1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
(******************************************************************************)
(* The basic theory of paths over an eqType; this file is essentially a *)
(* complement to seq.v. Paths are non-empty sequences that obey a progression *)
(* relation. They are passed around in three parts: the head and tail of the *)
(* sequence, and a proof of (boolean) predicate asserting the progression. *)
(* This "exploded" view is rarely embarrassing, as the first two parameters *)
(* are usually inferred from the type of the third; on the contrary, it saves *)
(* the hassle of constantly constructing and destructing a dependent record. *)
(* We define similarly cycles, for which we allow the empty sequence, *)
(* which represents a non-rooted empty cycle; by contrast, the "empty" path *)
(* from a point x is the one-item sequence containing only x. *)
(* We allow duplicates; uniqueness, if desired (as is the case for several *)
(* geometric constructions), must be asserted separately. We do provide *)
(* shorthand, but only for cycles, because the equational properties of *)
(* "path" and "uniq" are unfortunately incompatible (esp. wrt "cat"). *)
(* We define notations for the common cases of function paths, where the *)
(* progress relation is actually a function. In detail: *)
(* path e x p == x :: p is an e-path [:: x_0; x_1; ... ; x_n], i.e., we *)
(* e x_i x_{i+1} for all i < n. The path x :: p starts at x *)
(* and ends at last x p. *)
(* fpath f x p == x :: p is an f-path, where f is a function, i.e., p is of *)
(* the form [:: f x; f (f x); ...]. This is just a notation *)
(* for path (frel f) x p. *)
(* sorted e s == s is an e-sorted sequence: either s = [::], or s = x :: p *)
(* is an e-path (this is oten used with e = leq or ltn). *)
(* cycle e c == c is an e-cycle: either c = [::], or c = x :: p with *)
(* x :: (rcons p x) an e-path. *)
(* fcycle f c == c is an f-cycle, for a function f. *)
(* traject f x n == the f-path of size n starting at x *)
(* := [:: x; f x; ...; iter n.-1 f x] *)
(* looping f x n == the f-paths of size greater than n starting at x loop *)
(* back, or, equivalently, traject f x n contains all *)
(* iterates of f at x. *)
(* merge e s1 s2 == the e-sorted merge of sequences s1 and s2: this is always *)
(* a permutation of s1 ++ s2, and is e-sorted when s1 and s2 *)
(* are and e is total. *)
(* sort e s == a permutation of the sequence s, that is e-sorted when e *)
(* is total (computed by a merge sort with the merge function *)
(* above). *)
(* mem2 s x y == x, then y occur in the sequence (path) s; this is *)
(* non-strict: mem2 s x x = (x \in s). *)
(* next c x == the successor of the first occurrence of x in the sequence *)
(* c (viewed as a cycle), or x if x \notin c. *)
(* prev c x == the predecessor of the first occurrence of x in the *)
(* sequence c (viewed as a cycle), or x if x \notin c. *)
(* arc c x y == the sub-arc of the sequece c (viewed as a cycle) starting *)
(* at the first occurrence of x in c, and ending just before *)
(* the next ocurrence of y (in cycle order); arc c x y *)
(* returns an unspecified sub-arc of c if x and y do not both *)
(* occur in c. *)
(* ucycle e c <-> ucycleb e c (ucycle e c is a Coercion target of type Prop) *)
(* ufcycle f c <-> c is a simple f-cycle, for a function f. *)
(* shorten x p == the tail a duplicate-free subpath of x :: p with the same *)
(* endpoints (x and last x p), obtained by removing all loops *)
(* from x :: p. *)
(* rel_base e e' h b <-> the function h is a functor from relation e to *)
(* relation e', EXCEPT at points whose image under h satisfy *)
(* the "base" predicate b: *)
(* e' (h x) (h y) = e x y UNLESS b (h x) holds *)
(* This is the statement of the side condition of the path *)
(* functorial mapping lemma map_path. *)
(* fun_base f f' h b <-> the function h is a functor from function f to f', *)
(* except at the preimage of predicate b under h. *)
(* We also provide three segmenting dependently-typed lemmas (splitP, splitPl *)
(* and splitPr) whose elimination split a path x0 :: p at an internal point x *)
(* as follows: *)
(* - splitP applies when x \in p; it replaces p with (rcons p1 x ++ p2), so *)
(* that x appears explicitly at the end of the left part. The elimination *)
(* of splitP will also simultaneously replace take (index x p) with p1 and *)
(* drop (index x p).+1 p with p2. *)
(* - splitPl applies when x \in x0 :: p; it replaces p with p1 ++ p2 and *)
(* simulaneously generates an equation x = last x0 p. *)
(* - splitPr applies when x \in p; it replaces p with (p1 ++ x :: p2), so x *)
(* appears explicitly at the start of the right part. *)
(* The parts p1 and p2 are computed using index/take/drop in all cases, but *)
(* only splitP attemps to subsitute the explicit values. The substitution of *)
(* p can be deferred using the dependent equation generation feature of *)
(* ssreflect, e.g.: case/splitPr def_p: {1}p / x_in_p => [p1 p2] generates *)
(* the equation p = p1 ++ p2 instead of performing the substitution outright. *)
(* Similarly, eliminating the loop removal lemma shortenP simultaneously *)
(* replaces shorten e x p with a fresh constant p', and last x p with *)
(* last x p'. *)
(* Note that although all "path" functions actually operate on the *)
(* underlying sequence, we provide a series of lemmas that define their *)
(* interaction with thepath and cycle predicates, e.g., the cat_path equation *)
(* can be used to split the path predicate after splitting the underlying *)
(* sequence. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Section Paths.
Variables (n0 : nat) (T : Type).
Section Path.
