aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect/bigop.v
blob: 4455fdd493ffb2f1f11f7866c6b8206d3953ce6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path.
From mathcomp Require Import div fintype tuple finfun.

(******************************************************************************)
(* This file provides a generic definition for iterating an operator over a   *)
(* set of indices (bigop); this big operator is parameterized by the return   *)
(* type (R), the type of indices (I), the operator (op), the default value on *)
(* empty lists (idx), the range of indices (r), the filter applied on this    *)
(* range (P) and the expression we are iterating (F). The definition is not   *)
(* to be used directly, but via the wide range of notations provided and      *)
(* which support a natural use of big operators.                              *)
(*   To improve performance of the Coq typechecker on large expressions, the  *)
(* bigop constant is OPAQUE. It can however be unlocked to reveal the         *)
(* transparent constant reducebig, to let Coq expand summation on an explicit *)
(* sequence with an explicit test.                                            *)
(*   The lemmas can be classified according to the operator being iterated:   *)
(*  1. Results independent of the operator: extensionality with respect to    *)
(*     the range of indices, to the filtering predicate or to the expression  *)
(*     being iterated; reindexing, widening or narrowing of the range of      *)
(*     indices; we provide lemmas for the special cases where indices are     *)
(*     natural numbers or bounded natural numbers ("ordinals"). We supply     *)
(*     several "functional" induction principles that can be used with the    *)
(*     ssreflect 1.3 "elim" tactic to do induction over the index range for   *)
(*     up to 3 bigops simultaneously.                                         *)
(*  2. Results depending on the properties of the operator:                   *)
(*     We distinguish: monoid laws (op is associative, idx is an identity     *)
(*     element), abelian monoid laws (op is also commutative), and laws with  *)
(*     a distributive operation (semirings). Examples of such results are     *)
(*     splitting, permuting, and exchanging bigops.                           *)
(* A special section is dedicated to big operators on natural numbers.        *)
(******************************************************************************)
(* Notations:                                                                 *)
(* The general form for iterated operators is                                 *)
(*         <bigop>_<range> <general_term>                                     *)
(* - <bigop> is one of \big[op/idx], \sum, \prod, or \max (see below).        *)
(* - <general_term> can be any expression.                                    *)
(* - <range> binds an index variable in <general_term>; <range> is one of     *)
(*    (i <- s)     i ranges over the sequence s.                              *)
(*    (m <= i < n) i ranges over the nat interval m, m+1, ..., n-1.           *)
(*    (i < n)      i ranges over the (finite) type 'I_n (i.e., ordinal n).    *)
(*    (i : T)      i ranges over the finite type T.                           *)
(*    i or (i)     i ranges over its (inferred) finite type.                  *)
(*    (i in A)     i ranges over the elements that satisfy the collective     *)
(*                 predicate A (the domain of A must be a finite type).       *)
(*    (i <- s | <condition>) limits the range to the i for which <condition>  *)
(*                 holds. <condition> can be any expression that coerces to   *)
(*                 bool, and may mention the bound index i. All six kinds of  *)
(*                 ranges above can have a <condition> part.                  *)
(* - One can use the "\big[op/idx]" notations for any operator.               *)
(* - BIG_F and BIG_P are pattern abbreviations for the <general_term> and     *)
(*   <condition> part of a \big ... expression; for (i in A) and (i in A | C) *)
(*   ranges the term matched by BIG_P will include the i \in A condition.     *)
(* - The (locked) head constant of a \big notation is bigop.                  *)
(* - The "\sum", "\prod" and "\max" notations in the %N scope are used for    *)
(*   natural numbers with addition, multiplication and maximum (and their     *)
(*   corresponding neutral elements), respectively.                           *)
(* - The "\sum" and "\prod" reserved notations are overloaded in ssralg in    *)
(*   the %R scope; in mxalgebra, vector & falgebra in the %MS and %VS scopes; *)
(*   "\prod" is also overloaded in fingroup, in the %g and %G scopes.         *)
(* - We reserve "\bigcup" and "\bigcap" notations for iterated union and      *)
(*   intersection (of sets, groups, vector spaces, etc).                      *)
(******************************************************************************)
(* Tips for using lemmas in this file:                                        *)
(* To apply a lemma for a specific operator: if no special property is        *)
(* required for the operator, simply apply the lemma; if the lemma needs      *)
(* certain properties for the operator, make sure the appropriate Canonical   *)
(* instances are declared.                                                    *)
(******************************************************************************)
(* Interfaces for operator properties are packaged in the Monoid submodule:   *)
(*     Monoid.law idx == interface (keyed on the operator) for associative    *)
(*                       operators with identity element idx.                 *)
(* Monoid.com_law idx == extension (telescope) of Monoid.law for operators    *)
(*                       that are also commutative.                           *)
(* Monoid.mul_law abz == interface for operators with absorbing (zero)        *)
(*                       element abz.                                         *)
(* Monoid.add_law idx mop == extension of Monoid.com_law for operators over   *)
(*                       which operation mop distributes (mop will often also *)
(*                       have a Monoid.mul_law idx structure).                *)
(* [law of op], [com_law of op], [mul_law of op], [add_law mop of op] ==      *)
(*                       syntax for cloning Monoid structures.                *)
(*      Monoid.Theory == submodule containing basic generic algebra lemmas    *)
(*                       for operators satisfying the Monoid interfaces.      *)
(*       Monoid.simpm == generic monoid simplification rewrite multirule.     *)
(* Monoid structures are predeclared for many basic operators: (_ && _)%B,    *)
(* (_ || _)%B, (_ (+) _)%B (exclusive or) , (_ + _)%N, (_ * _)%N, maxn,       *)
(* gcdn, lcmn and (_ ++ _)%SEQ (list concatenation).                          *)
(******************************************************************************)
(* Additional documentation for this file:                                    *)
(* Y. Bertot, G. Gonthier, S. Ould Biha and I. Pasca.                         *)
(* Canonical Big Operators. In TPHOLs 2008, LNCS vol. 5170, Springer.         *)
(* Article available at:                                                      *)
(*     http://hal.inria.fr/docs/00/33/11/93/PDF/main.pdf                      *)
(******************************************************************************)
(* Examples of use in: poly.v, matrix.v                                       *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Declare Scope big_scope.

Reserved Notation "\big [ op / idx ]_ i F"
  (at level 36, F at level 36, op, idx at level 10, i at level 0,
     right associativity,
           format "'[' \big [ op / idx ]_ i '/  '  F ']'").
Reserved Notation "\big [ op / idx ]_ ( i <- r | P ) F"
  (at level 36, F at level 36, op, idx at level 10, i, r at level 50,
           format "'[' \big [ op / idx ]_ ( i  <-  r  |  P ) '/  '  F ']'").
Reserved Notation "\big [ op / idx ]_ ( i <- r ) F"
  (at level 36, F at level 36, op, idx at level 10, i, r at level 50,
           format "'[' \big [ op / idx ]_ ( i  <-  r ) '/  '  F ']'").
Reserved Notation "\big [ op / idx ]_ ( m <= i < n | P ) F"
  (at level 36, F at level 36, op, idx at level 10, m, i, n at level 50,
           format "'[' \big [ op / idx ]_ ( m  <=  i  <  n  |  P )  F ']'").
Reserved Notation "\big [ op / idx ]_ ( m <= i < n ) F"
  (at level 36, F at level 36, op, idx at level 10, i, m, n at level 50,
           format "'[' \big [ op / idx ]_ ( m  <=  i  <  n ) '/  '  F ']'").
Reserved Notation "\big [ op / idx ]_ ( i | P ) F"
  (at level 36, F at level 36, op, idx at level 10, i at level 50,
           format "'[' \big [ op / idx ]_ ( i  |  P ) '/  '  F ']'").
Reserved Notation "\big [ op / idx ]_ ( i : t | P ) F"
  (at level 36, F at level 36, op, idx at level 10, i at level 50,
           format "'[' \big [ op / idx ]_ ( i   :  t   |  P ) '/  '  F ']'").
Reserved Notation "\big [ op / idx ]_ ( i : t ) F"
  (at level 36, F at level 36, op, idx at level 10, i at level 50,
           format "'[' \big [ op / idx ]_ ( i   :  t ) '/  '  F ']'").
Reserved Notation "\big [ op / idx ]_ ( i < n | P ) F"
  (at level 36, F at level 36, op, idx at level 10, i, n at level 50,
           format "'[' \big [ op / idx ]_ ( i  <  n  |  P ) '/  '  F ']'").
Reserved Notation "\big [ op / idx ]_ ( i < n ) F"
  (at level 36, F at level 36, op, idx at level 10, i, n at level 50,
           format "'[' \big [ op / idx ]_ ( i  <  n )  F ']'").
Reserved Notation "\big [ op / idx ]_ ( i 'in' A | P ) F"
  (at level 36, F at level 36, op, idx at level 10, i, A at level 50,
           format "'[' \big [ op / idx ]_ ( i  'in'  A  |  P ) '/  '  F ']'").
Reserved Notation "\big [ op / idx ]_ ( i 'in' A ) F"
  (at level 36, F at level 36, op, idx at level 10, i, A at level 50,
           format "'[' \big [ op / idx ]_ ( i  'in'  A ) '/  '  F ']'").

Reserved Notation "\sum_ i F"
  (at level 41, F at level 41, i at level 0,
           right associativity,
           format "'[' \sum_ i '/  '  F ']'").
Reserved Notation "\sum_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \sum_ ( i  <-  r  |  P ) '/  '  F ']'").
Reserved Notation "\sum_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \sum_ ( i  <-  r ) '/  '  F ']'").
Reserved Notation "\sum_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \sum_ ( m  <=  i  <  n  |  P ) '/  '  F ']'").
Reserved Notation "\sum_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \sum_ ( m  <=  i  <  n ) '/  '  F ']'").
Reserved Notation "\sum_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \sum_ ( i  |  P ) '/  '  F ']'").
Reserved Notation "\sum_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50). (* only parsing *)
Reserved Notation "\sum_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50). (* only parsing *)
Reserved Notation "\sum_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \sum_ ( i  <  n  |  P ) '/  '  F ']'").
Reserved Notation "\sum_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \sum_ ( i  <  n ) '/  '  F ']'").
Reserved Notation "\sum_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \sum_ ( i  'in'  A  |  P ) '/  '  F ']'").
Reserved Notation "\sum_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \sum_ ( i  'in'  A ) '/  '  F ']'").

Reserved Notation "\max_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \max_ i '/  '  F ']'").
Reserved Notation "\max_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \max_ ( i  <-  r  |  P ) '/  '  F ']'").
Reserved Notation "\max_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \max_ ( i  <-  r ) '/  '  F ']'").
Reserved Notation "\max_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \max_ ( m  <=  i  <  n  |  P ) '/  '  F ']'").
Reserved Notation "\max_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \max_ ( m  <=  i  <  n ) '/  '  F ']'").
Reserved Notation "\max_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \max_ ( i  |  P ) '/  '  F ']'").
Reserved Notation "\max_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50). (* only parsing *)
Reserved Notation "\max_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50). (* only parsing *)
Reserved Notation "\max_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \max_ ( i  <  n  |  P ) '/  '  F ']'").
Reserved Notation "\max_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \max_ ( i  <  n )  F ']'").
Reserved Notation "\max_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \max_ ( i  'in'  A  |  P ) '/  '  F ']'").
Reserved Notation "\max_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \max_ ( i  'in'  A ) '/  '  F ']'").

Reserved Notation "\prod_ i F"
  (at level 36, F at level 36, i at level 0,
           format "'[' \prod_ i '/  '  F ']'").
Reserved Notation "\prod_ ( i <- r | P ) F"
  (at level 36, F at level 36, i, r at level 50,
           format "'[' \prod_ ( i  <-  r  |  P ) '/  '  F ']'").
Reserved Notation "\prod_ ( i <- r ) F"
  (at level 36, F at level 36, i, r at level 50,
           format "'[' \prod_ ( i  <-  r ) '/  '  F ']'").
Reserved Notation "\prod_ ( m <= i < n | P ) F"
  (at level 36, F at level 36, i, m, n at level 50,
           format "'[' \prod_ ( m  <=  i  <  n  |  P ) '/  '  F ']'").
Reserved Notation "\prod_ ( m <= i < n ) F"
  (at level 36, F at level 36, i, m, n at level 50,
           format "'[' \prod_ ( m  <=  i  <  n ) '/  '  F ']'").
Reserved Notation "\prod_ ( i | P ) F"
  (at level 36, F at level 36, i at level 50,
           format "'[' \prod_ ( i  |  P ) '/  '  F ']'").
Reserved Notation "\prod_ ( i : t | P ) F"
  (at level 36, F at level 36, i at level 50). (* only parsing *)
Reserved Notation "\prod_ ( i : t ) F"
  (at level 36, F at level 36, i at level 50). (* only parsing *)
Reserved Notation "\prod_ ( i < n | P ) F"
  (at level 36, F at level 36, i, n at level 50,
           format "'[' \prod_ ( i  <  n  |  P ) '/  '  F ']'").
Reserved Notation "\prod_ ( i < n ) F"
  (at level 36, F at level 36, i, n at level 50,
           format "'[' \prod_ ( i  <  n ) '/  '  F ']'").
Reserved Notation "\prod_ ( i 'in' A | P ) F"
  (at level 36, F at level 36, i, A at level 50,
           format "'[' \prod_ ( i  'in'  A  |  P )  F ']'").
Reserved Notation "\prod_ ( i 'in' A ) F"
  (at level 36, F at level 36, i, A at level 50,
           format "'[' \prod_ ( i  'in'  A ) '/  '  F ']'").

