1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool.
(******************************************************************************)
(* This file defines two "base" combinatorial interfaces: *)
(* eqType == the structure for types with a decidable equality. *)
(* subType P == the structure for types isomorphic to {x : T | P x} with *)
(* P : pred T for some type T. *)
(* The following are used to construct eqType instances: *)
(* EqType T m == the packed eqType class for type T and mixin m. *)
(* --> As eqType is a root class, equality mixins and classes coincide. *)
(* Equality.axiom e <-> e : rel T is a valid comparison decision procedure *)
(* for type T: reflect (x = y) (e x y) for all x y : T. *)
(* EqMixin eP == the equality mixin for eP : Equality.axiom e. *)
(* --> Such manifest equality mixins should be declared Canonical to allow *)
(* for generic folding of equality predicates (see lemma eqE below). *)
(* [eqType of T for eT] == clone for T of eT, where eT is an eqType for a *)
(* type convertible, but usually not identical, to T. *)
(* [eqType of T] == clone for T of the eqType inferred for T, possibly *)
(* after unfolding some definitions. *)
(* [eqMixin of T] == mixin of the eqType inferred for T. *)
(* comparable T <-> equality on T is decidable. *)
(* := forall x y : T, decidable (x = y) *)
(* comparableMixin compT == equality mixin for compT : comparable T. *)
(* InjEqMixin injf == an Equality mixin for T, using an f : T -> U where *)
(* U has an eqType structure and injf : injective f. *)
(* PcanEqMixin fK == an Equality mixin similarly derived from f and a left *)
(* inverse partial function g and fK : pcancel f g. *)
(* CanEqMixin fK == an Equality mixin similarly derived from f and a left *)
(* inverse function g and fK : cancel f g. *)
(* --> Equality mixins derived by the above should never be made Canonical as *)
(* they provide only comparisons with a generic head constant. *)
(* The eqType interface supports the following operations: *)
(* x == y <=> x compares equal to y (this is a boolean test). *)
(* x == y :> T <=> x == y at type T. *)
(* x != y <=> x and y compare unequal. *)
(* x != y :> T <=> x and y compare unequal at type T. *)
(* x =P y :: a proof of reflect (x = y) (x == y); x =P y coerces *)
(* to x == y -> x = y. *)
(* eq_op == the boolean relation behind the == notation. *)
(* pred1 a == the singleton predicate [pred x | x == a]. *)
(* pred2, pred3, pred4 == pair, triple, quad predicates. *)
(* predC1 a == [pred x | x != a]. *)
(* [predU1 a & A] == [pred x | (x == a) || (x \in A)]. *)
(* [predD1 A & a] == [pred x | x != a & x \in A]. *)
(* predU1 a P, predD1 P a == applicative versions of the above. *)
(* frel f == the relation associated with f : T -> T. *)
(* := [rel x y | f x == y]. *)
(* invariant f k == elements of T whose k-class is f-invariant. *)
(* := [pred x | k (f x) == k x] with f : T -> T. *)
(* [fun x : T => e0 with a1 |-> e1, .., a_n |-> e_n] *)
(* [eta f with a1 |-> e1, .., a_n |-> e_n] == *)
(* the auto-expanding function that maps x = a_i to e_i, and other values *)
(* of x to e0 (resp. f x). In the first form the `: T' is optional and x *)
(* can occur in a_i or e_i. *)
(* Equality on an eqType is proof-irrelevant (lemma eq_irrelevance). *)
(* The eqType interface is implemented for most standard datatypes: *)
(* bool, unit, void, option, prod (denoted A * B), sum (denoted A + B), *)
(* sig (denoted {x | P}), sigT (denoted {i : I & T}). We also define *)
(* tagged_as u v == v cast as T_(tag u) if tag v == tag u, else u. *)
(* -> We have u == v <=> (tag u == tag v) && (tagged u == tagged_as u v). *)
(* The subType interface supports the following operations: *)
(* val == the generic injection from a subType S of T into T. *)
(* For example, if u : {x : T | P}, then val u : T. *)
(* val is injective because P is proof-irrelevant (P is in bool, *)
(* and the is_true coercion expands to P = true). *)
(* valP == the generic proof of P (val u) for u : subType P. *)
(* Sub x Px == the generic constructor for a subType P; Px is a proof of P x *)
(* and P should be inferred from the expected return type. *)
(* insub x == the generic partial projection of T into a subType S of T. *)
(* This returns an option S; if S : subType P then *)
(* insub x = Some u with val u = x if P x, *)
(* None if ~~ P x *)
(* The insubP lemma encapsulates this dichotomy. *)
(* P should be inferred from the expected return type. *)
(* innew x == total (non-option) variant of insub when P = predT. *)
(* {? x | P} == option {x | P} (syntax for casting insub x). *)
(* insubd u0 x == the generic projection with default value u0. *)
(* := odflt u0 (insub x). *)
(* insigd A0 x == special case of insubd for S == {x | x \in A}, where A0 is *)
(* a proof of x0 \in A. *)
(* insub_eq x == transparent version of insub x that expands to Some/None *)
(* when P x can evaluate. *)
(* The subType P interface is most often implemented using one of: *)
(* [subType for S_val] *)
(* where S_val : S -> T is the first projection of a type S isomorphic to *)
(* {x : T | P}. *)
(* [newType for S_val] *)
(* where S_val : S -> T is the projection of a type S isomorphic to *)
(* wrapped T; in this case P must be predT. *)
(* [subType for S_val by Srect], [newType for S_val by Srect] *)
(* variants of the above where the eliminator is explicitly provided. *)
(* Here S no longer needs to be syntactically identical to {x | P x} or *)
(* wrapped T, but it must have a derived constructor S_Sub satisfying an *)
(* eliminator Srect identical to the one the Coq Inductive command would *)
(* have generated, and S_val (S_Sub x Px) (resp. S_val (S_sub x) for the *)
(* newType form) must be convertible to x. *)
(* variant of the above when S is a wrapper type for T (so P = predT). *)
(* [subType of S], [subType of S for S_val] *)
(* clones the canonical subType structure for S; if S_val is specified, *)
(* then it replaces the inferred projector. *)
(* Subtypes inherit the eqType structure of their base types; the generic *)
(* structure should be explicitly instantiated using the *)
(* [eqMixin of S by <:] *)
(* construct to declare the equality mixin; this pattern is repeated for all *)
(* the combinatorial interfaces (Choice, Countable, Finite). As noted above, *)
(* such mixins should not be made Canonical. *)
(* We add the following to the standard suffixes documented in ssrbool.v: *)
(* 1, 2, 3, 4 -- explicit enumeration predicate for 1 (singleton), 2, 3, or *)
(* 4 values. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Declare Scope eq_scope.
