-tactical {{{ **********************************************)
(* We can't make "in" into a general tactical because this would create a *)
(* crippling conflict with the ltac let .. in construct. Hence, we add *)
(* explicitly an "in" suffix to all the extended tactics for which it is *)
(* relevant (including move, case, elim) and to the extended do tactical *)
(* below, which yields a general-purpose "in" of the form do [...] in ... *)
(* This tactical needs to come before the intro tactics because the latter *)
(* must take precautions in order not to interfere with the discharged *)
(* assumptions. This is especially difficult for discharged "let"s, which *)
(* the default simpl and unfold tactics would erase blindly. *)
(** Clear switch *)
type ssrclear = ssrhyps
let pr_clear_ne clr = str "{" ++ pr_hyps clr ++ str "}"
let pr_clear sep clr = if clr = [] then mt () else sep () ++ pr_clear_ne clr
let pr_ssrclear _ _ _ = pr_clear mt
ARGUMENT EXTEND ssrclear_ne TYPED AS ssrhyps PRINTED BY pr_ssrclear
| [ "{" ne_ssrhyp_list(clr) "}" ] -> [ check_hyps_uniq [] clr; clr ]
END
ARGUMENT EXTEND ssrclear TYPED AS ssrclear_ne PRINTED BY pr_ssrclear
| [ ssrclear_ne(clr) ] -> [ clr ]
| [ ] -> [ [] ]
END
let cleartac clr = check_hyps_uniq [] clr; Proofview.V82.of_tactic (clear (hyps_ids clr))
(* type ssrwgen = ssrclear * ssrhyp * string *)
let pr_wgen = function
| (clr, Some((id,k),None)) -> spc() ++ pr_clear mt clr ++ str k ++ pr_hoi id
| (clr, Some((id,k),Some p)) ->
spc() ++ pr_clear mt clr ++ str"(" ++ str k ++ pr_hoi id ++ str ":=" ++
pr_cpattern p ++ str ")"
| (clr, None) -> spc () ++ pr_clear mt clr
let pr_ssrwgen _ _ _ = pr_wgen
(* no globwith for char *)
ARGUMENT EXTEND ssrwgen
TYPED AS ssrclear * ((ssrhoi_hyp * string) * cpattern option) option
PRINTED BY pr_ssrwgen
| [ ssrclear_ne(clr) ] -> [ clr, None ]
| [ ssrhoi_hyp(hyp) ] -> [ [], Some((hyp, " "), None) ]
| [ "@" ssrhoi_hyp(hyp) ] -> [ [], Some((hyp, "@"), None) ]
| [ "(" ssrhoi_id(id) ":=" lcpattern(p) ")" ] ->
[ [], Some ((id," "),Some p) ]
| [ "(" ssrhoi_id(id) ")" ] -> [ [], Some ((id,"("), None) ]
| [ "(@" ssrhoi_id(id) ":=" lcpattern(p) ")" ] ->
[ [], Some ((id,"@"),Some p) ]
| [ "(" "@" ssrhoi_id(id) ":=" lcpattern(p) ")" ] ->
[ [], Some ((id,"@"),Some p) ]
END
type ssrclseq = InGoal | InHyps
| InHypsGoal | InHypsSeqGoal | InSeqGoal | InHypsSeq | InAll | InAllHyps
let pr_clseq = function
| InGoal | InHyps -> mt ()
| InSeqGoal -> str "|- *"
| InHypsSeqGoal -> str " |- *"
| InHypsGoal -> str " *"
| InAll -> str "*"
| InHypsSeq -> str " |-"
| InAllHyps -> str "* |-"
let wit_ssrclseq = add_genarg "ssrclseq" pr_clseq
let pr_clausehyps = pr_list pr_spc pr_wgen
let pr_ssrclausehyps _ _ _ = pr_clausehyps
ARGUMENT EXTEND ssrclausehyps
TYPED AS ssrwgen list PRINTED BY pr_ssrclausehyps
| [ ssrwgen(hyp) "," ssrclausehyps(hyps) ] -> [ hyp :: hyps ]
| [ ssrwgen(hyp) ssrclausehyps(hyps) ] -> [ hyp :: hyps ]
| [ ssrwgen(hyp) ] -> [ [hyp] ]
END
(* type ssrclauses = ssrahyps * ssrclseq *)
let pr_clauses (hyps, clseq) =
if clseq = InGoal then mt ()
else str "in " ++ pr_clausehyps hyps ++ pr_clseq clseq
let pr_ssrclauses _ _ _ = pr_clauses
ARGUMENT EXTEND ssrclauses TYPED AS ssrwgen list * ssrclseq
PRINTED BY pr_ssrclauses
| [ "in" ssrclausehyps(hyps) "|-" "*" ] -> [ hyps, InHypsSeqGoal ]
| [ "in" ssrclausehyps(hyps) "|-" ] -> [ hyps, InHypsSeq ]
| [ "in" ssrclausehyps(hyps) "*" ] -> [ hyps, InHypsGoal ]
| [ "in" ssrclausehyps(hyps) ] -> [ hyps, InHyps ]
| [ "in" "|-" "*" ] -> [ [], InSeqGoal ]
| [ "in" "*" ] -> [ [], InAll ]
| [ "in" "*" "|-" ] -> [ [], InAllHyps ]
| [ ] -> [ [], InGoal ]
END
let nohide = mkRel 0
let hidden_goal_tag = "the_hidden_goal"
(* Reduction that preserves the Prod/Let spine of the "in" tactical. *)
let inc_safe n = if n = 0 then n else n + 1
let rec safe_depth c = match kind_of_term c with
| LetIn (Name x, _, _, c') when is_discharged_id x -> safe_depth c' + 1
| LetIn (_, _, _, c') | Prod (_, _, c') -> inc_safe (safe_depth c')
| _ -> 0
let red_safe r e s c0 =
let rec red_to e c n = match kind_of_term c with
| Prod (x, t, c') when n > 0 ->
let t' = r e s t in let e' = Environ.push_rel (RelDecl.LocalAssum (x, t')) e in
mkProd (x, t', red_to e' c' (n - 1))
| LetIn (x, b, t, c') when n > 0 ->
let t' = r e s t in let e' = Environ.push_rel (RelDecl.LocalAssum (x, t')) e in
mkLetIn (x, r e s b, t', red_to e' c' (n - 1))
| _ -> r e s c in
red_to e c0 (safe_depth c0)
let check_wgen_uniq gens =
let clears = List.flatten (List.map fst gens) in
check_hyps_uniq [] clears;
let ids = CList.map_filter
(function (_,Some ((id,_),_)) -> Some (hoi_id id) | _ -> None) gens in
let rec check ids = function
| id :: _ when List.mem id ids ->
errorstrm (str"Duplicate generalization " ++ pr_id id)
| id :: hyps -> check (id :: ids) hyps
| [] -> () in
check [] ids
let pf_clauseids gl gens clseq =
let keep_clears = List.map (fun (x, _) -> x, None) in
if gens <> [] then (check_wgen_uniq gens; gens) else
if clseq <> InAll && clseq <> InAllHyps then keep_clears gens else
CErrors.error "assumptions should be named explicitly"
let hidden_clseq = function InHyps | InHypsSeq | InAllHyps -> true | _ -> false
let hidetacs clseq idhide cl0 =
if not (hidden_clseq clseq) then [] else
[posetac idhide cl0;
Proofview.V82.of_tactic (convert_concl_no_check (mkVar idhide))]
let discharge_hyp (id', (id, mode)) gl =
let cl' = subst_var id (pf_concl gl) in
match NamedDecl.to_tuple (pf_get_hyp gl id), mode with
| (_, None, t), _ | (_, Some _, t), "(" ->
apply_type (mkProd (Name id', t, cl')) [mkVar id] gl
| (_, Some v, t), _ ->
Proofview.V82.of_tactic (convert_concl (mkLetIn (Name id', v, t, cl'))) gl
let endclausestac id_map clseq gl_id cl0 gl =
let not_hyp' id = not (List.mem_assoc id id_map) in
let orig_id id = try List.assoc id id_map with _ -> id in
let dc, c = Term.decompose_prod_assum (pf_concl gl) in
let hide_goal = hidden_clseq clseq in
let c_hidden = hide_goal && c = mkVar gl_id in
let rec fits forced = function
| (id, _) :: ids, decl :: dc' when RelDecl.get_name decl = Name id ->
fits true (ids, dc')
| ids, dc' ->
forced && ids = [] && (not hide_goal || dc' = [] && c_hidden) in
let rec unmark c = match kind_of_term c with
| Var id when hidden_clseq clseq && id = gl_id -> cl0
| Prod (Name id, t, c') when List.mem_assoc id id_map ->
mkProd (Name (orig_id id), unmark t, unmark c')
| LetIn (Name id, v, t, c') when List.mem_assoc id id_map ->
mkLetIn (Name (orig_id id), unmark v, unmark t, unmark c')
| _ -> map_constr unmark c in
let utac hyp =
Proofview.V82.of_tactic
(convert_hyp_no_check (NamedDecl.map_constr unmark hyp)) in
let utacs = List.map utac (pf_hyps gl) in
let ugtac gl' =
Proofview.V82.of_tactic
(convert_concl_no_check (unmark (pf_concl gl'))) gl' in
let ctacs = if hide_goal then [Proofview.V82.of_tactic (clear [gl_id])] else [] in
let mktac itacs = tclTHENLIST (itacs @ utacs @ ugtac :: ctacs) in
let itac (_, id) = Proofview.V82.of_tactic (introduction id) in
if fits false (id_map, List.rev dc) then mktac (List.map itac id_map) gl else
let all_ids = ids_of_rel_context dc @ pf_ids_of_hyps gl in
if List.for_all not_hyp' all_ids && not c_hidden then mktac [] gl else
CErrors.error "tampering with discharged assumptions of \"in\" tactical"
let is_id_constr c = match kind_of_term c with
| Lambda(_,_,c) when isRel c -> 1 = destRel c
| _ -> false
let red_product_skip_id env sigma c = match kind_of_term c with
| App(hd,args) when Array.length args = 1 && is_id_constr hd -> args.(0)
| _ -> try Tacred.red_product env sigma c with _ -> c
let abs_wgen keep_let ist f gen (gl,args,c) =
let sigma, env = project gl, pf_env gl in
let evar_closed t p =
if occur_existential t then
CErrors.user_err_loc (loc_of_cpattern p,"ssreflect",
pr_constr_pat t ++
str" contains holes and matches no subterm of the goal") in
match gen with
| _, Some ((x, mode), None) when mode = "@" || (mode = " " && keep_let) ->
let x = hoi_id x in
let _, bo, ty = NamedDecl.to_tuple (pf_get_hyp gl x) in
gl,
(if bo <> None then args else mkVar x :: args),
mkProd_or_LetIn (mk_reldecl (Name (f x)) bo ty) (subst_var x c)
| _, Some ((x, _), None) ->
let x = hoi_id x in
gl, mkVar x :: args, mkProd (Name (f x),pf_get_hyp_typ gl x, subst_var x c)
| _, Some ((x, "@"), Some p) ->
let x = hoi_id x in
let cp = interp_cpattern ist gl p None in
let (t, ucst), c =
try fill_occ_pattern ~raise_NoMatch:true env sigma c cp None 1
with NoMatch -> redex_of_pattern env cp, c in
evar_closed t p;
let ut = red_product_skip_id env sigma t in
let gl, ty = pf_type_of gl t in
pf_merge_uc ucst gl, args, mkLetIn(Name (f x), ut, ty, c)
| _, Some ((x, _), Some p) ->
let x = hoi_id x in
let cp = interp_cpattern ist gl p None in
let (t, ucst), c =
try fill_occ_pattern ~raise_NoMatch:true env sigma c cp None 1
with NoMatch -> redex_of_pattern env cp, c in
evar_closed t p;
let gl, ty = pf_type_of gl t in
pf_merge_uc ucst gl, t :: args, mkProd(Name (f x), ty, c)
| _ -> gl, args, c
let clr_of_wgen gen clrs = match gen with
| clr, Some ((x, _), None) ->
let x = hoi_id x in
cleartac clr :: cleartac [SsrHyp(Loc.ghost,x)] :: clrs
| clr, _ -> cleartac clr :: clrs
let tclCLAUSES ist tac (gens, clseq) gl =
if clseq = InGoal || clseq = InSeqGoal then tac gl else
let clr_gens = pf_clauseids gl gens clseq in
let clear = tclTHENLIST (List.rev(List.fold_right clr_of_wgen clr_gens [])) in
let gl_id = mk_anon_id hidden_goal_tag gl in
let cl0 = pf_concl gl in
let dtac gl =
let c = pf_concl gl in
let gl, args, c =
List.fold_right (abs_wgen true ist mk_discharged_id) gens (gl,[], c) in
apply_type c args gl in
let endtac =
let id_map = CList.map_filter (function
| _, Some ((x,_),_) -> let id = hoi_id x in Some (mk_discharged_id id, id)
| _, None -> None) gens in
endclausestac id_map clseq gl_id cl0 in
tclTHENLIST (hidetacs clseq gl_id cl0 @ [dtac; clear; tac; endtac]) gl
(* }}} *)
(** Simpl switch *)
type ssrsimpl = Simpl | Cut | SimplCut | Nop
let pr_simpl = function
| Simpl -> str "/="
| Cut -> str "//"
| SimplCut -> str "//="
| Nop -> mt ()
let pr_ssrsimpl _ _ _ = pr_simpl
let wit_ssrsimplrep = add_genarg "ssrsimplrep" pr_simpl
ARGUMENT EXTEND ssrsimpl_ne TYPED AS ssrsimplrep PRINTED BY pr_ssrsimpl
| [ "/=" ] -> [ Simpl ]
| [ "//" ] -> [ Cut ]
| [ "//=" ] -> [ SimplCut ]
END
ARGUMENT EXTEND ssrsimpl TYPED AS ssrsimplrep PRINTED BY pr_ssrsimpl
| [ ssrsimpl_ne(sim) ] -> [ sim ]
| [ ] -> [ Nop ]
END
(* We must avoid zeta-converting any "let"s created by the "in" tactical. *)
let safe_simpltac gl =
let cl' = red_safe Tacred.simpl (pf_env gl) (project gl) (pf_concl gl) in
Proofview.V82.of_tactic (convert_concl_no_check cl') gl
let simpltac = function
| Simpl -> safe_simpltac
| Cut -> tclTRY donetac
| SimplCut -> tclTHEN safe_simpltac (tclTRY donetac)
| Nop -> tclIDTAC
(** Rewriting direction *)
let pr_dir = function L2R -> str "->" | R2L -> str "<-"
let pr_rwdir = function L2R -> mt() | R2L -> str "-"
let rewritetac dir c =
(* Due to the new optional arg ?tac, application shouldn't be too partial *)
Proofview.V82.of_tactic begin
Equality.general_rewrite (dir = L2R) AllOccurrences true false c
end
let wit_ssrdir = add_genarg "ssrdir" pr_dir
let dir_org = function L2R -> 1 | R2L -> 2
(** Indexes *)
(* Since SSR indexes are always positive numbers, we use the 0 value *)
(* to encode an omitted index. We reuse the in or_var type, but we *)
(* supply our own interpretation function, which checks for non *)
(* positive values, and allows the use of constr numerals, so that *)
(* e.g., "let n := eval compute in (1 + 3) in (do n!clear)" works. *)
type ssrindex = int or_var
let pr_index = function
| ArgVar (_, id) -> pr_id id
| ArgArg n when n > 0 -> int n
| _ -> mt ()
let pr_ssrindex _ _ _ = pr_index
let noindex = ArgArg 0
let allocc = Some(false,[])
let check_index loc i =
if i > 0 then i else loc_error loc "Index not positive"
let mk_index loc = function ArgArg i -> ArgArg (check_index loc i) | iv -> iv
let interp_index ist gl idx =
Tacmach.project gl,
match idx with
| ArgArg _ -> idx
| ArgVar (loc, id) ->
let i =
try
let v = Id.Map.find id ist.lfun in
begin match Value.to_int v with
| Some i -> i
| None ->
begin match Value.to_constr v with
| Some c ->
let rc = Detyping.detype false [] (pf_env gl) (project gl) c in
begin match Notation.uninterp_prim_token rc with
| _, Numeral bigi -> int_of_string (Bigint.to_string bigi)
| _ -> raise Not_found
end
| None -> raise Not_found
end end
with _ -> loc_error loc "Index not a number" in
ArgArg (check_index loc i)
ARGUMENT EXTEND ssrindex TYPED AS ssrindex PRINTED BY pr_ssrindex
INTERPRETED BY interp_index
| [ int_or_var(i) ] -> [ mk_index loc i ]
END
(** Occurrence switch *)
(* The standard syntax of complemented occurrence lists involves a single *)
(* initial "-", e.g., {-1 3 5}. An initial *)
(* "+" may be used to indicate positive occurrences (the default). The *)
(* "+" is optional, except if the list of occurrences starts with a *)
(* variable or is empty (to avoid confusion with a clear switch). The *)
(* empty positive switch "{+}" selects no occurrences, while the empty *)
(* negative switch "{-}" selects all occurrences explicitly; this is the *)
(* default, but "{-}" prevents the implicit clear, and can be used to *)
(* force dependent elimination -- see ndefectelimtac below. *)
type ssrocc = occ
let pr_occ = function
| Some (true, occ) -> str "{-" ++ pr_list pr_spc int occ ++ str "}"
| Some (false, occ) -> str "{+" ++ pr_list pr_spc int occ ++ str "}"
| None -> str "{}"
let pr_ssrocc _ _ _ = pr_occ
ARGUMENT EXTEND ssrocc TYPED AS (bool * int list) option PRINTED BY pr_ssrocc
| [ natural(n) natural_list(occ) ] -> [
Some (false, List.map (check_index loc) (n::occ)) ]
| [ "-" natural_list(occ) ] -> [ Some (true, occ) ]
| [ "+" natural_list(occ) ] -> [ Some (false, occ) ]
END
let pf_mkprod gl c ?(name=constr_name c) cl =
let gl, t = pf_type_of gl c in
if name <> Anonymous || noccurn 1 cl then gl, mkProd (name, t, cl) else
gl, mkProd (Name (pf_type_id gl t), t, cl)
let pf_abs_prod name gl c cl = pf_mkprod gl c ~name (subst_term c cl)
(** Discharge occ switch (combined occurrence / clear switch *)
type ssrdocc = ssrclear option * ssrocc option
let mkocc occ = None, occ
let noclr = mkocc None
let mkclr clr = Some clr, None
let nodocc = mkclr []
let pr_docc = function
| None, occ -> pr_occ occ
| Some clr, _ -> pr_clear mt clr
let pr_ssrdocc _ _ _ = pr_docc
ARGUMENT EXTEND ssrdocc TYPED AS ssrclear option * ssrocc PRINTED BY pr_ssrdocc
| [ "{" ne_ssrhyp_list(clr) "}" ] -> [ mkclr clr ]
| [ "{" ssrocc(occ) "}" ] -> [ mkocc occ ]
END
(** View hint database and View application. {{{ ******************************)
(* There are three databases of lemmas used to mediate the application *)
(* of reflection lemmas: one for forward chaining, one for backward *)
(* chaining, and one for secondary backward chaining. *)
(* View hints *)
let rec isCxHoles = function (CHole _, None) :: ch -> isCxHoles ch | _ -> false
let pr_raw_ssrhintref prc _ _ = function
| CAppExpl (_, (None, r,x), args) when isCHoles args ->
prc (CRef (r,x)) ++ str "|" ++ int (List.length args)
| CApp (_, (_, CRef _), _) as c -> prc c
| CApp (_, (_, c), args) when isCxHoles args ->
prc c ++ str "|" ++ int (List.length args)
| c -> prc c
let pr_rawhintref = function
| GApp (_, f, args) when isRHoles args ->
pr_glob_constr f ++ str "|" ++ int (List.length args)
| c -> pr_glob_constr c
let pr_glob_ssrhintref _ _ _ (c, _) = pr_rawhintref c
let pr_ssrhintref prc _ _ = prc
let mkhintref loc c n = match c with
| CRef (r,x) -> CAppExpl (loc, (None, r, x), mkCHoles loc n)
| _ -> mkAppC (c, mkCHoles loc n)
ARGUMENT EXTEND ssrhintref
PRINTED BY pr_ssrhintref
RAW_TYPED AS constr RAW_PRINTED BY pr_raw_ssrhintref
GLOB_TYPED AS constr GLOB_PRINTED BY pr_glob_ssrhintref
| [ constr(c) ] -> [ c ]
| [ constr(c) "|" natural(n) ] -> [ mkhintref loc c n ]
END
(* View purpose *)
let pr_viewpos = function
| 0 -> str " for move/"
| 1 -> str " for apply/"
| 2 -> str " for apply//"
| _ -> mt ()
let pr_ssrviewpos _ _ _ = pr_viewpos
ARGUMENT EXTEND ssrviewpos TYPED AS int PRINTED BY pr_ssrviewpos
| [ "for" "move" "/" ] -> [ 0 ]
| [ "for" "apply" "/" ] -> [ 1 ]
| [ "for" "apply" "/" "/" ] -> [ 2 ]
| [ "for" "apply" "//" ] -> [ 2 ]
| [ ] -> [ 3 ]
END
let pr_ssrviewposspc _ _ _ i = pr_viewpos i ++ spc ()
ARGUMENT EXTEND ssrviewposspc TYPED AS ssrviewpos PRINTED BY pr_ssrviewposspc
| [ ssrviewpos(i) ] -> [ i ]
END
(* The table and its display command *)
let viewtab : glob_constr list array = Array.make 3 []
let _ =
let init () = Array.fill viewtab 0 3 [] in
let freeze _ = Array.copy viewtab in
let unfreeze vt = Array.blit vt 0 viewtab 0 3 in
Summary.declare_summary "ssrview"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init }
let mapviewpos f n k = if n < 3 then f n else for i = 0 to k - 1 do f i done
let print_view_hints i =
let pp_viewname = str "Hint View" ++ pr_viewpos i ++ str " " in
let pp_hints = pr_list spc pr_rawhintref viewtab.(i) in
ppnl (pp_viewname ++ hov 0 pp_hints ++ Pp.cut ())
VERNAC COMMAND EXTEND PrintView CLASSIFIED AS QUERY
| [ "Print" "Hint" "View" ssrviewpos(i) ] -> [ mapviewpos print_view_hints i 3 ]
END
(* Populating the table *)
let cache_viewhint (_, (i, lvh)) =
let mem_raw h = List.exists (Glob_ops.glob_constr_eq h) in
let add_hint h hdb = if mem_raw h hdb then hdb else h :: hdb in
viewtab.(i) <- List.fold_right add_hint lvh viewtab.(i)
let subst_viewhint ( subst, (i, lvh as ilvh)) =
let lvh' = List.smartmap (Detyping.subst_glob_constr subst) lvh in
if lvh' == lvh then ilvh else i, lvh'
let classify_viewhint x = Libobject.Substitute x
let in_viewhint =
Libobject.declare_object {(Libobject.default_object "VIEW_HINTS") with
Libobject.open_function = (fun i o -> if i = 1 then cache_viewhint o);
Libobject.cache_function = cache_viewhint;
Libobject.subst_function = subst_viewhint;
Libobject.classify_function = classify_viewhint }
let glob_view_hints lvh =
List.map (Constrintern.intern_constr (Global.env ())) lvh
let add_view_hints lvh i = Lib.add_anonymous_leaf (in_viewhint (i, lvh))
VERNAC COMMAND EXTEND HintView CLASSIFIED AS SIDEFF
| [ "Hint" "View" ssrviewposspc(n) ne_ssrhintref_list(lvh) ] ->
[ mapviewpos (add_view_hints (glob_view_hints lvh)) n 2 ]
END
(** Views *)
(* Views for the "move" and "case" commands are actually open *)
(* terms, but this is handled by interp_view, which is called *)
(* by interp_casearg. We use lists, to support the *)
(* "double-view" feature of the apply command. *)
(* type ssrview = ssrterm list *)
let pr_view = pr_list mt (fun c -> str "/" ++ pr_term c)
let pr_ssrview _ _ _ = pr_view
ARGUMENT EXTEND ssrview TYPED AS ssrterm list
PRINTED BY pr_ssrview
| [ "/" constr(c) ] -> [ [mk_term ' ' c] ]
| [ "/" constr(c) ssrview(w) ] -> [ (mk_term ' ' c) :: w ]
END
(* There are two ways of "applying" a view to term: *)
(* 1- using a view hint if the view is an instance of some *)
(* (reflection) inductive predicate. *)
(* 2- applying the view if it coerces to a function, adding *)
(* implicit arguments. *)
(* They require guessing the view hints and the number of *)
(* implicits, respectively, which we do by brute force. *)
let view_error s gv =
errorstrm (str ("Cannot " ^ s ^ " view ") ++ pr_term gv)
let interp_view ist si env sigma gv rid =
match intern_term ist sigma env gv with
| GApp (loc, GHole _, rargs) ->
let rv = GApp (loc, rid, rargs) in
snd (interp_open_constr ist (re_sig si sigma) (rv, None))
| rv ->
let interp rc rargs =
interp_open_constr ist (re_sig si sigma) (mkRApp rc rargs, None) in
let rec simple_view rargs n =
if n < 0 then view_error "use" gv else
try interp rv rargs with _ -> simple_view (mkRHole :: rargs) (n - 1) in
let view_nbimps = interp_view_nbimps ist (re_sig si sigma) rv in
let view_args = [mkRApp rv (mkRHoles view_nbimps); rid] in
let rec view_with = function
| [] -> simple_view [rid] (interp_nbargs ist (re_sig si sigma) rv)
| hint :: hints -> try interp hint view_args with _ -> view_with hints in
snd (view_with (if view_nbimps < 0 then [] else viewtab.(0)))
let top_id = mk_internal_id "top assumption"
let with_view ist si env gl0 c name cl prune =
let c2r ist x = { ist with lfun =
Id.Map.add top_id (Value.of_constr x) ist.lfun } in
let rec loop (sigma, c') = function
| f :: view ->
let rid, ist = match kind_of_term c' with
| Var id -> mkRVar id, ist
| _ -> mkRltacVar top_id, c2r ist c' in
loop (interp_view ist si env sigma f rid) view
| [] ->
let sigma = Typeclasses.resolve_typeclasses ~fail:false env sigma in
let c' = Reductionops.nf_evar sigma c' in
let n, c', _, ucst = pf_abs_evars gl0 (sigma, c') in
let c' = if not prune then c' else pf_abs_cterm gl0 n c' in
let gl0 = pf_merge_uc ucst gl0 in
let gl0, ap = pf_abs_prod name gl0 c' (prod_applist cl [c]) in
ap, c', pf_merge_uc_of sigma gl0
in loop
let pf_with_view ist gl (prune, view) cl c =
let env, sigma, si = pf_env gl, project gl, sig_it gl in
with_view ist si env gl c (constr_name c) cl prune (sigma, c) view
(* }}} *)
(** Extended intro patterns {{{ ***********************************************)
type ssrtermrep = char * glob_constr_and_expr
type ssripat =
| IpatSimpl of ssrclear * ssrsimpl
| IpatId of identifier
| IpatWild
| IpatCase of ssripats list
| IpatRw of ssrocc * ssrdir
| IpatAll
| IpatAnon
| IpatView of ssrtermrep list
| IpatNoop
| IpatNewHidden of identifier list
and ssripats = ssripat list
let remove_loc = snd
let rec ipat_of_intro_pattern = function
| IntroNaming (IntroIdentifier id) -> IpatId id
| IntroAction IntroWildcard -> IpatWild
| IntroAction (IntroOrAndPattern (IntroOrPattern iorpat)) ->
IpatCase
(List.map (List.map ipat_of_intro_pattern)
(List.map (List.map remove_loc) iorpat))
| IntroAction (IntroOrAndPattern (IntroAndPattern iandpat)) ->
IpatCase
[List.map ipat_of_intro_pattern (List.map remove_loc iandpat)]
| IntroNaming IntroAnonymous -> IpatAnon
| IntroAction (IntroRewrite b) -> IpatRw (allocc, if b then L2R else R2L)
| IntroNaming (IntroFresh id) -> IpatAnon
| IntroAction (IntroApplyOn _) -> (* to do *) CErrors.error "TO DO"
| IntroAction (IntroInjection ips) ->
IpatCase [List.map ipat_of_intro_pattern (List.map remove_loc ips)]
| IntroForthcoming _ -> (* Unable to determine which kind of ipat interp_introid could return [HH] *)
assert false
let rec pr_ipat = function
| IpatId id -> pr_id id
| IpatSimpl (clr, sim) -> pr_clear mt clr ++ pr_simpl sim
| IpatCase iorpat -> hov 1 (str "[" ++ pr_iorpat iorpat ++ str "]")
| IpatRw (occ, dir) -> pr_occ occ ++ pr_dir dir
| IpatAll -> str "*"
| IpatWild -> str "_"
| IpatAnon -> str "?"