Reserved Notation "\bigcup_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \bigcup_ i '/  '  F ']'").
Reserved Notation "\bigcup_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \bigcup_ ( i  <-  r  |  P ) '/  '  F ']'").
Reserved Notation "\bigcup_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \bigcup_ ( i  <-  r ) '/  '  F ']'").
Reserved Notation "\bigcup_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, m, i, n at level 50,
           format "'[' \bigcup_ ( m  <=  i  <  n  |  P ) '/  '  F ']'").
Reserved Notation "\bigcup_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \bigcup_ ( m  <=  i  <  n ) '/  '  F ']'").
Reserved Notation "\bigcup_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \bigcup_ ( i  |  P ) '/  '  F ']'").
Reserved Notation "\bigcup_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \bigcup_ ( i   :  t   |  P ) '/  '  F ']'").
Reserved Notation "\bigcup_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \bigcup_ ( i   :  t ) '/  '  F ']'").
Reserved Notation "\bigcup_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \bigcup_ ( i  <  n  |  P ) '/  '  F ']'").
Reserved Notation "\bigcup_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \bigcup_ ( i  <  n ) '/  '  F ']'").
Reserved Notation "\bigcup_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \bigcup_ ( i  'in'  A  |  P ) '/  '  F ']'").
Reserved Notation "\bigcup_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \bigcup_ ( i  'in'  A ) '/  '  F ']'").

Reserved Notation "\bigcap_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \bigcap_ i '/  '  F ']'").
Reserved Notation "\bigcap_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \bigcap_ ( i  <-  r  |  P )  F ']'").
Reserved Notation "\bigcap_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \bigcap_ ( i  <-  r ) '/  '  F ']'").
Reserved Notation "\bigcap_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, m, i, n at level 50,
           format "'[' \bigcap_ ( m  <=  i  <  n  |  P ) '/  '  F ']'").
Reserved Notation "\bigcap_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \bigcap_ ( m  <=  i  <  n ) '/  '  F ']'").
Reserved Notation "\bigcap_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \bigcap_ ( i  |  P ) '/  '  F ']'").
Reserved Notation "\bigcap_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \bigcap_ ( i   :  t   |  P ) '/  '  F ']'").
Reserved Notation "\bigcap_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \bigcap_ ( i   :  t ) '/  '  F ']'").
Reserved Notation "\bigcap_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \bigcap_ ( i  <  n  |  P ) '/  '  F ']'").
Reserved Notation "\bigcap_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \bigcap_ ( i  <  n ) '/  '  F ']'").
Reserved Notation "\bigcap_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \bigcap_ ( i  'in'  A  |  P ) '/  '  F ']'").
Reserved Notation "\bigcap_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \bigcap_ ( i  'in'  A ) '/  '  F ']'").

Module Monoid.

Section Definitions.
Variables (T : Type) (idm : T).

Structure law := Law {
  operator : T -> T -> T;
  _ : associative operator;
  _ : left_id idm operator;
  _ : right_id idm operator
}.
Local Coercion operator : law >-> Funclass.

Structure com_law := ComLaw {
   com_operator : law;
   _ : commutative com_operator
}.
Local Coercion com_operator : com_law >-> law.

Structure mul_law := MulLaw {
  mul_operator : T -> T -> T;
  _ : left_zero idm mul_operator;
  _ : right_zero idm mul_operator
}.
Local Coercion mul_operator : mul_law >-> Funclass.

Structure add_law (mul : T -> T -> T) := AddLaw {
  add_operator : com_law;
  _ : left_distributive mul add_operator;
  _ : right_distributive mul add_operator
}.
Local Coercion add_operator : add_law >-> com_law.

Let op_id (op1 op2 : T -> T -> T) := phant_id op1 op2.

Definition clone_law op :=
  fun (opL : law) & op_id opL op =>
  fun opmA op1m opm1 (opL' := @Law op opmA op1m opm1)
    & phant_id opL' opL => opL'.

Definition clone_com_law op :=
  fun (opL : law) (opC : com_law) & op_id opL op & op_id opC op =>
  fun opmC (opC' := @ComLaw opL opmC) & phant_id opC' opC => opC'.

Definition clone_mul_law op :=
  fun (opM : mul_law) & op_id opM op =>
  fun op0m opm0 (opM' := @MulLaw op op0m opm0) & phant_id opM' opM => opM'.

Definition clone_add_law mop aop :=
  fun (opC : com_law) (opA : add_law mop) & op_id opC aop & op_id opA aop =>
  fun mopDm mopmD (opA' := @AddLaw mop opC mopDm mopmD)
    & phant_id opA' opA => opA'.

End Definitions.

Module Import Exports.
Coercion operator : law >-> Funclass.
Coercion com_operator : com_law >-> law.
Coercion mul_operator : mul_law >-> Funclass.
Coercion add_operator : add_law >-> com_law.
Notation "[ 'law' 'of' f ]" := (@clone_law _ _ f _ id _ _ _ id)
  (at level 0, format"[ 'law'  'of'  f ]") : form_scope.
Notation "[ 'com_law' 'of' f ]" := (@clone_com_law _ _ f _ _ id id _ id)
  (at level 0, format "[ 'com_law'  'of'  f ]") : form_scope.
Notation "[ 'mul_law' 'of' f ]" := (@clone_mul_law _ _ f _ id _ _ id)
  (at level 0, format"[ 'mul_law'  'of'  f ]") : form_scope.
Notation "[ 'add_law' m 'of' a ]" := (@clone_add_law _ _ m a _ _ id id _ _ id)
  (at level 0, format "[ 'add_law'  m  'of'  a ]") : form_scope.
End Exports.

Section CommutativeAxioms.

Variable (T : Type) (zero one : T) (mul add : T -> T -> T) (inv : T -> T).
Hypothesis mulC : commutative mul.

Lemma mulC_id : left_id one mul -> right_id one mul.
Proof. by move=> mul1x x; rewrite mulC. Qed.

Lemma mulC_zero : left_zero zero mul -> right_zero zero mul.
Proof. by move=> mul0x x; rewrite mulC. Qed.

Lemma mulC_dist : left_distributive mul add -> right_distributive mul add.
Proof. by move=> mul_addl x y z; rewrite !(mulC x). Qed.

End CommutativeAxioms.

Module Theory.

Section Theory.
Variables (T : Type) (idm : T).

Section Plain.
Variable mul : law idm.
Lemma mul1m : left_id idm mul. Proof. by case mul. Qed.
Lemma mulm1 : right_id idm mul. Proof. by case mul. Qed.
Lemma mulmA : associative mul. Proof. by case mul. Qed.
Lemma iteropE n x : iterop n mul x idm = iter n (mul x) idm.
Proof. by case: n => // n; rewrite iterSr mulm1 iteropS. Qed.
End Plain.

Section Commutative.
Variable mul : com_law idm.
Lemma mulmC : commutative mul. Proof. by case mul. Qed.
Lemma mulmCA : left_commutative mul.
Proof. by move=> x y z; rewrite !mulmA (mulmC x). Qed.
Lemma mulmAC : right_commutative mul.
Proof. by move=> x y z; rewrite -!mulmA (mulmC y). Qed.
Lemma mulmACA : interchange mul mul.
Proof. by move=> x y z t; rewrite -!mulmA (mulmCA y). Qed.
End Commutative.

Section Mul.
Variable mul : mul_law idm.
Lemma mul0m : left_zero idm mul. Proof. by case mul. Qed.
Lemma mulm0 : right_zero idm mul. Proof. by case mul. Qed.
End Mul.

Section Add.
Variables (mul : T -> T -> T) (add : add_law idm mul).
Lemma addmA : associative add. Proof. exact: mulmA. Qed.
Lemma addmC : commutative add. Proof. exact: mulmC. Qed.
Lemma addmCA : left_commutative add. Proof. exact: mulmCA. Qed.
Lemma addmAC : right_commutative add. Proof. exact: mulmAC. Qed.
Lemma add0m : left_id idm add. Proof. exact: mul1m. Qed.
Lemma addm0 : right_id idm add. Proof. exact: mulm1. Qed.
Lemma mulmDl : left_distributive mul add. Proof. by case add. Qed.
Lemma mulmDr : right_distributive mul add. Proof. by case add. Qed.
End Add.

Definition simpm := (mulm1, mulm0, mul1m, mul0m, mulmA).

End Theory.

#[deprecated(since="mathcomp 1.12.0", note="Use mulmDl instead.")]
Notation mulm_addl := mulmDl (only parsing).
#[deprecated(since="mathcomp 1.12.0", note="Use mulmDr instead.")]
Notation mulm_addr := mulmDr (only parsing).

End Theory.
Include Theory.

End Monoid.
Export Monoid.Exports.

Section PervasiveMonoids.

Import Monoid.

Canonical andb_monoid := Law andbA andTb andbT.
Canonical andb_comoid := ComLaw andbC.

Canonical andb_muloid := MulLaw andFb andbF.
Canonical orb_monoid := Law orbA orFb orbF.
Canonical orb_comoid := ComLaw orbC.
Canonical orb_muloid := MulLaw orTb orbT.
Canonical addb_monoid := Law addbA addFb addbF.
Canonical addb_comoid := ComLaw addbC.
Canonical orb_addoid := AddLaw andb_orl andb_orr.
Canonical andb_addoid := AddLaw orb_andl orb_andr.
Canonical addb_addoid := AddLaw andb_addl andb_addr.

Canonical addn_monoid := Law addnA add0n addn0.
Canonical addn_comoid := ComLaw addnC.
Canonical muln_monoid := Law mulnA mul1n muln1.
Canonical muln_comoid := ComLaw mulnC.
Canonical muln_muloid := MulLaw mul0n muln0.
Canonical addn_addoid := AddLaw mulnDl mulnDr.

Canonical maxn_monoid := Law maxnA max0n maxn0.
Canonical maxn_comoid := ComLaw maxnC.
Canonical maxn_addoid := AddLaw maxnMl maxnMr.

Canonical gcdn_monoid := Law gcdnA gcd0n gcdn0.
Canonical gcdn_comoid := ComLaw gcdnC.
Canonical gcdnDoid := AddLaw muln_gcdl muln_gcdr.

Canonical lcmn_monoid := Law lcmnA lcm1n lcmn1.
Canonical lcmn_comoid := ComLaw lcmnC.
Canonical lcmn_addoid := AddLaw muln_lcml muln_lcmr.

Canonical cat_monoid T := Law (@catA T) (@cat0s T) (@cats0 T).

End PervasiveMonoids.

(* Unit test for the [...law of ...] Notations
Definition myp := addn. Definition mym := muln.
Canonical myp_mon := [law of myp].
Canonical myp_cmon := [com_law of myp].
Canonical mym_mul := [mul_law of mym].
Canonical myp_add := [add_law _ of myp].
Print myp_add.
Print Canonical Projections.
*)

Delimit Scope big_scope with BIG.
Open Scope big_scope.

(* The bigbody wrapper is a workaround for a quirk of the Coq pretty-printer, *)
(* which would fail to redisplay the \big notation when the <general_term> or *)
(* <condition> do not depend on the bound index. The BigBody constructor      *)
(* packages both in in a term in which i occurs; it also depends on the       *)
(* iterated <op>, as this can give more information on the expected type of   *)
(* the <general_term>, thus allowing for the insertion of coercions.          *)
Variant bigbody R I := BigBody of I & (R -> R -> R) & bool & R.

Definition applybig {R I} (body : bigbody R I) x :=
  let: BigBody _ op b v := body in if b then op v x else x.

Definition reducebig R I idx r (body : I -> bigbody R I) :=
  foldr (applybig \o body) idx r.

Module Type BigOpSig.
Parameter bigop : forall R I, R -> seq I -> (I -> bigbody R I) -> R.
Axiom bigopE : bigop = reducebig.
End BigOpSig.

Module BigOp : BigOpSig.
Definition bigop := reducebig.
Lemma bigopE : bigop = reducebig. Proof. by []. Qed.
End BigOp.

Notation bigop := BigOp.bigop (only parsing).
Canonical bigop_unlock := Unlockable BigOp.bigopE.

Definition index_iota m n := iota m (n - m).

Lemma mem_index_iota m n i : i \in index_iota m n = (m <= i < n).
Proof.
rewrite mem_iota; case le_m_i: (m <= i) => //=.
by rewrite -leq_subLR subSn // -subn_gt0 -subnDA subnKC // subn_gt0.
Qed.

(* Legacy mathcomp scripts have been relying on the fact that enum A and      *)
(* filter A (index_enum T) are convertible. This is likely to change in the   *)
(* next mathcomp release when enum, pick, subset and card are generalised to  *)
(* predicates with finite support in a choiceType - in fact the two will only *)
(* be equal up to permutation in this new theory.                             *)
(*  It is therefore advisable to stop relying on this, and use the new        *)
(* facilities provided in this library: lemmas big_enumP, big_enum, big_image *)
(* and such. Users wishing to test compliance should change the Defined in    *)
(* index_enum_key to Qed, and comment out the filter_index_enum compatibility *)
(* definition below (or Import Deprecation.Reject).                           *)
Fact index_enum_key : unit. Proof. split. Defined. (* Qed. *)
Definition index_enum (T : finType) :=
  locked_with index_enum_key (Finite.enum T).

Lemma deprecated_filter_index_enum T P : filter P (index_enum T) = enum P.
Proof. by rewrite [index_enum T]unlock. Qed.

Lemma mem_index_enum T i : i \in index_enum T.
Proof. by rewrite [index_enum T]unlock -enumT mem_enum. Qed.
Hint Resolve mem_index_enum : core.