Declare Scope fun_delta_scope.
Module Equality.
Definition axiom T (e : rel T) := forall x y, reflect (x = y) (e x y).
Structure mixin_of T := Mixin {op : rel T; _ : axiom op}.
Notation class_of := mixin_of (only parsing).
Section ClassDef.
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c := cT return class_of cT in c.
Definition clone := fun c & cT -> T & phant_id (@Pack T c) cT => Pack c.
End ClassDef.
Module Exports.
Coercion sort : type >-> Sortclass.
Notation eqType := type.
Notation EqMixin := Mixin.
Notation EqType T m := (@Pack T m).
Notation "[ 'eqMixin' 'of' T ]" := (class _ : mixin_of T)
(at level 0, format "[ 'eqMixin' 'of' T ]") : form_scope.
Notation "[ 'eqType' 'of' T 'for' C ]" := (@clone T C _ idfun id)
(at level 0, format "[ 'eqType' 'of' T 'for' C ]") : form_scope.
Notation "[ 'eqType' 'of' T ]" := (@clone T _ _ id id)
(at level 0, format "[ 'eqType' 'of' T ]") : form_scope.
End Exports.
End Equality.
Export Equality.Exports.
Definition eq_op T := Equality.op (Equality.class T).
(* eqE is a generic lemma that can be used to fold back recursive comparisons *)
(* after using partial evaluation to simplify comparisons on concrete *)
(* instances. The eqE lemma can be used e.g. like so: rewrite !eqE /= -!eqE. *)
(* For instance, with the above rewrite, n.+1 == n.+1 gets simplified to *)
(* n == n. For this to work, we need to declare equality _mixins_ *)
(* as canonical. Canonical declarations remove the need for specific *)
(* inverses to eqE (like eqbE, eqnE, eqseqE, etc.) for new recursive *)
(* comparisons, but can only be used for manifest mixing with a bespoke *)
(* comparison function, and so is incompatible with PcanEqMixin and the like *)
(* - this is why the tree_eqMixin for GenTree.tree in library choice is not *)
(* declared Canonical. *)
Lemma eqE T x : eq_op x = Equality.op (Equality.class T) x.
Proof. by []. Qed.
Lemma eqP T : Equality.axiom (@eq_op T).
Proof. by case: T => ? []. Qed.
Arguments eqP {T x y}.
Delimit Scope eq_scope with EQ.
Open Scope eq_scope.
Notation "x == y" := (eq_op x y)
(at level 70, no associativity) : bool_scope.
Notation "x == y :> T" := ((x : T) == (y : T))
(at level 70, y at next level) : bool_scope.
Notation "x != y" := (~~ (x == y))
(at level 70, no associativity) : bool_scope.
Notation "x != y :> T" := (~~ (x == y :> T))
(at level 70, y at next level) : bool_scope.
Notation "x =P y" := (eqP : reflect (x = y) (x == y))
(at level 70, no associativity) : eq_scope.
Notation "x =P y :> T" := (eqP : reflect (x = y :> T) (x == y :> T))
(at level 70, y at next level, no associativity) : eq_scope.
Prenex Implicits eq_op eqP.
Lemma eq_refl (T : eqType) (x : T) : x == x. Proof. exact/eqP. Qed.
Notation eqxx := eq_refl.
Lemma eq_sym (T : eqType) (x y : T) : (x == y) = (y == x).
Proof. exact/eqP/eqP. Qed.
Hint Resolve eq_refl eq_sym : core.
Variant eq_xor_neq (T : eqType) (x y : T) : bool -> bool -> Set :=
| EqNotNeq of x = y : eq_xor_neq x y true true
| NeqNotEq of x != y : eq_xor_neq x y false false.
Lemma eqVneq (T : eqType) (x y : T) : eq_xor_neq x y (y == x) (x == y).
Proof. by rewrite eq_sym; case: (altP eqP); constructor. Qed.
Arguments eqVneq {T} x y, {T x y}.
Section Contrapositives.
Variables (T1 T2 : eqType).
Implicit Types (A : pred T1) (b : bool) (P : Prop) (x : T1) (z : T2).
Lemma contraTeq b x y : (x != y -> ~~ b) -> b -> x = y.
Proof. by move=> imp hyp; apply/eqP; apply: contraTT hyp. Qed.
Lemma contraNeq b x y : (x != y -> b) -> ~~ b -> x = y.
Proof. by move=> imp hyp; apply/eqP; apply: contraNT hyp. Qed.
Lemma contraFeq b x y : (x != y -> b) -> b = false -> x = y.
Proof. by move=> imp /negbT; apply: contraNeq. Qed.
Lemma contraPeq P x y : (x != y -> ~ P) -> P -> x = y.
Proof. by move=> imp HP; apply: contraTeq isT => /imp /(_ HP). Qed.
Lemma contra_not_eq P x y : (x != y -> P) -> ~ P -> x = y.