| IpatView v -> pr_view v
| IpatNoop -> str "-"
| IpatNewHidden l -> str "[:" ++ pr_list spc pr_id l ++ str "]"
and pr_iorpat iorpat = pr_list pr_bar pr_ipats iorpat
and pr_ipats ipats = pr_list spc pr_ipat ipats
let wit_ssripatrep = add_genarg "ssripatrep" pr_ipat
let pr_ssripat _ _ _ = pr_ipat
let pr_ssripats _ _ _ = pr_ipats
let pr_ssriorpat _ _ _ = pr_iorpat
let intern_ipat ist ipat =
let rec check_pat = function
| IpatSimpl (clr, _) -> ignore (List.map (intern_hyp ist) clr)
| IpatCase iorpat -> List.iter (List.iter check_pat) iorpat
| _ -> () in
check_pat ipat; ipat
let intern_ipats ist = List.map (intern_ipat ist)
let interp_introid ist gl id =
try IntroNaming (IntroIdentifier (hyp_id (snd (interp_hyp ist gl (SsrHyp (dummy_loc, id))))))
with _ -> snd(snd (interp_intro_pattern ist gl (dummy_loc,IntroNaming (IntroIdentifier id))))
let rec add_intro_pattern_hyps (loc, ipat) hyps = match ipat with
| IntroNaming (IntroIdentifier id) ->
if not_section_id id then SsrHyp (loc, id) :: hyps else
hyp_err loc "Can't delete section hypothesis " id
| IntroAction IntroWildcard -> hyps
| IntroAction (IntroOrAndPattern (IntroOrPattern iorpat)) ->
List.fold_right (List.fold_right add_intro_pattern_hyps) iorpat hyps
| IntroAction (IntroOrAndPattern (IntroAndPattern iandpat)) ->
List.fold_right add_intro_pattern_hyps iandpat hyps
| IntroNaming IntroAnonymous -> []
| IntroNaming (IntroFresh _) -> []
| IntroAction (IntroRewrite _) -> hyps
| IntroAction (IntroInjection ips) -> List.fold_right add_intro_pattern_hyps ips hyps
| IntroAction (IntroApplyOn (c,pat)) -> add_intro_pattern_hyps pat hyps
| IntroForthcoming _ ->
(* As in ipat_of_intro_pattern, was unable to determine which kind
of ipat interp_introid could return [HH] *) assert false
let rec interp_ipat ist gl =
let ltacvar id = Id.Map.mem id ist.lfun in
let rec interp = function
| IpatId id when ltacvar id ->
ipat_of_intro_pattern (interp_introid ist gl id)
| IpatSimpl (clr, sim) ->
let add_hyps (SsrHyp (loc, id) as hyp) hyps =
if not (ltacvar id) then hyp :: hyps else
add_intro_pattern_hyps (loc, (interp_introid ist gl id)) hyps in
let clr' = List.fold_right add_hyps clr [] in
check_hyps_uniq [] clr'; IpatSimpl (clr', sim)
| IpatCase iorpat -> IpatCase (List.map (List.map interp) iorpat)
| IpatNewHidden l ->
IpatNewHidden
(List.map (function
| IntroNaming (IntroIdentifier id) -> id
| _ -> assert false)
(List.map (interp_introid ist gl) l))
| ipat -> ipat in
interp
let interp_ipats ist gl l = project gl, List.map (interp_ipat ist gl) l
let pushIpatRw = function
| pats :: orpat -> (IpatRw (allocc, L2R) :: pats) :: orpat
| [] -> []
let pushIpatNoop = function
| pats :: orpat -> (IpatNoop :: pats) :: orpat
| [] -> []
ARGUMENT EXTEND ssripat TYPED AS ssripatrep list PRINTED BY pr_ssripats
INTERPRETED BY interp_ipats
GLOBALIZED BY intern_ipats
| [ "_" ] -> [ [IpatWild] ]
| [ "*" ] -> [ [IpatAll] ]
| [ ident(id) ] -> [ [IpatId id] ]
| [ "?" ] -> [ [IpatAnon] ]
| [ ssrsimpl_ne(sim) ] -> [ [IpatSimpl ([], sim)] ]
| [ ssrdocc(occ) "->" ] -> [ match occ with
| None, occ -> [IpatRw (occ, L2R)]
| Some clr, _ -> [IpatSimpl (clr, Nop); IpatRw (allocc, L2R)]]
| [ ssrdocc(occ) "<-" ] -> [ match occ with
| None, occ -> [IpatRw (occ, R2L)]
| Some clr, _ -> [IpatSimpl (clr, Nop); IpatRw (allocc, R2L)]]
| [ ssrdocc(occ) ] -> [ match occ with
| Some cl, _ -> check_hyps_uniq [] cl; [IpatSimpl (cl, Nop)]
| _ -> loc_error loc "Only identifiers are allowed here"]
| [ "->" ] -> [ [IpatRw (allocc, L2R)] ]
| [ "<-" ] -> [ [IpatRw (allocc, R2L)] ]
| [ "-" ] -> [ [IpatNoop] ]
| [ "-/" "=" ] -> [ [IpatNoop;IpatSimpl([],Simpl)] ]
| [ "-/=" ] -> [ [IpatNoop;IpatSimpl([],Simpl)] ]
| [ "-/" "/" ] -> [ [IpatNoop;IpatSimpl([],Cut)] ]
| [ "-//" ] -> [ [IpatNoop;IpatSimpl([],Cut)] ]
| [ "-/" "/=" ] -> [ [IpatNoop;IpatSimpl([],SimplCut)] ]
| [ "-//" "=" ] -> [ [IpatNoop;IpatSimpl([],SimplCut)] ]
| [ "-//=" ] -> [ [IpatNoop;IpatSimpl([],SimplCut)] ]
| [ ssrview(v) ] -> [ [IpatView v] ]
| [ "[" ":" ident_list(idl) "]" ] -> [ [IpatNewHidden idl] ]
END
ARGUMENT EXTEND ssripats TYPED AS ssripat PRINTED BY pr_ssripats
| [ ssripat(i) ssripats(tl) ] -> [ i @ tl ]
| [ ] -> [ [] ]
END
ARGUMENT EXTEND ssriorpat TYPED AS ssripat list PRINTED BY pr_ssriorpat
| [ ssripats(pats) "|" ssriorpat(orpat) ] -> [ pats :: orpat ]
| [ ssripats(pats) "|-" ">" ssriorpat(orpat) ] -> [ pats :: pushIpatRw orpat ]
| [ ssripats(pats) "|-" ssriorpat(orpat) ] -> [ pats :: pushIpatNoop orpat ]
| [ ssripats(pats) "|->" ssriorpat(orpat) ] -> [ pats :: pushIpatRw orpat ]
| [ ssripats(pats) "||" ssriorpat(orpat) ] -> [ pats :: [] :: orpat ]
| [ ssripats(pats) "|||" ssriorpat(orpat) ] -> [ pats :: [] :: [] :: orpat ]
| [ ssripats(pats) "||||" ssriorpat(orpat) ] -> [ [pats; []; []; []] @ orpat ]
| [ ssripats(pats) ] -> [ [pats] ]
END
let reject_ssrhid strm =
match Compat.get_tok (stream_nth 0 strm) with
| Tok.KEYWORD "[" ->
(match Compat.get_tok (stream_nth 1 strm) with
| Tok.KEYWORD ":" -> raise Stream.Failure
| _ -> ())
| _ -> ()
let test_nohidden = Gram.Entry.of_parser "test_ssrhid" reject_ssrhid
ARGUMENT EXTEND ssrcpat TYPED AS ssripatrep PRINTED BY pr_ssripat
| [ "YouShouldNotTypeThis" ssriorpat(x) ] -> [ IpatCase x ]
END
GEXTEND Gram
GLOBAL: ssrcpat;
ssrcpat: [[ test_nohidden; "["; iorpat = ssriorpat; "]" -> IpatCase iorpat ]];
END
GEXTEND Gram
GLOBAL: ssripat;
ssripat: [[ pat = ssrcpat -> [pat] ]];
END
ARGUMENT EXTEND ssripats_ne TYPED AS ssripat PRINTED BY pr_ssripats
| [ ssripat(i) ssripats(tl) ] -> [ i @ tl ]
END
(* subsets of patterns *)
let check_ssrhpats loc w_binders ipats =
let err_loc s = CErrors.user_err_loc (loc, "ssreflect", s) in
let clr, ipats =
let rec aux clr = function
| IpatSimpl (cl, Nop) :: tl -> aux (clr @ cl) tl
| IpatSimpl (cl, sim) :: tl -> clr @ cl, IpatSimpl ([], sim) :: tl
| tl -> clr, tl
in aux [] ipats in
let simpl, ipats =
match List.rev ipats with
| IpatSimpl ([],_) as s :: tl -> [s], List.rev tl
| _ -> [], ipats in
if simpl <> [] && not w_binders then
err_loc (str "No s-item allowed here: " ++ pr_ipats simpl);
let ipat, binders =
let rec loop ipat = function
| [] -> ipat, []
| ( IpatId _| IpatAnon| IpatCase _| IpatRw _ as i) :: tl ->
if w_binders then
if simpl <> [] && tl <> [] then
err_loc(str"binders XOR s-item allowed here: "++pr_ipats(tl@simpl))
else if not (List.for_all (function IpatId _ -> true | _ -> false) tl)
then err_loc (str "Only binders allowed here: " ++ pr_ipats tl)
else ipat @ [i], tl
else
if tl = [] then ipat @ [i], []
else err_loc (str "No binder or s-item allowed here: " ++ pr_ipats tl)
| hd :: tl -> loop (ipat @ [hd]) tl
in loop [] ipats in
((clr, ipat), binders), simpl
let single loc =
function [x] -> x | _ -> loc_error loc "Only one intro pattern is allowed"
let pr_hpats (((clr, ipat), binders), simpl) =
pr_clear mt clr ++ pr_ipats ipat ++ pr_ipats binders ++ pr_ipats simpl
let pr_ssrhpats _ _ _ = pr_hpats
let pr_ssrhpats_wtransp _ _ _ (_, x) = pr_hpats x
ARGUMENT EXTEND ssrhpats TYPED AS ((ssrclear * ssripat) * ssripat) * ssripat
PRINTED BY pr_ssrhpats
| [ ssripats(i) ] -> [ check_ssrhpats loc true i ]
END
ARGUMENT EXTEND ssrhpats_wtransp
TYPED AS bool * (((ssrclear * ssripat) * ssripat) * ssripat)
PRINTED BY pr_ssrhpats_wtransp
| [ ssripats(i) ] -> [ false,check_ssrhpats loc true i ]
| [ ssripats(i) "@" ssripats(j) ] -> [ true,check_ssrhpats loc true (i @ j) ]
END
ARGUMENT EXTEND ssrhpats_nobs
TYPED AS ((ssrclear * ssripat) * ssripat) * ssripat PRINTED BY pr_ssrhpats
| [ ssripats(i) ] -> [ check_ssrhpats loc false i ]
END
ARGUMENT EXTEND ssrrpat TYPED AS ssripatrep PRINTED BY pr_ssripat
| [ "->" ] -> [ IpatRw (allocc, L2R) ]
| [ "<-" ] -> [ IpatRw (allocc, R2L) ]
END
type ssrintros = ssripats
let pr_intros sep intrs =
if intrs = [] then mt() else sep () ++ str "=> " ++ pr_ipats intrs
let pr_ssrintros _ _ _ = pr_intros mt
ARGUMENT EXTEND ssrintros_ne TYPED AS ssripat
PRINTED BY pr_ssrintros
| [ "=>" ssripats_ne(pats) ] -> [ pats ]
END
ARGUMENT EXTEND ssrintros TYPED AS ssrintros_ne PRINTED BY pr_ssrintros
| [ ssrintros_ne(intrs) ] -> [ intrs ]
| [ ] -> [ [] ]
END
let injecteq_id = mk_internal_id "injection equation"
let pf_nb_prod gl = nb_prod (pf_concl gl)
let rev_id = mk_internal_id "rev concl"
let revtoptac n0 gl =
let n = pf_nb_prod gl - n0 in
let dc, cl = decompose_prod_n n (pf_concl gl) in
let dc' = dc @ [Name rev_id, compose_prod (List.rev dc) cl] in
let f = compose_lam dc' (mkEtaApp (mkRel (n + 1)) (-n) 1) in
refine (mkApp (f, [|Evarutil.mk_new_meta ()|])) gl
let equality_inj l b id c gl =
let msg = ref "" in
try Proofview.V82.of_tactic (Equality.inj l b None c) gl
with
| Compat.Exc_located(_,CErrors.UserError (_,s))
| CErrors.UserError (_,s)
when msg := Pp.string_of_ppcmds s;
!msg = "Not a projectable equality but a discriminable one." ||
!msg = "Nothing to inject." ->
msg_warning (str !msg);
discharge_hyp (id, (id, "")) gl
let injectidl2rtac id c gl =
tclTHEN (equality_inj None true id c) (revtoptac (pf_nb_prod gl)) gl
let injectl2rtac c = match kind_of_term c with
| Var id -> injectidl2rtac id (mkVar id, NoBindings)
| _ ->
let id = injecteq_id in
tclTHENLIST [havetac id c; injectidl2rtac id (mkVar id, NoBindings); Proofview.V82.of_tactic (clear [id])]
let is_injection_case c gl =
let gl, cty = pf_type_of gl c in
let (mind,_), _ = pf_reduce_to_quantified_ind gl cty in
eq_gr (IndRef mind) (build_coq_eq ())
let perform_injection c gl =
let gl, cty = pf_type_of gl c in
let mind, t = pf_reduce_to_quantified_ind gl cty in
let dc, eqt = decompose_prod t in
if dc = [] then injectl2rtac c gl else
if not (closed0 eqt) then
CErrors.error "can't decompose a quantified equality" else
let cl = pf_concl gl in let n = List.length dc in
let c_eq = mkEtaApp c n 2 in
let cl1 = mkLambda (Anonymous, mkArrow eqt cl, mkApp (mkRel 1, [|c_eq|])) in
let id = injecteq_id in
let id_with_ebind = (mkVar id, NoBindings) in
let injtac = tclTHEN (introid id) (injectidl2rtac id id_with_ebind) in
tclTHENLAST (Proofview.V82.of_tactic (apply (compose_lam dc cl1))) injtac gl
let simplest_newcase_ref = ref (fun t gl -> assert false)
let simplest_newcase x gl = !simplest_newcase_ref x gl
let ssrscasetac c gl =
if is_injection_case c gl then perform_injection c gl
else simplest_newcase c gl
let intro_all gl =
let dc, _ = Term.decompose_prod_assum (pf_concl gl) in
tclTHENLIST (List.map anontac (List.rev dc)) gl
let rec intro_anon gl =
try anontac (List.hd (fst (Term.decompose_prod_n_assum 1 (pf_concl gl)))) gl
with err0 -> try tclTHEN (Proofview.V82.of_tactic red_in_concl) intro_anon gl with _ -> raise err0
(* with _ -> CErrors.error "No product even after reduction" *)
let with_top tac =
tclTHENLIST [introid top_id; tac (mkVar top_id); Proofview.V82.of_tactic (clear [top_id])]
let rec mapLR f = function [] -> [] | x :: s -> let y = f x in y :: mapLR f s
let wild_ids = ref []
let new_wild_id () =
let i = 1 + List.length !wild_ids in
let id = mk_wildcard_id i in
wild_ids := id :: !wild_ids;
id
let clear_wilds wilds gl =
Proofview.V82.of_tactic (clear (List.filter (fun id -> List.mem id wilds) (pf_ids_of_hyps gl))) gl
let clear_with_wilds wilds clr0 gl =
let extend_clr clr nd =
let id = NamedDecl.get_id nd in
if List.mem id clr || not (List.mem id wilds) then clr else
let vars = global_vars_set_of_decl (pf_env gl) nd in
let occurs id' = Idset.mem id' vars in
if List.exists occurs clr then id :: clr else clr in
Proofview.V82.of_tactic (clear (Context.Named.fold_inside extend_clr ~init:clr0 (pf_hyps gl))) gl
let tclTHENS_nonstrict tac tacl taclname gl =
let tacres = tac gl in
let n_gls = List.length (sig_it tacres) in
let n_tac = List.length tacl in
if n_gls = n_tac then tclTHENS (fun _ -> tacres) tacl gl else
if n_gls = 0 then tacres else
let pr_only n1 n2 = if n1 < n2 then str "only " else mt () in
let pr_nb n1 n2 name =
pr_only n1 n2 ++ int n1 ++ str (" " ^ String.plural n1 name) in
errorstrm (pr_nb n_tac n_gls taclname ++ spc ()
++ str "for " ++ pr_nb n_gls n_tac "subgoal")
(* Forward reference to extended rewrite *)
let ipat_rewritetac = ref (fun _ -> rewritetac)
let rec is_name_in_ipats name = function
| IpatSimpl(clr,_) :: tl ->
List.exists (function SsrHyp(_,id) -> id = name) clr
|| is_name_in_ipats name tl
| IpatId id :: tl -> id = name || is_name_in_ipats name tl
| IpatCase l :: tl -> is_name_in_ipats name (List.flatten l @ tl)
| _ :: tl -> is_name_in_ipats name tl
| [] -> false
let move_top_with_view = ref (fun _ -> assert false)
let rec nat_of_n n =
if n = 0 then mkConstruct path_of_O
else mkApp (mkConstruct path_of_S, [|nat_of_n (n-1)|])
let ssr_abstract_id = Summary.ref "~name:SSR:abstractid" 0
let mk_abstract_id () = incr ssr_abstract_id; nat_of_n !ssr_abstract_id
let ssrmkabs id gl =
let env, concl = pf_env gl, pf_concl gl in
let step = { run = begin fun sigma ->
let Sigma ((abstract_proof, abstract_ty), sigma, p) =
let Sigma ((ty, _), sigma, p1) =
Evarutil.new_type_evar env sigma Evd.univ_flexible_alg in
let Sigma (ablock, sigma, p2) = mkSsrConst "abstract_lock" env sigma in
let Sigma (lock, sigma, p3) = Evarutil.new_evar env sigma ablock in
let Sigma (abstract, sigma, p4) = mkSsrConst "abstract" env sigma in
let abstract_ty = mkApp(abstract, [|ty;mk_abstract_id ();lock|]) in
let Sigma (m, sigma, p5) = Evarutil.new_evar env sigma abstract_ty in
Sigma ((m, abstract_ty), sigma, p1 +> p2 +> p3 +> p4 +> p5) in
let sigma, kont =
let rd = RelDecl.LocalAssum (Name id, abstract_ty) in
let Sigma (ev, sigma, _) = Evarutil.new_evar (Environ.push_rel rd env) sigma concl in
let sigma = Sigma.to_evar_map sigma in
(sigma, ev)
in
pp(lazy(pr_constr concl));
let term = mkApp (mkLambda(Name id,abstract_ty,kont) ,[|abstract_proof|]) in
let sigma, _ = Typing.type_of env sigma term in
Sigma.Unsafe.of_pair (term, sigma)
end } in
Proofview.V82.of_tactic
(Proofview.tclTHEN
(Tactics.New.refine step)
(Proofview.tclFOCUS 1 3 Proofview.shelve)) gl
let ssrmkabstac ids =
List.fold_right (fun id tac -> tclTHENFIRST (ssrmkabs id) tac) ids tclIDTAC
(* introstac: for "move" and "clear", tclEQINTROS: for "case" and "elim" *)
(* This block hides the spaghetti-code needed to implement the only two *)
(* tactics that should be used to process intro patters. *)
(* The difficulty is that we don't want to always rename, but we can *)
(* compute needeed renamings only at runtime, so we theread a tree like *)
(* imperativestructure so that outer renamigs are inherited by inner *)
(* ipts and that the cler performed at the end of ipatstac clears hyps *)
(* eventually renamed at runtime. *)
(* TODO: hide wild_ids in this block too *)
let introstac, tclEQINTROS =
let rec map_acc_k f k = function
| [] -> (* tricky: we save wilds now, we get to_cler (aka k) later *)
let clear_ww = clear_with_wilds !wild_ids in
[fun gl -> clear_ww (hyps_ids (List.flatten (List.map (!) k))) gl]
| x :: xs -> let k, x = f k xs x in x :: map_acc_k f k xs in
let rename force to_clr rest clr gl =
let hyps = pf_hyps gl in
pp(lazy(str"rename " ++ pr_clear spc clr));
let () = if not force then List.iter (check_hyp_exists hyps) clr in
if List.exists (fun x -> force || is_name_in_ipats (hyp_id x) rest) clr then
let ren_clr, ren =
List.split (List.map (fun x -> let x = hyp_id x in
let x' = mk_anon_id (string_of_id x) gl in
SsrHyp (dummy_loc, x'), (x, x')) clr) in
let () = to_clr := ren_clr in
Proofview.V82.of_tactic (rename_hyp ren) gl
else
let () = to_clr := clr in
tclIDTAC gl in
let rec ipattac ?ist k rest = function
| IpatWild -> k, introid (new_wild_id ())
| IpatCase iorpat -> k, tclIORPAT ?ist k (with_top ssrscasetac) iorpat
| IpatRw (occ, dir) -> k, with_top (!ipat_rewritetac occ dir)
| IpatId id -> k, introid id
| IpatNewHidden idl -> k, ssrmkabstac idl
| IpatSimpl (clr, sim) ->
let to_clr = ref [] in
to_clr :: k, tclTHEN (rename false to_clr rest clr) (simpltac sim)
| IpatAll -> k, intro_all
| IpatAnon -> k, intro_anon
| IpatNoop -> k, tclIDTAC
| IpatView v -> match ist with
| None -> anomaly "ipattac with no ist but view"
| Some ist -> match rest with
| (IpatCase _ | IpatRw _)::_ ->
let to_clr = ref [] in let top_id = ref top_id in
to_clr :: k,
tclTHEN
(!move_top_with_view false top_id (false,v) ist)
(fun gl ->
rename true to_clr rest [SsrHyp (dummy_loc, !top_id)]gl)
| _ -> k, !move_top_with_view true (ref top_id) (true,v) ist
and tclIORPAT ?ist k tac = function
| [[]] -> tac
| orp ->
tclTHENS_nonstrict tac (mapLR (ipatstac ?ist k) orp) "intro pattern"
and ipatstac ?ist k ipats =
tclTHENLIST (map_acc_k (ipattac ?ist) k ipats) in
let introstac ?ist ipats =
wild_ids := [];
let tac = ipatstac ?ist [] ipats in
tclTHENLIST [tac; clear_wilds !wild_ids] in
let tclEQINTROS ?ist tac eqtac ipats =
wild_ids := [];
let rec split_itacs to_clr tac' = function
| (IpatSimpl _ as spat) :: ipats' ->
let to_clr, tac = ipattac ?ist to_clr ipats' spat in
split_itacs to_clr (tclTHEN tac' tac) ipats'
| IpatCase iorpat :: ipats' ->
to_clr, tclIORPAT ?ist to_clr tac' iorpat, ipats'
| ipats' -> to_clr, tac', ipats' in
let to_clr, tac1, ipats' = split_itacs [] tac ipats in
let tac2 = ipatstac ?ist to_clr ipats' in
tclTHENLIST [tac1; eqtac; tac2; clear_wilds !wild_ids] in
introstac, tclEQINTROS
;;
let rec eqmoveipats eqpat = function
| (IpatSimpl _ as ipat) :: ipats -> ipat :: eqmoveipats eqpat ipats
| (IpatAll :: _ | []) as ipats -> IpatAnon :: eqpat :: ipats
| ipat :: ipats -> ipat :: eqpat :: ipats
(* General case *)
let tclINTROS ist tac ipats =
tclEQINTROS ~ist (tac ist) tclIDTAC ipats
(** The "=>" tactical *)
let ssrintros_sep =
let atom_sep = function
(* | TacSplit (_, [NoBindings]) -> mt *)
(* | TacExtend (_, "ssrapply", []) -> mt *)
| _ -> spc in
function
| TacId [] -> mt
| TacArg (_, Tacexp _) -> mt
| TacArg (_, Reference _) -> mt
| TacAtom (_, atom) -> atom_sep atom
| _ -> spc
let pr_ssrintrosarg _ _ prt (tac, ipats) =
prt tacltop tac ++ pr_intros spc ipats
ARGUMENT EXTEND ssrintrosarg TYPED AS tactic * ssrintros
PRINTED BY pr_ssrintrosarg
| [ "YouShouldNotTypeThis" ssrtacarg(arg) ssrintros_ne(ipats) ] -> [ arg, ipats ]
END
TACTIC EXTEND ssrtclintros
| [ "YouShouldNotTypeThis" ssrintrosarg(arg) ] ->
[ let tac, intros = arg in
Proofview.V82.tactic (tclINTROS ist (fun ist -> ssrevaltac ist tac) intros) ]
END
set_pr_ssrtac "tclintros" 0 [ArgSsr "introsarg"]
let tclintros_expr loc tac ipats =
let args = [Tacexpr.TacGeneric (in_gen (rawwit wit_ssrintrosarg) (tac, ipats))] in
ssrtac_expr loc "tclintros" args
GEXTEND Gram
GLOBAL: tactic_expr;
tactic_expr: LEVEL "1" [ RIGHTA
[ tac = tactic_expr; intros = ssrintros_ne -> tclintros_expr !@loc tac intros
] ];
END
(* }}} *)
(** Multipliers {{{ ***********************************************************)
(* modality *)
type ssrmmod = May | Must | Once
let pr_mmod = function May -> str "?" | Must -> str "!" | Once -> mt ()
let wit_ssrmmod = add_genarg "ssrmmod" pr_mmod
let ssrmmod = Pcoq.create_generic_entry Pcoq.utactic "ssrmmod" (Genarg.rawwit wit_ssrmmod)
GEXTEND Gram
GLOBAL: ssrmmod;
ssrmmod: [[ "!" -> Must | LEFTQMARK -> May | "?" -> May]];
END
(* tactical *)
let tclID tac = tac
let tclDOTRY n tac =
if n <= 0 then tclIDTAC else
let rec loop i gl =
if i = n then tclTRY tac gl else
tclTRY (tclTHEN tac (loop (i + 1))) gl in
loop 1
let tclDO n tac =
let prefix i = str"At iteration " ++ int i ++ str": " in
let tac_err_at i gl =
try tac gl
with
| CErrors.UserError (l, s) as e ->
let _, info = CErrors.push e in
let e' = CErrors.UserError (l, prefix i ++ s) in
Util.iraise (e', info)
| Compat.Exc_located(loc, CErrors.UserError (l, s)) ->
raise (Compat.Exc_located(loc, CErrors.UserError (l, prefix i ++ s))) in
let rec loop i gl =
if i = n then tac_err_at i gl else
(tclTHEN (tac_err_at i) (loop (i + 1))) gl in
loop 1
let tclMULT = function
| 0, May -> tclREPEAT
| 1, May -> tclTRY