Lemma index_enum_uniq T : uniq (index_enum T).
Proof. by rewrite [index_enum T]unlock -enumT enum_uniq. Qed.

Notation "\big [ op / idx ]_ ( i <- r | P ) F" :=
  (bigop idx r (fun i => BigBody i op P%B F)) : big_scope.
Notation "\big [ op / idx ]_ ( i <- r ) F" :=
  (bigop idx r (fun i => BigBody i op true F)) : big_scope.
Notation "\big [ op / idx ]_ ( m <= i < n | P ) F" :=
  (bigop idx (index_iota m n) (fun i : nat => BigBody i op P%B F))
     : big_scope.
Notation "\big [ op / idx ]_ ( m <= i < n ) F" :=
  (bigop idx (index_iota m n) (fun i : nat => BigBody i op true F))
     : big_scope.
Notation "\big [ op / idx ]_ ( i | P ) F" :=
  (bigop idx (index_enum _) (fun i => BigBody i op P%B F)) : big_scope.
Notation "\big [ op / idx ]_ i F" :=
  (bigop idx (index_enum _) (fun i => BigBody i op true F)) : big_scope.
Notation "\big [ op / idx ]_ ( i : t | P ) F" :=
  (bigop idx (index_enum _) (fun i : t => BigBody i op P%B F))
     (only parsing) : big_scope.
Notation "\big [ op / idx ]_ ( i : t ) F" :=
  (bigop idx (index_enum _) (fun i : t => BigBody i op true F))
     (only parsing) : big_scope.
Notation "\big [ op / idx ]_ ( i < n | P ) F" :=
  (\big[op/idx]_(i : ordinal n | P%B) F) : big_scope.
Notation "\big [ op / idx ]_ ( i < n ) F" :=
  (\big[op/idx]_(i : ordinal n) F) : big_scope.
Notation "\big [ op / idx ]_ ( i 'in' A | P ) F" :=
  (\big[op/idx]_(i | (i \in A) && P) F) : big_scope.
Notation "\big [ op / idx ]_ ( i 'in' A ) F" :=
  (\big[op/idx]_(i | i \in A) F) : big_scope.

Notation BIG_F := (F in \big[_/_]_(i <- _ | _) F i)%pattern.
Notation BIG_P := (P in \big[_/_]_(i <- _ | P i) _)%pattern.

Local Notation "+%N" := addn (at level 0, only parsing).
Notation "\sum_ ( i <- r | P ) F" :=
  (\big[+%N/0%N]_(i <- r | P%B) F%N) : nat_scope.
Notation "\sum_ ( i <- r ) F" :=
  (\big[+%N/0%N]_(i <- r) F%N) : nat_scope.
Notation "\sum_ ( m <= i < n | P ) F" :=
  (\big[+%N/0%N]_(m <= i < n | P%B) F%N) : nat_scope.
Notation "\sum_ ( m <= i < n ) F" :=
  (\big[+%N/0%N]_(m <= i < n) F%N) : nat_scope.
Notation "\sum_ ( i | P ) F" :=
  (\big[+%N/0%N]_(i | P%B) F%N) : nat_scope.
Notation "\sum_ i F" :=
  (\big[+%N/0%N]_i F%N) : nat_scope.
Notation "\sum_ ( i : t | P ) F" :=
  (\big[+%N/0%N]_(i : t | P%B) F%N) (only parsing) : nat_scope.
Notation "\sum_ ( i : t ) F" :=
  (\big[+%N/0%N]_(i : t) F%N) (only parsing) : nat_scope.
Notation "\sum_ ( i < n | P ) F" :=
  (\big[+%N/0%N]_(i < n | P%B) F%N) : nat_scope.
Notation "\sum_ ( i < n ) F" :=
  (\big[+%N/0%N]_(i < n) F%N) : nat_scope.
Notation "\sum_ ( i 'in' A | P ) F" :=
  (\big[+%N/0%N]_(i in A | P%B) F%N) : nat_scope.
Notation "\sum_ ( i 'in' A ) F" :=
  (\big[+%N/0%N]_(i in A) F%N) : nat_scope.

Local Notation "*%N" := muln (at level 0, only parsing).
Notation "\prod_ ( i <- r | P ) F" :=
  (\big[*%N/1%N]_(i <- r | P%B) F%N) : nat_scope.
Notation "\prod_ ( i <- r ) F" :=
  (\big[*%N/1%N]_(i <- r) F%N) : nat_scope.
Notation "\prod_ ( m <= i < n | P ) F" :=
  (\big[*%N/1%N]_(m <= i < n | P%B) F%N) : nat_scope.
Notation "\prod_ ( m <= i < n ) F" :=
  (\big[*%N/1%N]_(m <= i < n) F%N) : nat_scope.
Notation "\prod_ ( i | P ) F" :=
  (\big[*%N/1%N]_(i | P%B) F%N) : nat_scope.
Notation "\prod_ i F" :=
  (\big[*%N/1%N]_i F%N) : nat_scope.
Notation "\prod_ ( i : t | P ) F" :=
  (\big[*%N/1%N]_(i : t | P%B) F%N) (only parsing) : nat_scope.
Notation "\prod_ ( i : t ) F" :=
  (\big[*%N/1%N]_(i : t) F%N) (only parsing) : nat_scope.
Notation "\prod_ ( i < n | P ) F" :=
  (\big[*%N/1%N]_(i < n | P%B) F%N) : nat_scope.
Notation "\prod_ ( i < n ) F" :=
  (\big[*%N/1%N]_(i < n) F%N) : nat_scope.
Notation "\prod_ ( i 'in' A | P ) F" :=
  (\big[*%N/1%N]_(i in A | P%B) F%N) : nat_scope.
Notation "\prod_ ( i 'in' A ) F" :=
  (\big[*%N/1%N]_(i in A) F%N) : nat_scope.

Notation "\max_ ( i <- r | P ) F" :=
  (\big[maxn/0%N]_(i <- r | P%B) F%N) : nat_scope.
Notation "\max_ ( i <- r ) F" :=
  (\big[maxn/0%N]_(i <- r) F%N) : nat_scope.
Notation "\max_ ( i | P ) F" :=
  (\big[maxn/0%N]_(i | P%B) F%N) : nat_scope.
Notation "\max_ i F" :=
  (\big[maxn/0%N]_i F%N) : nat_scope.
Notation "\max_ ( i : I | P ) F" :=
  (\big[maxn/0%N]_(i : I | P%B) F%N) (only parsing) : nat_scope.
Notation "\max_ ( i : I ) F" :=
  (\big[maxn/0%N]_(i : I) F%N) (only parsing) : nat_scope.
Notation "\max_ ( m <= i < n | P ) F" :=
 (\big[maxn/0%N]_(m <= i < n | P%B) F%N) : nat_scope.
Notation "\max_ ( m <= i < n ) F" :=
 (\big[maxn/0%N]_(m <= i < n) F%N) : nat_scope.
Notation "\max_ ( i < n | P ) F" :=
 (\big[maxn/0%N]_(i < n | P%B) F%N) : nat_scope.
Notation "\max_ ( i < n ) F" :=
 (\big[maxn/0%N]_(i < n) F%N) : nat_scope.
Notation "\max_ ( i 'in' A | P ) F" :=
 (\big[maxn/0%N]_(i in A | P%B) F%N) : nat_scope.
Notation "\max_ ( i 'in' A ) F" :=
 (\big[maxn/0%N]_(i in A) F%N) : nat_scope.

(* Induction loading *)
Lemma big_load R (K K' : R -> Type) idx op I r (P : pred I) F :
  K (\big[op/idx]_(i <- r | P i) F i) * K' (\big[op/idx]_(i <- r | P i) F i)
  -> K' (\big[op/idx]_(i <- r | P i) F i).
Proof. by case. Qed.

Arguments big_load [R] K [K'] idx op [I].

Section Elim3.

Variables (R1 R2 R3 : Type) (K : R1 -> R2 -> R3 -> Type).
Variables (id1 : R1) (op1 : R1 -> R1 -> R1).
Variables (id2 : R2) (op2 : R2 -> R2 -> R2).
Variables (id3 : R3) (op3 : R3 -> R3 -> R3).

Hypothesis Kid : K id1 id2 id3.

Lemma big_rec3 I r (P : pred I) F1 F2 F3
    (K_F : forall i y1 y2 y3, P i -> K y1 y2 y3 ->
       K (op1 (F1 i) y1) (op2 (F2 i) y2) (op3 (F3 i) y3)) :
  K (\big[op1/id1]_(i <- r | P i) F1 i)
    (\big[op2/id2]_(i <- r | P i) F2 i)
    (\big[op3/id3]_(i <- r | P i) F3 i).
Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: K_F. Qed.

Hypothesis Kop : forall x1 x2 x3 y1 y2 y3,
  K x1 x2 x3 -> K y1 y2 y3-> K (op1 x1 y1) (op2 x2 y2) (op3 x3 y3).
Lemma big_ind3 I r (P : pred I) F1 F2 F3
   (K_F : forall i, P i -> K (F1 i) (F2 i) (F3 i)) :
  K (\big[op1/id1]_(i <- r | P i) F1 i)
    (\big[op2/id2]_(i <- r | P i) F2 i)
    (\big[op3/id3]_(i <- r | P i) F3 i).
Proof. by apply: big_rec3 => i x1 x2 x3 /K_F; apply: Kop. Qed.

End Elim3.

Arguments big_rec3 [R1 R2 R3] K [id1 op1 id2 op2 id3 op3] _ [I r P F1 F2 F3].
Arguments big_ind3 [R1 R2 R3] K [id1 op1 id2 op2 id3 op3] _ _ [I r P F1 F2 F3].

Section Elim2.

Variables (R1 R2 : Type) (K : R1 -> R2 -> Type) (f : R2 -> R1).
Variables (id1 : R1) (op1 : R1 -> R1 -> R1).
Variables (id2 : R2) (op2 : R2 -> R2 -> R2).

Hypothesis Kid : K id1 id2.

Lemma big_rec2 I r (P : pred I) F1 F2
    (K_F : forall i y1 y2, P i -> K y1 y2 ->
       K (op1 (F1 i) y1) (op2 (F2 i) y2)) :
  K (\big[op1/id1]_(i <- r | P i) F1 i) (\big[op2/id2]_(i <- r | P i) F2 i).
Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: K_F. Qed.

Hypothesis Kop : forall x1 x2 y1 y2,
  K x1 x2 -> K y1 y2 -> K (op1 x1 y1) (op2 x2 y2).
Lemma big_ind2 I r (P : pred I) F1 F2 (K_F : forall i, P i -> K (F1 i) (F2 i)) :
  K (\big[op1/id1]_(i <- r | P i) F1 i) (\big[op2/id2]_(i <- r | P i) F2 i).
Proof. by apply: big_rec2 => i x1 x2 /K_F; apply: Kop. Qed.

Hypotheses (f_op : {morph f : x y / op2 x y >-> op1 x y}) (f_id : f id2 = id1).
Lemma big_morph I r (P : pred I) F :
  f (\big[op2/id2]_(i <- r | P i) F i) = \big[op1/id1]_(i <- r | P i) f (F i).
Proof. by rewrite unlock; elim: r => //= i r <-; rewrite -f_op -fun_if. Qed.

End Elim2.

Arguments big_rec2 [R1 R2] K [id1 op1 id2 op2] _ [I r P F1 F2].
Arguments big_ind2 [R1 R2] K [id1 op1 id2 op2] _ _ [I r P F1 F2].
Arguments big_morph [R1 R2] f [id1 op1 id2 op2] _ _ [I].

Section Elim1.

Variables (R : Type) (K : R -> Type) (f : R -> R).
Variables (idx : R) (op op' : R -> R -> R).

Hypothesis Kid : K idx.

Lemma big_rec I r (P : pred I) F
    (Kop : forall i x, P i -> K x -> K (op (F i) x)) :
  K (\big[op/idx]_(i <- r | P i) F i).
Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: Kop. Qed.

Hypothesis Kop : forall x y, K x -> K y -> K (op x y).
Lemma big_ind I r (P : pred I) F (K_F : forall i, P i -> K (F i)) :
  K (\big[op/idx]_(i <- r | P i) F i).
Proof. by apply: big_rec => // i x /K_F /Kop; apply. Qed.

Hypothesis Kop' : forall x y, K x -> K y -> op x y = op' x y.
Lemma eq_big_op I r (P : pred I) F (K_F : forall i, P i -> K (F i)) :
  \big[op/idx]_(i <- r | P i) F i = \big[op'/idx]_(i <- r | P i) F i.
Proof.
by elim/(big_load K): _; elim/big_rec2: _ => // i _ y Pi [Ky <-]; auto.
Qed.

Hypotheses (fM : {morph f : x y / op x y}) (f_id : f idx = idx).
Lemma big_endo I r (P : pred I) F :
  f (\big[op/idx]_(i <- r | P i) F i) = \big[op/idx]_(i <- r | P i) f (F i).
Proof. exact: big_morph. Qed.

End Elim1.

Arguments big_rec [R] K [idx op] _ [I r P F].
Arguments big_ind [R] K [idx op] _ _ [I r P F].
Arguments eq_big_op [R] K [idx op] op' _ _ _ [I].
Arguments big_endo [R] f [idx op] _ _ [I].

Section Extensionality.

Variables (R : Type) (idx : R) (op : R -> R -> R).

Section SeqExtension.

Variable I : Type.

Lemma foldrE r : foldr op idx r = \big[op/idx]_(x <- r) x.
Proof. by rewrite unlock. Qed.