Proof. by move=> imp; apply: contraPeq => /imp HP /(_ HP). Qed.
Lemma contra_not_neq P x y : (x = y -> P) -> ~ P -> x != y.
Proof. by move=> imp; apply: contra_notN => /eqP. Qed.
Lemma contraTneq b x y : (x = y -> ~~ b) -> b -> x != y.
Proof. by move=> imp; apply: contraTN => /eqP. Qed.
Lemma contraNneq b x y : (x = y -> b) -> ~~ b -> x != y.
Proof. by move=> imp; apply: contraNN => /eqP. Qed.
Lemma contraFneq b x y : (x = y -> b) -> b = false -> x != y.
Proof. by move=> imp /negbT; apply: contraNneq. Qed.
Lemma contraPneq P x y : (x = y -> ~ P) -> P -> x != y.
Proof. by move=> imp; apply: contraPN => /eqP. Qed.
Lemma contra_eqN b x y : (b -> x != y) -> x = y -> ~~ b.
Proof. by move=> imp /eqP; apply: contraL. Qed.
Lemma contra_eqF b x y : (b -> x != y) -> x = y -> b = false.
Proof. by move=> imp /eqP; apply: contraTF. Qed.
Lemma contra_eqT b x y : (~~ b -> x != y) -> x = y -> b.
Proof. by move=> imp /eqP; apply: contraLR. Qed.
Lemma contra_neqN b x y : (b -> x = y) -> x != y -> ~~ b.
Proof. by move=> imp; apply: contraNN => /imp->. Qed.
Lemma contra_neqF b x y : (b -> x = y) -> x != y -> b = false.
Proof. by move=> imp; apply: contraNF => /imp->. Qed.
Lemma contra_neqT b x y : (~~ b -> x = y) -> x != y -> b.
Proof. by move=> imp; apply: contraNT => /imp->. Qed.
Lemma contra_eq_not P x y : (P -> x != y) -> x = y -> ~ P.
Proof. by move=> imp /eqP; apply: contraTnot. Qed.
Lemma contra_neq_not P x y : (P -> x = y) -> x != y -> ~ P.
Proof. by move=> imp;apply: contraNnot => /imp->. Qed.
Lemma contra_eq z1 z2 x1 x2 : (x1 != x2 -> z1 != z2) -> z1 = z2 -> x1 = x2.
Proof. by move=> imp /eqP; apply: contraTeq. Qed.
Lemma contra_neq z1 z2 x1 x2 : (x1 = x2 -> z1 = z2) -> z1 != z2 -> x1 != x2.
Proof. by move=> imp; apply: contraNneq => /imp->. Qed.
Lemma contra_neq_eq z1 z2 x1 x2 : (x1 != x2 -> z1 = z2) -> z1 != z2 -> x1 = x2.
Proof. by move=> imp; apply: contraNeq => /imp->. Qed.
Lemma contra_eq_neq z1 z2 x1 x2 : (z1 = z2 -> x1 != x2) -> x1 = x2 -> z1 != z2.
Proof. by move=> imp; apply: contra_eqN => /eqP /imp. Qed.
Lemma memPn A x : reflect {in A, forall y, y != x} (x \notin A).
Proof.
apply: (iffP idP) => [notDx y | notDx]; first by apply: contraTneq => ->.
exact: contraL (notDx x) _.
Qed.
Lemma memPnC A x : reflect {in A, forall y, x != y} (x \notin A).
Proof. by apply: (iffP (memPn A x)) => A'x y /A'x; rewrite eq_sym. Qed.
Lemma ifN_eq R x y vT vF : x != y -> (if x == y then vT else vF) = vF :> R.
Proof. exact: ifN. Qed.
Lemma ifN_eqC R x y vT vF : x != y -> (if y == x then vT else vF) = vF :> R.
Proof. by rewrite eq_sym; apply: ifN. Qed.
End Contrapositives.
Arguments memPn {T1 A x}.
Arguments memPnC {T1 A x}.
Theorem eq_irrelevance (T : eqType) x y : forall e1 e2 : x = y :> T, e1 = e2.
Proof.
pose proj z e := if x =P z is ReflectT e0 then e0 else e.
suff: injective (proj y) by rewrite /proj => injp e e'; apply: injp; case: eqP.
pose join (e : x = _) := etrans (esym e).
apply: can_inj (join x y (proj x (erefl x))) _.
by case: y /; case: _ / (proj x _).
Qed.
Corollary eq_axiomK (T : eqType) (x : T) : all_equal_to (erefl x).
Proof. by move=> eq_x_x; apply: eq_irrelevance. Qed.
(* We use the module system to circumvent a silly limitation that *)
(* forbids using the same constant to coerce to different targets. *)
Module Type EqTypePredSig.
Parameter sort : eqType -> predArgType.
End EqTypePredSig.
Module MakeEqTypePred (eqmod : EqTypePredSig).
Coercion eqmod.sort : eqType >-> predArgType.
End MakeEqTypePred.
Module Export EqTypePred := MakeEqTypePred Equality.
Lemma unit_eqP : Equality.axiom (fun _ _ : unit => true).
Proof. by do 2!case; left. Qed.
Definition unit_eqMixin := EqMixin unit_eqP.
Canonical unit_eqType := Eval hnf in EqType unit unit_eqMixin.
(* Comparison for booleans. *)
(* This is extensionally equal, but not convertible to Bool.eqb. *)
Definition eqb b := addb (~~ b).
Lemma eqbP : Equality.axiom eqb.
Proof. by do 2!case; constructor. Qed.
Canonical bool_eqMixin := EqMixin eqbP.
Canonical bool_eqType := Eval hnf in EqType bool bool_eqMixin.
Lemma eqbE : eqb = eq_op. Proof. by []. Qed.
Lemma bool_irrelevance (b : bool) (p1 p2 : b) : p1 = p2.