Variables (x0_cycle : T) (e : rel T).
Fixpoint path x (p : seq T) :=
if p is y :: p' then e x y && path y p' else true.
Lemma cat_path x p1 p2 : path x (p1 ++ p2) = path x p1 && path (last x p1) p2.
Proof. by elim: p1 x => [|y p1 Hrec] x //=; rewrite Hrec -!andbA. Qed.
Lemma rcons_path x p y : path x (rcons p y) = path x p && e (last x p) y.
Proof. by rewrite -cats1 cat_path /= andbT. Qed.
Lemma pathP x p x0 :
reflect (forall i, i < size p -> e (nth x0 (x :: p) i) (nth x0 p i))
(path x p).
Proof.
elim: p x => [|y p IHp] x /=; first by left.
apply: (iffP andP) => [[e_xy /IHp e_p [] //] | e_p].
by split; [apply: (e_p 0) | apply/(IHp y) => i; apply: e_p i.+1].
Qed.
Definition cycle p := if p is x :: p' then path x (rcons p' x) else true.
Lemma cycle_path p : cycle p = path (last x0_cycle p) p.
Proof. by case: p => //= x p; rewrite rcons_path andbC. Qed.
Lemma rot_cycle p : cycle (rot n0 p) = cycle p.
Proof.
case: n0 p => [|n] [|y0 p] //=; first by rewrite /rot /= cats0.
rewrite /rot /= -{3}(cat_take_drop n p) -cats1 -catA cat_path.
case: (drop n p) => [|z0 q]; rewrite /= -cats1 !cat_path /= !andbT andbC //.
by rewrite last_cat; repeat bool_congr.
Qed.
Lemma rotr_cycle p : cycle (rotr n0 p) = cycle p.
Proof. by rewrite -rot_cycle rotrK. Qed.
End Path.
Lemma eq_path e e' : e =2 e' -> path e =2 path e'.
Proof. by move=> ee' x p; elim: p x => //= y p IHp x; rewrite ee' IHp. Qed.
Lemma eq_cycle e e' : e =2 e' -> cycle e =1 cycle e'.
Proof. by move=> ee' [|x p] //=; apply: eq_path. Qed.
Lemma sub_path e e' : subrel e e' -> forall x p, path e x p -> path e' x p.
Proof. by move=> ee' x p; elim: p x => //= y p IHp x /andP[/ee'-> /IHp]. Qed.
Lemma rev_path e x p :
path e (last x p) (rev (belast x p)) = path (fun z => e^~ z) x p.
Proof.
elim: p x => //= y p IHp x; rewrite rev_cons rcons_path -{}IHp andbC.
by rewrite -(last_cons x) -rev_rcons -lastI rev_cons last_rcons.
Qed.
End Paths.
Arguments pathP {T e x p}.
Section EqPath.
Variables (n0 : nat) (T : eqType) (x0_cycle : T) (e : rel T).
Implicit Type p : seq T.
Variant split x : seq T -> seq T -> seq T -> Type :=
Split p1 p2 : split x (rcons p1 x ++ p2) p1 p2.
Lemma splitP p x (i := index x p) :
x \in p -> split x p (take i p) (drop i.+1 p).
Proof.
move=> p_x; have lt_ip: i < size p by rewrite index_mem.
by rewrite -{1}(cat_take_drop i p) (drop_nth x lt_ip) -cat_rcons nth_index.
Qed.
Variant splitl x1 x : seq T -> Type :=
Splitl p1 p2 of last x1 p1 = x : splitl x1 x (p1 ++ p2).
Lemma splitPl x1 p x : x \in x1 :: p -> splitl x1 x p.
Proof.
rewrite inE; case: eqP => [->| _ /splitP[]]; first by rewrite -(cat0s p).
by split; apply: last_rcons.
Qed.
Variant splitr x : seq T -> Type :=
Splitr p1 p2 : splitr x (p1 ++ x :: p2).
Lemma splitPr p x : x \in p -> splitr x p.
Proof. by case/splitP=> p1 p2; rewrite cat_rcons. Qed.
Fixpoint next_at x y0 y p :=
match p with
| [::] => if x == y then y0 else x
| y' :: p' => if x == y then y' else next_at x y0 y' p'
end.
Definition next p x := if p is y :: p' then next_at x y y p' else x.
Fixpoint prev_at x y0 y p :=
match p with
| [::] => if x == y0 then y else x
| y' :: p' => if x == y' then y else prev_at x y0 y' p'
end.
Definition prev p x := if p is y :: p' then prev_at x y y p' else x.
Lemma next_nth p x :
next p x = if x \in p then
if p is y :: p' then nth y p' (index x p) else x
else x.
Proof.
case: p => //= y0 p.
elim: p {2 3 5}y0 => [|y' p IHp] y /=; rewrite (eq_sym y) inE;
by case: ifP => // _; apply: IHp.
Qed.
Lemma prev_nth p x :
prev p x = if x \in p then
if p is y :: p' then nth y p (index x p') else x
else x.
Proof.
case: p => //= y0 p; rewrite inE orbC.
elim: p {2 5}y0 => [|y' p IHp] y; rewrite /= ?inE // (eq_sym y').
by case: ifP => // _; apply: IHp.
Qed.
Lemma mem_next p x : (next p x \in p) = (x \in p).
Proof.
rewrite next_nth; case p_x: (x \in p) => //.
case: p (index x p) p_x => [|y0 p'] //= i _; rewrite inE.
have [lt_ip | ge_ip] := ltnP i (size p'); first by rewrite orbC mem_nth.
by rewrite nth_default ?eqxx.
Qed.
Lemma mem_prev p x : (prev p x \in p) = (x \in p).