| n, May -> tclDOTRY n
| 0, Must -> tclAT_LEAST_ONCE
| n, Must when n > 1 -> tclDO n
| _ -> tclID
(** The "do" tactical. ********************************************************)
(*
type ssrdoarg = ((ssrindex * ssrmmod) * ssrhint) * ssrclauses
*)
let pr_ssrdoarg prc _ prt (((n, m), tac), clauses) =
pr_index n ++ pr_mmod m ++ pr_hintarg prt tac ++ pr_clauses clauses
ARGUMENT EXTEND ssrdoarg
TYPED AS ((ssrindex * ssrmmod) * ssrhintarg) * ssrclauses
PRINTED BY pr_ssrdoarg
| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ]
END
let ssrdotac ist (((n, m), tac), clauses) =
let mul = get_index n, m in
tclCLAUSES ist (tclMULT mul (hinttac ist false tac)) clauses
TACTIC EXTEND ssrtcldo
| [ "YouShouldNotTypeThis" "do" ssrdoarg(arg) ] -> [ Proofview.V82.tactic (ssrdotac ist arg) ]
END
set_pr_ssrtac "tcldo" 3 [ArgSep "do "; ArgSsr "doarg"]
let ssrdotac_expr loc n m tac clauses =
let arg = ((n, m), tac), clauses in
ssrtac_expr loc "tcldo" [Tacexpr.TacGeneric (in_gen (rawwit wit_ssrdoarg) arg)]
GEXTEND Gram
GLOBAL: tactic_expr;
ssrdotac: [
[ tac = tactic_expr LEVEL "3" -> mk_hint tac
| tacs = ssrortacarg -> tacs
] ];
tactic_expr: LEVEL "3" [ RIGHTA
[ IDENT "do"; m = ssrmmod; tac = ssrdotac; clauses = ssrclauses ->
ssrdotac_expr !@loc noindex m tac clauses
| IDENT "do"; tac = ssrortacarg; clauses = ssrclauses ->
ssrdotac_expr !@loc noindex Once tac clauses
| IDENT "do"; n = int_or_var; m = ssrmmod;
tac = ssrdotac; clauses = ssrclauses ->
ssrdotac_expr !@loc (mk_index !@loc n) m tac clauses
] ];
END
(* }}} *)
(** The "first" and "last" tacticals. {{{ *************************************)
(* type ssrseqarg = ssrindex * (ssrtacarg * ssrtac option) *)
let pr_seqtacarg prt = function
| (is_first, []), _ -> str (if is_first then "first" else "last")
| tac, Some dtac ->
hv 0 (pr_hintarg prt tac ++ spc() ++ str "|| " ++ prt tacltop dtac)
| tac, _ -> pr_hintarg prt tac
let pr_ssrseqarg _ _ prt = function
| ArgArg 0, tac -> pr_seqtacarg prt tac
| i, tac -> pr_index i ++ str " " ++ pr_seqtacarg prt tac
(* We must parse the index separately to resolve the conflict with *)
(* an unindexed tactic. *)
ARGUMENT EXTEND ssrseqarg TYPED AS ssrindex * (ssrhintarg * tactic option)
PRINTED BY pr_ssrseqarg
| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ]
END
let sq_brace_tacnames =
["first"; "solve"; "do"; "rewrite"; "have"; "suffices"; "wlog"]
(* "by" is a keyword *)
let accept_ssrseqvar strm =
match Compat.get_tok (stream_nth 0 strm) with
| Tok.IDENT id when not (List.mem id sq_brace_tacnames) ->
accept_before_syms_or_ids ["["] ["first";"last"] strm
| _ -> raise Stream.Failure
let test_ssrseqvar = Gram.Entry.of_parser "test_ssrseqvar" accept_ssrseqvar
let swaptacarg (loc, b) = (b, []), Some (TacId [])
let check_seqtacarg dir arg = match snd arg, dir with
| ((true, []), Some (TacAtom (loc, _))), L2R ->
loc_error loc "expected \"last\""
| ((false, []), Some (TacAtom (loc, _))), R2L ->
loc_error loc "expected \"first\""
| _, _ -> arg
let ssrorelse = Gram.entry_create "ssrorelse"
GEXTEND Gram
GLOBAL: ssrorelse ssrseqarg;
ssrseqidx: [
[ test_ssrseqvar; id = Prim.ident -> ArgVar (!@loc, id)
| n = Prim.natural -> ArgArg (check_index !@loc n)
] ];
ssrswap: [[ IDENT "first" -> !@loc, true | IDENT "last" -> !@loc, false ]];
ssrorelse: [[ "||"; tac = tactic_expr LEVEL "2" -> tac ]];
ssrseqarg: [
[ arg = ssrswap -> noindex, swaptacarg arg
| i = ssrseqidx; tac = ssrortacarg; def = OPT ssrorelse -> i, (tac, def)
| i = ssrseqidx; arg = ssrswap -> i, swaptacarg arg
| tac = tactic_expr LEVEL "3" -> noindex, (mk_hint tac, None)
] ];
END
let tclPERM perm tac gls =
let subgls = tac gls in
let sigma, subgll = Refiner.unpackage subgls in
let subgll' = perm subgll in
Refiner.repackage sigma subgll'
(*
let tclPERM perm tac gls =
let mkpft n g r =
{Proof_type.open_subgoals = n; Proof_type.goal = g; Proof_type.ref = r} in
let mkleaf g = mkpft 0 g None in
let mkprpft n g pr a = mkpft n g (Some (Proof_type.Prim pr, a)) in
let mkrpft n g c = mkprpft n g (Proof_type.Refine c) in
let mkipft n g =
let mki pft (id, _, _ as d) =
let g' = {g with evar_concl = mkNamedProd_or_LetIn d g.evar_concl} in
mkprpft n g' (Proof_type.Intro id) [pft] in
List.fold_left mki in
let gl = Refiner.sig_it gls in
let mkhyp subgl =
let rec chop_section = function
| (x, _, _ as d) :: e when not_section_id x -> d :: chop_section e
| _ -> [] in
let lhyps = Environ.named_context_of_val subgl.evar_hyps in
mk_perm_id (), subgl, chop_section lhyps in
let mkpfvar (hyp, subgl, lhyps) =
let mkarg args (lhyp, body, _) =
if body = None then mkVar lhyp :: args else args in
mkrpft 0 subgl (applist (mkVar hyp, List.fold_left mkarg [] lhyps)) [] in
let mkpfleaf (_, subgl, lhyps) = mkipft 1 gl (mkleaf subgl) lhyps in
let mkmeta _ = Evarutil.mk_new_meta () in
let mkhypdecl (hyp, subgl, lhyps) =
hyp, None, it_mkNamedProd_or_LetIn subgl.evar_concl lhyps in
let subgls, v as res0 = tac gls in
let sigma, subgll = Refiner.unpackage subgls in
let n = List.length subgll in if n = 0 then res0 else
let hyps = List.map mkhyp subgll in
let hyp_decls = List.map mkhypdecl (List.rev (perm hyps)) in
let c = applist (mkmeta (), List.map mkmeta subgll) in
let pft0 = mkipft 0 gl (v (List.map mkpfvar hyps)) hyp_decls in
let pft1 = mkrpft n gl c (pft0 :: List.map mkpfleaf (perm hyps)) in
let subgll', v' = Refiner.frontier pft1 in
Refiner.repackage sigma subgll', v'
*)
let tclREV tac gl = tclPERM List.rev tac gl
let rot_hyps dir i hyps =
let n = List.length hyps in
if i = 0 then List.rev hyps else
if i > n then CErrors.error "Not enough subgoals" else
let rec rot i l_hyps = function
| hyp :: hyps' when i > 0 -> rot (i - 1) (hyp :: l_hyps) hyps'
| hyps' -> hyps' @ (List.rev l_hyps) in
rot (match dir with L2R -> i | R2L -> n - i) [] hyps
let tclSEQAT ist atac1 dir (ivar, ((_, atacs2), atac3)) =
let i = get_index ivar in
let evtac = ssrevaltac ist in
let tac1 = evtac atac1 in
if atacs2 = [] && atac3 <> None then tclPERM (rot_hyps dir i) tac1 else
let evotac = function Some atac -> evtac atac | _ -> tclIDTAC in
let tac3 = evotac atac3 in
let rec mk_pad n = if n > 0 then tac3 :: mk_pad (n - 1) else [] in
match dir, mk_pad (i - 1), List.map evotac atacs2 with
| L2R, [], [tac2] when atac3 = None -> tclTHENFIRST tac1 tac2
| L2R, [], [tac2] when atac3 = None -> tclTHENLAST tac1 tac2
| L2R, pad, tacs2 -> tclTHENSFIRSTn tac1 (Array.of_list (pad @ tacs2)) tac3
| R2L, pad, tacs2 -> tclTHENSLASTn tac1 tac3 (Array.of_list (tacs2 @ pad))
(* We can't actually parse the direction separately because this *)
(* would introduce conflicts with the basic ltac syntax. *)
let pr_ssrseqdir _ _ _ = function
| L2R -> str ";" ++ spc () ++ str "first "
| R2L -> str ";" ++ spc () ++ str "last "
ARGUMENT EXTEND ssrseqdir TYPED AS ssrdir PRINTED BY pr_ssrseqdir
| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ]
END
TACTIC EXTEND ssrtclseq
| [ "YouShouldNotTypeThis" ssrtclarg(tac) ssrseqdir(dir) ssrseqarg(arg) ] ->
[ Proofview.V82.tactic (tclSEQAT ist tac dir arg) ]
END
set_pr_ssrtac "tclseq" 5 [ArgSsr "tclarg"; ArgSsr "seqdir"; ArgSsr "seqarg"]
let tclseq_expr loc tac dir arg =
let arg1 = in_gen (rawwit wit_ssrtclarg) tac in
let arg2 = in_gen (rawwit wit_ssrseqdir) dir in
let arg3 = in_gen (rawwit wit_ssrseqarg) (check_seqtacarg dir arg) in
ssrtac_expr loc "tclseq" (List.map (fun x -> Tacexpr.TacGeneric x) [arg1; arg2; arg3])
GEXTEND Gram
GLOBAL: tactic_expr;
ssr_first: [
[ tac = ssr_first; ipats = ssrintros_ne -> tclintros_expr !@loc tac ipats
| "["; tacl = LIST0 tactic_expr SEP "|"; "]" -> TacFirst tacl
] ];
ssr_first_else: [
[ tac1 = ssr_first; tac2 = ssrorelse -> TacOrelse (tac1, tac2)
| tac = ssr_first -> tac ]];
tactic_expr: LEVEL "4" [ LEFTA
[ tac1 = tactic_expr; ";"; IDENT "first"; tac2 = ssr_first_else ->
TacThen (tac1, tac2)
| tac = tactic_expr; ";"; IDENT "first"; arg = ssrseqarg ->
tclseq_expr !@loc tac L2R arg
| tac = tactic_expr; ";"; IDENT "last"; arg = ssrseqarg ->
tclseq_expr !@loc tac R2L arg
] ];
END
(* }}} *)
(** 5. Bookkeeping tactics (clear, move, case, elim) *)
(* post-interpretation of terms *)
let all_ok _ _ = true
let pf_abs_ssrterm ?(resolve_typeclasses=false) ist gl t =
let sigma, ct as t = interp_term ist gl t in
let sigma, _ as t =
let env = pf_env gl in
if not resolve_typeclasses then t
else
let sigma = Typeclasses.resolve_typeclasses ~fail:false env sigma in
sigma, Evarutil.nf_evar sigma ct in
let n, c, abstracted_away, ucst = pf_abs_evars gl t in
List.fold_left Evd.remove sigma abstracted_away, pf_abs_cterm gl n c, ucst, n
let pf_interp_ty ?(resolve_typeclasses=false) ist gl ty =
let n_binders = ref 0 in
let ty = match ty with
| a, (t, None) ->
let rec force_type = function
| GProd (l, x, k, s, t) -> incr n_binders; GProd (l, x, k, s, force_type t)
| GLetIn (l, x, v, t) -> incr n_binders; GLetIn (l, x, v, force_type t)
| ty -> mkRCast ty mkRType in
a, (force_type t, None)
| _, (_, Some ty) ->
let rec force_type = function
| CProdN (l, abs, t) ->
n_binders := !n_binders + List.length (List.flatten (List.map pi1 abs));
CProdN (l, abs, force_type t)
| CLetIn (l, n, v, t) -> incr n_binders; CLetIn (l, n, v, force_type t)
| ty -> mkCCast dummy_loc ty (mkCType dummy_loc) in
mk_term ' ' (force_type ty) in
let strip_cast (sigma, t) =
let rec aux t = match kind_of_type t with
| CastType (t, ty) when !n_binders = 0 && isSort ty -> t
| ProdType(n,s,t) -> decr n_binders; mkProd (n, s, aux t)
| LetInType(n,v,ty,t) -> decr n_binders; mkLetIn (n, v, ty, aux t)
| _ -> anomaly "pf_interp_ty: ssr Type cast deleted by typecheck" in
sigma, aux t in
let sigma, cty as ty = strip_cast (interp_term ist gl ty) in
let ty =
let env = pf_env gl in
if not resolve_typeclasses then ty
else
let sigma = Typeclasses.resolve_typeclasses ~fail:false env sigma in
sigma, Evarutil.nf_evar sigma cty in
let n, c, _, ucst = pf_abs_evars gl ty in
let lam_c = pf_abs_cterm gl n c in
let ctx, c = decompose_lam_n n lam_c in
n, compose_prod ctx c, lam_c, ucst
;;
let whd_app f args = Reductionops.whd_betaiota Evd.empty (mkApp (f, args))
let pr_cargs a =
str "[" ++ pr_list pr_spc pr_constr (Array.to_list a) ++ str "]"
let pp_term gl t =
let t = Reductionops.nf_evar (project gl) t in pr_constr t
let pp_concat hd ?(sep=str", ") = function [] -> hd | x :: xs ->
hd ++ List.fold_left (fun acc x -> acc ++ sep ++ x) x xs
let fake_pmatcher_end () =
mkProp, L2R, (Evd.empty, Evd.empty_evar_universe_context, mkProp)
(* TASSI: given (c : ty), generates (c ??? : ty[???/...]) with m evars *)
exception NotEnoughProducts
let prof_saturate_whd = mk_profiler "saturate.whd";;
let saturate ?(beta=false) ?(bi_types=false) env sigma c ?(ty=Retyping.get_type_of env sigma c) m
=
let rec loop ty args sigma n =
if n = 0 then
let args = List.rev args in
(if beta then Reductionops.whd_beta sigma else fun x -> x)
(mkApp (c, Array.of_list (List.map snd args))), ty, args, sigma
else match kind_of_type ty with
| ProdType (_, src, tgt) ->
let sigma = create_evar_defs sigma in
let sigma = Sigma.Unsafe.of_evar_map sigma in
let Sigma (x, sigma, _) =
Evarutil.new_evar env sigma
(if bi_types then Reductionops.nf_betaiota (Sigma.to_evar_map sigma) src else src) in
let sigma = Sigma.to_evar_map sigma in
loop (subst1 x tgt) ((m - n,x) :: args) sigma (n-1)
| CastType (t, _) -> loop t args sigma n
| LetInType (_, v, _, t) -> loop (subst1 v t) args sigma n
| SortType _ -> assert false
| AtomicType _ ->
let ty =
prof_saturate_whd.profile
(Reductionops.whd_all env sigma) ty in
match kind_of_type ty with
| ProdType _ -> loop ty args sigma n
| _ -> raise NotEnoughProducts
in
loop ty [] sigma m
let pf_saturate ?beta ?bi_types gl c ?ty m =
let env, sigma, si = pf_env gl, project gl, sig_it gl in
let t, ty, args, sigma = saturate ?beta ?bi_types env sigma c ?ty m in
t, ty, args, re_sig si sigma
(** Rewrite redex switch *)
(** Generalization (discharge) item *)
(* An item is a switch + term pair. *)
(* type ssrgen = ssrdocc * ssrterm *)
let pr_gen (docc, dt) = pr_docc docc ++ pr_cpattern dt
let pr_ssrgen _ _ _ = pr_gen
ARGUMENT EXTEND ssrgen TYPED AS ssrdocc * cpattern PRINTED BY pr_ssrgen
| [ ssrdocc(docc) cpattern(dt) ] -> [ docc, dt ]
| [ cpattern(dt) ] -> [ nodocc, dt ]
END
let has_occ ((_, occ), _) = occ <> None
let hyp_of_var v = SsrHyp (dummy_loc, destVar v)
let interp_clr = function
| Some clr, (k, c)
when (k = ' ' || k = '@') && is_pf_var c -> hyp_of_var c :: clr
| Some clr, _ -> clr
| None, _ -> []
(* XXX the k of the redex should percolate out *)
let pf_interp_gen_aux ist gl to_ind ((oclr, occ), t) =
let pat = interp_cpattern ist gl t None in (* UGLY API *)
let cl, env, sigma = pf_concl gl, pf_env gl, project gl in
let (c, ucst), cl =
try fill_occ_pattern ~raise_NoMatch:true env sigma cl pat occ 1
with NoMatch -> redex_of_pattern env pat, cl in
let clr = interp_clr (oclr, (tag_of_cpattern t, c)) in
if not(occur_existential c) then
if tag_of_cpattern t = '@' then
if not (isVar c) then
errorstrm (str "@ can be used with variables only")
else match NamedDecl.to_tuple (pf_get_hyp gl (destVar c)) with
| _, None, _ -> errorstrm (str "@ can be used with let-ins only")
| name, Some bo, ty -> true, pat, mkLetIn (Name name,bo,ty,cl),c,clr,ucst,gl
else let gl, ccl = pf_mkprod gl c cl in false, pat, ccl, c, clr,ucst,gl
else if to_ind && occ = None then
let nv, p, _, ucst' = pf_abs_evars gl (fst pat, c) in
let ucst = Evd.union_evar_universe_context ucst ucst' in
if nv = 0 then anomaly "occur_existential but no evars" else
let gl, pty = pf_type_of gl p in
false, pat, mkProd (constr_name c, pty, pf_concl gl), p, clr,ucst,gl
else loc_error (loc_of_cpattern t) "generalized term didn't match"
let genclrtac cl cs clr =
let tclmyORELSE tac1 tac2 gl =
try tac1 gl
with e when CErrors.noncritical e -> tac2 e gl in
(* apply_type may give a type error, but the useful message is
* the one of clear. You type "move: x" and you get
* "x is used in hyp H" instead of
* "The term H has type T x but is expected to have type T x0". *)
tclTHEN
(tclmyORELSE
(apply_type cl cs)
(fun type_err gl ->
tclTHEN
(tclTHEN (Proofview.V82.of_tactic (elim_type (build_coq_False ()))) (cleartac clr))
(fun gl -> raise type_err)
gl))
(cleartac clr)
let gentac ist gen gl =
(* pp(lazy(str"sigma@gentac=" ++ pr_evar_map None (project gl))); *)
let conv, _, cl, c, clr, ucst,gl = pf_interp_gen_aux ist gl false gen in
pp(lazy(str"c@gentac=" ++ pr_constr c));
let gl = pf_merge_uc ucst gl in
if conv
then tclTHEN (Proofview.V82.of_tactic (convert_concl cl)) (cleartac clr) gl
else genclrtac cl [c] clr gl
let pf_interp_gen ist gl to_ind gen =
let _, _, a, b, c, ucst,gl = pf_interp_gen_aux ist gl to_ind gen in
a, b ,c, pf_merge_uc ucst gl
(** Generalization (discharge) sequence *)
(* A discharge sequence is represented as a list of up to two *)
(* lists of d-items, plus an ident list set (the possibly empty *)
(* final clear switch). The main list is empty iff the command *)
(* is defective, and has length two if there is a sequence of *)
(* dependent terms (and in that case it is the first of the two *)
(* lists). Thus, the first of the two lists is never empty. *)
(* type ssrgens = ssrgen list *)
(* type ssrdgens = ssrgens list * ssrclear *)
let gens_sep = function [], [] -> mt | _ -> spc
let pr_dgens pr_gen (gensl, clr) =
let prgens s gens = str s ++ pr_list spc pr_gen gens in
let prdeps deps = prgens ": " deps ++ spc () ++ str "/" in
match gensl with
| [deps; []] -> prdeps deps ++ pr_clear pr_spc clr
| [deps; gens] -> prdeps deps ++ prgens " " gens ++ pr_clear spc clr
| [gens] -> prgens ": " gens ++ pr_clear spc clr
| _ -> pr_clear pr_spc clr
let pr_ssrdgens _ _ _ = pr_dgens pr_gen
let cons_gen gen = function
| gens :: gensl, clr -> (gen :: gens) :: gensl, clr
| _ -> anomaly "missing gen list"
let cons_dep (gensl, clr) =
if List.length gensl = 1 then ([] :: gensl, clr) else
CErrors.error "multiple dependents switches '/'"
ARGUMENT EXTEND ssrdgens_tl TYPED AS ssrgen list list * ssrclear
PRINTED BY pr_ssrdgens
| [ "{" ne_ssrhyp_list(clr) "}" cpattern(dt) ssrdgens_tl(dgens) ] ->
[ cons_gen (mkclr clr, dt) dgens ]
| [ "{" ne_ssrhyp_list(clr) "}" ] ->
[ [[]], clr ]
| [ "{" ssrocc(occ) "}" cpattern(dt) ssrdgens_tl(dgens) ] ->
[ cons_gen (mkocc occ, dt) dgens ]
| [ "/" ssrdgens_tl(dgens) ] ->
[ cons_dep dgens ]
| [ cpattern(dt) ssrdgens_tl(dgens) ] ->
[ cons_gen (nodocc, dt) dgens ]
| [ ] ->
[ [[]], [] ]
END
ARGUMENT EXTEND ssrdgens TYPED AS ssrdgens_tl PRINTED BY pr_ssrdgens
| [ ":" ssrgen(gen) ssrdgens_tl(dgens) ] -> [ cons_gen gen dgens ]
END
let genstac (gens, clr) ist =
tclTHENLIST (cleartac clr :: List.rev_map (gentac ist) gens)
(* Common code to handle generalization lists along with the defective case *)
let with_defective maintac deps clr ist gl =
let top_id =
match kind_of_type (pf_concl gl) with
| ProdType (Name id, _, _)
when has_discharged_tag (string_of_id id) -> id
| _ -> top_id in
let top_gen = mkclr clr, cpattern_of_id top_id in
tclTHEN (introid top_id) (maintac deps top_gen ist) gl
let with_dgens (gensl, clr) maintac ist = match gensl with
| [deps; []] -> with_defective maintac deps clr ist
| [deps; gen :: gens] ->
tclTHEN (genstac (gens, clr) ist) (maintac deps gen ist)
| [gen :: gens] -> tclTHEN (genstac (gens, clr) ist) (maintac [] gen ist)
| _ -> with_defective maintac [] clr ist
let first_goal gls =
let gl = gls.Evd.it and sig_0 = gls.Evd.sigma in
if List.is_empty gl then CErrors.error "first_goal";
{ Evd.it = List.hd gl; Evd.sigma = sig_0; }
let with_deps deps0 maintac cl0 cs0 clr0 ist gl0 =
let rec loop gl cl cs clr args clrs = function
| [] ->
let n = List.length args in
maintac (if n > 0 then applist (to_lambda n cl, args) else cl) clrs ist gl0
| dep :: deps ->
let gl' = first_goal (genclrtac cl cs clr gl) in
let cl', c', clr',gl' = pf_interp_gen ist gl' false dep in
loop gl' cl' [c'] clr' (c' :: args) (clr' :: clrs) deps in
loop gl0 cl0 cs0 clr0 cs0 [clr0] (List.rev deps0)
(** Equations *)
(* argument *)
type ssreqid = ssripat option
let pr_eqid = function Some pat -> str " " ++ pr_ipat pat | None -> mt ()
let pr_ssreqid _ _ _ = pr_eqid
(* We must use primitive parsing here to avoid conflicts with the *)
(* basic move, case, and elim tactics. *)
ARGUMENT EXTEND ssreqid TYPED AS ssripatrep option PRINTED BY pr_ssreqid
| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ]
END
let accept_ssreqid strm =
match Compat.get_tok (Util.stream_nth 0 strm) with
| Tok.IDENT _ -> accept_before_syms [":"] strm
| Tok.KEYWORD ":" -> ()
| Tok.KEYWORD pat when List.mem pat ["_"; "?"; "->"; "<-"] ->
accept_before_syms [":"] strm
| _ -> raise Stream.Failure
let test_ssreqid = Gram.Entry.of_parser "test_ssreqid" accept_ssreqid
GEXTEND Gram
GLOBAL: ssreqid;
ssreqpat: [
[ id = Prim.ident -> IpatId id
| "_" -> IpatWild
| "?" -> IpatAnon
| occ = ssrdocc; "->" -> (match occ with
| None, occ -> IpatRw (occ, L2R)
| _ -> loc_error !@loc "Only occurrences are allowed here")
| occ = ssrdocc; "<-" -> (match occ with
| None, occ -> IpatRw (occ, R2L)
| _ -> loc_error !@loc "Only occurrences are allowed here")
| "->" -> IpatRw (allocc, L2R)
| "<-" -> IpatRw (allocc, R2L)
]];
ssreqid: [
[ test_ssreqid; pat = ssreqpat -> Some pat
| test_ssreqid -> None
]];
END
(* creation *)
let mkEq dir cl c t n gl =
let eqargs = [|t; c; c|] in eqargs.(dir_org dir) <- mkRel n;
let eq, gl = pf_fresh_global (build_coq_eq()) gl in
let refl, gl = mkRefl t c gl in
mkArrow (mkApp (eq, eqargs)) (lift 1 cl), refl, gl
let pushmoveeqtac cl c gl =
let x, t, cl1 = destProd cl in
let cl2, eqc, gl = mkEq R2L cl1 c t 1 gl in
apply_type (mkProd (x, t, cl2)) [c; eqc] gl
let pushcaseeqtac cl gl =
let cl1, args = destApplication cl in
let n = Array.length args in
let dc, cl2 = decompose_lam_n n cl1 in
let _, t = List.nth dc (n - 1) in