Proof. exact: eq_irrelevance. Qed.
Lemma negb_add b1 b2 : ~~ (b1 (+) b2) = (b1 == b2).
Proof. by rewrite -addNb. Qed.
Lemma negb_eqb b1 b2 : (b1 != b2) = b1 (+) b2.
Proof. by rewrite -addNb negbK. Qed.
Lemma eqb_id b : (b == true) = b.
Proof. by case: b. Qed.
Lemma eqbF_neg b : (b == false) = ~~ b.
Proof. by case: b. Qed.
Lemma eqb_negLR b1 b2 : (~~ b1 == b2) = (b1 == ~~ b2).
Proof. by case: b1; case: b2. Qed.
(* Equality-based predicates. *)
Notation xpred1 := (fun a1 x => x == a1).
Notation xpred2 := (fun a1 a2 x => (x == a1) || (x == a2)).
Notation xpred3 := (fun a1 a2 a3 x => [|| x == a1, x == a2 | x == a3]).
Notation xpred4 :=
(fun a1 a2 a3 a4 x => [|| x == a1, x == a2, x == a3 | x == a4]).
Notation xpredU1 := (fun a1 (p : pred _) x => (x == a1) || p x).
Notation xpredC1 := (fun a1 x => x != a1).
Notation xpredD1 := (fun (p : pred _) a1 x => (x != a1) && p x).
Section EqPred.
Variable T : eqType.
Definition pred1 (a1 : T) := SimplPred (xpred1 a1).
Definition pred2 (a1 a2 : T) := SimplPred (xpred2 a1 a2).
Definition pred3 (a1 a2 a3 : T) := SimplPred (xpred3 a1 a2 a3).
Definition pred4 (a1 a2 a3 a4 : T) := SimplPred (xpred4 a1 a2 a3 a4).
Definition predU1 (a1 : T) p := SimplPred (xpredU1 a1 p).
Definition predC1 (a1 : T) := SimplPred (xpredC1 a1).
Definition predD1 p (a1 : T) := SimplPred (xpredD1 p a1).
Lemma pred1E : pred1 =2 eq_op. Proof. by move=> x y; apply: eq_sym. Qed.
Variables (T2 : eqType) (x y : T) (z u : T2) (b : bool).
Lemma predU1P : reflect (x = y \/ b) ((x == y) || b).
Proof. by apply: (iffP orP); do [case=> [/eqP|]; [left | right]]. Qed.
Lemma pred2P : reflect (x = y \/ z = u) ((x == y) || (z == u)).
Proof. by apply: (iffP orP); do [case=> /eqP; [left | right]]. Qed.
Lemma predD1P : reflect (x <> y /\ b) ((x != y) && b).
Proof. by apply: (iffP andP)=> [] [] // /eqP. Qed.
Lemma predU1l : x = y -> (x == y) || b.
Proof. by move->; rewrite eqxx. Qed.
Lemma predU1r : b -> (x == y) || b.
Proof. by move->; rewrite orbT. Qed.
End EqPred.
Arguments predU1P {T x y b}.
Arguments pred2P {T T2 x y z u}.
Arguments predD1P {T x y b}.
Prenex Implicits pred1 pred2 pred3 pred4 predU1 predC1 predD1.
Notation "[ 'predU1' x & A ]" := (predU1 x [mem A])
(at level 0, format "[ 'predU1' x & A ]") : fun_scope.
Notation "[ 'predD1' A & x ]" := (predD1 [mem A] x)
(at level 0, format "[ 'predD1' A & x ]") : fun_scope.
(* Lemmas for reflected equality and functions. *)
Section EqFun.
Section Exo.
Variables (aT rT : eqType) (D : pred aT) (f : aT -> rT) (g : rT -> aT).
Lemma inj_eq : injective f -> forall x y, (f x == f y) = (x == y).
Proof. by move=> inj_f x y; apply/eqP/eqP=> [|-> //]; apply: inj_f. Qed.
Lemma can_eq : cancel f g -> forall x y, (f x == f y) = (x == y).
Proof. by move/can_inj; apply: inj_eq. Qed.
Lemma bij_eq : bijective f -> forall x y, (f x == f y) = (x == y).
Proof. by move/bij_inj; apply: inj_eq. Qed.
Lemma can2_eq : cancel f g -> cancel g f -> forall x y, (f x == y) = (x == g y).
Proof. by move=> fK gK x y; rewrite -[y in LHS]gK; apply: can_eq. Qed.
Lemma inj_in_eq :
{in D &, injective f} -> {in D &, forall x y, (f x == f y) = (x == y)}.
Proof. by move=> inj_f x y Dx Dy; apply/eqP/eqP=> [|-> //]; apply: inj_f. Qed.
Lemma can_in_eq :
{in D, cancel f g} -> {in D &, forall x y, (f x == f y) = (x == y)}.
Proof. by move/can_in_inj; apply: inj_in_eq. Qed.
End Exo.
Section Endo.
Variable T : eqType.
Definition frel f := [rel x y : T | f x == y].
Lemma inv_eq f : involutive f -> forall x y : T, (f x == y) = (x == f y).
Proof. by move=> fK; apply: can2_eq. Qed.
Lemma eq_frel f f' : f =1 f' -> frel f =2 frel f'.
Proof. by move=> eq_f x y; rewrite /= eq_f. Qed.
End Endo.
Variable aT : Type.
(* The invariant of a function f wrt a projection k is the pred of points *)
(* that have the same projection as their image. *)
Definition invariant (rT : eqType) f (k : aT -> rT) :=
[pred x | k (f x) == k x].
Variables (rT1 rT2 : eqType) (f : aT -> aT) (h : rT1 -> rT2) (k : aT -> rT1).
Lemma invariant_comp : subpred (invariant f k) (invariant f (h \o k)).
Proof. by move=> x eq_kfx; rewrite /= (eqP eq_kfx). Qed.