Lemma big_filter r (P : pred I) F :
  \big[op/idx]_(i <- filter P r) F i = \big[op/idx]_(i <- r | P i) F i.
Proof. by rewrite unlock; elim: r => //= i r <-; case (P i). Qed.

Lemma big_filter_cond r (P1 P2 : pred I) F :
  \big[op/idx]_(i <- filter P1 r | P2 i) F i
     = \big[op/idx]_(i <- r | P1 i && P2 i) F i.
Proof.
rewrite -big_filter -(big_filter r); congr bigop.
by rewrite -filter_predI; apply: eq_filter => i; apply: andbC.
Qed.

Lemma eq_bigl r (P1 P2 : pred I) F :
    P1 =1 P2 ->
  \big[op/idx]_(i <- r | P1 i) F i = \big[op/idx]_(i <- r | P2 i) F i.
Proof. by move=> eqP12; rewrite -!(big_filter r) (eq_filter eqP12). Qed.

(* A lemma to permute aggregate conditions. *)
Lemma big_andbC r (P Q : pred I) F :
  \big[op/idx]_(i <- r | P i && Q i) F i
    = \big[op/idx]_(i <- r | Q i && P i) F i.
Proof. by apply: eq_bigl => i; apply: andbC. Qed.

Lemma eq_bigr r (P : pred I) F1 F2 : (forall i, P i -> F1 i = F2 i) ->
  \big[op/idx]_(i <- r | P i) F1 i = \big[op/idx]_(i <- r | P i) F2 i.
Proof. by move=> eqF12; elim/big_rec2: _ => // i x _ /eqF12-> ->. Qed.

Lemma eq_big r (P1 P2 : pred I) F1 F2 :
    P1 =1 P2 -> (forall i, P1 i -> F1 i = F2 i) ->
  \big[op/idx]_(i <- r | P1 i) F1 i = \big[op/idx]_(i <- r | P2 i) F2 i.
Proof. by move/eq_bigl <-; move/eq_bigr->. Qed.

Lemma congr_big r1 r2 (P1 P2 : pred I) F1 F2 :
    r1 = r2 -> P1 =1 P2 -> (forall i, P1 i -> F1 i = F2 i) ->
  \big[op/idx]_(i <- r1 | P1 i) F1 i = \big[op/idx]_(i <- r2 | P2 i) F2 i.
Proof. by move=> <-{r2}; apply: eq_big. Qed.

Lemma big_nil (P : pred I) F : \big[op/idx]_(i <- [::] | P i) F i = idx.
Proof. by rewrite unlock. Qed.

Lemma big_cons i r (P : pred I) F :
    let x := \big[op/idx]_(j <- r | P j) F j in
  \big[op/idx]_(j <- i :: r | P j) F j = if P i then op (F i) x else x.
Proof. by rewrite unlock. Qed.

Lemma big_map J (h : J -> I) r (P : pred I) F :
  \big[op/idx]_(i <- map h r | P i) F i
     = \big[op/idx]_(j <- r | P (h j)) F (h j).
Proof. by rewrite unlock; elim: r => //= j r ->. Qed.

Lemma big_nth x0 r (P : pred I) F :
  \big[op/idx]_(i <- r | P i) F i
     = \big[op/idx]_(0 <= i < size r | P (nth x0 r i)) (F (nth x0 r i)).
Proof. by rewrite -[r in LHS](mkseq_nth x0) big_map /index_iota subn0. Qed.

Lemma big_hasC r (P : pred I) F :
  ~~ has P r -> \big[op/idx]_(i <- r | P i) F i = idx.
Proof.
by rewrite -big_filter has_count -size_filter -eqn0Ngt unlock => /nilP->.
Qed.

Lemma big_pred0_eq (r : seq I) F : \big[op/idx]_(i <- r | false) F i = idx.
Proof. by rewrite big_hasC // has_pred0. Qed.

Lemma big_pred0 r (P : pred I) F :
  P =1 xpred0 -> \big[op/idx]_(i <- r | P i) F i = idx.
Proof. by move/eq_bigl->; apply: big_pred0_eq. Qed.

Lemma big_cat_nested r1 r2 (P : pred I) F :
    let x := \big[op/idx]_(i <- r2 | P i) F i in
  \big[op/idx]_(i <- r1 ++ r2 | P i) F i = \big[op/x]_(i <- r1 | P i) F i.
Proof. by rewrite unlock /reducebig foldr_cat. Qed.

Lemma big_catl r1 r2 (P : pred I) F :
    ~~ has P r2 ->
  \big[op/idx]_(i <- r1 ++ r2 | P i) F i = \big[op/idx]_(i <- r1 | P i) F i.
Proof. by rewrite big_cat_nested => /big_hasC->. Qed.

Lemma big_catr r1 r2 (P : pred I) F :
     ~~ has P r1 ->
  \big[op/idx]_(i <- r1 ++ r2 | P i) F i = \big[op/idx]_(i <- r2 | P i) F i.
Proof.
rewrite -big_filter -(big_filter r2) filter_cat.
by rewrite has_count -size_filter; case: filter.
Qed.

End SeqExtension.

Lemma big_map_id J (h : J -> R) r (P : pred R) :
  \big[op/idx]_(i <- map h r | P i) i
     = \big[op/idx]_(j <- r | P (h j)) h j.
Proof. exact: big_map. Qed.

(* The following lemmas can be used to localise extensionality to a specific  *)
(* index sequence. This is done by ssreflect rewriting, before applying       *)
(* congruence or induction lemmas.                                            *)
Lemma big_seq_cond (I : eqType) r (P : pred I) F :
  \big[op/idx]_(i <- r | P i) F i
    = \big[op/idx]_(i <- r | (i \in r) && P i) F i.
Proof.
by rewrite -!(big_filter r); congr bigop; apply: eq_in_filter => i ->.
Qed.

Lemma big_seq (I : eqType) (r : seq I) F :
  \big[op/idx]_(i <- r) F i = \big[op/idx]_(i <- r | i \in r) F i.
Proof. by rewrite big_seq_cond big_andbC. Qed.

Lemma eq_big_seq (I : eqType) (r : seq I) F1 F2 :
  {in r, F1 =1 F2} -> \big[op/idx]_(i <- r) F1 i = \big[op/idx]_(i <- r) F2 i.
Proof. by move=> eqF; rewrite !big_seq (eq_bigr _ eqF). Qed.

(* Similar lemmas for exposing integer indexing in the predicate. *)
Lemma big_nat_cond m n (P : pred nat) F :
  \big[op/idx]_(m <= i < n | P i) F i
    = \big[op/idx]_(m <= i < n | (m <= i < n) && P i) F i.
Proof.
by rewrite big_seq_cond; apply: eq_bigl => i; rewrite mem_index_iota.
Qed.

Lemma big_nat m n F :
  \big[op/idx]_(m <= i < n) F i = \big[op/idx]_(m <= i < n | m <= i < n) F i.
Proof. by rewrite big_nat_cond big_andbC. Qed.

Lemma congr_big_nat m1 n1 m2 n2 P1 P2 F1 F2 :
    m1 = m2 -> n1 = n2 ->
    (forall i, m1 <= i < n2 -> P1 i = P2 i) ->
    (forall i, P1 i && (m1 <= i < n2) -> F1 i = F2 i) ->
  \big[op/idx]_(m1 <= i < n1 | P1 i) F1 i
    = \big[op/idx]_(m2 <= i < n2 | P2 i) F2 i.
Proof.
move=> <- <- eqP12 eqF12; rewrite big_seq_cond (big_seq_cond _ P2).
apply: eq_big => i; rewrite ?inE /= !mem_index_iota.
  by apply: andb_id2l; apply: eqP12.
by rewrite andbC; apply: eqF12.
Qed.

Lemma eq_big_nat m n F1 F2 :
    (forall i, m <= i < n -> F1 i = F2 i) ->
  \big[op/idx]_(m <= i < n) F1 i = \big[op/idx]_(m <= i < n) F2 i.
Proof. by move=> eqF; apply: congr_big_nat. Qed.

Lemma big_geq m n (P : pred nat) F :
  m >= n -> \big[op/idx]_(m <= i < n | P i) F i = idx.
Proof. by move=> ge_m_n; rewrite /index_iota (eqnP ge_m_n) big_nil. Qed.

Lemma big_ltn_cond m n (P : pred nat) F :
    m < n -> let x := \big[op/idx]_(m.+1 <= i < n | P i) F i in
  \big[op/idx]_(m <= i < n | P i) F i = if P m then op (F m) x else x.
Proof. by case: n => [//|n] le_m_n; rewrite /index_iota subSn // big_cons. Qed.

Lemma big_ltn m n F :
     m < n ->
  \big[op/idx]_(m <= i < n) F i = op (F m) (\big[op/idx]_(m.+1 <= i < n) F i).
Proof. by move=> lt_mn; apply: big_ltn_cond. Qed.

Lemma big_addn m n a (P : pred nat) F :
  \big[op/idx]_(m + a <= i < n | P i) F i =
     \big[op/idx]_(m <= i < n - a | P (i + a)) F (i + a).
Proof.
rewrite /index_iota -subnDA addnC iotaDl big_map.
by apply: eq_big => ? *; rewrite addnC.
Qed.

Lemma big_add1 m n (P : pred nat) F :
  \big[op/idx]_(m.+1 <= i < n | P i) F i =
     \big[op/idx]_(m <= i < n.-1 | P (i.+1)) F (i.+1).
Proof.
by rewrite -addn1 big_addn subn1; apply: eq_big => ? *; rewrite addn1.
Qed.

Lemma big_nat_recl n m F : m <= n ->
  \big[op/idx]_(m <= i < n.+1) F i =
     op (F m) (\big[op/idx]_(m <= i < n) F i.+1).
Proof. by move=> lemn; rewrite big_ltn // big_add1. Qed.

Lemma big_mkord n (P : pred nat) F :
  \big[op/idx]_(0 <= i < n | P i) F i = \big[op/idx]_(i < n | P i) F i.
Proof.
rewrite /index_iota subn0 -(big_map (@nat_of_ord n)).
by congr bigop; rewrite /index_enum 2!unlock val_ord_enum.
Qed.

Lemma big_nat_widen m n1 n2 (P : pred nat) F :
     n1 <= n2 ->
  \big[op/idx]_(m <= i < n1 | P i) F i
      = \big[op/idx]_(m <= i < n2 | P i && (i < n1)) F i.
Proof.
move=> len12; symmetry; rewrite -big_filter filter_predI big_filter.
have [ltn_trans eq_by_mem] := (ltn_trans, irr_sorted_eq ltn_trans ltnn).
congr bigop; apply: eq_by_mem; rewrite ?sorted_filter ?iota_ltn_sorted // => i.
rewrite mem_filter !mem_index_iota andbCA andbA andb_idr => // /andP[_].
by move/leq_trans->.
Qed.

Lemma big_ord_widen_cond n1 n2 (P : pred nat) (F : nat -> R) :
     n1 <= n2 ->
  \big[op/idx]_(i < n1 | P i) F i
      = \big[op/idx]_(i < n2 | P i && (i < n1)) F i.
Proof. by move/big_nat_widen=> len12; rewrite -big_mkord len12 big_mkord. Qed.

Lemma big_ord_widen n1 n2 (F : nat -> R) :
    n1 <= n2 ->
  \big[op/idx]_(i < n1) F i = \big[op/idx]_(i < n2 | i < n1) F i.
Proof. by move=> le_n12; apply: (big_ord_widen_cond (predT)). Qed.

Lemma big_ord_widen_leq n1 n2 (P : pred 'I_(n1.+1)) F :
    n1 < n2 ->
  \big[op/idx]_(i < n1.+1 | P i) F i
      = \big[op/idx]_(i < n2 | P (inord i) && (i <= n1)) F (inord i).
Proof.
move=> len12; pose g G i := G (inord i : 'I_(n1.+1)).
rewrite -(big_ord_widen_cond (g _ P) (g _ F) len12) {}/g.
by apply: eq_big => i *; rewrite inord_val.
Qed.

Lemma big_ord0 P F : \big[op/idx]_(i < 0 | P i) F i = idx.
Proof. by rewrite big_pred0 => [|[]]. Qed.

Lemma big_mask_tuple I n m (t : n.-tuple I) (P : pred I) F :
  \big[op/idx]_(i <- mask m t | P i) F i
    = \big[op/idx]_(i < n | nth false m i && P (tnth t i)) F (tnth t i).
Proof.
rewrite [t in LHS]tuple_map_ord/= -map_mask big_map.
by rewrite mask_enum_ord big_filter_cond/= enumT.
Qed.

Lemma big_mask I r m (P : pred I) (F : I -> R) (r_ := tnth (in_tuple r)) :
  \big[op/idx]_(i <- mask m r | P i) F i
    = \big[op/idx]_(i < size r | nth false m i && P (r_ i)) F (r_ i).
Proof. exact: (big_mask_tuple _ (in_tuple r)). Qed.

Lemma big_tnth I r (P : pred I) F (r_ := tnth (in_tuple r)) :
  \big[op/idx]_(i <- r | P i) F i
    = \big[op/idx]_(i < size r | P (r_ i)) (F (r_ i)).
Proof.
rewrite /= -[r in LHS](mask_true (leqnn (size r))) big_mask//.
by apply: eq_bigl => i /=; rewrite nth_nseq ltn_ord.
Qed.