let cl3, eqc, gl = mkEq R2L cl2 args.(0) t n gl in
let gl, clty = pf_type_of gl cl in
let prot, gl = mkProt clty cl3 gl in
let cl4 = mkApp (compose_lam dc prot, args) in
let gl, _ = pf_e_type_of gl cl4 in
tclTHEN (apply_type cl4 [eqc])
(Proofview.V82.of_tactic (convert_concl cl4)) gl
let pushelimeqtac gl =
let _, args = destApplication (pf_concl gl) in
let x, t, _ = destLambda args.(1) in
let cl1 = mkApp (args.(1), Array.sub args 2 (Array.length args - 2)) in
let cl2, eqc, gl = mkEq L2R cl1 args.(2) t 1 gl in
tclTHEN (apply_type (mkProd (x, t, cl2)) [args.(2); eqc])
(Proofview.V82.of_tactic intro) gl
(** Bookkeeping (discharge-intro) argument *)
(* Since all bookkeeping ssr commands have the same discharge-intro *)
(* argument format we use a single grammar entry point to parse them. *)
(* the entry point parses only non-empty arguments to avoid conflicts *)
(* with the basic Coq tactics. *)
(* type ssrarg = ssrview * (ssreqid * (ssrdgens * ssripats)) *)
let pr_ssrarg _ _ _ (view, (eqid, (dgens, ipats))) =
let pri = pr_intros (gens_sep dgens) in
pr_view view ++ pr_eqid eqid ++ pr_dgens pr_gen dgens ++ pri ipats
ARGUMENT EXTEND ssrarg TYPED AS ssrview * (ssreqid * (ssrdgens * ssrintros))
PRINTED BY pr_ssrarg
| [ ssrview(view) ssreqid(eqid) ssrdgens(dgens) ssrintros(ipats) ] ->
[ view, (eqid, (dgens, ipats)) ]
| [ ssrview(view) ssrclear(clr) ssrintros(ipats) ] ->
[ view, (None, (([], clr), ipats)) ]
| [ ssreqid(eqid) ssrdgens(dgens) ssrintros(ipats) ] ->
[ [], (eqid, (dgens, ipats)) ]
| [ ssrclear_ne(clr) ssrintros(ipats) ] ->
[ [], (None, (([], clr), ipats)) ]
| [ ssrintros_ne(ipats) ] ->
[ [], (None, (([], []), ipats)) ]
END
(** The "clear" tactic *)
(* We just add a numeric version that clears the n top assumptions. *)
let poptac ist n = introstac ~ist (List.init n (fun _ -> IpatWild))
TACTIC EXTEND ssrclear
| [ "clear" natural(n) ] -> [ Proofview.V82.tactic (poptac ist n) ]
END
(** The "move" tactic *)
let rec improper_intros = function
| IpatSimpl _ :: ipats -> improper_intros ipats
| (IpatId _ | IpatAnon | IpatCase _ | IpatAll) :: _ -> false
| _ -> true
let check_movearg = function
| view, (eqid, _) when view <> [] && eqid <> None ->
CErrors.error "incompatible view and equation in move tactic"
| view, (_, (([gen :: _], _), _)) when view <> [] && has_occ gen ->
CErrors.error "incompatible view and occurrence switch in move tactic"
| _, (_, ((dgens, _), _)) when List.length dgens > 1 ->
CErrors.error "dependents switch `/' in move tactic"
| _, (eqid, (_, ipats)) when eqid <> None && improper_intros ipats ->
CErrors.error "no proper intro pattern for equation in move tactic"
| arg -> arg
ARGUMENT EXTEND ssrmovearg TYPED AS ssrarg PRINTED BY pr_ssrarg
| [ ssrarg(arg) ] -> [ check_movearg arg ]
END
let viewmovetac_aux clear name_ref (_, vl as v) _ gen ist gl =
let cl, c, clr, gl, gen_pat =
let _, gen_pat, a, b, c, ucst, gl = pf_interp_gen_aux ist gl false gen in
a, b ,c, pf_merge_uc ucst gl, gen_pat in
let cl, c, gl = if vl = [] then cl, c, gl else pf_with_view ist gl v cl c in
let clr = if clear then clr else [] in
name_ref := (match id_of_pattern gen_pat with Some id -> id | _ -> top_id);
genclrtac cl [c] clr gl
let () = move_top_with_view :=
(fun c r v -> with_defective (viewmovetac_aux c r v) [] [])
let viewmovetac v deps gen ist gl =
viewmovetac_aux true (ref top_id) v deps gen ist gl
let eqmovetac _ gen ist gl =
let cl, c, _, gl = pf_interp_gen ist gl false gen in pushmoveeqtac cl c gl
let movehnftac gl = match kind_of_term (pf_concl gl) with
| Prod _ | LetIn _ -> tclIDTAC gl
| _ -> Proofview.V82.of_tactic hnf_in_concl gl
let ssrmovetac ist = function
| _::_ as view, (_, (dgens, ipats)) ->
let dgentac = with_dgens dgens (viewmovetac (true, view)) ist in
tclTHEN dgentac (introstac ~ist ipats)
| _, (Some pat, (dgens, ipats)) ->
let dgentac = with_dgens dgens eqmovetac ist in
tclTHEN dgentac (introstac ~ist (eqmoveipats pat ipats))
| _, (_, (([gens], clr), ipats)) ->
let gentac = genstac (gens, clr) ist in
tclTHEN gentac (introstac ~ist ipats)
| _, (_, ((_, clr), ipats)) ->
tclTHENLIST [movehnftac; cleartac clr; introstac ~ist ipats]
TACTIC EXTEND ssrmove
| [ "move" ssrmovearg(arg) ssrrpat(pat) ] ->
[ Proofview.V82.tactic (tclTHEN (ssrmovetac ist arg) (introstac ~ist [pat])) ]
| [ "move" ssrmovearg(arg) ssrclauses(clauses) ] ->
[ Proofview.V82.tactic (tclCLAUSES ist (ssrmovetac ist arg) clauses) ]
| [ "move" ssrrpat(pat) ] -> [ Proofview.V82.tactic (introstac ~ist [pat]) ]
| [ "move" ] -> [ Proofview.V82.tactic (movehnftac) ]
END
(* TASSI: given the type of an elimination principle, it finds the higher order
* argument (index), it computes it's arity and the arity of the eliminator and
* checks if the eliminator is recursive or not *)
let analyze_eliminator elimty env sigma =
let rec loop ctx t = match kind_of_type t with
| AtomicType (hd, args) when isRel hd ->
ctx, destRel hd, not (noccurn 1 t), Array.length args
| CastType (t, _) -> loop ctx t
| ProdType (x, ty, t) -> loop (RelDecl.LocalAssum (x, ty) :: ctx) t
| LetInType (x,b,ty,t) -> loop (RelDecl.LocalDef (x, b, ty) :: ctx) (subst1 b t)
| _ ->
let env' = Environ.push_rel_context ctx env in
let t' = Reductionops.whd_all env' sigma t in
if not (Term.eq_constr t t') then loop ctx t' else
errorstrm (str"The eliminator has the wrong shape."++spc()++
str"A (applied) bound variable was expected as the conclusion of "++
str"the eliminator's"++Pp.cut()++str"type:"++spc()++pr_constr elimty) in
let ctx, pred_id, elim_is_dep, n_pred_args = loop [] elimty in
let n_elim_args = Context.Rel.nhyps ctx in
let is_rec_elim =
let count_occurn n term =
let count = ref 0 in
let rec occur_rec n c = match kind_of_term c with
| Rel m -> if m = n then incr count
| _ -> iter_constr_with_binders succ occur_rec n c
in
occur_rec n term; !count in
let occurr2 n t = count_occurn n t > 1 in
not (List.for_all_i
(fun i (_,rd) -> pred_id <= i || not (occurr2 (pred_id - i) rd))
1 (assums_of_rel_context ctx))
in
n_elim_args - pred_id, n_elim_args, is_rec_elim, elim_is_dep, n_pred_args
(* TASSI: This version of unprotects inlines the unfold tactic definition,
* since we don't want to wipe out let-ins, and it seems there is no flag
* to change that behaviour in the standard unfold code *)
let unprotecttac gl =
let c, gl = pf_mkSsrConst "protect_term" gl in
let prot, _ = destConst c in
onClause (fun idopt ->
let hyploc = Option.map (fun id -> id, InHyp) idopt in
Proofview.V82.of_tactic (reduct_option
(Reductionops.clos_norm_flags
(CClosure.RedFlags.mkflags
[CClosure.RedFlags.fBETA;
CClosure.RedFlags.fCONST prot;
CClosure.RedFlags.fMATCH;
CClosure.RedFlags.fFIX;
CClosure.RedFlags.fCOFIX]), DEFAULTcast) hyploc))
allHypsAndConcl gl
let dependent_apply_error =
try CErrors.error "Could not fill dependent hole in \"apply\"" with err -> err
(* TASSI: Sometimes Coq's apply fails. According to my experience it may be
* related to goals that are products and with beta redexes. In that case it
* guesses the wrong number of implicit arguments for your lemma. What follows
* is just like apply, but with a user-provided number n of implicits.
*
* Refine.refine function that handles type classes and evars but fails to
* handle "dependently typed higher order evars".
*
* Refiner.refiner that does not handle metas with a non ground type but works
* with dependently typed higher order metas. *)
let applyn ~with_evars ?beta ?(with_shelve=false) n t gl =
if with_evars then
let refine gl =
let t, ty, args, gl = pf_saturate ?beta ~bi_types:true gl t n in
(* pp(lazy(str"sigma@saturate=" ++ pr_evar_map None (project gl))); *)
let gl = pf_unify_HO gl ty (pf_concl gl) in
let gs = CList.map_filter (fun (_, e) ->
if isEvar (pf_nf_evar gl e) then Some e else None)
args in
pf_partial_solution gl t gs
in
Proofview.(V82.of_tactic
(tclTHEN (V82.tactic refine)
(if with_shelve then shelve_unifiable else tclUNIT ()))) gl
else
let t, gl = if n = 0 then t, gl else
let sigma, si = project gl, sig_it gl in
let rec loop sigma bo args = function (* saturate with metas *)
| 0 -> mkApp (t, Array.of_list (List.rev args)), re_sig si sigma
| n -> match kind_of_term bo with
| Lambda (_, ty, bo) ->
if not (closed0 ty) then raise dependent_apply_error;
let m = Evarutil.new_meta () in
loop (meta_declare m ty sigma) bo ((mkMeta m)::args) (n-1)
| _ -> assert false
in loop sigma t [] n in
pp(lazy(str"Refiner.refiner " ++ pr_constr t));
Refiner.refiner (Proof_type.Refine t) gl
let refine_with ?(first_goes_last=false) ?beta ?(with_evars=true) oc gl =
let rec mkRels = function 1 -> [] | n -> mkRel n :: mkRels (n-1) in
let uct = Evd.evar_universe_context (fst oc) in
let n, oc = pf_abs_evars_pirrel gl oc in
let gl = pf_unsafe_merge_uc uct gl in
let oc = if not first_goes_last || n <= 1 then oc else
let l, c = decompose_lam oc in
if not (List.for_all_i (fun i (_,t) -> closedn ~-i t) (1-n) l) then oc else
compose_lam (let xs,y = List.chop (n-1) l in y @ xs)
(mkApp (compose_lam l c, Array.of_list (mkRel 1 :: mkRels n)))
in
pp(lazy(str"after: " ++ pr_constr oc));
try applyn ~with_evars ~with_shelve:true ?beta n oc gl
with e when CErrors.noncritical e -> raise dependent_apply_error
let pf_fresh_inductive_instance ind gl =
let sigma, env, it = project gl, pf_env gl, sig_it gl in
let sigma, indu = Evd.fresh_inductive_instance env sigma ind in
indu, re_sig it sigma
(** The "case" and "elim" tactic *)
(* A case without explicit dependent terms but with both a view and an *)
(* occurrence switch and/or an equation is treated as dependent, with the *)
(* viewed term as the dependent term (the occurrence switch would be *)
(* meaningless otherwise). When both a view and explicit dependents are *)
(* present, it is forbidden to put a (meaningless) occurrence switch on *)
(* the viewed term. *)
(* This is both elim and case (defaulting to the former). If ~elim is omitted
* the standard eliminator is chosen. The code is made of 4 parts:
* 1. find the eliminator if not given as ~elim and analyze it
* 2. build the patterns to be matched against the conclusion, looking at
* (occ, c), deps and the pattern inferred from the type of the eliminator
* 3. build the new predicate matching the patterns, and the tactic to
* generalize the equality in case eqid is not None
* 4. build the tactic handle intructions and clears as required in ipats and
* by eqid *)
let ssrelim ?(is_case=false) ?ist deps what ?elim eqid ipats gl =
(* some sanity checks *)
let oc, orig_clr, occ, c_gen, gl = match what with
| `EConstr(_,_,t) when isEvar t ->
anomaly "elim called on a constr evar"
| `EGen _ when ist = None ->
anomaly "no ist and non simple elimination"
| `EGen (_, g) when elim = None && is_wildcard g ->
errorstrm(str"Indeterminate pattern and no eliminator")
| `EGen ((Some clr,occ), g) when is_wildcard g ->
None, clr, occ, None, gl
| `EGen ((None, occ), g) when is_wildcard g -> None,[],occ,None,gl
| `EGen ((_, occ), p as gen) ->
let _, c, clr,gl = pf_interp_gen (Option.get ist) gl true gen in
Some c, clr, occ, Some p,gl
| `EConstr (clr, occ, c) -> Some c, clr, occ, None,gl in
let orig_gl, concl, env = gl, pf_concl gl, pf_env gl in
pp(lazy(str(if is_case then "==CASE==" else "==ELIM==")));
(* Utils of local interest only *)
let iD s ?t gl = let t = match t with None -> pf_concl gl | Some x -> x in
pp(lazy(str s ++ pr_constr t)); tclIDTAC gl in
let eq, gl = pf_fresh_global (build_coq_eq ()) gl in
let protectC, gl = pf_mkSsrConst "protect_term" gl in
let fire_subst gl t = Reductionops.nf_evar (project gl) t in
let fire_sigma sigma t = Reductionops.nf_evar sigma t in
let is_undef_pat = function
| sigma, T t ->
(match kind_of_term (fire_sigma sigma t) with Evar _ -> true | _ -> false)
| _ -> false in
let match_pat env p occ h cl =
let sigma0 = project orig_gl in
pp(lazy(str"matching: " ++ pr_occ occ ++ pp_pattern p));
let (c,ucst), cl =
fill_occ_pattern ~raise_NoMatch:true env sigma0 cl p occ h in
pp(lazy(str" got: " ++ pr_constr c));
c, cl, ucst in
let mkTpat gl t = (* takes a term, refreshes it and makes a T pattern *)
let n, t, _, ucst = pf_abs_evars orig_gl (project gl, fire_subst gl t) in
let t, _, _, sigma = saturate ~beta:true env (project gl) t n in
Evd.merge_universe_context sigma ucst, T t in
let unif_redex gl (sigma, r as p) t = (* t is a hint for the redex of p *)
let n, t, _, ucst = pf_abs_evars orig_gl (project gl, fire_subst gl t) in
let t, _, _, sigma = saturate ~beta:true env sigma t n in
let sigma = Evd.merge_universe_context sigma ucst in
match r with
| X_In_T (e, p) -> sigma, E_As_X_In_T (t, e, p)
| _ ->
try unify_HO env sigma t (fst (redex_of_pattern env p)), r
with e when CErrors.noncritical e -> p in
(* finds the eliminator applies it to evars and c saturated as needed *)
(* obtaining "elim ??? (c ???)". pred is the higher order evar *)
(* cty is None when the user writes _ (hence we can't make a pattern *)
let cty, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl =
match elim with
| Some elim ->
let gl, elimty = pf_e_type_of gl elim in
let pred_id, n_elim_args, is_rec, elim_is_dep, n_pred_args =
analyze_eliminator elimty env (project gl) in
let elim, elimty, elim_args, gl =
pf_saturate ~beta:is_case gl elim ~ty:elimty n_elim_args in
let pred = List.assoc pred_id elim_args in
let elimty = Reductionops.whd_all env (project gl) elimty in
let cty, gl =
if Option.is_empty oc then None, gl
else
let c = Option.get oc in let gl, c_ty = pf_type_of gl c in
let pc = match c_gen with
| Some p -> interp_cpattern (Option.get ist) orig_gl p None
| _ -> mkTpat gl c in
Some(c, c_ty, pc), gl in
cty, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl
| None ->
let c = Option.get oc in let gl, c_ty = pf_type_of gl c in
let ((kn, i) as ind, _ as indu), unfolded_c_ty =
pf_reduce_to_quantified_ind gl c_ty in
let sort = elimination_sort_of_goal gl in
let gl, elim =
if not is_case then
let t, gl = pf_fresh_global (Indrec.lookup_eliminator ind sort) gl in
gl, t
else
pf_eapply (fun env sigma () ->
let sigma = Sigma.Unsafe.of_evar_map sigma in
let Sigma (ind, sigma, _) = Indrec.build_case_analysis_scheme env sigma indu true sort in
let sigma = Sigma.to_evar_map sigma in
(sigma, ind)) gl () in
let gl, elimty = pf_type_of gl elim in
let pred_id,n_elim_args,is_rec,elim_is_dep,n_pred_args =
analyze_eliminator elimty env (project gl) in
let rctx = fst (decompose_prod_assum unfolded_c_ty) in
let n_c_args = Context.Rel.length rctx in
let c, c_ty, t_args, gl = pf_saturate gl c ~ty:c_ty n_c_args in
let elim, elimty, elim_args, gl =
pf_saturate ~beta:is_case gl elim ~ty:elimty n_elim_args in
let pred = List.assoc pred_id elim_args in
let pc = match n_c_args, c_gen with
| 0, Some p -> interp_cpattern (Option.get ist) orig_gl p None
| _ -> mkTpat gl c in
let cty = Some (c, c_ty, pc) in
let elimty = Reductionops.whd_all env (project gl) elimty in
cty, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl
in
pp(lazy(str"elim= "++ pr_constr_pat elim));
pp(lazy(str"elimty= "++ pr_constr_pat elimty));
let inf_deps_r = match kind_of_type elimty with
| AtomicType (_, args) -> List.rev (Array.to_list args)
| _ -> assert false in
let saturate_until gl c c_ty f =
let rec loop n = try
let c, c_ty, _, gl = pf_saturate gl c ~ty:c_ty n in
let gl' = f c c_ty gl in
Some (c, c_ty, gl, gl')
with
| NotEnoughProducts -> None
| e when CErrors.noncritical e -> loop (n+1) in loop 0 in
(* Here we try to understand if the main pattern/term the user gave is
* the first pattern to be matched (i.e. if elimty ends in P t1 .. tn,
* weather tn is the t the user wrote in 'elim: t' *)
let c_is_head_p, gl = match cty with
| None -> true, gl (* The user wrote elim: _ *)
| Some (c, c_ty, _) ->
let res =
(* we try to see if c unifies with the last arg of elim *)
if elim_is_dep then None else
let arg = List.assoc (n_elim_args - 1) elim_args in
let gl, arg_ty = pf_type_of gl arg in
match saturate_until gl c c_ty (fun c c_ty gl ->
pf_unify_HO (pf_unify_HO gl c_ty arg_ty) arg c) with
| Some (c, _, _, gl) -> Some (false, gl)
| None -> None in
match res with
| Some x -> x
| None ->
(* we try to see if c unifies with the last inferred pattern *)
let inf_arg = List.hd inf_deps_r in
let gl, inf_arg_ty = pf_type_of gl inf_arg in
match saturate_until gl c c_ty (fun _ c_ty gl ->
pf_unify_HO gl c_ty inf_arg_ty) with
| Some (c, _, _,gl) -> true, gl
| None ->
errorstrm (str"Unable to apply the eliminator to the term"++
spc()++pr_constr c++spc()++str"or to unify it's type with"++
pr_constr inf_arg_ty) in
pp(lazy(str"c_is_head_p= " ++ bool c_is_head_p));
let gl, predty = pf_type_of gl pred in
(* Patterns for the inductive types indexes to be bound in pred are computed
* looking at the ones provided by the user and the inferred ones looking at
* the type of the elimination principle *)
let pp_pat (_,p,_,occ) = pr_occ occ ++ pp_pattern p in
let pp_inf_pat gl (_,_,t,_) = pr_constr_pat (fire_subst gl t) in
let patterns, clr, gl =
let rec loop patterns clr i = function
| [],[] -> patterns, clr, gl
| ((oclr, occ), t):: deps, inf_t :: inf_deps ->
let ist = match ist with Some x -> x | None -> assert false in
let p = interp_cpattern ist orig_gl t None in
let clr_t =
interp_clr (oclr,(tag_of_cpattern t,fst (redex_of_pattern env p)))in
(* if we are the index for the equation we do not clear *)
let clr_t = if deps = [] && eqid <> None then [] else clr_t in
let p = if is_undef_pat p then mkTpat gl inf_t else p in
loop (patterns @ [i, p, inf_t, occ])
(clr_t @ clr) (i+1) (deps, inf_deps)
| [], c :: inf_deps ->
pp(lazy(str"adding inf pattern " ++ pr_constr_pat c));
loop (patterns @ [i, mkTpat gl c, c, allocc])
clr (i+1) ([], inf_deps)
| _::_, [] -> errorstrm (str "Too many dependent abstractions") in
let deps, head_p, inf_deps_r = match what, c_is_head_p, cty with
| `EConstr _, _, None -> anomaly "Simple elim with no term"
| _, false, _ -> deps, [], inf_deps_r
| `EGen gen, true, None -> deps @ [gen], [], inf_deps_r
| _, true, Some (c, _, pc) ->
let occ = if occ = None then allocc else occ in
let inf_p, inf_deps_r = List.hd inf_deps_r, List.tl inf_deps_r in
deps, [1, pc, inf_p, occ], inf_deps_r in
let patterns, clr, gl =
loop [] orig_clr (List.length head_p+1) (List.rev deps, inf_deps_r) in
head_p @ patterns, Util.List.uniquize clr, gl
in
pp(lazy(pp_concat (str"patterns=") (List.map pp_pat patterns)));
pp(lazy(pp_concat (str"inf. patterns=") (List.map (pp_inf_pat gl) patterns)));
(* Predicate generation, and (if necessary) tactic to generalize the
* equation asked by the user *)
let elim_pred, gen_eq_tac, clr, gl =
let error gl t inf_t = errorstrm (str"The given pattern matches the term"++
spc()++pp_term gl t++spc()++str"while the inferred pattern"++
spc()++pr_constr_pat (fire_subst gl inf_t)++spc()++ str"doesn't") in
let match_or_postpone (cl, gl, post) (h, p, inf_t, occ) =
let p = unif_redex gl p inf_t in
if is_undef_pat p then
let () = pp(lazy(str"postponing " ++ pp_pattern p)) in
cl, gl, post @ [h, p, inf_t, occ]
else try
let c, cl, ucst = match_pat env p occ h cl in
let gl = pf_merge_uc ucst gl in
let gl = try pf_unify_HO gl inf_t c with _ -> error gl c inf_t in
cl, gl, post
with
| NoMatch | NoProgress ->
let e, ucst = redex_of_pattern env p in
let gl = pf_merge_uc ucst gl in
let n, e, _, _ucst = pf_abs_evars gl (fst p, e) in
let e, _, _, gl = pf_saturate ~beta:true gl e n in
let gl = try pf_unify_HO gl inf_t e with _ -> error gl e inf_t in
cl, gl, post
in
let rec match_all concl gl patterns =
let concl, gl, postponed =
List.fold_left match_or_postpone (concl, gl, []) patterns in
if postponed = [] then concl, gl
else if List.length postponed = List.length patterns then
errorstrm (str "Some patterns are undefined even after all"++spc()++
str"the defined ones matched")