Proof.
rewrite prev_nth; case p_x: (x \in p) => //; case: p => [|y0 p] // in p_x *.
by apply mem_nth; rewrite /= ltnS index_size.
Qed.
(* ucycleb is the boolean predicate, but ucycle is defined as a Prop *)
(* so that it can be used as a coercion target. *)
Definition ucycleb p := cycle e p && uniq p.
Definition ucycle p : Prop := cycle e p && uniq p.
(* Projections, used for creating local lemmas. *)
Lemma ucycle_cycle p : ucycle p -> cycle e p.
Proof. by case/andP. Qed.
Lemma ucycle_uniq p : ucycle p -> uniq p.
Proof. by case/andP. Qed.
Lemma next_cycle p x : cycle e p -> x \in p -> e x (next p x).
Proof.
case: p => //= y0 p; elim: p {1 3 5}y0 => [|z p IHp] y /=; rewrite inE.
by rewrite andbT; case: (x =P y) => // ->.
by case/andP=> eyz /IHp; case: (x =P y) => // ->.
Qed.
Lemma prev_cycle p x : cycle e p -> x \in p -> e (prev p x) x.
Proof.
case: p => //= y0 p; rewrite inE orbC.
elim: p {1 5}y0 => [|z p IHp] y /=; rewrite ?inE.
by rewrite andbT; case: (x =P y0) => // ->.
by case/andP=> eyz /IHp; case: (x =P z) => // ->.
Qed.
Lemma rot_ucycle p : ucycle (rot n0 p) = ucycle p.
Proof. by rewrite /ucycle rot_uniq rot_cycle. Qed.
Lemma rotr_ucycle p : ucycle (rotr n0 p) = ucycle p.
Proof. by rewrite /ucycle rotr_uniq rotr_cycle. Qed.
(* The "appears no later" partial preorder defined by a path. *)
Definition mem2 p x y := y \in drop (index x p) p.
Lemma mem2l p x y : mem2 p x y -> x \in p.
Proof.
by rewrite /mem2 -!index_mem size_drop ltn_subRL; apply/leq_ltn_trans/leq_addr.
Qed.
Lemma mem2lf {p x y} : x \notin p -> mem2 p x y = false.
Proof. exact/contraNF/mem2l. Qed.
Lemma mem2r p x y : mem2 p x y -> y \in p.
Proof.
by rewrite -[in y \in p](cat_take_drop (index x p) p) mem_cat orbC /mem2 => ->.
Qed.
Lemma mem2rf {p x y} : y \notin p -> mem2 p x y = false.
Proof. exact/contraNF/mem2r. Qed.
Lemma mem2_cat p1 p2 x y :
mem2 (p1 ++ p2) x y = mem2 p1 x y || mem2 p2 x y || (x \in p1) && (y \in p2).
Proof.
rewrite [LHS]/mem2 index_cat fun_if if_arg !drop_cat addKn.
case: ifPn => [p1x | /mem2lf->]; last by rewrite ltnNge leq_addr orbF.
by rewrite index_mem p1x mem_cat -orbA (orb_idl (@mem2r _ _ _)).
Qed.
Lemma mem2_splice p1 p3 x y p2 :
mem2 (p1 ++ p3) x y -> mem2 (p1 ++ p2 ++ p3) x y.
Proof.
by rewrite !mem2_cat mem_cat andb_orr orbC => /or3P[]->; rewrite ?orbT.
Qed.
Lemma mem2_splice1 p1 p3 x y z :
mem2 (p1 ++ p3) x y -> mem2 (p1 ++ z :: p3) x y.
Proof. exact: mem2_splice [::z]. Qed.
Lemma mem2_cons x p y z :
mem2 (x :: p) y z = (if x == y then z \in x :: p else mem2 p y z).
Proof. by rewrite [LHS]/mem2 /=; case: ifP. Qed.
Lemma mem2_seq1 x y z : mem2 [:: x] y z = (y == x) && (z == x).
Proof. by rewrite mem2_cons eq_sym inE. Qed.
Lemma mem2_last y0 p x : mem2 p x (last y0 p) = (x \in p).
Proof.
apply/idP/idP; first exact: mem2l; rewrite -index_mem /mem2 => p_x.
by rewrite -nth_last -(subnKC p_x) -nth_drop mem_nth // size_drop subnSK.
Qed.
Lemma mem2l_cat {p1 p2 x} : x \notin p1 -> mem2 (p1 ++ p2) x =1 mem2 p2 x.
Proof. by move=> p1'x y; rewrite mem2_cat (negPf p1'x) mem2lf ?orbF. Qed.
Lemma mem2r_cat {p1 p2 x y} : y \notin p2 -> mem2 (p1 ++ p2) x y = mem2 p1 x y.
Proof.
by move=> p2'y; rewrite mem2_cat (negPf p2'y) -orbA orbC andbF mem2rf.
Qed.
Lemma mem2lr_splice {p1 p2 p3 x y} :
x \notin p2 -> y \notin p2 -> mem2 (p1 ++ p2 ++ p3) x y = mem2 (p1 ++ p3) x y.
Proof.
move=> p2'x p2'y; rewrite catA !mem2_cat !mem_cat.
by rewrite (negPf p2'x) (negPf p2'y) (mem2lf p2'x) andbF !orbF.
Qed.
Variant split2r x y : seq T -> Type :=
Split2r p1 p2 of y \in x :: p2 : split2r x y (p1 ++ x :: p2).
Lemma splitP2r p x y : mem2 p x y -> split2r x y p.
Proof.
move=> pxy; have px := mem2l pxy.
have:= pxy; rewrite /mem2 (drop_nth x) ?index_mem ?nth_index //.
by case/splitP: px => p1 p2; rewrite cat_rcons.