Lemma invariant_inj : injective h -> invariant f (h \o k) =1 invariant f k.
Proof. by move=> inj_h x; apply: (inj_eq inj_h). Qed.
End EqFun.
Prenex Implicits frel.
(* The coercion to rel must be explicit for derived Notations to unparse. *)
Notation coerced_frel f := (rel_of_simpl_rel (frel f)) (only parsing).
Section FunWith.
Variables (aT : eqType) (rT : Type).
Variant fun_delta : Type := FunDelta of aT & rT.
Definition fwith x y (f : aT -> rT) := [fun z => if z == x then y else f z].
Definition app_fdelta df f z :=
let: FunDelta x y := df in if z == x then y else f z.
End FunWith.
Prenex Implicits fwith.
Notation "x |-> y" := (FunDelta x y)
(at level 190, no associativity,
format "'[hv' x '/ ' |-> y ']'") : fun_delta_scope.
Delimit Scope fun_delta_scope with FUN_DELTA.
Arguments app_fdelta {aT rT%type} df%FUN_DELTA f z.
Notation "[ 'fun' z : T => F 'with' d1 , .. , dn ]" :=
(SimplFunDelta (fun z : T =>
app_fdelta d1%FUN_DELTA .. (app_fdelta dn%FUN_DELTA (fun _ => F)) ..))
(at level 0, z ident, only parsing) : fun_scope.
Notation "[ 'fun' z => F 'with' d1 , .. , dn ]" :=
(SimplFunDelta (fun z =>
app_fdelta d1%FUN_DELTA .. (app_fdelta dn%FUN_DELTA (fun _ => F)) ..))
(at level 0, z ident, format
"'[hv' [ '[' 'fun' z => '/ ' F ']' '/' 'with' '[' d1 , '/' .. , '/' dn ']' ] ']'"
) : fun_scope.
Notation "[ 'eta' f 'with' d1 , .. , dn ]" :=
(SimplFunDelta (fun _ =>
app_fdelta d1%FUN_DELTA .. (app_fdelta dn%FUN_DELTA f) ..))
(at level 0, format
"'[hv' [ '[' 'eta' '/ ' f ']' '/' 'with' '[' d1 , '/' .. , '/' dn ']' ] ']'"
) : fun_scope.
(* Various EqType constructions. *)
Section ComparableType.
Variable T : Type.
Definition comparable := forall x y : T, decidable (x = y).
Hypothesis compare_T : comparable.
Definition compareb x y : bool := compare_T x y.
Lemma compareP : Equality.axiom compareb.
Proof. by move=> x y; apply: sumboolP. Qed.
Definition comparableMixin := EqMixin compareP.
End ComparableType.
Definition eq_comparable (T : eqType) : comparable T :=
fun x y => decP (x =P y).
Section SubType.
Variables (T : Type) (P : pred T).
Structure subType : Type := SubType {
sub_sort :> Type;
val : sub_sort -> T;
Sub : forall x, P x -> sub_sort;
_ : forall K (_ : forall x Px, K (@Sub x Px)) u, K u;
_ : forall x Px, val (@Sub x Px) = x
}.
(* Generic proof that the second property holds by conversion. *)
(* The vrefl_rect alias is used to flag generic proofs of the first property. *)
Lemma vrefl : forall x, P x -> x = x. Proof. by []. Qed.
Definition vrefl_rect := vrefl.
Definition clone_subType U v :=
fun sT & sub_sort sT -> U =>
fun c Urec cK (sT' := @SubType U v c Urec cK) & phant_id sT' sT => sT'.
Section Theory.
Variable sT : subType.
Local Notation val := (@val sT).
Local Notation Sub x Px := (@Sub sT x Px).
Variant Sub_spec : sT -> Type := SubSpec x Px : Sub_spec (Sub x Px).
Lemma SubP u : Sub_spec u.
Proof. by case: sT Sub_spec SubSpec u => /= U _ mkU rec _. Qed.
Lemma SubK x Px : val (Sub x Px) = x. Proof. by case: sT. Qed.
Definition insub x := if idP is ReflectT Px then Some (Sub x Px) else None.
Definition insubd u0 x := odflt u0 (insub x).
Variant insub_spec x : option sT -> Type :=
| InsubSome u of P x & val u = x : insub_spec x (Some u)
| InsubNone of ~~ P x : insub_spec x None.
Lemma insubP x : insub_spec x (insub x).
Proof.
by rewrite /insub; case: {-}_ / idP; [left; rewrite ?SubK | right; apply/negP].
Qed.
Lemma insubT x Px : insub x = Some (Sub x Px).
Proof.
do [case: insubP => [/SubP[y Py] _ <- | /negP// ]; rewrite SubK] in Px *.
by rewrite (bool_irrelevance Px Py).
Qed.
Lemma insubF x : P x = false -> insub x = None.
Proof. by move/idP; case: insubP. Qed.
Lemma insubN x : ~~ P x -> insub x = None.
Proof. by move/negPf/insubF. Qed.
Lemma isSome_insub : ([eta insub] : pred T) =1 P.
Proof. by apply: fsym => x; case: insubP => // /negPf. Qed.
Lemma insubK : ocancel insub val.
Proof. by move=> x; case: insubP. Qed.
Lemma valP u : P (val u).
Proof. by case/SubP: u => x Px; rewrite SubK. Qed.
Lemma valK : pcancel val insub.
Proof. by case/SubP=> x Px; rewrite SubK; apply: insubT. Qed.
Lemma val_inj : injective val.
Proof. exact: pcan_inj valK. Qed.
Lemma valKd u0 : cancel val (insubd u0).
Proof. by move=> u; rewrite /insubd valK. Qed.
Lemma val_insubd u0 x : val (insubd u0 x) = if P x then x else val u0.