else match_all concl gl postponed in
let concl, gl = match_all concl gl patterns in
let pred_rctx, _ = decompose_prod_assum (fire_subst gl predty) in
let concl, gen_eq_tac, clr, gl = match eqid with
| Some (IpatId _) when not is_rec ->
let k = List.length deps in
let c = fire_subst gl (List.assoc (n_elim_args - k - 1) elim_args) in
let gl, t = pf_type_of gl c in
let gen_eq_tac, gl =
let refl = mkApp (eq, [|t; c; c|]) in
let new_concl = mkArrow refl (lift 1 (pf_concl orig_gl)) in
let new_concl = fire_subst gl new_concl in
let erefl, gl = mkRefl t c gl in
let erefl = fire_subst gl erefl in
apply_type new_concl [erefl], gl in
let rel = k + if c_is_head_p then 1 else 0 in
let src, gl = mkProt mkProp (mkApp (eq,[|t; c; mkRel rel|])) gl in
let concl = mkArrow src (lift 1 concl) in
let clr = if deps <> [] then clr else [] in
concl, gen_eq_tac, clr, gl
| _ -> concl, tclIDTAC, clr, gl in
let mk_lam t r = mkLambda_or_LetIn r t in
let concl = List.fold_left mk_lam concl pred_rctx in
let gl, concl =
if eqid <> None && is_rec then
let gl, concls = pf_type_of gl concl in
let concl, gl = mkProt concls concl gl in
let gl, _ = pf_e_type_of gl concl in
gl, concl
else gl, concl in
concl, gen_eq_tac, clr, gl in
let gl, pty = pf_e_type_of gl elim_pred in
pp(lazy(str"elim_pred=" ++ pp_term gl elim_pred));
pp(lazy(str"elim_pred_ty=" ++ pp_term gl pty));
let gl = pf_unify_HO gl pred elim_pred in
let elim = fire_subst gl elim in
let gl, _ = pf_e_type_of gl elim in
(* check that the patterns do not contain non instantiated dependent metas *)
let () =
let evars_of_term = Evarutil.undefined_evars_of_term (project gl) in
let patterns = List.map (fun (_,_,t,_) -> fire_subst gl t) patterns in
let patterns_ev = List.map evars_of_term patterns in
let ev = List.fold_left Intset.union Intset.empty patterns_ev in
let ty_ev = Intset.fold (fun i e ->
let ex = i in
let i_ty = Evd.evar_concl (Evd.find (project gl) ex) in
Intset.union e (evars_of_term i_ty))
ev Intset.empty in
let inter = Intset.inter ev ty_ev in
if not (Intset.is_empty inter) then begin
let i = Intset.choose inter in
let pat = List.find (fun t -> Intset.mem i (evars_of_term t)) patterns in
errorstrm(str"Pattern"++spc()++pr_constr_pat pat++spc()++
str"was not completely instantiated and one of its variables"++spc()++
str"occurs in the type of another non-instantiated pattern variable");
end
in
(* the elim tactic, with the eliminator and the predicated we computed *)
let elim = project gl, elim in
let elim_tac gl =
tclTHENLIST [refine_with ~with_evars:false elim; cleartac clr] gl in
(* handling of following intro patterns and equation introduction if any *)
let elim_intro_tac gl =
let intro_eq =
match eqid with
| Some (IpatId ipat) when not is_rec ->
let rec intro_eq gl = match kind_of_type (pf_concl gl) with
| ProdType (_, src, tgt) ->
(match kind_of_type src with
| AtomicType (hd, _) when Term.eq_constr hd protectC ->
tclTHENLIST [unprotecttac; introid ipat] gl
| _ -> tclTHENLIST [ iD "IA"; introstac [IpatAnon]; intro_eq] gl)
|_ -> errorstrm (str "Too many names in intro pattern") in
intro_eq
| Some (IpatId ipat) ->
let name gl = mk_anon_id "K" gl in
let intro_lhs gl =
let elim_name = match orig_clr, what with
| [SsrHyp(_, x)], _ -> x
| _, `EConstr(_,_,t) when isVar t -> destVar t
| _ -> name gl in
if is_name_in_ipats elim_name ipats then introid (name gl) gl
else introid elim_name gl
in
let rec gen_eq_tac gl =
let concl = pf_concl gl in
let ctx, last = decompose_prod_assum concl in
let args = match kind_of_type last with
| AtomicType (hd, args) -> assert(Term.eq_constr hd protectC); args
| _ -> assert false in
let case = args.(Array.length args-1) in
if not(closed0 case) then tclTHEN (introstac [IpatAnon]) gen_eq_tac gl
else
let gl, case_ty = pf_type_of gl case in
let refl = mkApp (eq, [|lift 1 case_ty; mkRel 1; lift 1 case|]) in
let new_concl = fire_subst gl
(mkProd (Name (name gl), case_ty, mkArrow refl (lift 2 concl))) in
let erefl, gl = mkRefl case_ty case gl in
let erefl = fire_subst gl erefl in
apply_type new_concl [case;erefl] gl in
tclTHENLIST [gen_eq_tac; intro_lhs; introid ipat]
| _ -> tclIDTAC in
let unprot = if eqid <> None && is_rec then unprotecttac else tclIDTAC in
tclEQINTROS ?ist elim_tac (tclTHENLIST [intro_eq; unprot]) ipats gl
in
tclTHENLIST [gen_eq_tac; elim_intro_tac] orig_gl
;;
let simplest_newelim x= ssrelim ~is_case:false [] (`EConstr ([],None,x)) None []
let simplest_newcase x= ssrelim ~is_case:true [] (`EConstr ([],None,x)) None []
let _ = simplest_newcase_ref := simplest_newcase
let check_casearg = function
| view, (_, (([_; gen :: _], _), _)) when view <> [] && has_occ gen ->
CErrors.error "incompatible view and occurrence switch in dependent case tactic"
| arg -> arg
ARGUMENT EXTEND ssrcasearg TYPED AS ssrarg PRINTED BY pr_ssrarg
| [ ssrarg(arg) ] -> [ check_casearg arg ]
END
let ssrcasetac ist (view, (eqid, (dgens, ipats))) =
let ndefectcasetac view eqid ipats deps ((_, occ), _ as gen) ist gl =
let simple = (eqid = None && deps = [] && occ = None) in
let cl, c, clr, gl = pf_interp_gen ist gl true gen in
let _, vc, gl =
if view = [] then c, c, gl else pf_with_view ist gl (false, view) cl c in
if simple && is_injection_case vc gl then
tclTHENLIST [perform_injection vc; cleartac clr; introstac ~ist ipats] gl
else
(* macro for "case/v E: x" ---> "case E: x / (v x)" *)
let deps, clr, occ =
if view <> [] && eqid <> None && deps = [] then [gen], [], None
else deps, clr, occ in
ssrelim ~is_case:true ~ist deps (`EConstr (clr,occ, vc)) eqid ipats gl
in
with_dgens dgens (ndefectcasetac view eqid ipats) ist
TACTIC EXTEND ssrcase
| [ "case" ssrcasearg(arg) ssrclauses(clauses) ] ->
[ Proofview.V82.tactic (tclCLAUSES ist (ssrcasetac ist arg) clauses) ]
| [ "case" ] -> [ Proofview.V82.tactic (with_top ssrscasetac) ]
END
(** The "elim" tactic *)
(* Elim views are elimination lemmas, so the eliminated term is not addded *)
(* to the dependent terms as for "case", unless it actually occurs in the *)
(* goal, the "all occurrences" {+} switch is used, or the equation switch *)
(* is used and there are no dependents. *)
let ssrelimtac ist (view, (eqid, (dgens, ipats))) =
let ndefectelimtac view eqid ipats deps gen ist gl =
let elim = match view with [v] -> Some (snd(force_term ist gl v)) | _ -> None in
ssrelim ~ist deps (`EGen gen) ?elim eqid ipats gl
in
with_dgens dgens (ndefectelimtac view eqid ipats) ist
TACTIC EXTEND ssrelim
| [ "elim" ssrarg(arg) ssrclauses(clauses) ] ->
[ Proofview.V82.tactic (tclCLAUSES ist (ssrelimtac ist arg) clauses) ]
| [ "elim" ] -> [ Proofview.V82.tactic (with_top simplest_newelim) ]
END
(** 6. Backward chaining tactics: apply, exact, congr. *)
(** The "apply" tactic *)
let pr_agen (docc, dt) = pr_docc docc ++ pr_term dt
let pr_ssragen _ _ _ = pr_agen
let pr_ssragens _ _ _ = pr_dgens pr_agen
ARGUMENT EXTEND ssragen TYPED AS ssrdocc * ssrterm PRINTED BY pr_ssragen
| [ "{" ne_ssrhyp_list(clr) "}" ssrterm(dt) ] -> [ mkclr clr, dt ]
| [ ssrterm(dt) ] -> [ nodocc, dt ]
END
ARGUMENT EXTEND ssragens TYPED AS ssragen list list * ssrclear
PRINTED BY pr_ssragens
| [ "{" ne_ssrhyp_list(clr) "}" ssrterm(dt) ssragens(agens) ] ->
[ cons_gen (mkclr clr, dt) agens ]
| [ "{" ne_ssrhyp_list(clr) "}" ] -> [ [[]], clr]
| [ ssrterm(dt) ssragens(agens) ] ->
[ cons_gen (nodocc, dt) agens ]
| [ ] -> [ [[]], [] ]
END
let mk_applyarg views agens intros = views, (None, (agens, intros))
let pr_ssraarg _ _ _ (view, (eqid, (dgens, ipats))) =
let pri = pr_intros (gens_sep dgens) in
pr_view view ++ pr_eqid eqid ++ pr_dgens pr_agen dgens ++ pri ipats
ARGUMENT EXTEND ssrapplyarg
TYPED AS ssrview * (ssreqid * (ssragens * ssrintros))
PRINTED BY pr_ssraarg
| [ ":" ssragen(gen) ssragens(dgens) ssrintros(intros) ] ->
[ mk_applyarg [] (cons_gen gen dgens) intros ]
| [ ssrclear_ne(clr) ssrintros(intros) ] ->
[ mk_applyarg [] ([], clr) intros ]
| [ ssrintros_ne(intros) ] ->
[ mk_applyarg [] ([], []) intros ]
| [ ssrview(view) ":" ssragen(gen) ssragens(dgens) ssrintros(intros) ] ->
[ mk_applyarg view (cons_gen gen dgens) intros ]
| [ ssrview(view) ssrclear(clr) ssrintros(intros) ] ->
[ mk_applyarg view ([], clr) intros ]
END
let interp_agen ist gl ((goclr, _), (k, gc)) (clr, rcs) =
(* pp(lazy(str"sigma@interp_agen=" ++ pr_evar_map None (project gl))); *)
let rc = glob_constr ist (pf_env gl) gc in
let rcs' = rc :: rcs in
match goclr with
| None -> clr, rcs'
| Some ghyps ->
let clr' = snd (interp_hyps ist gl ghyps) @ clr in
if k <> ' ' then clr', rcs' else
match rc with
| GVar (loc, id) when not_section_id id -> SsrHyp (loc, id) :: clr', rcs'
| GRef (loc, VarRef id, _) when not_section_id id ->
SsrHyp (loc, id) :: clr', rcs'
| _ -> clr', rcs'
let interp_agens ist gl gagens =
match List.fold_right (interp_agen ist gl) gagens ([], []) with
| clr, rlemma :: args ->
let n = interp_nbargs ist gl rlemma - List.length args in
let rec loop i =
if i > n then
errorstrm (str "Cannot apply lemma " ++ pf_pr_glob_constr gl rlemma)
else
try interp_refine ist gl (mkRApp rlemma (mkRHoles i @ args))
with _ -> loop (i + 1) in
clr, loop 0
| _ -> assert false
let apply_rconstr ?ist t gl =
(* pp(lazy(str"sigma@apply_rconstr=" ++ pr_evar_map None (project gl))); *)
let n = match ist, t with
| None, (GVar (_, id) | GRef (_, VarRef id,_)) -> pf_nbargs gl (mkVar id)
| Some ist, _ -> interp_nbargs ist gl t
| _ -> anomaly "apply_rconstr without ist and not RVar" in
let mkRlemma i = mkRApp t (mkRHoles i) in
let cl = pf_concl gl in
let rec loop i =
if i > n then
errorstrm (str"Cannot apply lemma "++pf_pr_glob_constr gl t)
else try pf_match gl (mkRlemma i) (OfType cl) with _ -> loop (i + 1) in
refine_with (loop 0) gl
let mkRAppView ist gl rv gv =
let nb_view_imps = interp_view_nbimps ist gl rv in
mkRApp rv (mkRHoles (abs nb_view_imps))
let prof_apply_interp_with = mk_profiler "ssrapplytac.interp_with";;
let refine_interp_apply_view i ist gl gv =
let pair i = List.map (fun x -> i, x) in
let rv = pf_intern_term ist gl gv in
let v = mkRAppView ist gl rv gv in
let interp_with (i, hint) =
interp_refine ist gl (mkRApp hint (v :: mkRHoles i)) in
let interp_with x = prof_apply_interp_with.profile interp_with x in
let rec loop = function
| [] -> (try apply_rconstr ~ist rv gl with _ -> view_error "apply" gv)
| h :: hs -> (try refine_with (snd (interp_with h)) gl with _ -> loop hs) in
loop (pair i viewtab.(i) @ if i = 2 then pair 1 viewtab.(1) else [])
let apply_top_tac gl =
tclTHENLIST [introid top_id; apply_rconstr (mkRVar top_id); Proofview.V82.of_tactic (clear [top_id])] gl
let inner_ssrapplytac gviews ggenl gclr ist gl =
let _, clr = interp_hyps ist gl gclr in
let vtac gv i gl' = refine_interp_apply_view i ist gl' gv in
let ggenl, tclGENTAC =
if gviews <> [] && ggenl <> [] then
let ggenl= List.map (fun (x,g) -> x, cpattern_of_term g) (List.hd ggenl) in
[], tclTHEN (genstac (ggenl,[]) ist)
else ggenl, tclTHEN tclIDTAC in
tclGENTAC (fun gl ->
match gviews, ggenl with
| v :: tl, [] ->
let dbl = if List.length tl = 1 then 2 else 1 in
tclTHEN
(List.fold_left (fun acc v -> tclTHENLAST acc (vtac v dbl)) (vtac v 1) tl)
(cleartac clr) gl
| [], [agens] ->
let clr', (sigma, lemma) = interp_agens ist gl agens in
let gl = pf_merge_uc_of sigma gl in
tclTHENLIST [cleartac clr; refine_with ~beta:true lemma; cleartac clr'] gl
| _, _ -> tclTHEN apply_top_tac (cleartac clr) gl) gl
let ssrapplytac ist (views, (_, ((gens, clr), intros))) =
tclINTROS ist (inner_ssrapplytac views gens clr) intros
TACTIC EXTEND ssrapply
| [ "apply" ssrapplyarg(arg) ] -> [ Proofview.V82.tactic (ssrapplytac ist arg) ]
| [ "apply" ] -> [ Proofview.V82.tactic apply_top_tac ]
END
(** The "exact" tactic *)
let mk_exactarg views dgens = mk_applyarg views dgens []
ARGUMENT EXTEND ssrexactarg TYPED AS ssrapplyarg PRINTED BY pr_ssraarg
| [ ":" ssragen(gen) ssragens(dgens) ] ->
[ mk_exactarg [] (cons_gen gen dgens) ]
| [ ssrview(view) ssrclear(clr) ] ->
[ mk_exactarg view ([], clr) ]
| [ ssrclear_ne(clr) ] ->
[ mk_exactarg [] ([], clr) ]
END
let vmexacttac pf =
Proofview.Goal.nf_enter { enter = begin fun gl ->
exact_no_check (mkCast (pf, VMcast, Tacmach.New.pf_concl gl))
end }
TACTIC EXTEND ssrexact
| [ "exact" ssrexactarg(arg) ] -> [ Proofview.V82.tactic (tclBY (ssrapplytac ist arg)) ]
| [ "exact" ] -> [ Proofview.V82.tactic (tclORELSE donetac (tclBY apply_top_tac)) ]
| [ "exact" "<:" lconstr(pf) ] -> [ vmexacttac pf ]
END
(** The "congr" tactic *)
(* type ssrcongrarg = open_constr * (int * constr) *)
let pr_ssrcongrarg _ _ _ ((n, f), dgens) =
(if n <= 0 then mt () else str " " ++ int n) ++
str " " ++ pr_term f ++ pr_dgens pr_gen dgens
ARGUMENT EXTEND ssrcongrarg TYPED AS (int * ssrterm) * ssrdgens
PRINTED BY pr_ssrcongrarg
| [ natural(n) constr(c) ssrdgens(dgens) ] -> [ (n, mk_term ' ' c), dgens ]
| [ natural(n) constr(c) ] -> [ (n, mk_term ' ' c),([[]],[]) ]
| [ constr(c) ssrdgens(dgens) ] -> [ (0, mk_term ' ' c), dgens ]
| [ constr(c) ] -> [ (0, mk_term ' ' c), ([[]],[]) ]
END
let rec mkRnat n =
if n <= 0 then GRef (dummy_loc, glob_O, None) else
mkRApp (GRef (dummy_loc, glob_S, None)) [mkRnat (n - 1)]
let interp_congrarg_at ist gl n rf ty m =
pp(lazy(str"===interp_congrarg_at==="));
let congrn, _ = mkSsrRRef "nary_congruence" in
let args1 = mkRnat n :: mkRHoles n @ [ty] in
let args2 = mkRHoles (3 * n) in
let rec loop i =
if i + n > m then None else
try
let rt = mkRApp congrn (args1 @ mkRApp rf (mkRHoles i) :: args2) in
pp(lazy(str"rt=" ++ pr_glob_constr rt));
Some (interp_refine ist gl rt)
with _ -> loop (i + 1) in
loop 0
let pattern_id = mk_internal_id "pattern value"
let congrtac ((n, t), ty) ist gl =
pp(lazy(str"===congr==="));
pp(lazy(str"concl=" ++ pr_constr (pf_concl gl)));
let sigma, _ as it = interp_term ist gl t in
let gl = pf_merge_uc_of sigma gl in
let _, f, _, _ucst = pf_abs_evars gl it in
let ist' = {ist with lfun =
Id.Map.add pattern_id (Value.of_constr f) Id.Map.empty } in
let rf = mkRltacVar pattern_id in
let m = pf_nbargs gl f in
let _, cf = if n > 0 then
match interp_congrarg_at ist' gl n rf ty m with
| Some cf -> cf
| None -> errorstrm (str "No " ++ int n ++ str "-congruence with "
++ pr_term t)
else let rec loop i =
if i > m then errorstrm (str "No congruence with " ++ pr_term t)
else match interp_congrarg_at ist' gl i rf ty m with
| Some cf -> cf
| None -> loop (i + 1) in
loop 1 in
tclTHEN (refine_with cf) (tclTRY (Proofview.V82.of_tactic reflexivity)) gl
let newssrcongrtac arg ist gl =
pp(lazy(str"===newcongr==="));
pp(lazy(str"concl=" ++ pr_constr (pf_concl gl)));
(* utils *)
let fs gl t = Reductionops.nf_evar (project gl) t in
let tclMATCH_GOAL (c, gl_c) proj t_ok t_fail gl =
match try Some (pf_unify_HO gl_c (pf_concl gl) c) with _ -> None with
| Some gl_c ->
tclTHEN (Proofview.V82.of_tactic (convert_concl (fs gl_c c)))
(t_ok (proj gl_c)) gl
| None -> t_fail () gl in
let mk_evar gl ty =
let env, sigma, si = pf_env gl, project gl, sig_it gl in
let sigma = create_evar_defs sigma in
let sigma = Sigma.Unsafe.of_evar_map sigma in
let Sigma (x, sigma, _) = Evarutil.new_evar env sigma ty in
let sigma = Sigma.to_evar_map sigma in
x, re_sig si sigma in
let arr, gl = pf_mkSsrConst "ssr_congr_arrow" gl in
let ssr_congr lr = mkApp (arr, lr) in
(* here thw two cases: simple equality or arrow *)
let equality, _, eq_args, gl' =
let eq, gl = pf_fresh_global (build_coq_eq ()) gl in
pf_saturate gl eq 3 in
tclMATCH_GOAL (equality, gl') (fun gl' -> fs gl' (List.assoc 0 eq_args))
(fun ty -> congrtac (arg, Detyping.detype false [] (pf_env gl) (project gl) ty) ist)
(fun () ->
let lhs, gl' = mk_evar gl mkProp in let rhs, gl' = mk_evar gl' mkProp in
let arrow = mkArrow lhs (lift 1 rhs) in
tclMATCH_GOAL (arrow, gl') (fun gl' -> [|fs gl' lhs;fs gl' rhs|])
(fun lr -> tclTHEN (Proofview.V82.of_tactic (apply (ssr_congr lr))) (congrtac (arg, mkRType) ist))
(fun _ _ -> errorstrm (str"Conclusion is not an equality nor an arrow")))
gl
;;
TACTIC EXTEND ssrcongr
| [ "congr" ssrcongrarg(arg) ] ->
[ let arg, dgens = arg in
Proofview.V82.tactic begin
match dgens with
| [gens], clr -> tclTHEN (genstac (gens,clr) ist) (newssrcongrtac arg ist)
| _ -> errorstrm (str"Dependent family abstractions not allowed in congr")
end]
END
(** 7. Rewriting tactics (rewrite, unlock) *)
(** Coq rewrite compatibility flag *)
let ssr_strict_match = ref false
let _ =
Goptions.declare_bool_option
{ Goptions.optsync = true;
Goptions.optname = "strict redex matching";
Goptions.optkey = ["Match"; "Strict"];
Goptions.optread = (fun () -> !ssr_strict_match);
Goptions.optdepr = false;
Goptions.optwrite = (fun b -> ssr_strict_match := b) }
(** Rewrite multiplier *)
type ssrmult = int * ssrmmod
let notimes = 0
let nomult = 1, Once
let pr_mult (n, m) =
if n > 0 && m <> Once then int n ++ pr_mmod m else pr_mmod m
let pr_ssrmult _ _ _ = pr_mult
ARGUMENT EXTEND ssrmult_ne TYPED AS int * ssrmmod PRINTED BY pr_ssrmult
| [ natural(n) ssrmmod(m) ] -> [ check_index loc n, m ]
| [ ssrmmod(m) ] -> [ notimes, m ]
END
ARGUMENT EXTEND ssrmult TYPED AS ssrmult_ne PRINTED BY pr_ssrmult
| [ ssrmult_ne(m) ] -> [ m ]
| [ ] -> [ nomult ]
END
(** Rewrite clear/occ switches *)
let pr_rwocc = function
| None, None -> mt ()
| None, occ -> pr_occ occ
| Some clr, _ -> pr_clear_ne clr
let pr_ssrrwocc _ _ _ = pr_rwocc
ARGUMENT EXTEND ssrrwocc TYPED AS ssrdocc PRINTED BY pr_ssrrwocc
| [ "{" ssrhyp_list(clr) "}" ] -> [ mkclr clr ]
| [ "{" ssrocc(occ) "}" ] -> [ mkocc occ ]
| [ ] -> [ noclr ]
END
(** Rewrite rules *)
type ssrwkind = RWred of ssrsimpl | RWdef | RWeq
(* type ssrrule = ssrwkind * ssrterm *)
let pr_rwkind = function
| RWred s -> pr_simpl s
| RWdef -> str "/"
| RWeq -> mt ()
let wit_ssrrwkind = add_genarg "ssrrwkind" pr_rwkind
let pr_rule = function
| RWred s, _ -> pr_simpl s
| RWdef, r-> str "/" ++ pr_term r
| RWeq, r -> pr_term r
let pr_ssrrule _ _ _ = pr_rule
let noruleterm loc = mk_term ' ' (mkCProp loc)
ARGUMENT EXTEND ssrrule_ne TYPED AS ssrrwkind * ssrterm PRINTED BY pr_ssrrule
| [ ssrsimpl_ne(s) ] -> [ RWred s, noruleterm loc ]
| [ "/" ssrterm(t) ] -> [ RWdef, t ]
| [ ssrterm(t) ] -> [ RWeq, t ]
END
ARGUMENT EXTEND ssrrule TYPED AS ssrrule_ne PRINTED BY pr_ssrrule
| [ ssrrule_ne(r) ] -> [ r ]
| [ ] -> [ RWred Nop, noruleterm loc ]
END
(** Rewrite arguments *)
(* type ssrrwarg = (ssrdir * ssrmult) * ((ssrdocc * ssrpattern) * ssrrule) *)
let pr_option f = function None -> mt() | Some x -> f x
let pr_pattern_squarep= pr_option (fun r -> str "[" ++ pr_rpattern r ++ str "]")
let pr_ssrpattern_squarep _ _ _ = pr_pattern_squarep
let pr_rwarg ((d, m), ((docc, rx), r)) =
pr_rwdir d ++ pr_mult m ++ pr_rwocc docc ++ pr_pattern_squarep rx ++ pr_rule r
let pr_ssrrwarg _ _ _ = pr_rwarg
let mk_rwarg (d, (n, _ as m)) ((clr, occ as docc), rx) (rt, _ as r) =
if rt <> RWeq then begin
if rt = RWred Nop && not (m = nomult && occ = None && rx = None)
&& (clr = None || clr = Some []) then
anomaly "Improper rewrite clear switch";
if d = R2L && rt <> RWdef then
CErrors.error "Right-to-left switch on simplification";
if n <> 1 && rt = RWred Cut then
CErrors.error "Bad or useless multiplier";
if occ <> None && rx = None && rt <> RWdef then
CErrors.error "Missing redex for simplification occurrence"
end; (d, m), ((docc, rx), r)
let norwmult = L2R, nomult
let norwocc = noclr, None
(*
let pattern_ident = Prim.pattern_ident in
GEXTEND Gram
GLOBAL: pattern_ident;
pattern_ident:
[[c = pattern_ident -> (CRef (Ident (loc,c)), NoBindings)]];
END
*)
ARGUMENT EXTEND ssrpattern_squarep
TYPED AS rpattern option PRINTED BY pr_ssrpattern_squarep
| [ "[" rpattern(rdx) "]" ] -> [ Some rdx ]
| [ ] -> [ None ]
END
ARGUMENT EXTEND ssrpattern_ne_squarep
TYPED AS rpattern option PRINTED BY pr_ssrpattern_squarep
| [ "[" rpattern(rdx) "]" ] -> [ Some rdx ]
END
ARGUMENT EXTEND ssrrwarg