Qed.
Fixpoint shorten x p :=
if p is y :: p' then
if x \in p then shorten x p' else y :: shorten y p'
else [::].
Variant shorten_spec x p : T -> seq T -> Type :=
ShortenSpec p' of path e x p' & uniq (x :: p') & subpred (mem p') (mem p) :
shorten_spec x p (last x p') p'.
Lemma shortenP x p : path e x p -> shorten_spec x p (last x p) (shorten x p).
Proof.
move=> e_p; have: x \in x :: p by apply: mem_head.
elim: p x {1 3 5}x e_p => [|y2 p IHp] x y1.
by rewrite mem_seq1 => _ /eqP->.
rewrite inE orbC /= => /andP[ey12 /IHp {IHp}IHp].
case: ifPn => [y2p_x _ | not_y2p_x /eqP def_x].
have [p' e_p' Up' p'p] := IHp _ y2p_x.
by split=> // y /p'p; apply: predU1r.
have [p' e_p' Up' p'p] := IHp y2 (mem_head y2 p).
have{p'p} p'p z: z \in y2 :: p' -> z \in y2 :: p.
by rewrite !inE; case: (z == y2) => // /p'p.
rewrite -(last_cons y1) def_x; split=> //=; first by rewrite ey12.
by rewrite (contra (p'p y1)) -?def_x.
Qed.
End EqPath.
(* Ordered paths and sorting. *)
Section SortSeq.
Variable T : eqType.
Variable leT : rel T.
Definition sorted s := if s is x :: s' then path leT x s' else true.
Lemma path_sorted x s : path leT x s -> sorted s.
Proof. by case: s => //= y s /andP[]. Qed.
Lemma path_min_sorted x s :
{in s, forall y, leT x y} -> path leT x s = sorted s.
Proof. by case: s => //= y s -> //; apply: mem_head. Qed.
Section Transitive.
Hypothesis leT_tr : transitive leT.
Lemma subseq_order_path x s1 s2 :
subseq s1 s2 -> path leT x s2 -> path leT x s1.
Proof.
elim: s2 x s1 => [|y s2 IHs] x [|z s1] //= {IHs}/(IHs y).
case: eqP => [-> | _] IHs /andP[] => [-> // | leTxy /IHs /=].
by case/andP=> /(leT_tr leTxy)->.
Qed.
Lemma order_path_min x s : path leT x s -> all (leT x) s.
Proof.
move/subseq_order_path=> le_x_s; apply/allP=> y.
by rewrite -sub1seq => /le_x_s/andP[].
Qed.
Lemma subseq_sorted s1 s2 : subseq s1 s2 -> sorted s2 -> sorted s1.
Proof.
case: s1 s2 => [|x1 s1] [|x2 s2] //= sub_s12 /(subseq_order_path sub_s12).
by case: eqP => [-> | _ /andP[]].
Qed.
Lemma sorted_filter a s : sorted s -> sorted (filter a s).
Proof. exact: subseq_sorted (filter_subseq a s). Qed.
Lemma sorted_uniq : irreflexive leT -> forall s, sorted s -> uniq s.
Proof.
move=> leT_irr; elim=> //= x s IHs s_ord.
rewrite (IHs (path_sorted s_ord)) andbT; apply/negP=> s_x.
by case/allPn: (order_path_min s_ord); exists x; rewrite // leT_irr.
Qed.
Lemma eq_sorted : antisymmetric leT ->
forall s1 s2, sorted s1 -> sorted s2 -> perm_eq s1 s2 -> s1 = s2.
Proof.
move=> leT_asym; elim=> [|x1 s1 IHs1] s2 //= ord_s1 ord_s2 eq_s12.
by case: {+}s2 (perm_size eq_s12).
have s2_x1: x1 \in s2 by rewrite -(perm_mem eq_s12) mem_head.
case: s2 s2_x1 eq_s12 ord_s2 => //= x2 s2; rewrite in_cons.
case: eqP => [<- _| ne_x12 /= s2_x1] eq_s12 ord_s2.
by rewrite {IHs1}(IHs1 s2) ?(@path_sorted x1) // -(perm_cons x1).
case: (ne_x12); apply: leT_asym; rewrite (allP (order_path_min ord_s2)) //.
have: x2 \in x1 :: s1 by rewrite (perm_mem eq_s12) mem_head.
case/predU1P=> [eq_x12 | s1_x2]; first by case ne_x12.
by rewrite (allP (order_path_min ord_s1)).
Qed.
Lemma eq_sorted_irr : irreflexive leT ->
forall s1 s2, sorted s1 -> sorted s2 -> s1 =i s2 -> s1 = s2.
Proof.
move=> leT_irr s1 s2 s1_sort s2_sort eq_s12.
have: antisymmetric leT.
by move=> m n /andP[? ltnm]; case/idP: (leT_irr m); apply: leT_tr ltnm.
by move/eq_sorted; apply=> //; apply: uniq_perm => //; apply: sorted_uniq.
Qed.
End Transitive.
Hypothesis leT_total : total leT.
Fixpoint merge s1 :=
if s1 is x1 :: s1' then
let fix merge_s1 s2 :=
if s2 is x2 :: s2' then
if leT x2 x1 then x2 :: merge_s1 s2' else x1 :: merge s1' s2
else s1 in
merge_s1
else id.
Lemma merge_path x s1 s2 :
path leT x s1 -> path leT x s2 -> path leT x (merge s1 s2).
Proof.
elim: s1 s2 x => //= x1 s1 IHs1.
elim=> //= x2 s2 IHs2 x /andP[le_x_x1 ord_s1] /andP[le_x_x2 ord_s2].
case: ifP => le_x21 /=; first by rewrite le_x_x2 {}IHs2 // le_x21.
by rewrite le_x_x1 IHs1 //=; have:= leT_total x2 x1; rewrite le_x21 /= => ->.