Lemma big_index_uniq (I : eqType) (r : seq I) (E : 'I_(size r) -> R) :
    uniq r ->
  \big[op/idx]_i E i = \big[op/idx]_(x <- r) oapp E idx (insub (index x r)).
Proof.
move=> Ur; apply/esym; rewrite big_tnth.
by under [LHS]eq_bigr do rewrite index_uniq// valK.
Qed.

Lemma big_tuple I n (t : n.-tuple I) (P : pred I) F :
  \big[op/idx]_(i <- t | P i) F i
     = \big[op/idx]_(i < n | P (tnth t i)) F (tnth t i).
Proof. by rewrite big_tnth tvalK; case: _ / (esym _). Qed.

Lemma big_ord_narrow_cond n1 n2 (P : pred 'I_n2) F (le_n12 : n1 <= n2) :
    let w := widen_ord le_n12 in
  \big[op/idx]_(i < n2 | P i && (i < n1)) F i
    = \big[op/idx]_(i < n1 | P (w i)) F (w i).
Proof.
case: n1 => [|n1] /= in le_n12 *.
  by rewrite big_ord0 big_pred0 // => i; rewrite andbF.
rewrite (big_ord_widen_leq _ _ le_n12); apply: eq_big => i.
  by apply: andb_id2r => le_i_n1; congr P; apply: val_inj; rewrite /= inordK.
by case/andP=> _ le_i_n1; congr F; apply: val_inj; rewrite /= inordK.
Qed.

Lemma big_ord_narrow_cond_leq n1 n2 (P : pred _) F (le_n12 : n1 <= n2) :
    let w := @widen_ord n1.+1 n2.+1 le_n12 in
  \big[op/idx]_(i < n2.+1 | P i && (i <= n1)) F i
  = \big[op/idx]_(i < n1.+1 | P (w i)) F (w i).
Proof. exact: (@big_ord_narrow_cond n1.+1 n2.+1). Qed.

Lemma big_ord_narrow n1 n2 F (le_n12 : n1 <= n2) :
    let w := widen_ord le_n12 in
  \big[op/idx]_(i < n2 | i < n1) F i = \big[op/idx]_(i < n1) F (w i).
Proof. exact: (big_ord_narrow_cond (predT)). Qed.

Lemma big_ord_narrow_leq n1 n2 F (le_n12 : n1 <= n2) :
    let w := @widen_ord n1.+1 n2.+1 le_n12 in
  \big[op/idx]_(i < n2.+1 | i <= n1) F i = \big[op/idx]_(i < n1.+1) F (w i).
Proof. exact: (big_ord_narrow_cond_leq (predT)). Qed.

Lemma big_ord_recl n F :
  \big[op/idx]_(i < n.+1) F i =
     op (F ord0) (\big[op/idx]_(i < n) F (@lift n.+1 ord0 i)).
Proof.
pose G i := F (inord i); have eqFG i: F i = G i by rewrite /G inord_val.
under eq_bigr do rewrite eqFG; under [in RHS]eq_bigr do rewrite eqFG.
by rewrite -(big_mkord _ (fun _ => _) G) eqFG big_ltn // big_add1 /= big_mkord.
Qed.

Lemma big_nseq_cond I n a (P : pred I) F :
  \big[op/idx]_(i <- nseq n a | P i) F i
    = if P a then iter n (op (F a)) idx else idx.
Proof. by rewrite unlock; elim: n => /= [|n ->]; case: (P a). Qed.

Lemma big_nseq I n a (F : I -> R):
  \big[op/idx]_(i <- nseq n a) F i = iter n (op (F a)) idx.
Proof. exact: big_nseq_cond. Qed.

End Extensionality.

Variant big_enum_spec (I : finType) (P : pred I) : seq I -> Type :=
  BigEnumSpec e of
    forall R idx op (F : I -> R),
      \big[op/idx]_(i <- e) F i = \big[op/idx]_(i | P i) F i
  & uniq e /\ (forall i, i \in e = P i)
  & (let cP := [pred i | P i] in perm_eq e (enum cP) /\ size e = #|cP|)
  : big_enum_spec P e.

(*   This lemma can be used to introduce an enumeration into a non-abelian    *)
(* bigop, in one of three ways:                                               *)
(*   have [e big_e [Ue mem_e] [e_enum size_e]] := big_enumP P.                *)
(* gives a permutation e of enum P alongside a equation big_e for converting  *)
(* between bigops iterating on (i <- e) and ones on (i | P i). Usually not    *)
(* all properties of e are needed, but see below the big_distr_big_dep proof  *)
(* where most are.                                                            *)
(*   rewrite -big_filter; have [e ...] := big_enumP.                          *)
(* uses big_filter to do this conversion first, and then abstracts the        *)
(* resulting filter P (index_enum T) enumeration as an e with the same        *)
(* properties (see big_enum_cond below for an example of this usage).         *)
(*   Finally                                                                  *)
(*   rewrite -big_filter; case def_e: _ / big_enumP => [e ...]                *)
(* does the same while remembering the definition of e.                       *)

Lemma big_enumP I P : big_enum_spec P (filter P (index_enum I)).
Proof.
set e := filter P _; have Ue: uniq e by apply/filter_uniq/index_enum_uniq.
have mem_e i: i \in e = P i by rewrite mem_filter mem_index_enum andbT.
split=> // [R idx op F | cP]; first by rewrite big_filter.
suffices De: perm_eq e (enum cP) by rewrite (perm_size De) cardE.
by apply/uniq_perm=> // [|i]; rewrite ?enum_uniq ?mem_enum ?mem_e.
Qed.

Section BigConst.

Variables (R : Type) (idx : R) (op : R -> R -> R).

Lemma big_const_seq I r (P : pred I) x :
  \big[op/idx]_(i <- r | P i) x = iter (count P r) (op x) idx.
Proof. by rewrite unlock; elim: r => //= i r ->; case: (P i). Qed.

Lemma big_const (I : finType) (A : {pred I}) x :
  \big[op/idx]_(i in A) x = iter #|A| (op x) idx.
Proof.
by have [e <- _ [_ <-]] := big_enumP A; rewrite big_const_seq count_predT.
Qed.

Lemma big_const_nat m n x :
  \big[op/idx]_(m <= i < n) x = iter (n - m) (op x) idx.
Proof. by rewrite big_const_seq count_predT size_iota. Qed.

Lemma big_const_ord n x :
  \big[op/idx]_(i < n) x = iter n (op x) idx.
Proof. by rewrite big_const card_ord. Qed.

End BigConst.

Section MonoidProperties.

Import Monoid.Theory.

Variable R : Type.

Variable idx : R.
Local Notation "1" := idx.

Section Plain.

Variable op : Monoid.law 1.

Local Notation "*%M" := op (at level 0).
Local Notation "x * y" := (op x y).

Lemma foldlE x r : foldl *%M x r = \big[*%M/1]_(y <- x :: r) y.
Proof.
by rewrite -foldrE; elim: r => [|y r IHr]/= in x *; rewrite ?mulm1 ?mulmA ?IHr.
Qed.

Lemma foldl_idx r : foldl *%M 1 r = \big[*%M/1]_(x <- r) x.
Proof. by rewrite foldlE big_cons mul1m. Qed.

Lemma eq_big_idx_seq idx' I r (P : pred I) F :
     right_id idx' *%M -> has P r ->
   \big[*%M/idx']_(i <- r | P i) F i =\big[*%M/1]_(i <- r | P i) F i.
Proof.
move=> op_idx'; rewrite -!(big_filter _ _ r) has_count -size_filter.
case/lastP: (filter P r) => {r}// r i _.
by rewrite -cats1 !(big_cat_nested, big_cons, big_nil) op_idx' mulm1.
Qed.

Lemma eq_big_idx idx' (I : finType) i0 (P : pred I) F :
     P i0 -> right_id idx' *%M ->
  \big[*%M/idx']_(i | P i) F i =\big[*%M/1]_(i | P i) F i.
Proof.
by move=> Pi0 op_idx'; apply: eq_big_idx_seq => //; apply/hasP; exists i0.
Qed.

Lemma big1_eq I r (P : pred I) : \big[*%M/1]_(i <- r | P i) 1 = 1.
Proof.
by rewrite big_const_seq; elim: (count _ _) => //= n ->; apply: mul1m.
Qed.

Lemma big1 I r (P : pred I) F :
  (forall i, P i -> F i = 1) -> \big[*%M/1]_(i <- r | P i) F i = 1.
Proof. by move/(eq_bigr _)->; apply: big1_eq. Qed.

Lemma big1_seq (I : eqType) r (P : pred I) F :
    (forall i, P i && (i \in r) -> F i = 1) ->
  \big[*%M/1]_(i <- r | P i) F i = 1.
Proof. by move=> eqF1; rewrite big_seq_cond big_andbC big1. Qed.

Lemma big_seq1 I (i : I) F : \big[*%M/1]_(j <- [:: i]) F j = F i.
Proof. by rewrite unlock /= mulm1. Qed.

Lemma big_mkcond I r (P : pred I) F :
  \big[*%M/1]_(i <- r | P i) F i =
     \big[*%M/1]_(i <- r) (if P i then F i else 1).
Proof. by rewrite unlock; elim: r => //= i r ->; case P; rewrite ?mul1m. Qed.

Lemma big_mkcondr I r (P Q : pred I) F :
  \big[*%M/1]_(i <- r | P i && Q i) F i =
     \big[*%M/1]_(i <- r | P i) (if Q i then F i else 1).
Proof. by rewrite -big_filter_cond big_mkcond big_filter. Qed.

Lemma big_mkcondl I r (P Q : pred I) F :
  \big[*%M/1]_(i <- r | P i && Q i) F i =
     \big[*%M/1]_(i <- r | Q i) (if P i then F i else 1).
Proof. by rewrite big_andbC big_mkcondr. Qed.

Lemma big_uncond I (r : seq I) (P : pred I) F :
  (forall i, ~~ P i -> F i = 1) ->
  \big[*%M/1]_(i <- r | P i) F i = \big[*%M/1]_(i <- r) F i.
Proof.
move=> F_eq1; rewrite big_mkcond; apply: eq_bigr => i.
by case: (P i) (F_eq1 i) => // ->.
Qed.

Lemma big_rmcond_in (I : eqType) (r : seq I) (P : pred I) F :
  (forall i, i \in r -> ~~ P i -> F i = 1) ->
  \big[*%M/1]_(i <- r | P i) F i = \big[*%M/1]_(i <- r) F i.
Proof.
move=> F_eq1; rewrite big_seq_cond [RHS]big_seq_cond !big_mkcondl big_uncond//.
by move=> i /F_eq1; case: ifP => // _ ->.
Qed.

Lemma big_cat I r1 r2 (P : pred I) F :
  \big[*%M/1]_(i <- r1 ++ r2 | P i) F i =
     \big[*%M/1]_(i <- r1 | P i) F i * \big[*%M/1]_(i <- r2 | P i) F i.
Proof.
rewrite !(big_mkcond _ P) unlock.
by elim: r1 => /= [|i r1 ->]; rewrite (mul1m, mulmA).
Qed.

Lemma big_allpairs_dep I1 (I2 : I1 -> Type) J (h : forall i1, I2 i1 -> J)
    (r1 : seq I1) (r2 : forall i1, seq (I2 i1)) (F : J -> R) :
  \big[*%M/1]_(i <- [seq h i1 i2 | i1 <- r1, i2 <- r2 i1]) F i =
    \big[*%M/1]_(i1 <- r1) \big[*%M/1]_(i2 <- r2 i1) F (h i1 i2).
Proof.
elim: r1 => [|i1 r1 IHr1]; first by rewrite !big_nil.
by rewrite big_cat IHr1 big_cons big_map.
Qed.

Lemma big_allpairs I1 I2 (r1 : seq I1) (r2 : seq I2) F :
  \big[*%M/1]_(i <- [seq (i1, i2) | i1 <- r1, i2 <- r2]) F i =
    \big[*%M/1]_(i1 <- r1) \big[op/idx]_(i2 <- r2) F (i1, i2).
Proof. exact: big_allpairs_dep. Qed.

Lemma big_pred1_eq (I : finType) (i : I) F :
  \big[*%M/1]_(j | j == i) F j = F i.
Proof.
have [e1 <- _ [e_enum _]] := big_enumP (pred1 i).
by rewrite (perm_small_eq _ e_enum) enum1 ?big_seq1.
Qed.

Lemma big_pred1 (I : finType) i (P : pred I) F :
  P =1 pred1 i -> \big[*%M/1]_(j | P j) F j = F i.
Proof. by move/(eq_bigl _ _)->; apply: big_pred1_eq. Qed.

Lemma big_cat_nat n m p (P : pred nat) F : m <= n -> n <= p ->
  \big[*%M/1]_(m <= i < p | P i) F i =
   (\big[*%M/1]_(m <= i < n | P i) F i) * (\big[*%M/1]_(n <= i < p | P i) F i).
Proof.
move=> le_mn le_np; rewrite -big_cat -{2}(subnKC le_mn) -iotaD subnDA.
by rewrite subnKC // leq_sub.
Qed.

Lemma big_nat1 n F : \big[*%M/1]_(n <= i < n.+1) F i = F n.
Proof. by rewrite big_ltn // big_geq // mulm1. Qed.

Lemma big_nat_recr n m F : m <= n ->
  \big[*%M/1]_(m <= i < n.+1) F i = (\big[*%M/1]_(m <= i < n) F i) * F n.
Proof. by move=> lemn; rewrite (@big_cat_nat n) ?leqnSn // big_nat1. Qed.