TYPED AS (ssrdir * ssrmult) * ((ssrdocc * rpattern option) * ssrrule)
PRINTED BY pr_ssrrwarg
| [ "-" ssrmult(m) ssrrwocc(docc) ssrpattern_squarep(rx) ssrrule_ne(r) ] ->
[ mk_rwarg (R2L, m) (docc, rx) r ]
| [ "-/" ssrterm(t) ] -> (* just in case '-/' should become a token *)
[ mk_rwarg (R2L, nomult) norwocc (RWdef, t) ]
| [ ssrmult_ne(m) ssrrwocc(docc) ssrpattern_squarep(rx) ssrrule_ne(r) ] ->
[ mk_rwarg (L2R, m) (docc, rx) r ]
| [ "{" ne_ssrhyp_list(clr) "}" ssrpattern_ne_squarep(rx) ssrrule_ne(r) ] ->
[ mk_rwarg norwmult (mkclr clr, rx) r ]
| [ "{" ne_ssrhyp_list(clr) "}" ssrrule(r) ] ->
[ mk_rwarg norwmult (mkclr clr, None) r ]
| [ "{" ssrocc(occ) "}" ssrpattern_squarep(rx) ssrrule_ne(r) ] ->
[ mk_rwarg norwmult (mkocc occ, rx) r ]
| [ "{" "}" ssrpattern_squarep(rx) ssrrule_ne(r) ] ->
[ mk_rwarg norwmult (nodocc, rx) r ]
| [ ssrpattern_ne_squarep(rx) ssrrule_ne(r) ] ->
[ mk_rwarg norwmult (noclr, rx) r ]
| [ ssrrule_ne(r) ] ->
[ mk_rwarg norwmult norwocc r ]
END
let simplintac occ rdx sim gl =
let simptac gl =
let sigma0, concl0, env0 = project gl, pf_concl gl, pf_env gl in
let simp env c _ _ = red_safe Tacred.simpl env sigma0 c in
Proofview.V82.of_tactic
(convert_concl_no_check (eval_pattern env0 sigma0 concl0 rdx occ simp))
gl in
match sim with
| Simpl -> simptac gl
| SimplCut -> tclTHEN simptac (tclTRY donetac) gl
| _ -> simpltac sim gl
let rec get_evalref c = match kind_of_term c with
| Var id -> EvalVarRef id
| Const (k,_) -> EvalConstRef k
| App (c', _) -> get_evalref c'
| Cast (c', _, _) -> get_evalref c'
| Proj(c,_) -> EvalConstRef(Projection.constant c)
| _ -> errorstrm (str "The term " ++ pr_constr_pat c ++ str " is not unfoldable")
(* Strip a pattern generated by a prenex implicit to its constant. *)
let rec strip_unfold_term env ((sigma, t) as p) kt = match kind_of_term t with
| App (f, a) when kt = ' ' && Array.for_all isEvar a && isConst f ->
if Environ.is_projection (fst (destConst f)) env
then strip_unfold_term env (sigma, f) kt
else (sigma, f), true
| Const (c,_) when Environ.is_projection c env ->
let sigma = Sigma.Unsafe.of_evar_map sigma in
let Sigma ((ty,_), sigma, _) =
Evarutil.new_type_evar env sigma (Evd.UnivFlexible true) in
let Sigma (ev, sigma, _) = Evarutil.new_evar env sigma ty in
let sigma = Sigma.to_evar_map sigma in
(sigma, mkProj(Projection.make c false, ev)), true
| Const _ | Var _ -> p, true
| Proj _ -> p, true
| _ -> p, false
let same_proj t1 t2 =
match kind_of_term t1, kind_of_term t2 with
| Proj(c1,_), Proj(c2, _) -> Projection.equal c1 c2
| _ -> false
let unfoldintac occ rdx t (kt,_) gl =
let fs sigma x = Reductionops.nf_evar sigma x in
let sigma0, concl0, env0 = project gl, pf_concl gl, pf_env gl in
let (sigma, t), const = strip_unfold_term env0 t kt in
let body env t c =
Tacred.unfoldn [AllOccurrences, get_evalref t] env sigma0 c in
let easy = occ = None && rdx = None in
let red_flags = if easy then CClosure.betaiotazeta else CClosure.betaiota in
let beta env = Reductionops.clos_norm_flags red_flags env sigma0 in
let unfold, conclude = match rdx with
| Some (_, (In_T _ | In_X_In_T _)) | None ->
let ise = create_evar_defs sigma in
let ise, u = mk_tpattern env0 sigma0 (ise,t) all_ok L2R t in
let find_T, end_T =
mk_tpattern_matcher ~raise_NoMatch:true sigma0 occ (ise,[u]) in
(fun env c _ h ->
try find_T env c h (fun env c _ _ -> body env t c)
with NoMatch when easy -> c
| NoMatch | NoProgress -> errorstrm (str"No occurrence of "
++ pr_constr_pat t ++ spc() ++ str "in " ++ pr_constr c)),
(fun () -> try end_T () with
| NoMatch when easy -> fake_pmatcher_end ()
| NoMatch -> anomaly "unfoldintac")
| _ ->
(fun env (c as orig_c) _ h ->
if const then
let rec aux c =
match kind_of_term c with
| Const _ when Term.eq_constr c t -> body env t t
| App (f,a) when Term.eq_constr f t -> mkApp (body env f f,a)
| Proj _ when same_proj c t -> body env t c
| _ ->
let c = Reductionops.whd_betaiotazeta sigma0 c in
match kind_of_term c with
| Const _ when Term.eq_constr c t -> body env t t
| App (f,a) when Term.eq_constr f t -> mkApp (body env f f,a)
| Proj _ when same_proj c t -> body env t c
| Const f -> aux (body env c c)
| App (f, a) -> aux (mkApp (body env f f, a))
| _ -> errorstrm (str "The term "++pr_constr orig_c++
str" contains no " ++ pr_constr t ++ str" even after unfolding")
in aux c
else
try body env t (fs (unify_HO env sigma c t) t)
with _ -> errorstrm (str "The term " ++
pr_constr c ++spc()++ str "does not unify with " ++ pr_constr_pat t)),
fake_pmatcher_end in
let concl =
try beta env0 (eval_pattern env0 sigma0 concl0 rdx occ unfold)
with Option.IsNone -> errorstrm (str"Failed to unfold " ++ pr_constr_pat t) in
let _ = conclude () in
Proofview.V82.of_tactic (convert_concl concl) gl
;;
let foldtac occ rdx ft gl =
let fs sigma x = Reductionops.nf_evar sigma x in
let sigma0, concl0, env0 = project gl, pf_concl gl, pf_env gl in
let sigma, t = ft in
let fold, conclude = match rdx with
| Some (_, (In_T _ | In_X_In_T _)) | None ->
let ise = create_evar_defs sigma in
let ut = red_product_skip_id env0 sigma t in
let ise, ut = mk_tpattern env0 sigma0 (ise,t) all_ok L2R ut in
let find_T, end_T =
mk_tpattern_matcher ~raise_NoMatch:true sigma0 occ (ise,[ut]) in
(fun env c _ h -> try find_T env c h (fun env t _ _ -> t) with NoMatch ->c),
(fun () -> try end_T () with NoMatch -> fake_pmatcher_end ())
| _ ->
(fun env c _ h -> try let sigma = unify_HO env sigma c t in fs sigma t
with _ -> errorstrm (str "fold pattern " ++ pr_constr_pat t ++ spc ()
++ str "does not match redex " ++ pr_constr_pat c)),
fake_pmatcher_end in
let concl = eval_pattern env0 sigma0 concl0 rdx occ fold in
let _ = conclude () in
Proofview.V82.of_tactic (convert_concl concl) gl
;;
let converse_dir = function L2R -> R2L | R2L -> L2R
let rw_progress rhs lhs ise = not (Term.eq_constr lhs (Evarutil.nf_evar ise rhs))
(* Coq has a more general form of "equation" (any type with a single *)
(* constructor with no arguments with_rect_r elimination lemmas). *)
(* However there is no clear way of determining the LHS and RHS of *)
(* such a generic Leibnitz equation -- short of inspecting the type *)
(* of the elimination lemmas. *)
let rec strip_prod_assum c = match kind_of_term c with
| Prod (_, _, c') -> strip_prod_assum c'
| LetIn (_, v, _, c') -> strip_prod_assum (subst1 v c)
| Cast (c', _, _) -> strip_prod_assum c'
| _ -> c
let rule_id = mk_internal_id "rewrite rule"
exception PRtype_error
exception PRindetermined_rhs of constr
let pirrel_rewrite pred rdx rdx_ty new_rdx dir (sigma, c) c_ty gl =
(* pp(lazy(str"sigma@pirrel_rewrite=" ++ pr_evar_map None sigma)); *)
let env = pf_env gl in
let beta = Reductionops.clos_norm_flags CClosure.beta env sigma in
let sigma, p =
let sigma = create_evar_defs sigma in
let sigma = Sigma.Unsafe.of_evar_map sigma in
let Sigma (ev, sigma, _) = Evarutil.new_evar env sigma (beta (subst1 new_rdx pred)) in
let sigma = Sigma.to_evar_map sigma in
(sigma, ev)
in
let pred = mkNamedLambda pattern_id rdx_ty pred in
let elim, gl =
let ((kn, i) as ind, _), unfolded_c_ty = pf_reduce_to_quantified_ind gl c_ty in
let sort = elimination_sort_of_goal gl in
let elim, gl = pf_fresh_global (Indrec.lookup_eliminator ind sort) gl in
if dir = R2L then elim, gl else (* taken from Coq's rewrite *)
let elim, _ = destConst elim in
let mp,dp,l = repr_con (constant_of_kn (canonical_con elim)) in
let l' = label_of_id (Nameops.add_suffix (id_of_label l) "_r") in
let c1' = Global.constant_of_delta_kn (canonical_con (make_con mp dp l')) in
mkConst c1', gl in
let proof = mkApp (elim, [| rdx_ty; new_rdx; pred; p; rdx; c |]) in
(* We check the proof is well typed *)
let sigma, proof_ty =
try Typing.type_of env sigma proof with _ -> raise PRtype_error in
pp(lazy(str"pirrel_rewrite proof term of type: " ++ pr_constr proof_ty));
try refine_with
~first_goes_last:(not !ssroldreworder) ~with_evars:false (sigma, proof) gl
with _ ->
(* we generate a msg like: "Unable to find an instance for the variable" *)
let c = Reductionops.nf_evar sigma c in
let hd_ty, miss = match kind_of_term c with
| App (hd, args) ->
let hd_ty = Retyping.get_type_of env sigma hd in
let names = let rec aux t = function 0 -> [] | n ->
let t = Reductionops.whd_all env sigma t in
match kind_of_type t with
| ProdType (name, _, t) -> name :: aux t (n-1)
| _ -> assert false in aux hd_ty (Array.length args) in
hd_ty, Util.List.map_filter (fun (t, name) ->
let evs = Intset.elements (Evarutil.undefined_evars_of_term sigma t) in
let open_evs = List.filter (fun k ->
InProp <> Retyping.get_sort_family_of
env sigma (Evd.evar_concl (Evd.find sigma k)))
evs in
if open_evs <> [] then Some name else None)
(List.combine (Array.to_list args) names)
| _ -> anomaly "rewrite rule not an application" in
errorstrm (Himsg.explain_refiner_error (Logic.UnresolvedBindings miss)++
(Pp.fnl()++str"Rule's type:" ++ spc() ++ pr_constr hd_ty))
;;
let is_const_ref c r = isConst c && eq_gr (ConstRef (fst(destConst c))) r
let is_construct_ref c r =
isConstruct c && eq_gr (ConstructRef (fst(destConstruct c))) r
let is_ind_ref c r = isInd c && eq_gr (IndRef (fst(destInd c))) r
let rwcltac cl rdx dir sr gl =
let n, r_n,_, ucst = pf_abs_evars gl sr in
let r_n' = pf_abs_cterm gl n r_n in
let r' = subst_var pattern_id r_n' in
let gl = pf_unsafe_merge_uc ucst gl in
let rdxt = Retyping.get_type_of (pf_env gl) (fst sr) rdx in
(* pp(lazy(str"sigma@rwcltac=" ++ pr_evar_map None (fst sr))); *)
pp(lazy(str"r@rwcltac=" ++ pr_constr (snd sr)));
let cvtac, rwtac, gl =
if closed0 r' then
let env, sigma, c, c_eq = pf_env gl, fst sr, snd sr, build_coq_eq () in
let sigma, c_ty = Typing.type_of env sigma c in
pp(lazy(str"c_ty@rwcltac=" ++ pr_constr c_ty));
match kind_of_type (Reductionops.whd_all env sigma c_ty) with
| AtomicType(e, a) when is_ind_ref e c_eq ->
let new_rdx = if dir = L2R then a.(2) else a.(1) in
pirrel_rewrite cl rdx rdxt new_rdx dir (sigma,c) c_ty, tclIDTAC, gl
| _ ->
let cl' = mkApp (mkNamedLambda pattern_id rdxt cl, [|rdx|]) in
let sigma, _ = Typing.type_of env sigma cl' in
let gl = pf_merge_uc_of sigma gl in
Proofview.V82.of_tactic (convert_concl cl'), rewritetac dir r', gl
else
let dc, r2 = decompose_lam_n n r' in
let r3, _, r3t =
try destCast r2 with _ ->
errorstrm (str "no cast from " ++ pr_constr_pat (snd sr)
++ str " to " ++ pr_constr r2) in
let cl' = mkNamedProd rule_id (compose_prod dc r3t) (lift 1 cl) in
let cl'' = mkNamedProd pattern_id rdxt cl' in
let itacs = [introid pattern_id; introid rule_id] in
let cltac = Proofview.V82.of_tactic (clear [pattern_id; rule_id]) in
let rwtacs = [rewritetac dir (mkVar rule_id); cltac] in
apply_type cl'' [rdx; compose_lam dc r3], tclTHENLIST (itacs @ rwtacs), gl
in
let cvtac' _ =
try cvtac gl with
| PRtype_error ->
if occur_existential (pf_concl gl)
then errorstrm (str "Rewriting impacts evars")
else errorstrm (str "Dependent type error in rewrite of "
++ pf_pr_constr gl (project gl) (mkNamedLambda pattern_id rdxt cl))
| CErrors.UserError _ as e -> raise e
| e -> anomaly ("cvtac's exception: " ^ Printexc.to_string e);
in
tclTHEN cvtac' rwtac gl
let prof_rwcltac = mk_profiler "rwrxtac.rwcltac";;
let rwcltac cl rdx dir sr gl =
prof_rwcltac.profile (rwcltac cl rdx dir sr) gl
;;
let lz_coq_prod =
let prod = lazy (build_prod ()) in fun () -> Lazy.force prod
let lz_setoid_relation =
let sdir = ["Classes"; "RelationClasses"] in
let last_srel = ref (Environ.empty_env, None) in
fun env -> match !last_srel with
| env', srel when env' == env -> srel
| _ ->
let srel =
try Some (coq_constant "Class_setoid" sdir "RewriteRelation")
with _ -> None in
last_srel := (env, srel); srel
let ssr_is_setoid env =
match lz_setoid_relation env with
| None -> fun _ _ _ -> false
| Some srel ->
fun sigma r args ->
Rewrite.is_applied_rewrite_relation env
sigma [] (mkApp (r, args)) <> None
let prof_rwxrtac_find_rule = mk_profiler "rwrxtac.find_rule";;
let closed0_check cl p gl =
if closed0 cl then
errorstrm (str"No occurrence of redex "++pf_pr_constr gl (project gl) p)
let rwprocess_rule dir rule gl =
let env = pf_env gl in
let coq_prod = lz_coq_prod () in
let is_setoid = ssr_is_setoid env in
let r_sigma, rules =
let rec loop d sigma r t0 rs red =
let t =
if red = 1 then Tacred.hnf_constr env sigma t0
else Reductionops.whd_betaiotazeta sigma t0 in
pp(lazy(str"rewrule="++pr_constr_pat t));
match kind_of_term t with
| Prod (_, xt, at) ->
let sigma = create_evar_defs sigma in
let sigma = Sigma.Unsafe.of_evar_map sigma in
let Sigma (x, sigma, _) = Evarutil.new_evar env sigma xt in
let ise = Sigma.to_evar_map sigma in
loop d ise (mkApp (r, [|x|])) (subst1 x at) rs 0
| App (pr, a) when is_ind_ref pr coq_prod.Coqlib.typ ->
let sr sigma = match kind_of_term (Tacred.hnf_constr env sigma r) with
| App (c, ra) when is_construct_ref c coq_prod.Coqlib.intro ->
fun i -> ra.(i + 1), sigma
| _ -> let ra = Array.append a [|r|] in
function 1 ->
let sigma, pi1 = Evd.fresh_global env sigma coq_prod.Coqlib.proj1 in
mkApp (pi1, ra), sigma
| _ ->
let sigma, pi2 = Evd.fresh_global env sigma coq_prod.Coqlib.proj2 in
mkApp (pi2, ra), sigma in
if Term.eq_constr a.(0) (build_coq_True ()) then
let s, sigma = sr sigma 2 in
loop (converse_dir d) sigma s a.(1) rs 0
else
let s, sigma = sr sigma 2 in
let sigma, rs2 = loop d sigma s a.(1) rs 0 in
let s, sigma = sr sigma 1 in
loop d sigma s a.(0) rs2 0
| App (r_eq, a) when Hipattern.match_with_equality_type t != None ->
let indu = destInd r_eq and rhs = Array.last a in
let np = Inductiveops.inductive_nparamdecls (fst indu) in
let ind_ct = Inductiveops.type_of_constructors env indu in
let lhs0 = last_arg (strip_prod_assum ind_ct.(0)) in
let rdesc = match kind_of_term lhs0 with
| Rel i ->
let lhs = a.(np - i) in
let lhs, rhs = if d = L2R then lhs, rhs else rhs, lhs in
(* msgnl (str "RW: " ++ pr_rwdir d ++ str " " ++ pr_constr_pat r ++ str " : "
++ pr_constr_pat lhs ++ str " ~> " ++ pr_constr_pat rhs); *)
d, r, lhs, rhs
(*
let l_i, r_i = if d = L2R then i, 1 - ndep else 1 - ndep, i in
let lhs = a.(np - l_i) and rhs = a.(np - r_i) in
let a' = Array.copy a in let _ = a'.(np - l_i) <- mkVar pattern_id in
let r' = mkCast (r, DEFAULTcast, mkApp (r_eq, a')) in
(d, r', lhs, rhs)
*)
| _ ->
let lhs = substl (array_list_of_tl (Array.sub a 0 np)) lhs0 in
let lhs, rhs = if d = R2L then lhs, rhs else rhs, lhs in
let d' = if Array.length a = 1 then d else converse_dir d in
d', r, lhs, rhs in
sigma, rdesc :: rs
| App (s_eq, a) when is_setoid sigma s_eq a ->
let np = Array.length a and i = 3 - dir_org d in
let lhs = a.(np - i) and rhs = a.(np + i - 3) in
let a' = Array.copy a in let _ = a'.(np - i) <- mkVar pattern_id in
let r' = mkCast (r, DEFAULTcast, mkApp (s_eq, a')) in
sigma, (d, r', lhs, rhs) :: rs
| _ ->
if red = 0 then loop d sigma r t rs 1
else errorstrm (str "not a rewritable relation: " ++ pr_constr_pat t
++ spc() ++ str "in rule " ++ pr_constr_pat (snd rule))
in
let sigma, r = rule in
let t = Retyping.get_type_of env sigma r in
loop dir sigma r t [] 0
in
r_sigma, rules
let rwrxtac occ rdx_pat dir rule gl =
let env = pf_env gl in
let r_sigma, rules = rwprocess_rule dir rule gl in
let find_rule rdx =
let rec rwtac = function
| [] ->
errorstrm (str "pattern " ++ pr_constr_pat rdx ++
str " does not match " ++ pr_dir_side dir ++
str " of " ++ pr_constr_pat (snd rule))
| (d, r, lhs, rhs) :: rs ->
try
let ise = unify_HO env (create_evar_defs r_sigma) lhs rdx in
if not (rw_progress rhs rdx ise) then raise NoMatch else
d, (ise, Evd.evar_universe_context ise, Reductionops.nf_evar ise r)
with _ -> rwtac rs in
rwtac rules in
let find_rule rdx = prof_rwxrtac_find_rule.profile find_rule rdx in
let sigma0, env0, concl0 = project gl, pf_env gl, pf_concl gl in
let find_R, conclude = match rdx_pat with
| Some (_, (In_T _ | In_X_In_T _)) | None ->
let upats_origin = dir, snd rule in
let rpat env sigma0 (sigma, pats) (d, r, lhs, rhs) =
let sigma, pat =
mk_tpattern env sigma0 (sigma,r) (rw_progress rhs) d lhs in
sigma, pats @ [pat] in
let rpats = List.fold_left (rpat env0 sigma0) (r_sigma,[]) rules in
let find_R, end_R = mk_tpattern_matcher sigma0 occ ~upats_origin rpats in
(fun e c _ i -> find_R ~k:(fun _ _ _ h -> mkRel h) e c i),
fun cl -> let rdx,d,r = end_R () in closed0_check cl rdx gl; (d,r),rdx
| Some(_, (T e | X_In_T (_,e) | E_As_X_In_T (e,_,_) | E_In_X_In_T (e,_,_))) ->
let r = ref None in
(fun env c _ h -> do_once r (fun () -> find_rule c, c); mkRel h),
(fun concl -> closed0_check concl e gl; assert_done r) in
let concl = eval_pattern env0 sigma0 concl0 rdx_pat occ find_R in
let (d, r), rdx = conclude concl in
let r = Evd.merge_universe_context (pi1 r) (pi2 r), pi3 r in
rwcltac concl rdx d r gl
;;
let prof_rwxrtac = mk_profiler "rwrxtac";;
let rwrxtac occ rdx_pat dir rule gl =
prof_rwxrtac.profile (rwrxtac occ rdx_pat dir rule) gl
;;
let ssrinstancesofrule ist dir arg gl =
let sigma0, env0, concl0 = project gl, pf_env gl, pf_concl gl in
let rule = interp_term ist gl arg in
let r_sigma, rules = rwprocess_rule dir rule gl in
let find, conclude =
let upats_origin = dir, snd rule in
let rpat env sigma0 (sigma, pats) (d, r, lhs, rhs) =
let sigma, pat =
mk_tpattern env sigma0 (sigma,r) (rw_progress rhs) d lhs in
sigma, pats @ [pat] in
let rpats = List.fold_left (rpat env0 sigma0) (r_sigma,[]) rules in
mk_tpattern_matcher ~all_instances:true ~raise_NoMatch:true sigma0 None ~upats_origin rpats in
let print env p c _ = ppnl (hov 1 (str"instance:" ++ spc() ++ pr_constr p ++ spc() ++ str "matches:" ++ spc() ++ pr_constr c)); c in
ppnl (str"BEGIN INSTANCES");
try
while true do
ignore(find env0 concl0 1 ~k:print)
done; raise NoMatch
with NoMatch -> ppnl (str"END INSTANCES"); tclIDTAC gl
TACTIC EXTEND ssrinstofruleL2R
| [ "ssrinstancesofruleL2R" ssrterm(arg) ] -> [ Proofview.V82.tactic (ssrinstancesofrule ist L2R arg) ]
END
TACTIC EXTEND ssrinstofruleR2L
| [ "ssrinstancesofruleR2L" ssrterm(arg) ] -> [ Proofview.V82.tactic (ssrinstancesofrule ist R2L arg) ]
END
(* Resolve forward reference *)
let _ =
ipat_rewritetac := fun occ dir c gl -> rwrxtac occ None dir (project gl, c) gl
let rwargtac ist ((dir, mult), (((oclr, occ), grx), (kind, gt))) gl =
let fail = ref false in
let interp_rpattern ist gl gc =
try interp_rpattern ist gl gc
with _ when snd mult = May -> fail := true; project gl, T mkProp in
let interp gc gl =
try interp_term ist gl gc
with _ when snd mult = May -> fail := true; (project gl, mkProp) in
let rwtac gl =
let rx = Option.map (interp_rpattern ist gl) grx in
let t = interp gt gl in
(match kind with
| RWred sim -> simplintac occ rx sim
| RWdef -> if dir = R2L then foldtac occ rx t else unfoldintac occ rx t gt
| RWeq -> rwrxtac occ rx dir t) gl in
let ctac = cleartac (interp_clr (oclr, (fst gt, snd (interp gt gl)))) in
if !fail then ctac gl else tclTHEN (tclMULT mult rwtac) ctac gl
(** Rewrite argument sequence *)
(* type ssrrwargs = ssrrwarg list *)
let pr_ssrrwargs _ _ _ rwargs = pr_list spc pr_rwarg rwargs
ARGUMENT EXTEND ssrrwargs TYPED AS ssrrwarg list PRINTED BY pr_ssrrwargs
| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ]
END
let ssr_rw_syntax = Summary.ref ~name:"SSR:rewrite" true
let _ =
Goptions.declare_bool_option
{ Goptions.optsync = true;
Goptions.optname = "ssreflect rewrite";
Goptions.optkey = ["SsrRewrite"];
Goptions.optread = (fun _ -> !ssr_rw_syntax);
Goptions.optdepr = false;
Goptions.optwrite = (fun b -> ssr_rw_syntax := b) }
let test_ssr_rw_syntax =
let test strm =
if not !ssr_rw_syntax then raise Stream.Failure else
if is_ssr_loaded () then () else
match Compat.get_tok (Util.stream_nth 0 strm) with
| Tok.KEYWORD key when List.mem key.[0] ['{'; '['; '/'] -> ()
| _ -> raise Stream.Failure in
Gram.Entry.of_parser "test_ssr_rw_syntax" test
GEXTEND Gram
GLOBAL: ssrrwargs;
ssrrwargs: [[ test_ssr_rw_syntax; a = LIST1 ssrrwarg -> a ]];