Proof. by rewrite /insubd; case: insubP => [u -> | /negPf->]. Qed.
Lemma insubdK u0 : {in P, cancel (insubd u0) val}.
Proof. by move=> x Px; rewrite /= val_insubd [P x]Px. Qed.
Let insub_eq_aux x isPx : P x = isPx -> option sT :=
if isPx as b return _ = b -> _ then fun Px => Some (Sub x Px) else fun=> None.
Definition insub_eq x := insub_eq_aux (erefl (P x)).
Lemma insub_eqE : insub_eq =1 insub.
Proof.
rewrite /insub_eq => x; set b := P x; rewrite [in LHS]/b in (Db := erefl b) *.
by case: b in Db *; [rewrite insubT | rewrite insubF].
Qed.
End Theory.
End SubType.
Arguments SubType {T P} sub_sort val Sub rec SubK.
Arguments val {T P sT} u : rename.
Arguments Sub {T P sT} x Px : rename.
Arguments vrefl {T P} x Px.
Arguments vrefl_rect {T P} x Px.
Arguments clone_subType [T P] U v [sT] _ [c Urec cK].
Arguments insub {T P sT} x.
Arguments insubd {T P sT} u0 x.
Arguments insubT [T] P [sT x].
Arguments val_inj {T P sT} [u1 u2] eq_u12 : rename.
Arguments valK {T P sT} u : rename.
Arguments valKd {T P sT} u0 u : rename.
Arguments insubK {T P} sT x.
Arguments insubdK {T P sT} u0 [x] Px.
Local Notation inlined_sub_rect :=
(fun K K_S u => let (x, Px) as u return K u := u in K_S x Px).
Local Notation inlined_new_rect :=
(fun K K_S u => let (x) as u return K u := u in K_S x).
Reserved Notation "[ 'subType' 'for' v ]"
(at level 0, format "[ 'subType' 'for' v ]").
Notation "[ 'subType' 'for' v ]" := (SubType _ v _ inlined_sub_rect vrefl_rect)
(only parsing) : form_scope.
Notation "[ 'subType' 'for' v ]" := (SubType _ v _ _ vrefl_rect)
(only printing) : form_scope.
Notation "[ 'subType' 'for' v 'by' rec ]" := (SubType _ v _ rec vrefl)
(at level 0, format "[ 'subType' 'for' v 'by' rec ]") : form_scope.
Notation "[ 'subType' 'of' U 'for' v ]" := (clone_subType U v id idfun)
(at level 0, format "[ 'subType' 'of' U 'for' v ]") : form_scope.
Notation "[ 'subType' 'of' U ]" := (clone_subType U _ id id)
(at level 0, format "[ 'subType' 'of' U ]") : form_scope.
Definition NewType T U v c Urec :=
let Urec' P IH := Urec P (fun x : T => IH x isT : P _) in
SubType U v (fun x _ => c x) Urec'.
Arguments NewType [T U].
Reserved Notation "[ 'newType' 'for' v ]" (at level 0, format "[ 'newType' 'for' v ]").
Notation "[ 'newType' 'for' v ]" := (NewType v _ inlined_new_rect vrefl_rect)
(only parsing) : form_scope.
Notation "[ 'newType' 'for' v ]" := (NewType v _ _ vrefl_rect)
(only printing) : form_scope.
Notation "[ 'newType' 'for' v 'by' rec ]" := (NewType v _ rec vrefl)
(at level 0, format "[ 'newType' 'for' v 'by' rec ]") : form_scope.
Definition innew T nT x := @Sub T predT nT x (erefl true).
Arguments innew {T nT}.
Lemma innew_val T nT : cancel val (@innew T nT).
Proof. by move=> u; apply: val_inj; apply: SubK. Qed.
(* Prenex Implicits and renaming. *)
Notation sval := (@proj1_sig _ _).
Notation "@ 'sval'" := (@proj1_sig) (at level 10, format "@ 'sval'").
Section SigProj.
Variables (T : Type) (P Q : T -> Prop).
Lemma svalP : forall u : sig P, P (sval u). Proof. by case. Qed.
Definition s2val (u : sig2 P Q) := let: exist2 x _ _ := u in x.
Lemma s2valP u : P (s2val u). Proof. by case: u. Qed.
Lemma s2valP' u : Q (s2val u). Proof. by case: u. Qed.
End SigProj.
Prenex Implicits svalP s2val s2valP s2valP'.
Canonical sig_subType T (P : pred T) : subType [eta P] :=
Eval hnf in [subType for @sval T [eta [eta P]]].
(* Shorthand for sigma types over collective predicates. *)
Notation "{ x 'in' A }" := {x | x \in A}
(at level 0, x at level 99, format "{ x 'in' A }") : type_scope.
Notation "{ x 'in' A | P }" := {x | (x \in A) && P}
(at level 0, x at level 99, format "{ x 'in' A | P }") : type_scope.
(* Shorthand for the return type of insub. *)
Notation "{ ? x : T | P }" := (option {x : T | is_true P})
(at level 0, x at level 99, only parsing) : type_scope.
Notation "{ ? x | P }" := {? x : _ | P}
(at level 0, x at level 99, format "{ ? x | P }") : type_scope.
Notation "{ ? x 'in' A }" := {? x | x \in A}
(at level 0, x at level 99, format "{ ? x 'in' A }") : type_scope.
Notation "{ ? x 'in' A | P }" := {? x | (x \in A) && P}
(at level 0, x at level 99, format "{ ? x 'in' A | P }") : type_scope.
(* A variant of injection with default that infers a collective predicate *)
(* from the membership proof for the default value. *)
Definition insigd T (A : mem_pred T) x (Ax : in_mem x A) :=
insubd (exist [eta A] x Ax).