Qed.
Lemma merge_sorted s1 s2 : sorted s1 -> sorted s2 -> sorted (merge s1 s2).
Proof.
case: s1 s2 => [|x1 s1] [|x2 s2] //= ord_s1 ord_s2.
case: ifP => le_x21 /=.
by apply: (@merge_path x2 (x1 :: s1)) => //=; rewrite le_x21.
by apply: merge_path => //=; have:= leT_total x2 x1; rewrite le_x21 /= => ->.
Qed.
Lemma perm_merge s1 s2 : perm_eql (merge s1 s2) (s1 ++ s2).
Proof.
apply/permPl; rewrite perm_sym; elim: s1 s2 => //= x1 s1 IHs1.
elim=> [|x2 s2 IHs2]; rewrite /= ?cats0 //.
case: ifP => _ /=; last by rewrite perm_cons.
by rewrite (perm_catCA (_ :: _) [::x2]) perm_cons.
Qed.
Lemma mem_merge s1 s2 : merge s1 s2 =i s1 ++ s2.
Proof. by apply: perm_mem; rewrite perm_merge. Qed.
Lemma size_merge s1 s2 : size (merge s1 s2) = size (s1 ++ s2).
Proof. by apply: perm_size; rewrite perm_merge. Qed.
Lemma merge_uniq s1 s2 : uniq (merge s1 s2) = uniq (s1 ++ s2).
Proof. by apply: perm_uniq; rewrite perm_merge. Qed.
Fixpoint merge_sort_push s1 ss :=
match ss with
| [::] :: ss' | [::] as ss' => s1 :: ss'
| s2 :: ss' => [::] :: merge_sort_push (merge s1 s2) ss'
end.
Fixpoint merge_sort_pop s1 ss :=
if ss is s2 :: ss' then merge_sort_pop (merge s1 s2) ss' else s1.
Fixpoint merge_sort_rec ss s :=
if s is [:: x1, x2 & s'] then
let s1 := if leT x1 x2 then [:: x1; x2] else [:: x2; x1] in
merge_sort_rec (merge_sort_push s1 ss) s'
else merge_sort_pop s ss.
Definition sort := merge_sort_rec [::].
Lemma sort_sorted s : sorted (sort s).
Proof.
rewrite /sort; have allss: all sorted [::] by [].
elim: {s}_.+1 {-2}s [::] allss (ltnSn (size s)) => // n IHn s ss allss.
have: sorted s -> sorted (merge_sort_pop s ss).
elim: ss allss s => //= s2 ss IHss /andP[ord_s2 ord_ss] s ord_s.
exact: IHss ord_ss _ (merge_sorted ord_s ord_s2).
case: s => [|x1 [|x2 s _]]; try by auto.
move/ltnW/IHn; apply=> {n IHn s}; set s1 := if _ then _ else _.
have: sorted s1 by apply: (@merge_sorted [::x2] [::x1]).
elim: ss {x1 x2}s1 allss => /= [|s2 ss IHss] s1; first by rewrite andbT.
case/andP=> ord_s2 ord_ss ord_s1.
by case: {1}s2=> /= [|_ _]; [rewrite ord_s1 | apply: IHss (merge_sorted _ _)].
Qed.
Lemma perm_sort s : perm_eql (sort s) s.
Proof.
rewrite /sort; apply/permPl; pose catss := foldr (@cat T) [::].
rewrite perm_sym -{1}[s]/(catss [::] ++ s).
elim: {s}_.+1 {-2}s [::] (ltnSn (size s)) => // n IHn s ss.
have: perm_eq (catss ss ++ s) (merge_sort_pop s ss).
elim: ss s => //= s2 ss IHss s1; rewrite -{IHss}(permPr (IHss _)).
by rewrite perm_catC catA perm_catC perm_cat2l -perm_merge.
case: s => // x1 [//|x2 s _]; move/ltnW; move/IHn=> {n IHn}IHs.
rewrite -{IHs}(permPr (IHs _)) ifE; set s1 := if_expr _ _ _.
rewrite (catA _ [:: _; _] s) {s}perm_cat2r.
apply: (@perm_trans _ (catss ss ++ s1)).
by rewrite perm_cat2l /s1 -ifE; case: ifP; rewrite // (perm_catC [:: _]).
elim: ss {x1 x2}s1 => /= [|s2 ss IHss] s1; first by rewrite cats0.
rewrite perm_catC; case def_s2: {2}s2=> /= [|y s2']; first by rewrite def_s2.
by rewrite catA -{IHss}(permPr (IHss _)) perm_catC perm_cat2l -perm_merge.
Qed.
Lemma mem_sort s : sort s =i s.
Proof. by apply: perm_mem; rewrite perm_sort. Qed.
Lemma size_sort s : size (sort s) = size s.
Proof. by apply: perm_size; rewrite perm_sort. Qed.
Lemma sort_uniq s : uniq (sort s) = uniq s.
Proof. by apply: perm_uniq; rewrite perm_sort. Qed.
Lemma perm_sortP : transitive leT -> antisymmetric leT ->
forall s1 s2, reflect (sort s1 = sort s2) (perm_eq s1 s2).
Proof.
move=> leT_tr leT_asym s1 s2.
apply: (iffP idP) => eq12; last by rewrite -perm_sort eq12 perm_sort.
apply: eq_sorted; rewrite ?sort_sorted //.
by rewrite perm_sort (permPl eq12) -perm_sort.
Qed.
End SortSeq.
Lemma rev_sorted (T : eqType) (leT : rel T) s :
sorted leT (rev s) = sorted (fun y x => leT x y) s.