END
(** The "rewrite" tactic *)
let ssrrewritetac ist rwargs =
tclTHENLIST (List.map (rwargtac ist) rwargs)
TACTIC EXTEND ssrrewrite
| [ "rewrite" ssrrwargs(args) ssrclauses(clauses) ] ->
[ Proofview.V82.tactic (tclCLAUSES ist (ssrrewritetac ist args) clauses) ]
END
(** The "unlock" tactic *)
let pr_unlockarg (occ, t) = pr_occ occ ++ pr_term t
let pr_ssrunlockarg _ _ _ = pr_unlockarg
ARGUMENT EXTEND ssrunlockarg TYPED AS ssrocc * ssrterm
PRINTED BY pr_ssrunlockarg
| [ "{" ssrocc(occ) "}" ssrterm(t) ] -> [ occ, t ]
| [ ssrterm(t) ] -> [ None, t ]
END
let pr_ssrunlockargs _ _ _ args = pr_list spc pr_unlockarg args
ARGUMENT EXTEND ssrunlockargs TYPED AS ssrunlockarg list
PRINTED BY pr_ssrunlockargs
| [ ssrunlockarg_list(args) ] -> [ args ]
END
let unfoldtac occ ko t kt gl =
let env = pf_env gl in
let cl, c = pf_fill_occ_term gl occ (fst (strip_unfold_term env t kt)) in
let cl' = subst1 (pf_unfoldn [OnlyOccurrences [1], get_evalref c] gl c) cl in
let f = if ko = None then CClosure.betaiotazeta else CClosure.betaiota in
Proofview.V82.of_tactic
(convert_concl (pf_reduce (Reductionops.clos_norm_flags f) gl cl')) gl
let unlocktac ist args gl =
let utac (occ, gt) gl =
unfoldtac occ occ (interp_term ist gl gt) (fst gt) gl in
let locked, gl = pf_mkSsrConst "locked" gl in
let key, gl = pf_mkSsrConst "master_key" gl in
let ktacs = [
(fun gl -> unfoldtac None None (project gl,locked) '(' gl);
simplest_newcase key ] in
tclTHENLIST (List.map utac args @ ktacs) gl
TACTIC EXTEND ssrunlock
| [ "unlock" ssrunlockargs(args) ssrclauses(clauses) ] ->
[ Proofview.V82.tactic (tclCLAUSES ist (unlocktac ist args) clauses) ]
END
(** 8. Forward chaining tactics (pose, set, have, suffice, wlog) *)
(** Defined identifier *)
type ssrfwdid = identifier
let pr_ssrfwdid _ _ _ id = pr_spc () ++ pr_id id
(* We use a primitive parser for the head identifier of forward *)
(* tactis to avoid syntactic conflicts with basic Coq tactics. *)
ARGUMENT EXTEND ssrfwdid TYPED AS ident PRINTED BY pr_ssrfwdid
| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ]
END
let accept_ssrfwdid strm =
match Compat.get_tok (stream_nth 0 strm) with
| Tok.IDENT id -> accept_before_syms_or_any_id [":"; ":="; "("] strm
| _ -> raise Stream.Failure
let test_ssrfwdid = Gram.Entry.of_parser "test_ssrfwdid" accept_ssrfwdid
GEXTEND Gram
GLOBAL: ssrfwdid;
ssrfwdid: [[ test_ssrfwdid; id = Prim.ident -> id ]];
END
(** Definition value formatting *)
(* We use an intermediate structure to correctly render the binder list *)
(* abbreviations. We use a list of hints to extract the binders and *)
(* base term from a term, for the two first levels of representation of *)
(* of constr terms. *)
type 'term ssrbind =
| Bvar of name
| Bdecl of name list * 'term
| Bdef of name * 'term option * 'term
| Bstruct of name
| Bcast of 'term
let pr_binder prl = function
| Bvar x ->
pr_name x
| Bdecl (xs, t) ->
str "(" ++ pr_list pr_spc pr_name xs ++ str " : " ++ prl t ++ str ")"
| Bdef (x, None, v) ->
str "(" ++ pr_name x ++ str " := " ++ prl v ++ str ")"
| Bdef (x, Some t, v) ->
str "(" ++ pr_name x ++ str " : " ++ prl t ++
str " := " ++ prl v ++ str ")"
| Bstruct x ->
str "{struct " ++ pr_name x ++ str "}"
| Bcast t ->
str ": " ++ prl t
type 'term ssrbindval = 'term ssrbind list * 'term
type ssrbindfmt =
| BFvar
| BFdecl of int (* #xs *)
| BFcast (* final cast *)
| BFdef of bool (* has cast? *)
| BFrec of bool * bool (* has struct? * has cast? *)
let rec mkBstruct i = function
| Bvar x :: b ->
if i = 0 then [Bstruct x] else mkBstruct (i - 1) b
| Bdecl (xs, _) :: b ->
let i' = i - List.length xs in
if i' < 0 then [Bstruct (List.nth xs i)] else mkBstruct i' b
| _ :: b -> mkBstruct i b
| [] -> []
let rec format_local_binders h0 bl0 = match h0, bl0 with
| BFvar :: h, LocalRawAssum ([_, x], _, _) :: bl ->
Bvar x :: format_local_binders h bl
| BFdecl _ :: h, LocalRawAssum (lxs, _, t) :: bl ->
Bdecl (List.map snd lxs, t) :: format_local_binders h bl
| BFdef false :: h, LocalRawDef ((_, x), v) :: bl ->
Bdef (x, None, v) :: format_local_binders h bl
| BFdef true :: h,
LocalRawDef ((_, x), CCast (_, v, CastConv t)) :: bl ->
Bdef (x, Some t, v) :: format_local_binders h bl
| _ -> []
let rec format_constr_expr h0 c0 = match h0, c0 with
| BFvar :: h, CLambdaN (_, [[_, x], _, _], c) ->
let bs, c' = format_constr_expr h c in
Bvar x :: bs, c'
| BFdecl _:: h, CLambdaN (_, [lxs, _, t], c) ->
let bs, c' = format_constr_expr h c in
Bdecl (List.map snd lxs, t) :: bs, c'
| BFdef false :: h, CLetIn(_, (_, x), v, c) ->
let bs, c' = format_constr_expr h c in
Bdef (x, None, v) :: bs, c'
| BFdef true :: h, CLetIn(_, (_, x), CCast (_, v, CastConv t), c) ->
let bs, c' = format_constr_expr h c in
Bdef (x, Some t, v) :: bs, c'
| [BFcast], CCast (_, c, CastConv t) ->
[Bcast t], c
| BFrec (has_str, has_cast) :: h,
CFix (_, _, [_, (Some locn, CStructRec), bl, t, c]) ->
let bs = format_local_binders h bl in
let bstr = if has_str then [Bstruct (Name (snd locn))] else [] in
bs @ bstr @ (if has_cast then [Bcast t] else []), c
| BFrec (_, has_cast) :: h, CCoFix (_, _, [_, bl, t, c]) ->
format_local_binders h bl @ (if has_cast then [Bcast t] else []), c
| _, c ->
[], c
let rec format_glob_decl h0 d0 = match h0, d0 with
| BFvar :: h, (x, _, None, _) :: d ->
Bvar x :: format_glob_decl h d
| BFdecl 1 :: h, (x, _, None, t) :: d ->
Bdecl ([x], t) :: format_glob_decl h d
| BFdecl n :: h, (x, _, None, t) :: d when n > 1 ->
begin match format_glob_decl (BFdecl (n - 1) :: h) d with
| Bdecl (xs, _) :: bs -> Bdecl (x :: xs, t) :: bs
| bs -> Bdecl ([x], t) :: bs
end
| BFdef false :: h, (x, _, Some v, _) :: d ->
Bdef (x, None, v) :: format_glob_decl h d
| BFdef true:: h, (x, _, Some (GCast (_, v, CastConv t)), _) :: d ->
Bdef (x, Some t, v) :: format_glob_decl h d
| _, (x, _, None, t) :: d ->
Bdecl ([x], t) :: format_glob_decl [] d
| _, (x, _, Some v, _) :: d ->
Bdef (x, None, v) :: format_glob_decl [] d
| _, [] -> []
let rec format_glob_constr h0 c0 = match h0, c0 with
| BFvar :: h, GLambda (_, x, _, _, c) ->
let bs, c' = format_glob_constr h c in
Bvar x :: bs, c'
| BFdecl 1 :: h, GLambda (_, x, _, t, c) ->
let bs, c' = format_glob_constr h c in
Bdecl ([x], t) :: bs, c'
| BFdecl n :: h, GLambda (_, x, _, t, c) when n > 1 ->
begin match format_glob_constr (BFdecl (n - 1) :: h) c with
| Bdecl (xs, _) :: bs, c' -> Bdecl (x :: xs, t) :: bs, c'
| _ -> [Bdecl ([x], t)], c
end
| BFdef false :: h, GLetIn(_, x, v, c) ->
let bs, c' = format_glob_constr h c in
Bdef (x, None, v) :: bs, c'
| BFdef true :: h, GLetIn(_, x, GCast (_, v, CastConv t), c) ->
let bs, c' = format_glob_constr h c in
Bdef (x, Some t, v) :: bs, c'
| [BFcast], GCast (_, c, CastConv t) ->
[Bcast t], c
| BFrec (has_str, has_cast) :: h, GRec (_, f, _, bl, t, c)
when Array.length c = 1 ->
let bs = format_glob_decl h bl.(0) in
let bstr = match has_str, f with
| true, GFix ([|Some i, GStructRec|], _) -> mkBstruct i bs
| _ -> [] in
bs @ bstr @ (if has_cast then [Bcast t.(0)] else []), c.(0)
| _, c ->
[], c
(** Forward chaining argument *)
(* There are three kinds of forward definitions: *)
(* - Hint: type only, cast to Type, may have proof hint. *)
(* - Have: type option + value, no space before type *)
(* - Pose: binders + value, space before binders. *)
type ssrfwdkind = FwdHint of string * bool | FwdHave | FwdPose
type ssrfwdfmt = ssrfwdkind * ssrbindfmt list
let pr_fwdkind = function
| FwdHint (s,_) -> str (s ^ " ") | _ -> str " :=" ++ spc ()
let pr_fwdfmt (fk, _ : ssrfwdfmt) = pr_fwdkind fk
let wit_ssrfwdfmt = add_genarg "ssrfwdfmt" pr_fwdfmt
(* type ssrfwd = ssrfwdfmt * ssrterm *)
let mkFwdVal fk c = ((fk, []), mk_term ' ' c)
let mkssrFwdVal fk c = ((fk, []), (c,None))
let mkFwdCast fk loc t c = ((fk, [BFcast]), mk_term ' ' (CCast (loc, c, dC t)))
let mkssrFwdCast fk loc t c = ((fk, [BFcast]), (c, Some t))
let mkFwdHint s t =
let loc = constr_loc t in
mkFwdCast (FwdHint (s,false)) loc t (mkCHole loc)
let mkFwdHintNoTC s t =
let loc = constr_loc t in
mkFwdCast (FwdHint (s,true)) loc t (mkCHole loc)
let pr_gen_fwd prval prc prlc fk (bs, c) =
let prc s = str s ++ spc () ++ prval prc prlc c in
match fk, bs with
| FwdHint (s,_), [Bcast t] -> str s ++ spc () ++ prlc t
| FwdHint (s,_), _ -> prc (s ^ "(* typeof *)")
| FwdHave, [Bcast t] -> str ":" ++ spc () ++ prlc t ++ prc " :="
| _, [] -> prc " :="
| _, _ -> spc () ++ pr_list spc (pr_binder prlc) bs ++ prc " :="
let pr_fwd_guarded prval prval' = function
| (fk, h), (_, (_, Some c)) ->
pr_gen_fwd prval pr_constr_expr prl_constr_expr fk (format_constr_expr h c)
| (fk, h), (_, (c, None)) ->
pr_gen_fwd prval' pr_glob_constr prl_glob_constr fk (format_glob_constr h c)
let pr_unguarded prc prlc = prlc
let pr_fwd = pr_fwd_guarded pr_unguarded pr_unguarded
let pr_ssrfwd _ _ _ = pr_fwd
ARGUMENT EXTEND ssrfwd TYPED AS (ssrfwdfmt * ssrterm) PRINTED BY pr_ssrfwd
| [ ":=" lconstr(c) ] -> [ mkFwdVal FwdPose c ]
| [ ":" lconstr (t) ":=" lconstr(c) ] -> [ mkFwdCast FwdPose loc t c ]
END
(** Independent parsing for binders *)
(* The pose, pose fix, and pose cofix tactics use these internally to *)
(* parse argument fragments. *)
let pr_ssrbvar prc _ _ v = prc v
ARGUMENT EXTEND ssrbvar TYPED AS constr PRINTED BY pr_ssrbvar
| [ ident(id) ] -> [ mkCVar loc id ]
| [ "_" ] -> [ mkCHole loc ]
END
let bvar_lname = function
| CRef (Ident (loc, id), _) -> loc, Name id
| c -> constr_loc c, Anonymous
let pr_ssrbinder prc _ _ (_, c) = prc c
ARGUMENT EXTEND ssrbinder TYPED AS ssrfwdfmt * constr PRINTED BY pr_ssrbinder
| [ ssrbvar(bv) ] ->
[ let xloc, _ as x = bvar_lname bv in
(FwdPose, [BFvar]),
CLambdaN (loc,[[x],Default Explicit,mkCHole xloc],mkCHole loc) ]
| [ "(" ssrbvar(bv) ")" ] ->
[ let xloc, _ as x = bvar_lname bv in
(FwdPose, [BFvar]),
CLambdaN (loc,[[x],Default Explicit,mkCHole xloc],mkCHole loc) ]
| [ "(" ssrbvar(bv) ":" lconstr(t) ")" ] ->
[ let x = bvar_lname bv in
(FwdPose, [BFdecl 1]),
CLambdaN (loc, [[x], Default Explicit, t], mkCHole loc) ]
| [ "(" ssrbvar(bv) ne_ssrbvar_list(bvs) ":" lconstr(t) ")" ] ->
[ let xs = List.map bvar_lname (bv :: bvs) in
let n = List.length xs in
(FwdPose, [BFdecl n]),
CLambdaN (loc, [xs, Default Explicit, t], mkCHole loc) ]
| [ "(" ssrbvar(id) ":" lconstr(t) ":=" lconstr(v) ")" ] ->
[ let loc' = Loc.join_loc (constr_loc t) (constr_loc v) in
let v' = CCast (loc', v, dC t) in
(FwdPose,[BFdef true]), CLetIn (loc,bvar_lname id, v',mkCHole loc) ]
| [ "(" ssrbvar(id) ":=" lconstr(v) ")" ] ->
[ (FwdPose,[BFdef false]), CLetIn (loc,bvar_lname id, v,mkCHole loc) ]
END
GEXTEND Gram
GLOBAL: ssrbinder;
ssrbinder: [
[ ["of" | "&"]; c = operconstr LEVEL "99" ->
let loc = !@loc in
(FwdPose, [BFvar]),
CLambdaN (loc,[[loc,Anonymous],Default Explicit,c],mkCHole loc) ]
];
END
let rec binders_fmts = function
| ((_, h), _) :: bs -> h @ binders_fmts bs
| _ -> []
let push_binders c2 bs =
let loc2 = constr_loc c2 in let mkloc loc1 = Loc.join_loc loc1 loc2 in
let rec loop ty c = function
| (_, CLambdaN (loc1, b, _)) :: bs when ty ->
CProdN (mkloc loc1, b, loop ty c bs)
| (_, CLambdaN (loc1, b, _)) :: bs ->
CLambdaN (mkloc loc1, b, loop ty c bs)
| (_, CLetIn (loc1, x, v, _)) :: bs ->
CLetIn (mkloc loc1, x, v, loop ty c bs)
| [] -> c
| _ -> anomaly "binder not a lambda nor a let in" in
match c2 with
| CCast (x, ct, CastConv cty) ->
(CCast (x, loop false ct bs, CastConv (loop true cty bs)))
| ct -> loop false ct bs
let rec fix_binders = function
| (_, CLambdaN (_, [xs, _, t], _)) :: bs ->
LocalRawAssum (xs, Default Explicit, t) :: fix_binders bs
| (_, CLetIn (_, x, v, _)) :: bs ->
LocalRawDef (x, v) :: fix_binders bs
| _ -> []
let pr_ssrstruct _ _ _ = function
| Some id -> str "{struct " ++ pr_id id ++ str "}"
| None -> mt ()
ARGUMENT EXTEND ssrstruct TYPED AS ident option PRINTED BY pr_ssrstruct
| [ "{" "struct" ident(id) "}" ] -> [ Some id ]
| [ ] -> [ None ]
END
(** The "pose" tactic *)
(* The plain pose form. *)
let bind_fwd bs = function
| (fk, h), (ck, (rc, Some c)) ->
(fk,binders_fmts bs @ h), (ck,(rc,Some (push_binders c bs)))
| fwd -> fwd
ARGUMENT EXTEND ssrposefwd TYPED AS ssrfwd PRINTED BY pr_ssrfwd
| [ ssrbinder_list(bs) ssrfwd(fwd) ] -> [ bind_fwd bs fwd ]
END
(* The pose fix form. *)
let pr_ssrfixfwd _ _ _ (id, fwd) = str " fix " ++ pr_id id ++ pr_fwd fwd
let bvar_locid = function
| CRef (Ident (loc, id), _) -> loc, id
| _ -> CErrors.error "Missing identifier after \"(co)fix\""
ARGUMENT EXTEND ssrfixfwd TYPED AS ident * ssrfwd PRINTED BY pr_ssrfixfwd
| [ "fix" ssrbvar(bv) ssrbinder_list(bs) ssrstruct(sid) ssrfwd(fwd) ] ->
[ let (_, id) as lid = bvar_locid bv in
let (fk, h), (ck, (rc, oc)) = fwd in
let c = Option.get oc in
let has_cast, t', c' = match format_constr_expr h c with
| [Bcast t'], c' -> true, t', c'
| _ -> false, mkCHole (constr_loc c), c in
let lb = fix_binders bs in
let has_struct, i =
let rec loop = function
(l', Name id') :: _ when Option.equal Id.equal sid (Some id') -> true, (l', id')
| [l', Name id'] when sid = None -> false, (l', id')
| _ :: bn -> loop bn
| [] -> CErrors.error "Bad structural argument" in
loop (names_of_local_assums lb) in
let h' = BFrec (has_struct, has_cast) :: binders_fmts bs in
let fix = CFix (loc, lid, [lid, (Some i, CStructRec), lb, t', c']) in
id, ((fk, h'), (ck, (rc, Some fix))) ]
END
(* The pose cofix form. *)
let pr_ssrcofixfwd _ _ _ (id, fwd) = str " cofix " ++ pr_id id ++ pr_fwd fwd
ARGUMENT EXTEND ssrcofixfwd TYPED AS ssrfixfwd PRINTED BY pr_ssrcofixfwd
| [ "cofix" ssrbvar(bv) ssrbinder_list(bs) ssrfwd(fwd) ] ->
[ let _, id as lid = bvar_locid bv in
let (fk, h), (ck, (rc, oc)) = fwd in
let c = Option.get oc in
let has_cast, t', c' = match format_constr_expr h c with
| [Bcast t'], c' -> true, t', c'
| _ -> false, mkCHole (constr_loc c), c in
let h' = BFrec (false, has_cast) :: binders_fmts bs in
let cofix = CCoFix (loc, lid, [lid, fix_binders bs, t', c']) in
id, ((fk, h'), (ck, (rc, Some cofix)))
]
END
let ssrposetac ist (id, (_, t)) gl =
let sigma, t, ucst, _ = pf_abs_ssrterm ist gl t in
posetac id t (pf_merge_uc ucst gl)
let prof_ssrposetac = mk_profiler "ssrposetac";;
let ssrposetac arg gl = prof_ssrposetac.profile (ssrposetac arg) gl;;
TACTIC EXTEND ssrpose
| [ "pose" ssrfixfwd(ffwd) ] -> [ Proofview.V82.tactic (ssrposetac ist ffwd) ]
| [ "pose" ssrcofixfwd(ffwd) ] -> [ Proofview.V82.tactic (ssrposetac ist ffwd) ]
| [ "pose" ssrfwdid(id) ssrposefwd(fwd) ] -> [ Proofview.V82.tactic (ssrposetac ist (id, fwd)) ]
END
(** The "set" tactic *)
(* type ssrsetfwd = ssrfwd * ssrdocc *)
let guard_setrhs s i = s.[i] = '{'
let pr_setrhs occ prc prlc c =
if occ = nodocc then pr_guarded guard_setrhs prlc c else pr_docc occ ++ prc c
let pr_fwd_guarded prval prval' = function
| (fk, h), (_, (_, Some c)) ->
pr_gen_fwd prval pr_constr_expr prl_constr_expr fk (format_constr_expr h c)
| (fk, h), (_, (c, None)) ->
pr_gen_fwd prval' pr_glob_constr prl_glob_constr fk (format_glob_constr h c)
(* This does not print the type, it should be fixed... *)
let pr_ssrsetfwd _ _ _ (((fk,_),(t,_)), docc) =
pr_gen_fwd (fun _ _ -> pr_cpattern)
(fun _ -> mt()) (fun _ -> mt()) fk ([Bcast ()],t)
ARGUMENT EXTEND ssrsetfwd
TYPED AS (ssrfwdfmt * (lcpattern * ssrterm option)) * ssrdocc
PRINTED BY pr_ssrsetfwd
| [ ":" lconstr(t) ":=" "{" ssrocc(occ) "}" cpattern(c) ] ->
[ mkssrFwdCast FwdPose loc (mk_lterm t) c, mkocc occ ]
| [ ":" lconstr(t) ":=" lcpattern(c) ] ->
[ mkssrFwdCast FwdPose loc (mk_lterm t) c, nodocc ]
| [ ":=" "{" ssrocc(occ) "}" cpattern(c) ] ->
[ mkssrFwdVal FwdPose c, mkocc occ ]
| [ ":=" lcpattern(c) ] -> [ mkssrFwdVal FwdPose c, nodocc ]
END
let ssrsettac ist id ((_, (pat, pty)), (_, occ)) gl =
let pat = interp_cpattern ist gl pat (Option.map snd pty) in
let cl, sigma, env = pf_concl gl, project gl, pf_env gl in
let (c, ucst), cl =
try fill_occ_pattern ~raise_NoMatch:true env sigma cl pat occ 1
with NoMatch -> redex_of_pattern ~resolve_typeclasses:true env pat, cl in
if occur_existential c then errorstrm(str"The pattern"++spc()++
pr_constr_pat c++spc()++str"did not match and has holes."++spc()++
str"Did you mean pose?") else
let c, (gl, cty) = match kind_of_term c with
| Cast(t, DEFAULTcast, ty) -> t, (gl, ty)
| _ -> c, pf_type_of gl c in
let cl' = mkLetIn (Name id, c, cty, cl) in
let gl = pf_merge_uc ucst gl in
tclTHEN (Proofview.V82.of_tactic (convert_concl cl')) (introid id) gl
TACTIC EXTEND ssrset
| [ "set" ssrfwdid(id) ssrsetfwd(fwd) ssrclauses(clauses) ] ->
[ Proofview.V82.tactic (tclCLAUSES ist (ssrsettac ist id fwd) clauses) ]
END
(** The "have" tactic *)
(* type ssrhavefwd = ssrfwd * ssrhint *)
let pr_ssrhavefwd _ _ prt (fwd, hint) = pr_fwd fwd ++ pr_hint prt hint
ARGUMENT EXTEND ssrhavefwd TYPED AS ssrfwd * ssrhint PRINTED BY pr_ssrhavefwd
| [ ":" lconstr(t) ssrhint(hint) ] -> [ mkFwdHint ":" t, hint ]
| [ ":" lconstr(t) ":=" lconstr(c) ] -> [ mkFwdCast FwdHave loc t c, nohint ]
| [ ":" lconstr(t) ":=" ] -> [ mkFwdHintNoTC ":" t, nohint ]
| [ ":=" lconstr(c) ] -> [ mkFwdVal FwdHave c, nohint ]
END
let intro_id_to_binder = List.map (function
| IpatId id ->
let xloc, _ as x = bvar_lname (mkCVar dummy_loc id) in
(FwdPose, [BFvar]),
CLambdaN (dummy_loc, [[x], Default Explicit, mkCHole xloc],
mkCHole dummy_loc)
| _ -> anomaly "non-id accepted as binder")
let binder_to_intro_id = List.map (function
| (FwdPose, [BFvar]), CLambdaN (_,[ids,_,_],_)
| (FwdPose, [BFdecl _]), CLambdaN (_,[ids,_,_],_) ->
List.map (function (_, Name id) -> IpatId id | _ -> IpatAnon) ids
| (FwdPose, [BFdef _]), CLetIn (_,(_,Name id),_,_) -> [IpatId id]
| (FwdPose, [BFdef _]), CLetIn (_,(_,Anonymous),_,_) -> [IpatAnon]
| _ -> anomaly "ssrbinder is not a binder")
let pr_ssrhavefwdwbinders _ _ prt (tr,((hpats, (fwd, hint)))) =
pr_hpats hpats ++ pr_fwd fwd ++ pr_hint prt hint
ARGUMENT EXTEND ssrhavefwdwbinders
TYPED AS bool * (ssrhpats * (ssrfwd * ssrhint))
PRINTED BY pr_ssrhavefwdwbinders
| [ ssrhpats_wtransp(trpats) ssrbinder_list(bs) ssrhavefwd(fwd) ] ->
[ let tr, pats = trpats in
let ((clr, pats), binders), simpl = pats in
let allbs = intro_id_to_binder binders @ bs in
let allbinders = binders @ List.flatten (binder_to_intro_id bs) in
let hint = bind_fwd allbs (fst fwd), snd fwd in
tr, ((((clr, pats), allbinders), simpl), hint) ]
END
(* Tactic. *)
let is_Evar_or_CastedMeta x =
isEvar_or_Meta x ||
(isCast x && isEvar_or_Meta (pi1 (destCast x)))
let occur_existential_or_casted_meta c =
let rec occrec c = match kind_of_term c with
| Evar _ -> raise Not_found
| Cast (m,_,_) when isMeta m -> raise Not_found
| _ -> iter_constr occrec c
in try occrec c; false with Not_found -> true
let examine_abstract id gl =
let gl, tid = pf_type_of gl id in
let abstract, gl = pf_mkSsrConst "abstract" gl in
if not (isApp tid) || not (Term.eq_constr (fst(destApp tid)) abstract) then
errorstrm(strbrk"not an abstract constant: "++pr_constr id);
let _, args_id = destApp tid in
if Array.length args_id <> 3 then
errorstrm(strbrk"not a proper abstract constant: "++pr_constr id);
if not (is_Evar_or_CastedMeta args_id.(2)) then
errorstrm(strbrk"abstract constant "++pr_constr id++str" already used");
tid, args_id
let pf_find_abstract_proof check_lock gl abstract_n =
let fire gl t = Reductionops.nf_evar (project gl) t in
let abstract, gl = pf_mkSsrConst "abstract" gl in
let l = Evd.fold_undefined (fun e ei l ->
match kind_of_term ei.Evd.evar_concl with
| App(hd, [|ty; n; lock|])
when (not check_lock ||
(occur_existential_or_casted_meta (fire gl ty) &&
is_Evar_or_CastedMeta (fire gl lock))) &&
Term.eq_constr hd abstract && Term.eq_constr n abstract_n -> e::l
| _ -> l) (project gl) [] in
match l with
| [e] -> e
| _ -> errorstrm(strbrk"abstract constant "++pr_constr abstract_n++
strbrk" not found in the evar map exactly once. "++
strbrk"Did you tamper with it?")