Lemma big_ord_recr n F :
  \big[*%M/1]_(i < n.+1) F i =
     (\big[*%M/1]_(i < n) F (widen_ord (leqnSn n) i)) * F ord_max.
Proof.
transitivity (\big[*%M/1]_(0 <= i < n.+1) F (inord i)).
  by rewrite big_mkord; apply: eq_bigr=> i _; rewrite inord_val.
rewrite big_nat_recr // big_mkord; congr (_ * F _); last first.
  by apply: val_inj; rewrite /= inordK.
by apply: eq_bigr => [] i _; congr F; apply: ord_inj; rewrite inordK //= leqW.
Qed.

Lemma big_sumType (I1 I2 : finType) (P : pred (I1 + I2)) F :
  \big[*%M/1]_(i | P i) F i =
        (\big[*%M/1]_(i | P (inl _ i)) F (inl _ i))
      * (\big[*%M/1]_(i | P (inr _ i)) F (inr _ i)).
Proof.
by rewrite ![index_enum _]unlock [@Finite.enum in LHS]unlock big_cat !big_map.
Qed.

Lemma big_split_ord m n (P : pred 'I_(m + n)) F :
  \big[*%M/1]_(i | P i) F i =
        (\big[*%M/1]_(i | P (lshift n i)) F (lshift n i))
      * (\big[*%M/1]_(i | P (rshift m i)) F (rshift m i)).
Proof.
rewrite -(big_map _ _ (lshift n) _ P F) -(big_map _ _ (@rshift m _) _ P F).
rewrite -big_cat; congr bigop; apply: (inj_map val_inj).
rewrite map_cat -!map_comp (map_comp (addn m)) /=.
by rewrite ![index_enum _]unlock unlock !val_ord_enum -iotaDl addn0 iotaD.
Qed.

Lemma big_flatten I rr (P : pred I) F :
  \big[*%M/1]_(i <- flatten rr | P i) F i
    = \big[*%M/1]_(r <- rr) \big[*%M/1]_(i <- r | P i) F i.
Proof.
by elim: rr => [|r rr IHrr]; rewrite ?big_nil //= big_cat big_cons -IHrr.
Qed.

End Plain.

Section Abelian.

Variable op : Monoid.com_law 1.

Local Notation "'*%M'" := op (at level 0).
Local Notation "x * y" := (op x y).

Lemma perm_big (I : eqType) r1 r2 (P : pred I) F :
    perm_eq r1 r2 ->
  \big[*%M/1]_(i <- r1 | P i) F i = \big[*%M/1]_(i <- r2 | P i) F i.
Proof.
move/permP; rewrite !(big_mkcond _ _ P).
elim: r1 r2 => [|i r1 IHr1] r2 eq_r12.
  by case: r2 eq_r12 => // i r2 /(_ (pred1 i)); rewrite /= eqxx.
have r2i: i \in r2 by rewrite -has_pred1 has_count -eq_r12 /= eqxx.
case/splitPr: r2 / r2i => [r3 r4] in eq_r12 *; rewrite big_cat /= !big_cons.
rewrite mulmCA; congr (_ * _); rewrite -big_cat; apply: IHr1 => a.
by move/(_ a): eq_r12; rewrite !count_cat /= addnCA; apply: addnI.
Qed.

Lemma big_enum_cond (I : finType) (A : {pred I}) (P : pred I) F :
  \big[*%M/1]_(i <- enum A | P i) F i = \big[*%M/1]_(i in A | P i) F i.
Proof.
by rewrite -big_filter_cond; have [e _ _ [/perm_big->]] := big_enumP.
Qed.

Lemma big_enum (I : finType) (A : {pred I}) F :
  \big[*%M/1]_(i <- enum A) F i = \big[*%M/1]_(i in A) F i.
Proof. by rewrite big_enum_cond big_andbC. Qed.

Lemma big_uniq (I : finType) (r : seq I) F :
  uniq r -> \big[*%M/1]_(i <- r) F i = \big[*%M/1]_(i in r) F i.
Proof.
move=> uniq_r; rewrite -big_enum; apply: perm_big.
by rewrite uniq_perm ?enum_uniq // => i; rewrite mem_enum.
Qed.

Lemma big_rem (I : eqType) r x (P : pred I) F :
    x \in r ->
  \big[*%M/1]_(y <- r | P y) F y
    = (if P x then F x else 1) * \big[*%M/1]_(y <- rem x r | P y) F y.
Proof.
by move/perm_to_rem/(perm_big _)->; rewrite !(big_mkcond _ _ P) big_cons.
Qed.

Lemma big_undup (I : eqType) (r : seq I) (P : pred I) F :
    idempotent *%M ->
  \big[*%M/1]_(i <- undup r | P i) F i = \big[*%M/1]_(i <- r | P i) F i.
Proof.
move=> idM; rewrite -!(big_filter _ _ _ P) filter_undup.
elim: {P r}(filter P r) => //= i r IHr.
case: ifP => [r_i | _]; rewrite !big_cons {}IHr //.
by rewrite (big_rem _ _ r_i) mulmA idM.
Qed.

Lemma eq_big_idem (I : eqType) (r1 r2 : seq I) (P : pred I) F :
    idempotent *%M -> r1 =i r2 ->
  \big[*%M/1]_(i <- r1 | P i) F i = \big[*%M/1]_(i <- r2 | P i) F i.
Proof.
move=> idM eq_r; rewrite -big_undup // -(big_undup r2) //; apply/perm_big.
by rewrite uniq_perm ?undup_uniq // => i; rewrite !mem_undup eq_r.
Qed.

Lemma big_undup_iterop_count (I : eqType) (r : seq I) (P : pred I) F :
  \big[*%M/1]_(i <- undup r | P i) iterop (count_mem i r) *%M (F i) 1
    = \big[*%M/1]_(i <- r | P i) F i.
Proof.
rewrite -[RHS](perm_big _ F (perm_count_undup _)) big_flatten big_map.
by rewrite big_mkcond; apply: eq_bigr => i _; rewrite big_nseq_cond iteropE.
Qed.

Lemma big_split I r (P : pred I) F1 F2 :
  \big[*%M/1]_(i <- r | P i) (F1 i * F2 i) =
    \big[*%M/1]_(i <- r | P i) F1 i * \big[*%M/1]_(i <- r | P i) F2 i.
Proof.
by elim/big_rec3: _ => [|i x y _ _ ->]; rewrite ?mulm1 // mulmCA -!mulmA mulmCA.
Qed.

Lemma bigID I r (a P : pred I) F :
  \big[*%M/1]_(i <- r | P i) F i =
    \big[*%M/1]_(i <- r | P i && a i) F i *
    \big[*%M/1]_(i <- r | P i && ~~ a i) F i.
Proof.
rewrite !(big_mkcond _ _ _ F) -big_split.
by apply: eq_bigr => i; case: (a i); rewrite !simpm.
Qed.
Arguments bigID [I r].

Lemma bigU (I : finType) (A B : pred I) F :
    [disjoint A & B] ->
  \big[*%M/1]_(i in [predU A & B]) F i =
    (\big[*%M/1]_(i in A) F i) * (\big[*%M/1]_(i in B) F i).
Proof.
move=> dAB; rewrite (bigID (mem A)).
congr (_ * _); apply: eq_bigl => i; first by rewrite orbK.
by have:= pred0P dAB i; rewrite andbC /= !inE; case: (i \in A).
Qed.

Lemma bigD1 (I : finType) j (P : pred I) F :
  P j -> \big[*%M/1]_(i | P i) F i
    = F j * \big[*%M/1]_(i | P i && (i != j)) F i.
Proof.
move=> Pj; rewrite (bigID (pred1 j)); congr (_ * _).
by apply: big_pred1 => i; rewrite /= andbC; case: eqP => // ->.
Qed.
Arguments bigD1 [I] j [P F].

Lemma bigD1_seq (I : eqType) (r : seq I) j F :
    j \in r -> uniq r ->
  \big[*%M/1]_(i <- r) F i = F j * \big[*%M/1]_(i <- r | i != j) F i.
Proof. by move=> /big_rem-> /rem_filter->; rewrite big_filter. Qed.

Lemma cardD1x (I : finType) (A : pred I) j :
  A j -> #|SimplPred A| = 1 + #|[pred i | A i & i != j]|.
Proof.
move=> Aj; rewrite (cardD1 j) [j \in A]Aj; congr (_ + _).
by apply: eq_card => i; rewrite inE /= andbC.
Qed.
Arguments cardD1x [I A].

Lemma partition_big (I J : finType) (P : pred I) p (Q : pred J) F :
    (forall i, P i -> Q (p i)) ->
      \big[*%M/1]_(i | P i) F i =
         \big[*%M/1]_(j | Q j) \big[*%M/1]_(i | P i && (p i == j)) F i.
Proof.
move=> Qp; transitivity (\big[*%M/1]_(i | P i && Q (p i)) F i).
  by apply: eq_bigl => i; case Pi: (P i); rewrite // Qp.
have [n leQn] := ubnP #|Q|; elim: n => // n IHn in Q {Qp} leQn *.
case: (pickP Q) => [j Qj | Q0]; last first.
  by rewrite !big_pred0 // => i; rewrite Q0 andbF.
rewrite (bigD1 j) // -IHn; last by rewrite ltnS (cardD1x j Qj) in leQn.
rewrite (bigID (fun i => p i == j)); congr (_ * _); apply: eq_bigl => i.
  by case: eqP => [-> | _]; rewrite !(Qj, simpm).
by rewrite andbA.
Qed.

Arguments partition_big [I J P] p Q [F].

Lemma big_image_cond I (J : finType) (h : J -> I) (A : pred J) (P : pred I) F :
  \big[*%M/1]_(i <- [seq h j | j in A] | P i) F i
     = \big[*%M/1]_(j in A | P (h j)) F (h j).
Proof. by rewrite big_map big_enum_cond. Qed.

Lemma big_image I (J : finType) (h : J -> I) (A : pred J) F :
  \big[*%M/1]_(i <- [seq h j | j in A]) F i = \big[*%M/1]_(j in A) F (h j).
Proof. by rewrite big_map big_enum. Qed.

Lemma big_image_cond_id (J : finType) (h : J -> R) (A : pred J) (P : pred R) :
  \big[*%M/1]_(i <- [seq h j | j in A] | P i) i
    = \big[*%M/1]_(j in A | P (h j)) h j.
Proof. exact: big_image_cond. Qed.

Lemma big_image_id (J : finType) (h : J -> R) (A : pred J) :
  \big[*%M/1]_(i <- [seq h j | j in A]) i = \big[*%M/1]_(j in A) h j.
Proof. exact: big_image. Qed.

Lemma reindex_omap (I J : finType) (h : J -> I) h' (P : pred I) F :
    (forall i, P i -> omap h (h' i) = some i) ->
  \big[*%M/1]_(i | P i) F i =
    \big[*%M/1]_(j | P (h j) && (h' (h j) == some j)) F (h j).
Proof.
move=> h'K; have [n lePn] := ubnP #|P|; elim: n => // n IHn in P h'K lePn *.
case: (pickP P) => [i Pi | P0]; last first.
  by rewrite !big_pred0 // => j; rewrite P0.
have := h'K i Pi; case h'i_eq : (h' i) => [/= j|//] [hj_eq].
rewrite (bigD1 i Pi) (bigD1 j) hj_eq ?Pi ?h'i_eq ?eqxx //=; congr (_ * _).
rewrite {}IHn => [|k /andP[]|]; [|by auto | by rewrite (cardD1x i) in lePn].
apply: eq_bigl => k; rewrite andbC -andbA (andbCA (P _)); case: eqP => //= hK.
congr (_ && ~~ _); apply/eqP/eqP => [|->//].
by move=> /(congr1 h'); rewrite h'i_eq hK => -[].
Qed.
Arguments reindex_omap [I J] h h' [P F].

Lemma reindex_onto (I J : finType) (h : J -> I) h' (P : pred I) F :
    (forall i, P i -> h (h' i) = i) ->
  \big[*%M/1]_(i | P i) F i =
    \big[*%M/1]_(j | P (h j) && (h' (h j) == j)) F (h j).
Proof.
by move=> h'K; rewrite (reindex_omap h (some \o h'))//= => i Pi; rewrite h'K.
Qed.
Arguments reindex_onto [I J] h h' [P F].

Lemma reindex (I J : finType) (h : J -> I) (P : pred I) F :
    {on [pred i | P i], bijective h} ->
  \big[*%M/1]_(i | P i) F i = \big[*%M/1]_(j | P (h j)) F (h j).
Proof.
case=> h' hK h'K; rewrite (reindex_onto h h' h'K).
by apply: eq_bigl => j; rewrite !inE; case Pi: (P _); rewrite //= hK ?eqxx.
Qed.
Arguments reindex [I J] h [P F].

Lemma reindex_inj (I : finType) (h : I -> I) (P : pred I) F :
  injective h -> \big[*%M/1]_(i | P i) F i = \big[*%M/1]_(j | P (h j)) F (h j).
Proof. by move=> injh; apply: reindex (onW_bij _ (injF_bij injh)). Qed.
Arguments reindex_inj [I h P F].

Lemma bigD1_ord n j (P : pred 'I_n) F :
  P j -> \big[*%M/1]_(i < n | P i) F i
    = F j * \big[*%M/1]_(i < n.-1 | P (lift j i)) F (lift j i).
Proof.
move=> Pj; rewrite (bigD1 j Pj) (reindex_omap (lift j) (unlift j))/=.
  by under eq_bigl do rewrite liftK eq_sym eqxx neq_lift ?andbT.
by move=> i; case: unliftP => [k ->|->]; rewrite ?eqxx ?andbF.
Qed.