Proof. by case: s => //= x p; rewrite -rev_path lastI rev_rcons. Qed.
Lemma ltn_sorted_uniq_leq s : sorted ltn s = uniq s && sorted leq s.
Proof.
case: s => //= n s; elim: s n => //= m s IHs n.
rewrite inE ltn_neqAle negb_or IHs -!andbA.
case sn: (n \in s); last do !bool_congr.
rewrite andbF; apply/and5P=> [[ne_nm lenm _ _ le_ms]]; case/negP: ne_nm.
by rewrite eqn_leq lenm; apply: (allP (order_path_min leq_trans le_ms)).
Qed.
Lemma iota_sorted i n : sorted leq (iota i n).
Proof. by elim: n i => // [[|n] //= IHn] i; rewrite IHn leqW. Qed.
Lemma iota_ltn_sorted i n : sorted ltn (iota i n).
Proof. by rewrite ltn_sorted_uniq_leq iota_sorted iota_uniq. Qed.
(* Function trajectories. *)
Notation fpath f := (path (coerced_frel f)).
Notation fcycle f := (cycle (coerced_frel f)).
Notation ufcycle f := (ucycle (coerced_frel f)).
Prenex Implicits path next prev cycle ucycle mem2.
Section Trajectory.
Variables (T : Type) (f : T -> T).
Fixpoint traject x n := if n is n'.+1 then x :: traject (f x) n' else [::].
Lemma trajectS x n : traject x n.+1 = x :: traject (f x) n.
Proof. by []. Qed.
Lemma trajectSr x n : traject x n.+1 = rcons (traject x n) (iter n f x).
Proof. by elim: n x => //= n IHn x; rewrite IHn -iterSr. Qed.
Lemma last_traject x n : last x (traject (f x) n) = iter n f x.
Proof. by case: n => // n; rewrite iterSr trajectSr last_rcons. Qed.
Lemma traject_iteri x n :
traject x n = iteri n (fun i => rcons^~ (iter i f x)) [::].
Proof. by elim: n => //= n <-; rewrite -trajectSr. Qed.
Lemma size_traject x n : size (traject x n) = n.
Proof. by elim: n x => //= n IHn x //=; rewrite IHn. Qed.
Lemma nth_traject i n : i < n -> forall x, nth x (traject x n) i = iter i f x.
Proof.
elim: n => // n IHn; rewrite ltnS leq_eqVlt => le_i_n x.
rewrite trajectSr nth_rcons size_traject.
by case: ltngtP le_i_n => [? _||->] //; apply: IHn.
Qed.
End Trajectory.
Section EqTrajectory.
Variables (T : eqType) (f : T -> T).
Lemma eq_fpath f' : f =1 f' -> fpath f =2 fpath f'.
Proof. by move/eq_frel/eq_path. Qed.
Lemma eq_fcycle f' : f =1 f' -> fcycle f =1 fcycle f'.
Proof. by move/eq_frel/eq_cycle. Qed.
Lemma fpathP x p : reflect (exists n, p = traject f (f x) n) (fpath f x p).
Proof.
elim: p x => [|y p IHp] x; first by left; exists 0.
rewrite /= andbC; case: IHp => [fn_p | not_fn_p]; last first.
by right=> [] [[//|n]] [<- fn_p]; case: not_fn_p; exists n.
apply: (iffP eqP) => [-> | [[] // _ []//]].
by have [n ->] := fn_p; exists n.+1.
Qed.
Lemma fpath_traject x n : fpath f x (traject f (f x) n).
Proof. by apply/(fpathP x); exists n. Qed.
Definition looping x n := iter n f x \in traject f x n.
Lemma loopingP x n :
reflect (forall m, iter m f x \in traject f x n) (looping x n).
Proof.
apply: (iffP idP) => loop_n; last exact: loop_n.
case: n => // n in loop_n *; elim=> [|m /= IHm]; first exact: mem_head.
move: (fpath_traject x n) loop_n; rewrite /looping !iterS -last_traject /=.
move: (iter m f x) IHm => y /splitPl[p1 p2 def_y].
rewrite cat_path last_cat def_y; case: p2 => // z p2 /and3P[_ /eqP-> _] _.
by rewrite inE mem_cat mem_head !orbT.
Qed.
Lemma trajectP x n y :
reflect (exists2 i, i < n & y = iter i f x) (y \in traject f x n).
Proof.
elim: n x => [|n IHn] x /=; first by right; case.
rewrite inE; have [-> | /= neq_xy] := eqP; first by left; exists 0.
apply: {IHn}(iffP (IHn _)) => [[i] | [[|i]]] // lt_i_n ->.
by exists i.+1; rewrite ?iterSr.
by exists i; rewrite ?iterSr.
Qed.
Lemma looping_uniq x n : uniq (traject f x n.+1) = ~~ looping x n.
Proof.
rewrite /looping; elim: n x => [|n IHn] x //.
rewrite {-3}[n.+1]lock /= -lock {}IHn -iterSr -negb_or inE; congr (~~ _).
apply: orb_id2r => /trajectP no_loop.
apply/idP/eqP => [/trajectP[m le_m_n def_x] | {1}<-]; last first.
by rewrite iterSr -last_traject mem_last.
have loop_m: looping x m.+1 by rewrite /looping iterSr -def_x mem_head.
have/trajectP[[|i] // le_i_m def_fn1x] := loopingP _ _ loop_m n.+1.
by case: no_loop; exists i; rewrite -?iterSr // -ltnS (leq_trans le_i_m).
Qed.
End EqTrajectory.
Arguments fpathP {T f x p}.
Arguments loopingP {T f x n}.