(* There should be a rel definition for the subType equality op, but this *)
(* seems to cause the simpl tactic to diverge on expressions involving == *)
(* on 4+ nested subTypes in a "strict" position (e.g., after ~~). *)
(* Definition feq f := [rel x y | f x == f y]. *)
Section TransferEqType.
Variables (T : Type) (eT : eqType) (f : T -> eT).
Lemma inj_eqAxiom : injective f -> Equality.axiom (fun x y => f x == f y).
Proof. by move=> f_inj x y; apply: (iffP eqP) => [|-> //]; apply: f_inj. Qed.
Definition InjEqMixin f_inj := EqMixin (inj_eqAxiom f_inj).
Definition PcanEqMixin g (fK : pcancel f g) := InjEqMixin (pcan_inj fK).
Definition CanEqMixin g (fK : cancel f g) := InjEqMixin (can_inj fK).
End TransferEqType.
Section SubEqType.
Variables (T : eqType) (P : pred T) (sT : subType P).
Local Notation ev_ax := (fun T v => @Equality.axiom T (fun x y => v x == v y)).
Lemma val_eqP : ev_ax sT val. Proof. exact: inj_eqAxiom val_inj. Qed.
Definition sub_eqMixin := EqMixin val_eqP.
Canonical sub_eqType := Eval hnf in EqType sT sub_eqMixin.
Definition SubEqMixin :=
(let: SubType _ v _ _ _ as sT' := sT
return ev_ax sT' val -> Equality.class_of sT' in
fun vP : ev_ax _ v => EqMixin vP
) val_eqP.
Lemma val_eqE (u v : sT) : (val u == val v) = (u == v).
Proof. by []. Qed.
End SubEqType.
Arguments val_eqP {T P sT x y}.
Notation "[ 'eqMixin' 'of' T 'by' <: ]" := (SubEqMixin _ : Equality.class_of T)
(at level 0, format "[ 'eqMixin' 'of' T 'by' <: ]") : form_scope.
Definition void_eqMixin := PcanEqMixin (of_voidK unit).
Canonical void_eqType := EqType void void_eqMixin.
Section SigEqType.
Variables (T : eqType) (P : pred T).
Definition sig_eqMixin := Eval hnf in [eqMixin of {x | P x} by <:].
Canonical sig_eqType := Eval hnf in EqType {x | P x} sig_eqMixin.
End SigEqType.
Section ProdEqType.
Variable T1 T2 : eqType.
Definition pair_eq : rel (T1 * T2) := fun u v => (u.1 == v.1) && (u.2 == v.2).
Lemma pair_eqP : Equality.axiom pair_eq.
Proof.
move=> [x1 x2] [y1 y2] /=; apply: (iffP andP) => [[]|[<- <-]] //=.
by do 2!move/eqP->.
Qed.
Canonical prod_eqMixin := EqMixin pair_eqP.
Canonical prod_eqType := Eval hnf in EqType (T1 * T2) prod_eqMixin.
Lemma pair_eqE : pair_eq = eq_op :> rel _. Proof. by []. Qed.
Lemma xpair_eqE (x1 y1 : T1) (x2 y2 : T2) :
((x1, x2) == (y1, y2)) = ((x1 == y1) && (x2 == y2)).
Proof. by []. Qed.
Lemma pair_eq1 (u v : T1 * T2) : u == v -> u.1 == v.1.
Proof. by case/andP. Qed.
Lemma pair_eq2 (u v : T1 * T2) : u == v -> u.2 == v.2.
Proof. by case/andP. Qed.
End ProdEqType.
Arguments pair_eq {T1 T2} u v /.
Arguments pair_eqP {T1 T2}.
Definition predX T1 T2 (p1 : pred T1) (p2 : pred T2) :=
[pred z | p1 z.1 & p2 z.2].
Notation "[ 'predX' A1 & A2 ]" := (predX [mem A1] [mem A2])
(at level 0, format "[ 'predX' A1 & A2 ]") : fun_scope.
Section OptionEqType.
Variable T : eqType.
Definition opt_eq (u v : option T) : bool :=
oapp (fun x => oapp (eq_op x) false v) (~~ v) u.
Lemma opt_eqP : Equality.axiom opt_eq.
Proof.
case=> [x|] [y|] /=; by [constructor | apply: (iffP eqP) => [|[]] ->].
Qed.
Canonical option_eqMixin := EqMixin opt_eqP.
Canonical option_eqType := Eval hnf in EqType (option T) option_eqMixin.
End OptionEqType.
Arguments opt_eq {T} !u !v.
Section TaggedAs.
Variables (I : eqType) (T_ : I -> Type).
Implicit Types u v : {i : I & T_ i}.
Definition tagged_as u v :=
if tag u =P tag v is ReflectT eq_uv then
eq_rect_r T_ (tagged v) eq_uv
else tagged u.
Lemma tagged_asE u x : tagged_as u (Tagged T_ x) = x.
Proof.
by rewrite /tagged_as /=; case: eqP => // eq_uu; rewrite [eq_uu]eq_axiomK.
Qed.
End TaggedAs.
Section TagEqType.
Variables (I : eqType) (T_ : I -> eqType).
Implicit Types u v : {i : I & T_ i}.
Definition tag_eq u v := (tag u == tag v) && (tagged u == tagged_as u v).
Lemma tag_eqP : Equality.axiom tag_eq.
Proof.
rewrite /tag_eq => [] [i x] [j] /=.
case: eqP => [<-|Hij] y; last by right; case.
by apply: (iffP eqP) => [->|<-]; rewrite tagged_asE.
Qed.
Canonical tag_eqMixin := EqMixin tag_eqP.
Canonical tag_eqType := Eval hnf in EqType {i : I & T_ i} tag_eqMixin.
Lemma tag_eqE : tag_eq = eq_op. Proof. by []. Qed.
Lemma eq_tag u v : u == v -> tag u = tag v.
Proof. by move/eqP->. Qed.