Lemma big_enum_val_cond (I : finType) (A : pred I) (P : pred I) F :
  \big[op/idx]_(x in A | P x) F x =
  \big[op/idx]_(i < #|A| | P (enum_val i)) F (enum_val i).
Proof.
have [A_eq0|/card_gt0P[x0 x0A]] := posnP #|A|.
  rewrite !big_pred0 // => i; last by rewrite card0_eq.
  by have: false by move: i => []; rewrite A_eq0.
rewrite (reindex (enum_val : 'I_#|A| -> I)).
  by apply: eq_big => [x|x Px]; rewrite ?enum_valP.
by apply: subon_bij (enum_val_bij_in x0A) => y /andP[].
Qed.
Arguments big_enum_val_cond [I A] P F.

Lemma big_enum_rank_cond (I : finType) (A : pred I) x (xA : x \in A) P F
  (h := enum_rank_in xA) :
  \big[op/idx]_(i < #|A| | P i) F i = \big[op/idx]_(s in A | P (h s)) F (h s).
Proof.
rewrite big_enum_val_cond {}/h.
by apply: eq_big => [i|i Pi]; rewrite ?enum_valK_in.
Qed.
Arguments big_enum_rank_cond [I A x] xA P F.

Lemma big_enum_val (I : finType) (A : pred I) F :
  \big[op/idx]_(x in A) F x = \big[op/idx]_(i < #|A|) F (enum_val i).
Proof. by rewrite -(big_enum_val_cond predT) big_mkcondr. Qed.
Arguments big_enum_val [I A] F.

Lemma big_enum_rank (I : finType) (A : pred I) x (xA : x \in A) F
  (h := enum_rank_in xA) :
  \big[op/idx]_(i < #|A|) F i = \big[op/idx]_(s in A) F (h s).
Proof. by rewrite (big_enum_rank_cond xA) big_mkcondr. Qed.
Arguments big_enum_rank [I A x] xA F.

Lemma big_nat_rev m n P F :
  \big[*%M/1]_(m <= i < n | P i) F i
     = \big[*%M/1]_(m <= i < n | P (m + n - i.+1)) F (m + n - i.+1).
Proof.
case: (ltnP m n) => ltmn; last by rewrite !big_geq.
rewrite -{3 4}(subnK (ltnW ltmn)) addnA.
do 2!rewrite (big_addn _ _ 0) big_mkord; rewrite (reindex_inj rev_ord_inj) /=.
by apply: eq_big => [i | i _]; rewrite /= -addSn subnDr addnC addnBA.
Qed.

Lemma sig_big_dep (I : finType) (J : I -> finType)
    (P : pred I) (Q : forall {i}, pred (J i)) (F : forall {i}, J i -> R) :
  \big[op/idx]_(i | P i) \big[op/idx]_(j : J i | Q j) F j =
  \big[op/idx]_(p : {i : I & J i} | P (tag p) && Q (tagged p)) F (tagged p).
Proof.
pose s := [seq Tagged J j | i <- index_enum I, j <- index_enum (J i)].
rewrite [LHS]big_mkcond big_mkcondl [RHS]big_mkcond -[RHS](@perm_big _ s).
  rewrite big_allpairs_dep/=; apply: eq_bigr => i _; rewrite -big_mkcond/=.
  by case: P; rewrite // big1.
rewrite uniq_perm ?index_enum_uniq//.
  by rewrite allpairs_uniq_dep// => [|i|[i j] []]; rewrite ?index_enum_uniq.
by move=> [i j]; rewrite ?mem_index_enum; apply/allpairsPdep; exists i, j.
Qed.

Lemma pair_big_dep (I J : finType) (P : pred I) (Q : I -> pred J) F :
  \big[*%M/1]_(i | P i) \big[*%M/1]_(j | Q i j) F i j =
    \big[*%M/1]_(p | P p.1 && Q p.1 p.2) F p.1 p.2.
Proof.
rewrite sig_big_dep; apply: (reindex (fun x => Tagged (fun=> J) x.2)).
by exists (fun x => (projT1 x, projT2 x)) => -[].
Qed.

Lemma pair_big (I J : finType) (P : pred I) (Q : pred J) F :
  \big[*%M/1]_(i | P i) \big[*%M/1]_(j | Q j) F i j =
    \big[*%M/1]_(p | P p.1 && Q p.2) F p.1 p.2.
Proof. exact: pair_big_dep. Qed.

Lemma pair_bigA (I J : finType) (F : I -> J -> R) :
  \big[*%M/1]_i \big[*%M/1]_j F i j = \big[*%M/1]_p F p.1 p.2.
Proof. exact: pair_big_dep. Qed.

Lemma exchange_big_dep I J rI rJ (P : pred I) (Q : I -> pred J)
                       (xQ : pred J) F :
    (forall i j, P i -> Q i j -> xQ j) ->
  \big[*%M/1]_(i <- rI | P i) \big[*%M/1]_(j <- rJ | Q i j) F i j =
    \big[*%M/1]_(j <- rJ | xQ j) \big[*%M/1]_(i <- rI | P i && Q i j) F i j.
Proof.
move=> PQxQ; pose p u := (u.2, u.1).
under [LHS]eq_bigr do rewrite big_tnth; rewrite [LHS]big_tnth.
under [RHS]eq_bigr do rewrite big_tnth; rewrite [RHS]big_tnth.
rewrite !pair_big_dep (reindex_onto (p _ _) (p _ _)) => [|[]] //=.
apply: eq_big => [] [j i] //=; symmetry; rewrite eqxx andbT andb_idl //.
by case/andP; apply: PQxQ.
Qed.
Arguments exchange_big_dep [I J rI rJ P Q] xQ [F].

Lemma exchange_big I J rI rJ (P : pred I) (Q : pred J) F :
  \big[*%M/1]_(i <- rI | P i) \big[*%M/1]_(j <- rJ | Q j) F i j =
    \big[*%M/1]_(j <- rJ | Q j) \big[*%M/1]_(i <- rI | P i) F i j.
Proof.
rewrite (exchange_big_dep Q) //.
by under eq_bigr => i Qi do under eq_bigl do rewrite Qi andbT.
Qed.

Lemma exchange_big_dep_nat m1 n1 m2 n2 (P : pred nat) (Q : rel nat)
                           (xQ : pred nat) F :
    (forall i j, m1 <= i < n1 -> m2 <= j < n2 -> P i -> Q i j -> xQ j) ->
  \big[*%M/1]_(m1 <= i < n1 | P i) \big[*%M/1]_(m2 <= j < n2 | Q i j) F i j =
    \big[*%M/1]_(m2 <= j < n2 | xQ j)
       \big[*%M/1]_(m1 <= i < n1 | P i && Q i j) F i j.
Proof.
move=> PQxQ; under eq_bigr do rewrite big_seq_cond.
rewrite big_seq_cond /= (exchange_big_dep xQ) => [|i j]; last first.
  by rewrite !mem_index_iota => /andP[mn_i Pi] /andP[mn_j /PQxQ->].
rewrite 2!(big_seq_cond _ _ _ xQ); apply: eq_bigr => j /andP[-> _] /=.
by rewrite [rhs in _ = rhs]big_seq_cond; apply: eq_bigl => i; rewrite -andbA.
Qed.
Arguments exchange_big_dep_nat [m1 n1 m2 n2 P Q] xQ [F].

Lemma exchange_big_nat m1 n1 m2 n2 (P Q : pred nat) F :
  \big[*%M/1]_(m1 <= i < n1 | P i) \big[*%M/1]_(m2 <= j < n2 | Q j) F i j =
    \big[*%M/1]_(m2 <= j < n2 | Q j) \big[*%M/1]_(m1 <= i < n1 | P i) F i j.
Proof.
rewrite (exchange_big_dep_nat Q) //.
by under eq_bigr => i Qi do under eq_bigl do rewrite Qi andbT.
Qed.

End Abelian.

End MonoidProperties.

Arguments big_filter [R idx op I].
Arguments big_filter_cond [R idx op I].
Arguments congr_big [R idx op I r1] r2 [P1] P2 [F1] F2.
Arguments eq_big [R idx op I r P1] P2 [F1] F2.
Arguments eq_bigl [R idx op I r P1] P2.
Arguments eq_bigr [R idx op I r P F1] F2.
Arguments eq_big_idx [R idx op idx' I] i0 [P F].
Arguments big_seq_cond [R idx op I r].
Arguments eq_big_seq [R idx op I r F1] F2.
Arguments congr_big_nat [R idx op m1 n1] m2 n2 [P1] P2 [F1] F2.
Arguments big_map [R idx op I J] h [r].
Arguments big_nth [R idx op I] x0 [r].
Arguments big_catl [R idx op I r1 r2 P F].
Arguments big_catr [R idx op I r1 r2 P F].
Arguments big_geq [R idx op m n P F].
Arguments big_ltn_cond [R idx op m n P F].
Arguments big_ltn [R idx op m n F].
Arguments big_addn [R idx op].
Arguments big_mkord [R idx op n].
Arguments big_nat_widen [R idx op] .
Arguments big_ord_widen_cond [R idx op n1].
Arguments big_ord_widen [R idx op n1].
Arguments big_ord_widen_leq [R idx op n1].
Arguments big_ord_narrow_cond [R idx op n1 n2 P F].
Arguments big_ord_narrow_cond_leq [R idx op n1 n2 P F].
Arguments big_ord_narrow [R idx op n1 n2 F].
Arguments big_ord_narrow_leq [R idx op n1 n2 F].
Arguments big_mkcond [R idx op I r].
Arguments big1_eq [R idx op I].
Arguments big1_seq [R idx op I].
Arguments big1 [R idx op I].
Arguments big_pred1 [R idx op I] i [P F].
Arguments perm_big [R idx op I r1] r2 [P F].
Arguments big_uniq [R idx op I] r [F].
Arguments big_rem [R idx op I r] x [P F].
Arguments bigID [R idx op I r].
Arguments bigU [R idx op I].
Arguments bigD1 [R idx op I] j [P F].
Arguments bigD1_seq [R idx op I r] j [F].
Arguments bigD1_ord [R idx op n] j [P F].
Arguments partition_big [R idx op I J P] p Q [F].
Arguments reindex_omap [R idx op I J] h h' [P F].
Arguments reindex_onto [R idx op I J] h h' [P F].
Arguments reindex [R idx op I J] h [P F].
Arguments reindex_inj [R idx op I h P F].
Arguments big_enum_val_cond [R idx op I A] P F.
Arguments big_enum_rank_cond [R idx op I A x] xA P F.
Arguments big_enum_val [R idx op I A] F.
Arguments big_enum_rank [R idx op I A x] xA F.
Arguments sig_big_dep [R idx op I J].
Arguments pair_big_dep [R idx op I J].
Arguments pair_big [R idx op I J].
Arguments big_allpairs_dep {R idx op I1 I2 J h r1 r2 F}.
Arguments big_allpairs {R idx op I1 I2 r1 r2 F}.
Arguments exchange_big_dep [R idx op I J rI rJ P Q] xQ [F].
Arguments exchange_big_dep_nat [R idx op m1 n1 m2 n2 P Q] xQ [F].
Arguments big_ord_recl [R idx op].
Arguments big_ord_recr [R idx op].
Arguments big_nat_recl [R idx op].
Arguments big_nat_recr [R idx op].

Section Distributivity.

Import Monoid.Theory.

Variable R : Type.
Variables zero one : R.
Local Notation "0" := zero.
Local Notation "1" := one.
Variable times : Monoid.mul_law 0.
Local Notation "*%M" := times (at level 0).
Local Notation "x * y" := (times x y).
Variable plus : Monoid.add_law 0 *%M.
Local Notation "+%M" := plus (at level 0).
Local Notation "x + y" := (plus x y).

Lemma big_distrl I r a (P : pred I) F :
  \big[+%M/0]_(i <- r | P i) F i * a = \big[+%M/0]_(i <- r | P i) (F i * a).
Proof. by rewrite (big_endo ( *%M^~ a)) ?mul0m // => x y; apply: mulmDl. Qed.

Lemma big_distrr I r a (P : pred I) F :
  a * \big[+%M/0]_(i <- r | P i) F i = \big[+%M/0]_(i <- r | P i) (a * F i).
Proof. by rewrite big_endo ?mulm0 // => x y; apply: mulmDr. Qed.

Lemma big_distrlr I J rI rJ (pI : pred I) (pJ : pred J) F G :
  (\big[+%M/0]_(i <- rI | pI i) F i) * (\big[+%M/0]_(j <- rJ | pJ j) G j)
   = \big[+%M/0]_(i <- rI | pI i) \big[+%M/0]_(j <- rJ | pJ j) (F i * G j).
Proof. by rewrite big_distrl; under eq_bigr do rewrite big_distrr. Qed.