Arguments trajectP {T f x n y}.
Prenex Implicits traject.
Section UniqCycle.
Variables (n0 : nat) (T : eqType) (e : rel T) (p : seq T).
Hypothesis Up : uniq p.
Lemma prev_next : cancel (next p) (prev p).
Proof.
move=> x; rewrite prev_nth mem_next next_nth; case p_x: (x \in p) => //.
case def_p: p Up p_x => // [y q]; rewrite -{-1}def_p => /= /andP[not_qy Uq] p_x.
rewrite -{2}(nth_index y p_x); congr (nth y _ _); set i := index x p.
have: ~~ (size q < i) by rewrite -index_mem -/i def_p leqNgt in p_x.
case: ltngtP => // [lt_i_q | ->] _; first by rewrite index_uniq.
by apply/eqP; rewrite nth_default // eqn_leq index_size leqNgt index_mem.
Qed.
Lemma next_prev : cancel (prev p) (next p).
Proof.
move=> x; rewrite next_nth mem_prev prev_nth; case p_x: (x \in p) => //.
case def_p: p p_x => // [y q]; rewrite -def_p => p_x.
rewrite index_uniq //; last by rewrite def_p ltnS index_size.
case q_x: (x \in q); first exact: nth_index.
rewrite nth_default; last by rewrite leqNgt index_mem q_x.
by apply/eqP; rewrite def_p inE q_x orbF eq_sym in p_x.
Qed.
Lemma cycle_next : fcycle (next p) p.
Proof.
case def_p: {-2}p Up => [|x q] Uq //.
apply/(pathP x)=> i; rewrite size_rcons => le_i_q.
rewrite -cats1 -cat_cons nth_cat le_i_q /= next_nth {}def_p mem_nth //.
rewrite index_uniq // nth_cat /= ltn_neqAle andbC -ltnS le_i_q.
by case: (i =P _) => //= ->; rewrite subnn nth_default.
Qed.
Lemma cycle_prev : cycle (fun x y => x == prev p y) p.
Proof.
apply: etrans cycle_next; symmetry; case def_p: p => [|x q] //.
by apply: eq_path; rewrite -def_p; apply: (can2_eq prev_next next_prev).
Qed.
Lemma cycle_from_next : (forall x, x \in p -> e x (next p x)) -> cycle e p.
Proof.
case: p (next p) cycle_next => //= [x q] n; rewrite -(belast_rcons x q x).
move: {q}(rcons q x) => q n_q; move/allP.
by elim: q x n_q => //= _ q IHq x /andP[/eqP <- n_q] /andP[-> /IHq->].
Qed.
Lemma cycle_from_prev : (forall x, x \in p -> e (prev p x) x) -> cycle e p.
Proof.
move=> e_p; apply: cycle_from_next => x p_x.
by rewrite -{1}[x]prev_next e_p ?mem_next.
Qed.
Lemma next_rot : next (rot n0 p) =1 next p.
Proof.
move=> x; have n_p := cycle_next; rewrite -(rot_cycle n0) in n_p.
case p_x: (x \in p); last by rewrite !next_nth mem_rot p_x.
by rewrite (eqP (next_cycle n_p _)) ?mem_rot.
Qed.
Lemma prev_rot : prev (rot n0 p) =1 prev p.
Proof.
move=> x; have p_p := cycle_prev; rewrite -(rot_cycle n0) in p_p.
case p_x: (x \in p); last by rewrite !prev_nth mem_rot p_x.
by rewrite (eqP (prev_cycle p_p _)) ?mem_rot.
Qed.
End UniqCycle.
Section UniqRotrCycle.
Variables (n0 : nat) (T : eqType) (p : seq T).
Hypothesis Up : uniq p.
Lemma next_rotr : next (rotr n0 p) =1 next p. Proof. exact: next_rot. Qed.
Lemma prev_rotr : prev (rotr n0 p) =1 prev p. Proof. exact: prev_rot. Qed.
End UniqRotrCycle.
Section UniqCycleRev.
Variable T : eqType.
Implicit Type p : seq T.
Lemma prev_rev p : uniq p -> prev (rev p) =1 next p.
Proof.
move=> Up x; case p_x: (x \in p); last first.
by rewrite next_nth prev_nth mem_rev p_x.
case/rot_to: p_x (Up) => [i q def_p] Urp; rewrite -rev_uniq in Urp.
rewrite -(prev_rotr i Urp); do 2 rewrite -(prev_rotr 1) ?rotr_uniq //.
rewrite -rev_rot -(next_rot i Up) {i p Up Urp}def_p.
by case: q => // y q; rewrite !rev_cons !(=^~ rcons_cons, rotr1_rcons) /= eqxx.
Qed.
Lemma next_rev p : uniq p -> next (rev p) =1 prev p.
Proof. by move=> Up x; rewrite -{2}[p]revK prev_rev // rev_uniq. Qed.
End UniqCycleRev.
Section MapPath.
Variables (T T' : Type) (h : T' -> T) (e : rel T) (e' : rel T').
Definition rel_base (b : pred T) :=
forall x' y', ~~ b (h x') -> e (h x') (h y') = e' x' y'.
Lemma map_path b x' p' (Bb : rel_base b) :
~~ has (preim h b) (belast x' p') ->
path e (h x') (map h p') = path e' x' p'.
Proof. by elim: p' x' => [|y' p' IHp'] x' //= /norP[/Bb-> /IHp'->]. Qed.
End MapPath.
Section MapEqPath.
Variables (T T' : eqType) (h : T' -> T) (e : rel T) (e' : rel T').
Hypothesis Ih : injective h.
Lemma mem2_map x' y' p' : mem2 (map h p') (h x') (h y') = mem2 p' x' y'.