let unfold cl =
let module R = Reductionops in let module F = CClosure.RedFlags in
reduct_in_concl (R.clos_norm_flags (F.mkflags
(List.map (fun c -> F.fCONST (fst (destConst c))) cl @
[F.fBETA; F.fMATCH; F.fFIX; F.fCOFIX])))
let havegentac ist t gl =
let sigma, c, ucst, _ = pf_abs_ssrterm ist gl t in
let gl = pf_merge_uc ucst gl in
let gl, cty = pf_type_of gl c in
apply_type (mkArrow cty (pf_concl gl)) [c] gl
let havetac ist
(transp,((((clr, pats), binders), simpl), (((fk, _), t), hint)))
suff namefst gl
=
let concl = pf_concl gl in
let skols, pats =
List.partition (function IpatNewHidden _ -> true | _ -> false) pats in
let itac_mkabs = introstac ~ist skols in
let itac_c = introstac ~ist (IpatSimpl(clr,Nop) :: pats) in
let itac, id, clr = introstac ~ist pats, tclIDTAC, cleartac clr in
let binderstac n =
let rec aux = function 0 -> [] | n -> IpatAnon :: aux (n-1) in
tclTHEN (if binders <> [] then introstac ~ist (aux n) else tclIDTAC)
(introstac ~ist binders) in
let simpltac = introstac ~ist simpl in
let fixtc =
not !ssrhaveNOtcresolution &&
match fk with FwdHint(_,true) -> false | _ -> true in
let hint = hinttac ist true hint in
let cuttac t gl =
if transp then
let have_let, gl = pf_mkSsrConst "ssr_have_let" gl in
let step = mkApp (have_let, [|concl;t|]) in
let gl, _ = pf_e_type_of gl step in
applyn ~with_evars:true ~with_shelve:false 2 step gl
else basecuttac "ssr_have" t gl in
(* Introduce now abstract constants, so that everything sees them *)
let abstract_key, gl = pf_mkSsrConst "abstract_key" gl in
let unlock_abs (idty,args_id) gl =
let gl, _ = pf_e_type_of gl idty in
pf_unify_HO gl args_id.(2) abstract_key in
tclTHENFIRST itac_mkabs (fun gl ->
let mkt t = mk_term ' ' t in
let mkl t = (' ', (t, None)) in
let interp gl rtc t = pf_abs_ssrterm ~resolve_typeclasses:rtc ist gl t in
let interp_ty gl rtc t =
let a,b,_,u = pf_interp_ty ~resolve_typeclasses:rtc ist gl t in a,b,u in
let ct, cty, hole, loc = match t with
| _, (_, Some (CCast (loc, ct, CastConv cty))) ->
mkt ct, mkt cty, mkt (mkCHole dummy_loc), loc
| _, (_, Some ct) ->
mkt ct, mkt (mkCHole dummy_loc), mkt (mkCHole dummy_loc), dummy_loc
| _, (GCast (loc, ct, CastConv cty), None) ->
mkl ct, mkl cty, mkl mkRHole, loc
| _, (t, None) -> mkl t, mkl mkRHole, mkl mkRHole, dummy_loc in
let gl, cut, sol, itac1, itac2 =
match fk, namefst, suff with
| FwdHave, true, true ->
errorstrm (str"Suff have does not accept a proof term")
| FwdHave, false, true ->
let cty = combineCG cty hole (mkCArrow loc) mkRArrow in
let _,t,uc,_ = interp gl false (combineCG ct cty (mkCCast loc) mkRCast) in
let gl = pf_merge_uc uc gl in
let gl, ty = pf_type_of gl t in
let ctx, _ = decompose_prod_n 1 ty in
let assert_is_conv gl =
try Proofview.V82.of_tactic (convert_concl (compose_prod ctx concl)) gl
with _ -> errorstrm (str "Given proof term is not of type " ++
pr_constr (mkArrow (mkVar (id_of_string "_")) concl)) in
gl, ty, tclTHEN assert_is_conv (Proofview.V82.of_tactic (apply t)), id, itac_c
| FwdHave, false, false ->
let skols = List.flatten (List.map (function
| IpatNewHidden ids -> ids
| _ -> assert false) skols) in
let skols_args =
List.map (fun id -> examine_abstract (mkVar id) gl) skols in
let gl = List.fold_right unlock_abs skols_args gl in
let sigma, t, uc, n_evars =
interp gl false (combineCG ct cty (mkCCast loc) mkRCast) in
if skols <> [] && n_evars <> 0 then
CErrors.error ("Automatic generalization of unresolved implicit "^
"arguments together with abstract variables is "^
"not supported");
let gl = re_sig (sig_it gl) (Evd.merge_universe_context sigma uc) in
let gs =
List.map (fun (_,a) ->
pf_find_abstract_proof false gl a.(1)) skols_args in
let tacopen_skols gl =
let stuff, g = Refiner.unpackage gl in
Refiner.repackage stuff (gs @ [g]) in
let gl, ty = pf_e_type_of gl t in
gl, ty, Proofview.V82.of_tactic (apply t), id,
tclTHEN (tclTHEN itac_c simpltac)
(tclTHEN tacopen_skols (fun gl ->
let abstract, gl = pf_mkSsrConst "abstract" gl in
Proofview.V82.of_tactic (unfold [abstract; abstract_key]) gl))
| _,true,true ->
let _, ty, uc = interp_ty gl fixtc cty in let gl = pf_merge_uc uc gl in
gl, mkArrow ty concl, hint, itac, clr
| _,false,true ->
let _, ty, uc = interp_ty gl fixtc cty in let gl = pf_merge_uc uc gl in
gl, mkArrow ty concl, hint, id, itac_c
| _, false, false ->
let n, cty, uc = interp_ty gl fixtc cty in let gl = pf_merge_uc uc gl in
gl, cty, tclTHEN (binderstac n) hint, id, tclTHEN itac_c simpltac
| _, true, false -> assert false in
tclTHENS (cuttac cut) [ tclTHEN sol itac1; itac2 ] gl)
gl
;;
(* to extend the abstract value one needs:
Utility lemma to partially instantiate an abstract constant type.
Lemma use_abstract T n l (x : abstract T n l) : T.
Proof. by case: l x. Qed.
*)
let ssrabstract ist gens (*last*) gl =
let main _ (_,cid) ist gl =
(*
let proj1, proj2, prod =
let pdata = build_prod () in
pdata.Coqlib.proj1, pdata.Coqlib.proj2, pdata.Coqlib.typ in
*)
let concl, env = pf_concl gl, pf_env gl in
let fire gl t = Reductionops.nf_evar (project gl) t in
let abstract, gl = pf_mkSsrConst "abstract" gl in
let abstract_key, gl = pf_mkSsrConst "abstract_key" gl in
let cid_interpreted = interp_cpattern ist gl cid None in
let id = mkVar (Option.get (id_of_pattern cid_interpreted)) in
let idty, args_id = examine_abstract id gl in
let abstract_n = args_id.(1) in
let abstract_proof = pf_find_abstract_proof true gl abstract_n in
let gl, proof =
let pf_unify_HO gl a b =
try pf_unify_HO gl a b
with _ -> errorstrm(strbrk"The abstract variable "++pr_constr id++
strbrk" cannot abstract this goal. Did you generalize it?") in
let rec find_hole p t =
match kind_of_term t with
| Evar _ (*when last*) -> pf_unify_HO gl concl t, p
| Meta _ (*when last*) -> pf_unify_HO gl concl t, p
| Cast(m,_,_) when isEvar_or_Meta m (*when last*) -> pf_unify_HO gl concl t, p
(*
| Evar _ ->
let sigma, it = project gl, sig_it gl in
let sigma, ty = Evarutil.new_type_evar sigma env in
let gl = re_sig it sigma in
let p = mkApp (proj2,[|ty;concl;p|]) in
let concl = mkApp(prod,[|ty; concl|]) in
pf_unify_HO gl concl t, p
| App(hd, [|left; right|]) when Term.eq_constr hd prod ->
find_hole (mkApp (proj1,[|left;right;p|])) left
*)
| _ -> errorstrm(strbrk"abstract constant "++pr_constr abstract_n++
strbrk" has an unexpected shape. Did you tamper with it?")
in
find_hole
((*if last then*) id
(*else mkApp(mkSsrConst "use_abstract",Array.append args_id [|id|])*))
(fire gl args_id.(0)) in
let gl = (*if last then*) pf_unify_HO gl abstract_key args_id.(2) (*else gl*) in
let gl, _ = pf_e_type_of gl idty in
let proof = fire gl proof in
(* if last then *)
let tacopen gl =
let stuff, g = Refiner.unpackage gl in
Refiner.repackage stuff [ g; abstract_proof ] in
tclTHENS tacopen [tclSOLVE [Proofview.V82.of_tactic (apply proof)]; Proofview.V82.of_tactic (unfold[abstract;abstract_key])] gl
(* else apply proof gl *)
in
let introback ist (gens, _) =
introstac ~ist
(List.map (fun (_,cp) -> match id_of_pattern (interp_cpattern ist gl cp None) with
| None -> IpatAnon
| Some id -> IpatId id)
(List.tl (List.hd gens))) in
tclTHEN (with_dgens gens main ist) (introback ist gens) gl
(* The standard TACTIC EXTEND does not work for abstract *)
GEXTEND Gram
GLOBAL: tactic_expr;
tactic_expr: LEVEL "3"
[ RIGHTA [ IDENT "abstract"; gens = ssrdgens ->
ssrtac_expr !@loc "abstract"
[Tacexpr.TacGeneric (Genarg.in_gen (Genarg.rawwit wit_ssrdgens) gens)] ]];
END
TACTIC EXTEND ssrabstract
| [ "abstract" ssrdgens(gens) ] -> [
if List.length (fst gens) <> 1 then
errorstrm (str"dependents switches '/' not allowed here");
Proofview.V82.tactic (ssrabstract ist gens) ]
END
let prof_havetac = mk_profiler "havetac";;
let havetac arg a b gl = prof_havetac.profile (havetac arg a b) gl;;
TACTIC EXTEND ssrhave
| [ "have" ssrhavefwdwbinders(fwd) ] ->
[ Proofview.V82.tactic (havetac ist fwd false false) ]
END
TACTIC EXTEND ssrhavesuff
| [ "have" "suff" ssrhpats_nobs(pats) ssrhavefwd(fwd) ] ->
[ Proofview.V82.tactic (havetac ist (false,(pats,fwd)) true false) ]
END
TACTIC EXTEND ssrhavesuffices
| [ "have" "suffices" ssrhpats_nobs(pats) ssrhavefwd(fwd) ] ->
[ Proofview.V82.tactic (havetac ist (false,(pats,fwd)) true false) ]
END
TACTIC EXTEND ssrsuffhave
| [ "suff" "have" ssrhpats_nobs(pats) ssrhavefwd(fwd) ] ->
[ Proofview.V82.tactic (havetac ist (false,(pats,fwd)) true true) ]
END
TACTIC EXTEND ssrsufficeshave
| [ "suffices" "have" ssrhpats_nobs(pats) ssrhavefwd(fwd) ] ->
[ Proofview.V82.tactic (havetac ist (false,(pats,fwd)) true true) ]
END
(** The "suffice" tactic *)
let pr_ssrsufffwdwbinders _ _ prt (hpats, (fwd, hint)) =
pr_hpats hpats ++ pr_fwd fwd ++ pr_hint prt hint
ARGUMENT EXTEND ssrsufffwd
TYPED AS ssrhpats * (ssrfwd * ssrhint) PRINTED BY pr_ssrsufffwdwbinders
| [ ssrhpats(pats) ssrbinder_list(bs) ":" lconstr(t) ssrhint(hint) ] ->
[ let ((clr, pats), binders), simpl = pats in
let allbs = intro_id_to_binder binders @ bs in
let allbinders = binders @ List.flatten (binder_to_intro_id bs) in
let fwd = mkFwdHint ":" t in
(((clr, pats), allbinders), simpl), (bind_fwd allbs fwd, hint) ]
END
let sufftac ist ((((clr, pats),binders),simpl), ((_, c), hint)) =
let htac = tclTHEN (introstac ~ist pats) (hinttac ist true hint) in
let c = match c with
| (a, (b, Some (CCast (_, _, CastConv cty)))) -> a, (b, Some cty)
| (a, (GCast (_, _, CastConv cty), None)) -> a, (cty, None)
| _ -> anomaly "suff: ssr cast hole deleted by typecheck" in
let ctac gl =
let _,ty,_,uc = pf_interp_ty ist gl c in let gl = pf_merge_uc uc gl in
basecuttac "ssr_suff" ty gl in
tclTHENS ctac [htac; tclTHEN (cleartac clr) (introstac ~ist (binders@simpl))]
TACTIC EXTEND ssrsuff
| [ "suff" ssrsufffwd(fwd) ] -> [ Proofview.V82.tactic (sufftac ist fwd) ]
END
TACTIC EXTEND ssrsuffices
| [ "suffices" ssrsufffwd(fwd) ] -> [ Proofview.V82.tactic (sufftac ist fwd) ]
END
(** The "wlog" (Without Loss Of Generality) tactic *)
(* type ssrwlogfwd = ssrwgen list * ssrfwd *)
let pr_ssrwlogfwd _ _ _ (gens, t) =
str ":" ++ pr_list mt pr_wgen gens ++ spc() ++ pr_fwd t
ARGUMENT EXTEND ssrwlogfwd TYPED AS ssrwgen list * ssrfwd
PRINTED BY pr_ssrwlogfwd
| [ ":" ssrwgen_list(gens) "/" lconstr(t) ] -> [ gens, mkFwdHint "/" t]
END
let destProd_or_LetIn c =
match kind_of_term c with
| Prod (n,ty,c) -> RelDecl.LocalAssum (n, ty), c
| LetIn (n,bo,ty,c) -> RelDecl.LocalDef (n, bo, ty), c
| _ -> raise DestKO
let wlogtac ist (((clr0, pats),_),_) (gens, ((_, ct))) hint suff ghave gl =
let mkabs gen = abs_wgen false ist (fun x -> x) gen in
let mkclr gen clrs = clr_of_wgen gen clrs in
let mkpats = function
| _, Some ((x, _), _) -> fun pats -> IpatId (hoi_id x) :: pats
| _ -> fun x -> x in
let ct = match ct with
| (a, (b, Some (CCast (_, _, CastConv cty)))) -> a, (b, Some cty)
| (a, (GCast (_, _, CastConv cty), None)) -> a, (cty, None)
| _ -> anomaly "wlog: ssr cast hole deleted by typecheck" in
let cut_implies_goal = not (suff || ghave <> `NoGen) in
let c, args, ct, gl =
let gens = List.filter (function _, Some _ -> true | _ -> false) gens in
let concl = pf_concl gl in
let c = mkProp in
let c = if cut_implies_goal then mkArrow c concl else c in
let gl, args, c = List.fold_right mkabs gens (gl,[],c) in
let env, _ =
List.fold_left (fun (env, c) _ ->
let rd, c = destProd_or_LetIn c in
Environ.push_rel rd env, c) (pf_env gl, c) gens in
let sigma = project gl in
let sigma = Sigma.Unsafe.of_evar_map sigma in
let Sigma (ev, sigma, _) = Evarutil.new_evar env sigma Term.mkProp in
let sigma = Sigma.to_evar_map sigma in
let k, _ = Term.destEvar ev in
let fake_gl = {Evd.it = k; Evd.sigma = sigma} in
let _, ct, _, uc = pf_interp_ty ist fake_gl ct in
let rec var2rel c g s = match kind_of_term c, g with
| Prod(Anonymous,_,c), [] -> mkProd(Anonymous, Vars.subst_vars s ct, c)
| Sort _, [] -> Vars.subst_vars s ct
| LetIn(Name id as n,b,ty,c), _::g -> mkLetIn (n,b,ty,var2rel c g (id::s))
| Prod(Name id as n,ty,c), _::g -> mkProd (n,ty,var2rel c g (id::s))
| _ -> CErrors.anomaly(str"SSR: wlog: var2rel: " ++ pr_constr c) in
let c = var2rel c gens [] in
let rec pired c = function
| [] -> c
| t::ts as args -> match kind_of_term c with
| Prod(_,_,c) -> pired (subst1 t c) ts
| LetIn(id,b,ty,c) -> mkLetIn (id,b,ty,pired c args)
| _ -> CErrors.anomaly(str"SSR: wlog: pired: " ++ pr_constr c) in
c, args, pired c args, pf_merge_uc uc gl in
let tacipat pats = introstac ~ist pats in
let tacigens =
tclTHEN
(tclTHENLIST(List.rev(List.fold_right mkclr gens [cleartac clr0])))
(introstac ~ist (List.fold_right mkpats gens [])) in
let hinttac = hinttac ist true hint in
let cut_kind, fst_goal_tac, snd_goal_tac =
match suff, ghave with
| true, `NoGen -> "ssr_wlog", tclTHEN hinttac (tacipat pats), tacigens
| false, `NoGen -> "ssr_wlog", hinttac, tclTHEN tacigens (tacipat pats)
| true, `Gen _ -> assert false
| false, `Gen id ->
if gens = [] then errorstrm(str"gen have requires some generalizations");
let clear0 = cleartac clr0 in
let id, name_general_hyp, cleanup, pats = match id, pats with
| None, (IpatId id as ip)::pats -> Some id, tacipat [ip], clear0, pats
| None, _ -> None, tclIDTAC, clear0, pats
| Some (Some id),_ -> Some id, introid id, clear0, pats
| Some _,_ ->
let id = mk_anon_id "tmp" gl in
Some id, introid id, tclTHEN clear0 (Proofview.V82.of_tactic (clear [id])), pats in
let tac_specialize = match id with
| None -> tclIDTAC
| Some id ->
if pats = [] then tclIDTAC else
let args = Array.of_list args in
pp(lazy(str"specialized="++pr_constr (mkApp (mkVar id,args))));
pp(lazy(str"specialized_ty="++pr_constr ct));
tclTHENS (basecuttac "ssr_have" ct)
[Proofview.V82.of_tactic (apply (mkApp (mkVar id,args))); tclIDTAC] in
"ssr_have",
(if hint = nohint then tacigens else hinttac),
tclTHENLIST [name_general_hyp; tac_specialize; tacipat pats; cleanup]
in
tclTHENS (basecuttac cut_kind c) [fst_goal_tac; snd_goal_tac] gl
TACTIC EXTEND ssrwlog
| [ "wlog" ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] ->
[ Proofview.V82.tactic (wlogtac ist pats fwd hint false `NoGen) ]
END
TACTIC EXTEND ssrwlogs
| [ "wlog" "suff" ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] ->
[ Proofview.V82.tactic (wlogtac ist pats fwd hint true `NoGen) ]
END
TACTIC EXTEND ssrwlogss
| [ "wlog" "suffices" ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ]->
[ Proofview.V82.tactic (wlogtac ist pats fwd hint true `NoGen) ]
END
TACTIC EXTEND ssrwithoutloss
| [ "without" "loss" ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] ->
[ Proofview.V82.tactic (wlogtac ist pats fwd hint false `NoGen) ]
END
TACTIC EXTEND ssrwithoutlosss
| [ "without" "loss" "suff"
ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] ->
[ Proofview.V82.tactic (wlogtac ist pats fwd hint true `NoGen) ]
END
TACTIC EXTEND ssrwithoutlossss
| [ "without" "loss" "suffices"
ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ]->
[ Proofview.V82.tactic (wlogtac ist pats fwd hint true `NoGen) ]
END
(* Generally have *)
let pr_idcomma _ _ _ = function
| None -> mt()
| Some None -> str"_, "
| Some (Some id) -> pr_id id ++ str", "
ARGUMENT EXTEND ssr_idcomma TYPED AS ident option option PRINTED BY pr_idcomma
| [ ] -> [ None ]
END
let accept_idcomma strm =
match Compat.get_tok (stream_nth 0 strm) with
| Tok.IDENT _ | Tok.KEYWORD "_" -> accept_before_syms [","] strm
| _ -> raise Stream.Failure
let test_idcomma = Gram.Entry.of_parser "test_idcomma" accept_idcomma
GEXTEND Gram
GLOBAL: ssr_idcomma;
ssr_idcomma: [ [ test_idcomma;
ip = [ id = IDENT -> Some (id_of_string id) | "_" -> None ]; "," ->
Some ip
] ];
END
let augment_preclr clr1 (((clr0, x),y),z) = (((clr1 @ clr0, x),y),z)
TACTIC EXTEND ssrgenhave
| [ "gen" "have" ssrclear(clr)
ssr_idcomma(id) ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] ->
[ let pats = augment_preclr clr pats in
Proofview.V82.tactic (wlogtac ist pats fwd hint false (`Gen id)) ]
END
TACTIC EXTEND ssrgenhave2
| [ "generally" "have" ssrclear(clr)
ssr_idcomma(id) ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] ->
[ let pats = augment_preclr clr pats in
Proofview.V82.tactic (wlogtac ist pats fwd hint false (`Gen id)) ]
END
(** Canonical Structure alias *)
GEXTEND Gram
GLOBAL: gallina_ext;
gallina_ext:
(* Canonical structure *)
[[ IDENT "Canonical"; qid = Constr.global ->
Vernacexpr.VernacCanonical (AN qid)
| IDENT "Canonical"; ntn = Prim.by_notation ->
Vernacexpr.VernacCanonical (ByNotation ntn)
| IDENT "Canonical"; qid = Constr.global;
d = G_vernac.def_body ->
let s = coerce_reference_to_id qid in
Vernacexpr.VernacDefinition
((Some Decl_kinds.Global,Decl_kinds.CanonicalStructure),
((dummy_loc,s),None),(d ))
]];
END
(** 9. Keyword compatibility fixes. *)
(* Coq v8.1 notation uses "by" and "of" quasi-keywords, i.e., reserved *)
(* identifiers used as keywords. This is incompatible with ssreflect.v *)
(* which makes "by" and "of" true keywords, because of technicalities *)
(* in the internal lexer-parser API of Coq. We patch this here by *)
(* adding new parsing rules that recognize the new keywords. *)
(* To make matters worse, the Coq grammar for tactics fails to *)
(* export the non-terminals we need to patch. Fortunately, the CamlP5 *)
(* API provides a backdoor access (with loads of Obj.magic trickery). *)
(* Coq v8.3 defines "by" as a keyword, some hacks are not needed any *)
(* longer and thus comment out. Such comments are marked with v8.3 *)
GEXTEND Gram
GLOBAL: Tactic.hypident;
Tactic.hypident: [
[ "("; IDENT "type"; "of"; id = Prim.identref; ")" -> id, InHypTypeOnly
| "("; IDENT "value"; "of"; id = Prim.identref; ")" -> id, InHypValueOnly
] ];
END
GEXTEND Gram
GLOBAL: hloc;
hloc: [
[ "in"; "("; "Type"; "of"; id = ident; ")" ->
HypLocation ((dummy_loc,id), InHypTypeOnly)
| "in"; "("; IDENT "Value"; "of"; id = ident; ")" ->
HypLocation ((dummy_loc,id), InHypValueOnly)
] ];
END
GEXTEND Gram
GLOBAL: Tactic.constr_eval;
Tactic.constr_eval: [
[ IDENT "type"; "of"; c = Constr.constr -> Genredexpr.ConstrTypeOf c ]
];
END
(* We wipe out all the keywords generated by the grammar rules we defined. *)
(* The user is supposed to Require Import ssreflect or Require ssreflect *)
(* and Import ssreflect.SsrSyntax to obtain these keywords and as a *)
(* consequence the extended ssreflect grammar. *)
let () = CLexer.unfreeze frozen_lexer ;;
(* vim: set filetype=ocaml foldmethod=marker: *)
|