Lemma big_distr_big_dep (I J : finType) j0 (P : pred I) (Q : I -> pred J) F :
  \big[*%M/1]_(i | P i) \big[+%M/0]_(j | Q i j) F i j =
     \big[+%M/0]_(f in pfamily j0 P Q) \big[*%M/1]_(i | P i) F i (f i).
Proof.
pose fIJ := {ffun I -> J}; pose Pf := pfamily j0 (_ : seq I) Q.
have [r big_r [Ur mem_r] _] := big_enumP P.
symmetry; transitivity (\big[+%M/0]_(f in Pf r) \big[*%M/1]_(i <- r) F i (f i)).
  by apply: eq_big => // f; apply: eq_forallb => i; rewrite /= mem_r.
rewrite -{P mem_r}big_r; elim: r Ur => /= [_ | i r IHr].
  rewrite (big_pred1 [ffun=> j0]) ?big_nil //= => f.
  apply/familyP/eqP=> /= [Df |->{f} i]; last by rewrite ffunE !inE.
  by apply/ffunP=> i; rewrite ffunE; apply/eqP/Df.
case/andP=> /negbTE nri; rewrite big_cons big_distrl => {}/IHr<-.
rewrite (partition_big (fun f : fIJ => f i) (Q i)) => [|f]; last first.
  by move/familyP/(_ i); rewrite /= inE /= eqxx.
pose seti j (f : fIJ) := [ffun k => if k == i then j else f k].
apply: eq_bigr => j Qij.
rewrite (reindex_onto (seti j) (seti j0)) => [|f /andP[_ /eqP fi]]; last first.
  by apply/ffunP=> k; rewrite !ffunE; case: eqP => // ->.
rewrite big_distrr; apply: eq_big => [f | f eq_f]; last first.
  rewrite big_cons ffunE eqxx !big_seq; congr (_ * _).
  by apply: eq_bigr => k; rewrite ffunE; case: eqP nri => // -> ->.
rewrite !ffunE !eqxx andbT; apply/andP/familyP=> /= [[Pjf fij0] k | Pff].
  have:= familyP Pjf k; rewrite /= ffunE inE; case: eqP => // -> _.
  by rewrite nri -(eqP fij0) !ffunE !inE !eqxx.
split; [apply/familyP | apply/eqP/ffunP] => k; have:= Pff k; rewrite !ffunE.
  by rewrite inE; case: eqP => // ->.
by case: eqP => // ->; rewrite nri /= => /eqP.
Qed.

Lemma big_distr_big (I J : finType) j0 (P : pred I) (Q : pred J) F :
  \big[*%M/1]_(i | P i) \big[+%M/0]_(j | Q j) F i j =
     \big[+%M/0]_(f in pffun_on j0 P Q) \big[*%M/1]_(i | P i) F i (f i).
Proof.
rewrite (big_distr_big_dep j0); apply: eq_bigl => f.
by apply/familyP/familyP=> Pf i; case: ifP (Pf i).
Qed.

Lemma bigA_distr_big_dep (I J : finType) (Q : I -> pred J) F :
  \big[*%M/1]_i \big[+%M/0]_(j | Q i j) F i j
    = \big[+%M/0]_(f in family Q) \big[*%M/1]_i F i (f i).
Proof.
have [j _ | J0] := pickP J; first by rewrite (big_distr_big_dep j).
have Q0 i: Q i =i pred0 by move=> /J0/esym/notF[].
transitivity (iter #|I| ( *%M 0) 1).
  by rewrite -big_const; apply/eq_bigr=> i; have /(big_pred0 _)-> := Q0 i.
have [i _ | I0] := pickP I.
  rewrite (cardD1 i) //= mul0m big_pred0 // => f.
  by apply/familyP=> /(_ i); rewrite Q0.
have f: I -> J by move=> /I0/esym/notF[].
rewrite eq_card0 // (big_pred1 (finfun f)) ?big_pred0 // => g.
by apply/familyP/eqP=> _; first apply/ffunP; move=> /I0/esym/notF[].
Qed.

Lemma bigA_distr_big (I J : finType) (Q : pred J) (F : I -> J -> R) :
  \big[*%M/1]_i \big[+%M/0]_(j | Q j) F i j
    = \big[+%M/0]_(f in ffun_on Q) \big[*%M/1]_i F i (f i).
Proof. exact: bigA_distr_big_dep. Qed.

Lemma bigA_distr_bigA (I J : finType) F :
  \big[*%M/1]_(i : I) \big[+%M/0]_(j : J) F i j
    = \big[+%M/0]_(f : {ffun I -> J}) \big[*%M/1]_i F i (f i).
Proof. by rewrite bigA_distr_big; apply: eq_bigl => ?; apply/familyP. Qed.

End Distributivity.

Arguments big_distrl [R zero times plus I r].
Arguments big_distrr [R zero times plus I r].
Arguments big_distr_big_dep [R zero one times plus I J].
Arguments big_distr_big [R zero one times plus I J].
Arguments bigA_distr_big_dep [R zero one times plus I J].
Arguments bigA_distr_big [R zero one times plus I J].
Arguments bigA_distr_bigA [R zero one times plus I J].

Section BigBool.

Section Seq.

Variables (I : Type) (r : seq I) (P B : pred I).

Lemma big_has : \big[orb/false]_(i <- r) B i = has B r.
Proof. by rewrite unlock. Qed.

Lemma big_all : \big[andb/true]_(i <- r) B i = all B r.
Proof. by rewrite unlock. Qed.

Lemma big_has_cond : \big[orb/false]_(i <- r | P i) B i = has (predI P B) r.
Proof. by rewrite big_mkcond unlock. Qed.

Lemma big_all_cond :
  \big[andb/true]_(i <- r | P i) B i = all [pred i | P i ==> B i] r.
Proof. by rewrite big_mkcond unlock. Qed.

End Seq.

Section FinType.

Variables (I : finType) (P B : pred I).

Lemma big_orE : \big[orb/false]_(i | P i) B i = [exists (i | P i), B i].
Proof. by rewrite big_has_cond; apply/hasP/existsP=> [] [i]; exists i. Qed.

Lemma big_andE : \big[andb/true]_(i | P i) B i = [forall (i | P i), B i].
Proof.
rewrite big_all_cond; apply/allP/forallP=> /= allB i; rewrite allB //.
exact: mem_index_enum.
Qed.

End FinType.

End BigBool.

Section NatConst.

Variables (I : finType) (A : pred I).

Lemma sum_nat_const n : \sum_(i in A) n = #|A| * n.
Proof. by rewrite big_const iter_addn_0 mulnC. Qed.

Lemma sum1_card : \sum_(i in A) 1 = #|A|.
Proof. by rewrite sum_nat_const muln1. Qed.

Lemma sum1_count J (r : seq J) (a : pred J) : \sum_(j <- r | a j) 1 = count a r.
Proof. by rewrite big_const_seq iter_addn_0 mul1n. Qed.

Lemma sum1_size J (r : seq J) : \sum_(j <- r) 1 = size r.
Proof. by rewrite sum1_count count_predT. Qed.

Lemma prod_nat_const n : \prod_(i in A) n = n ^ #|A|.
Proof. by rewrite big_const -Monoid.iteropE. Qed.

Lemma sum_nat_const_nat n1 n2 n : \sum_(n1 <= i < n2) n = (n2 - n1) * n.
Proof. by rewrite big_const_nat iter_addn_0 mulnC. Qed.

Lemma prod_nat_const_nat n1 n2 n : \prod_(n1 <= i < n2) n = n ^ (n2 - n1).
Proof. by rewrite big_const_nat -Monoid.iteropE. Qed.

End NatConst.

Lemma sumnE r : sumn r = \sum_(i <- r) i. Proof. exact: foldrE. Qed.

Lemma leqif_sum (I : finType) (P C : pred I) (E1 E2 : I -> nat) :
    (forall i, P i -> E1 i <= E2 i ?= iff C i) ->
  \sum_(i | P i) E1 i <= \sum_(i | P i) E2 i ?= iff [forall (i | P i), C i].
Proof.
move=> leE12; rewrite -big_andE.
by elim/big_rec3: _ => // i Ci m1 m2 /leE12; apply: leqif_add.
Qed.

Lemma leq_sum I r (P : pred I) (E1 E2 : I -> nat) :
    (forall i, P i -> E1 i <= E2 i) ->
  \sum_(i <- r | P i) E1 i <= \sum_(i <- r | P i) E2 i.
Proof. by move=> leE12; elim/big_ind2: _ => // m1 m2 n1 n2; apply: leq_add. Qed.

Lemma sumnB I r (P : pred I) (E1 E2 : I -> nat) :
     (forall i, P i -> E1 i <= E2 i) ->
  \sum_(i <- r | P i) (E2 i - E1 i) =
  \sum_(i <- r | P i) E2 i - \sum_(i <- r | P i) E1 i.
Proof. by move=> /(_ _ _)/subnK-/(eq_bigr _)<-; rewrite big_split addnK. Qed.

Lemma sum_nat_eq0 (I : finType) (P : pred I) (E : I -> nat) :
  (\sum_(i | P i) E i == 0)%N = [forall (i | P i), E i == 0%N].
Proof. by rewrite eq_sym -(@leqif_sum I P _ (fun _ => 0%N) E) ?big1_eq. Qed.

Lemma prodn_cond_gt0 I r (P : pred I) F :
  (forall i, P i -> 0 < F i) -> 0 < \prod_(i <- r | P i) F i.
Proof. by move=> Fpos; elim/big_ind: _ => // n1 n2; rewrite muln_gt0 => ->. Qed.

Lemma prodn_gt0 I r (P : pred I) F :
  (forall i, 0 < F i) -> 0 < \prod_(i <- r | P i) F i.
Proof. by move=> Fpos; apply: prodn_cond_gt0. Qed.

Lemma leq_bigmax_cond (I : finType) (P : pred I) F i0 :
  P i0 -> F i0 <= \max_(i | P i) F i.
Proof. by move=> Pi0; rewrite (bigD1 i0) ?leq_maxl. Qed.
Arguments leq_bigmax_cond [I P F].

Lemma leq_bigmax (I : finType) F (i0 : I) : F i0 <= \max_i F i.
Proof. exact: leq_bigmax_cond. Qed.
Arguments leq_bigmax [I F].

Lemma bigmax_leqP (I : finType) (P : pred I) m F :
  reflect (forall i, P i -> F i <= m) (\max_(i | P i) F i <= m).
Proof.
apply: (iffP idP) => leFm => [i Pi|].
  by apply: leq_trans leFm; apply: leq_bigmax_cond.
by elim/big_ind: _ => // m1 m2; rewrite geq_max => ->.
Qed.

Lemma bigmax_sup (I : finType) i0 (P : pred I) m F :
  P i0 -> m <= F i0 -> m <= \max_(i | P i) F i.
Proof. by move=> Pi0 le_m_Fi0; apply: leq_trans (leq_bigmax_cond i0 Pi0). Qed.
Arguments bigmax_sup [I] i0 [P m F].

Lemma bigmax_eq_arg (I : finType) i0 (P : pred I) F :
  P i0 -> \max_(i | P i) F i = F [arg max_(i > i0 | P i) F i].
Proof.
move=> Pi0; case: arg_maxnP => //= i Pi maxFi.
by apply/eqP; rewrite eqn_leq leq_bigmax_cond // andbT; apply/bigmax_leqP.
Qed.
Arguments bigmax_eq_arg [I] i0 [P F].

Lemma eq_bigmax_cond (I : finType) (A : pred I) F :
  #|A| > 0 -> {i0 | i0 \in A & \max_(i in A) F i = F i0}.
Proof.
case: (pickP A) => [i0 Ai0 _ | ]; last by move/eq_card0->.
by exists [arg max_(i > i0 in A) F i]; [case: arg_maxnP | apply: bigmax_eq_arg].
Qed.

Lemma eq_bigmax (I : finType) F : #|I| > 0 -> {i0 : I | \max_i F i = F i0}.
Proof. by case/(eq_bigmax_cond F) => x _ ->; exists x. Qed.

Lemma expn_sum m I r (P : pred I) F :
  (m ^ (\sum_(i <- r | P i) F i) = \prod_(i <- r | P i) m ^ F i)%N.
Proof. exact: (big_morph _ (expnD m)). Qed.

Lemma dvdn_biglcmP (I : finType) (P : pred I) F m :
  reflect (forall i, P i -> F i %| m) (\big[lcmn/1%N]_(i | P i) F i %| m).
Proof.
apply: (iffP idP) => [dvFm i Pi | dvFm].
  by rewrite (bigD1 i) // dvdn_lcm in dvFm; case/andP: dvFm.
by elim/big_ind: _ => // p q p_m; rewrite dvdn_lcm p_m.
Qed.

Lemma biglcmn_sup (I : finType) i0 (P : pred I) F m :
  P i0 -> m %| F i0 -> m %| \big[lcmn/1%N]_(i | P i) F i.
Proof.
by move=> Pi0 m_Fi0; rewrite (dvdn_trans m_Fi0) // (bigD1 i0) ?dvdn_lcml.
Qed.
Arguments biglcmn_sup [I] i0 [P F m].

Lemma dvdn_biggcdP (I : finType) (P : pred I) F m :
  reflect (forall i, P i -> m %| F i) (m %| \big[gcdn/0]_(i | P i) F i).
Proof.
apply: (iffP idP) => [dvmF i Pi | dvmF].
  by rewrite (bigD1 i) // dvdn_gcd in dvmF; case/andP: dvmF.
by elim/big_ind: _ => // p q m_p; rewrite dvdn_gcd m_p.
Qed.

Lemma biggcdn_inf (I : finType) i0 (P : pred I) F m :
  P i0 -> F i0 %| m -> \big[gcdn/0]_(i | P i) F i %| m.
Proof. by move=> Pi0; apply: dvdn_trans; rewrite (bigD1 i0) ?dvdn_gcdl. Qed.
Arguments biggcdn_inf [I] i0 [P F m].

#[deprecated(since="mathcomp 1.12.0", note="Use big_enumP instead.")]
Notation filter_index_enum := deprecated_filter_index_enum (only parsing).
#[deprecated(since="mathcomp 1.12.0", note="Use big_rmcond_in instead.")]
Notation big_rmcond := big_rmcond_in (only parsing).
#[deprecated(since="mathcomp 1.12.0", note="Use big_rmcond_in instead.")]
Notation big_uncond_in := big_rmcond_in (only parsing).