Proof. by rewrite {1}/mem2 (index_map Ih) -map_drop mem_map. Qed.
Lemma next_map p : uniq p -> forall x, next (map h p) (h x) = h (next p x).
Proof.
move=> Up x; case p_x: (x \in p); last by rewrite !next_nth (mem_map Ih) p_x.
case/rot_to: p_x => i p' def_p.
rewrite -(next_rot i Up); rewrite -(map_inj_uniq Ih) in Up.
rewrite -(next_rot i Up) -map_rot {i p Up}def_p /=.
by case: p' => [|y p''] //=; rewrite !eqxx.
Qed.
Lemma prev_map p : uniq p -> forall x, prev (map h p) (h x) = h (prev p x).
Proof.
move=> Up x; rewrite -{1}[x](next_prev Up) -(next_map Up).
by rewrite prev_next ?map_inj_uniq.
Qed.
End MapEqPath.
Definition fun_base (T T' : eqType) (h : T' -> T) f f' :=
rel_base h (frel f) (frel f').
Section CycleArc.
Variable T : eqType.
Implicit Type p : seq T.
Definition arc p x y := let px := rot (index x p) p in take (index y px) px.
Lemma arc_rot i p : uniq p -> {in p, arc (rot i p) =2 arc p}.
Proof.
move=> Up x p_x y; congr (fun q => take (index y q) q); move: Up p_x {y}.
rewrite -{1 2 5 6}(cat_take_drop i p) /rot cat_uniq => /and3P[_ Up12 _].
rewrite !drop_cat !take_cat !index_cat mem_cat orbC.
case p2x: (x \in drop i p) => /= => [_ | p1x].
rewrite index_mem p2x [x \in _](negbTE (hasPn Up12 _ p2x)) /= addKn.
by rewrite ltnNge leq_addr catA.
by rewrite p1x index_mem p1x addKn ltnNge leq_addr /= catA.
Qed.
Lemma left_arc x y p1 p2 (p := x :: p1 ++ y :: p2) :
uniq p -> arc p x y = x :: p1.
Proof.
rewrite /arc /p [index x _]/= eqxx rot0 -cat_cons cat_uniq index_cat.
move: (x :: p1) => xp1 /and3P[_ /norP[/= /negbTE-> _] _].
by rewrite eqxx addn0 take_size_cat.
Qed.
Lemma right_arc x y p1 p2 (p := x :: p1 ++ y :: p2) :
uniq p -> arc p y x = y :: p2.
Proof.
rewrite -[p]cat_cons -rot_size_cat rot_uniq => Up.
by rewrite arc_rot ?left_arc ?mem_head.
Qed.
Variant rot_to_arc_spec p x y :=
RotToArcSpec i p1 p2 of x :: p1 = arc p x y
& y :: p2 = arc p y x
& rot i p = x :: p1 ++ y :: p2 :
rot_to_arc_spec p x y.
Lemma rot_to_arc p x y :
uniq p -> x \in p -> y \in p -> x != y -> rot_to_arc_spec p x y.
Proof.
move=> Up p_x p_y ne_xy; case: (rot_to p_x) (p_y) (Up) => [i q def_p] q_y.
rewrite -(mem_rot i) def_p inE eq_sym (negbTE ne_xy) in q_y.
rewrite -(rot_uniq i) def_p.
case/splitPr: q / q_y def_p => q1 q2 def_p Uq12; exists i q1 q2 => //.
by rewrite -(arc_rot i Up p_x) def_p left_arc.
by rewrite -(arc_rot i Up p_y) def_p right_arc.
Qed.
End CycleArc.
Prenex Implicits arc.
Section Monotonicity.
Variables (T : eqType) (r : rel T).
Hypothesis r_trans : transitive r.
Lemma sorted_lt_nth x0 (s : seq T) : sorted r s ->
{in [pred n | n < size s] &, {homo nth x0 s : i j / i < j >-> r i j}}.
Proof.
move=> s_sorted i j; rewrite -!topredE /=.
wlog ->: i j s s_sorted / i = 0 => [/(_ 0 (j - i) (drop i s)) hw|] ilt jlt ltij.
move: hw; rewrite !size_drop !nth_drop addn0 subnKC ?(ltnW ltij) //.
by rewrite (subseq_sorted _ (drop_subseq _ _)) ?subn_gt0 ?ltn_sub2r//; apply.
case: s ilt j jlt ltij => [|x s] //= _ [//|j] jlt _ in s_sorted *.
by have /allP -> //= := order_path_min r_trans s_sorted; rewrite mem_nth.
Qed.
Lemma ltn_index (s : seq T) : sorted r s ->
{in s &, forall x y, index x s < index y s -> r x y}.
Proof.
case: s => [//|x0 s'] r_sorted x y xs ys.
move=> /(@sorted_lt_nth x0 (x0 :: s')).
by rewrite ?nth_index ?[_ \in gtn _]index_mem //; apply.
Qed.
Hypothesis r_refl : reflexive r.
Lemma sorted_le_nth x0 (s : seq T) : sorted r s ->
{in [pred n | n < size s] &, {homo nth x0 s : i j / i <= j >-> r i j}}.
Proof.
move=> s_sorted x y xs ys.
by rewrite leq_eqVlt=> /orP[/eqP->//|/sorted_lt_nth]; apply.
Qed.
Lemma leq_index (s : seq T) : sorted r s ->
{in s &, forall x y, index x s <= index y s -> r x y}.
Proof.
case: s => [//|x0 s'] r_sorted x y xs ys.
move=> /(@sorted_le_nth x0 (x0 :: s')).
by rewrite ?nth_index ?[_ \in gtn _]index_mem //; apply.
Qed.
End Monotonicity.
|