Lemma eq_Tagged u x :(u == Tagged _ x) = (tagged u == x).
Proof. by rewrite -tag_eqE /tag_eq eqxx tagged_asE. Qed.
End TagEqType.
Arguments tag_eq {I T_} !u !v.
Arguments tag_eqP {I T_ x y}.
Section SumEqType.
Variables T1 T2 : eqType.
Implicit Types u v : T1 + T2.
Definition sum_eq u v :=
match u, v with
| inl x, inl y | inr x, inr y => x == y
| _, _ => false
end.
Lemma sum_eqP : Equality.axiom sum_eq.
Proof. case=> x [] y /=; by [right | apply: (iffP eqP) => [->|[->]]]. Qed.
Canonical sum_eqMixin := EqMixin sum_eqP.
Canonical sum_eqType := Eval hnf in EqType (T1 + T2) sum_eqMixin.
Lemma sum_eqE : sum_eq = eq_op. Proof. by []. Qed.
End SumEqType.
Arguments sum_eq {T1 T2} !u !v.
Arguments sum_eqP {T1 T2 x y}.
Section MonoHomoTheory.
Variables (aT rT : eqType) (f : aT -> rT).
Variables (aR aR' : rel aT) (rR rR' : rel rT).
Hypothesis aR_refl : reflexive aR.
Hypothesis rR_refl : reflexive rR.
Hypothesis aR'E : forall x y, aR' x y = (x != y) && (aR x y).
Hypothesis rR'E : forall x y, rR' x y = (x != y) && (rR x y).
Let aRE x y : aR x y = (x == y) || (aR' x y).
Proof. by rewrite aR'E; case: eqVneq => //= ->; apply: aR_refl. Qed.
Let rRE x y : rR x y = (x == y) || (rR' x y).
Proof. by rewrite rR'E; case: eqVneq => //= ->; apply: rR_refl. Qed.
Section InDom.
Variable D : pred aT.
Section DifferentDom.
Variable D' : pred aT.
Lemma homoW_in : {in D & D', {homo f : x y / aR' x y >-> rR' x y}} ->
{in D & D', {homo f : x y / aR x y >-> rR x y}}.
Proof.
move=> mf x y xD yD /=; rewrite aRE => /orP[/eqP->|/mf];
by rewrite rRE ?eqxx // orbC => ->.
Qed.
Lemma inj_homo_in : {in D & D', injective f} ->
{in D & D', {homo f : x y / aR x y >-> rR x y}} ->
{in D & D', {homo f : x y / aR' x y >-> rR' x y}}.
Proof.
move=> fI mf x y xD yD /=; rewrite aR'E rR'E => /andP[neq_xy xy].
by rewrite mf ?andbT //; apply: contra_neq neq_xy => /fI; apply.
Qed.
End DifferentDom.
Hypothesis aR_anti : antisymmetric aR.
Hypothesis rR_anti : antisymmetric rR.
Lemma mono_inj_in : {in D &, {mono f : x y / aR x y >-> rR x y}} ->
{in D &, injective f}.
Proof. by move=> mf x y ?? eqf; apply/aR_anti; rewrite -!mf// eqf rR_refl. Qed.
Lemma anti_mono_in : {in D &, {mono f : x y / aR x y >-> rR x y}} ->
{in D &, {mono f : x y / aR' x y >-> rR' x y}}.
Proof.
move=> mf x y ??; rewrite rR'E aR'E mf// (@inj_in_eq _ _ D)//.
exact: mono_inj_in.
Qed.
Lemma total_homo_mono_in : total aR ->
{in D &, {homo f : x y / aR' x y >-> rR' x y}} ->
{in D &, {mono f : x y / aR x y >-> rR x y}}.
Proof.
move=> aR_tot mf x y xD yD.
have [->|neq_xy] := eqVneq x y; first by rewrite ?eqxx ?aR_refl ?rR_refl.
have [xy|] := (boolP (aR x y)); first by rewrite rRE mf ?orbT// aR'E neq_xy.
have /orP [->//|] := aR_tot x y.
rewrite aRE eq_sym (negPf neq_xy) /= => /mf -/(_ yD xD).
rewrite rR'E => /andP[Nfxfy fyfx] _; apply: contra_neqF Nfxfy => fxfy.
by apply/rR_anti; rewrite fyfx fxfy.
Qed.
End InDom.
Let D := @predT aT.
Lemma homoW : {homo f : x y / aR' x y >-> rR' x y} ->
{homo f : x y / aR x y >-> rR x y}.
Proof. by move=> mf ???; apply: (@homoW_in D D) => // ????; apply: mf. Qed.
Lemma inj_homo : injective f ->
{homo f : x y / aR x y >-> rR x y} ->
{homo f : x y / aR' x y >-> rR' x y}.
Proof.
by move=> fI mf ???; apply: (@inj_homo_in D D) => //????; [apply: fI|apply: mf].
Qed.
Hypothesis aR_anti : antisymmetric aR.
Hypothesis rR_anti : antisymmetric rR.
Lemma mono_inj : {mono f : x y / aR x y >-> rR x y} -> injective f.
Proof. by move=> mf x y eqf; apply/aR_anti; rewrite -!mf eqf rR_refl. Qed.
Lemma anti_mono : {mono f : x y / aR x y >-> rR x y} ->
{mono f : x y / aR' x y >-> rR' x y}.
Proof. by move=> mf x y; rewrite rR'E aR'E mf inj_eq //; apply: mono_inj. Qed.
Lemma total_homo_mono : total aR ->
{homo f : x y / aR' x y >-> rR' x y} ->
{mono f : x y / aR x y >-> rR x y}.
Proof.
move=> /(@total_homo_mono_in D rR_anti) hmf hf => x y.
by apply: hmf => // ?? _ _; apply: hf.
Qed.
End MonoHomoTheory.
|