aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/solvable/primitive_action.v
blob: 27c078047cf103f8c67a712d40f781ca6f41cbae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat.
From mathcomp Require Import div seq fintype tuple finset.
From mathcomp Require Import fingroup action gseries.

(******************************************************************************)
(* n-transitive and primitive actions:                                        *)
(*  [primitive A, on S | to] <=>                                              *)
(*       A acts on S in a primitive manner, i.e., A is transitive on S and    *)
(*       A does not act on any nontrivial partition of S.                     *)
(*  imprimitivity_system A to S Q <=>                                         *)
(*       Q is a non-trivial primitivity system for the action of A on S via   *)
(*       to, i.e., Q is a non-trivial partiiton of S on which A acts.         *)
(*       to * n == in the %act scope, the total action induced by the total   *)
(*                 action to on n.-tuples. via n_act to n.                    *)
(*  n.-dtuple S == the set of n-tuples with distinct values in S.             *)
(*  [transitive^n A, on S | to] <=>                                           *)
(*       A is n-transitive on S, i.e., A is transitive on n.-dtuple S         *)
(*              == the set of n-tuples with distinct values in S.             *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import GroupScope.

Section PrimitiveDef.

Variables (aT : finGroupType) (sT : finType).
Variables (A : {set aT}) (S : {set sT}) (to : {action aT &-> sT}).

Definition imprimitivity_system Q :=
  [&& partition Q S, [acts A, on Q | to^*] & 1 < #|Q| < #|S|].

Definition primitive :=
  [transitive A, on S | to] && ~~ [exists Q, imprimitivity_system Q].

End PrimitiveDef.

Arguments imprimitivity_system {aT sT} A%g S%g to%act Q%g.
Arguments primitive {aT sT} A%g S%g to%act.

Notation "[ 'primitive' A , 'on' S | to ]" := (primitive A S to)
  (at level 0, format "[ 'primitive'  A ,  'on'  S  |  to ]") : form_scope.

Section Primitive.

Variables (aT : finGroupType) (sT : finType).
Variables (G : {group aT}) (to : {action aT &-> sT}) (S : {set sT}).

Lemma trans_prim_astab x :
    x \in S -> [transitive G, on S | to] ->
  [primitive G, on S | to] = maximal_eq 'C_G[x | to] G.
Proof.
move=> Sx trG; rewrite /primitive trG negb_exists.
apply/forallP/maximal_eqP=> /= [primG | [_ maxCx] Q].
  split=> [|H sCH sHG]; first exact: subsetIl.
  pose X := orbit to H x; pose Q := orbit (to^*)%act G X.
  have Xx: x \in X by apply: orbit_refl.
  have defH: 'N_(G)(X | to) = H.
    have trH: [transitive H, on X | to] by apply/imsetP; exists x.
    have sHN: H \subset 'N_G(X | to) by rewrite subsetI sHG atrans_acts.
    move/(subgroup_transitiveP Xx sHN): (trH) => /= <-.
      by rewrite mulSGid //= setIAC subIset ?sCH.
    apply/imsetP; exists x => //; apply/eqP.
    by rewrite eqEsubset imsetS // acts_sub_orbit ?subsetIr.
  have [|/proper_card oCH] := eqVproper sCH; [by left | right].
  apply/eqP; rewrite eqEcard sHG leqNgt.
  apply: contra {primG}(primG Q) => oHG; apply/and3P; split; last first.
  - rewrite card_orbit astab1_set defH -(@ltn_pmul2l #|H|) ?Lagrange // muln1.
    rewrite oHG -(@ltn_pmul2l #|H|) ?Lagrange // -(card_orbit_stab to G x).
    by rewrite -(atransP trG x Sx) mulnC card_orbit ltn_pmul2r.
  - by apply/actsP=> a Ga Y; apply/orbit_transl/mem_orbit.
  apply/and3P; split; last 1 first.
  - rewrite orbit_sym; apply/imsetP=> [[a _]] /= defX.
    by rewrite defX /setact imset0 inE in Xx.
  - apply/eqP/setP=> y; apply/bigcupP/idP=> [[_ /imsetP[a Ga ->]] | Sy].
      case/imsetP=> _ /imsetP[b Hb ->] ->.
      by rewrite !(actsP (atrans_acts trG)) //; apply: subsetP Hb.
    case: (atransP2 trG Sx Sy) => a Ga ->.
    by exists ((to^*)%act X a); apply: imset_f; rewrite // orbit_refl.
  apply/trivIsetP=> _ _ /imsetP[a Ga ->] /imsetP[b Gb ->].
  apply: contraR => /exists_inP[_ /imsetP[_ /imsetP[a1 Ha1 ->] ->]].
  case/imsetP=> _ /imsetP[b1 Hb1 ->] /(canLR (actK _ _)) /(canLR (actK _ _)).
  rewrite -(canF_eq (actKV _ _)) -!actM (sameP eqP astab1P) => /astab1P Cab.
  rewrite astab1_set (subsetP (subsetIr G _)) //= defH.
  rewrite -(groupMr _ (groupVr Hb1)) -mulgA -(groupMl _ Ha1).
  by rewrite (subsetP sCH) // inE Cab !groupM ?groupV // (subsetP sHG).
apply/and3P=> [[/and3P[/eqP defS tIQ ntQ]]]; set sto := (to^*)%act => actQ.
rewrite !ltnNge -negb_or => /orP[].
pose X := pblock Q x; have Xx: x \in X by rewrite mem_pblock defS.
have QX: X \in Q by rewrite pblock_mem ?defS.
have toX Y a: Y \in Q -> a \in G -> to x a \in Y -> sto X a = Y.
  move=> QY Ga Yxa; rewrite -(contraNeq (trivIsetP tIQ Y (sto X a) _ _)) //.
    by rewrite (actsP actQ).
  by apply/existsP; exists (to x a); rewrite /= Yxa; apply: imset_f.
have defQ: Q = orbit (to^*)%act G X.
  apply/eqP; rewrite eqEsubset andbC acts_sub_orbit // QX.
  apply/subsetP=> Y QY.
  have /set0Pn[y Yy]: Y != set0 by apply: contraNneq ntQ => <-.
  have Sy: y \in S by rewrite -defS; apply/bigcupP; exists Y.
  have [a Ga def_y] := atransP2 trG Sx Sy.
  by apply/imsetP; exists a; rewrite // (toX Y) // -def_y.
rewrite defQ card_orbit; case: (maxCx 'C_G[X | sto]%G) => /= [||->|->].
- apply/subsetP=> a /setIP[Ga cxa]; rewrite inE Ga /=.
  by apply/astab1P; rewrite (toX X) // (astab1P cxa).
- exact: subsetIl.
- by right; rewrite -card_orbit (atransP trG).
by left; rewrite indexgg.
Qed.

Lemma prim_trans_norm (H : {group aT}) :
    [primitive G, on S | to] -> H <| G ->
  H \subset 'C_G(S | to) \/ [transitive H, on S | to].
Proof.
move=> primG /andP[sHG nHG]; rewrite subsetI sHG.
have [trG _] := andP primG; have [x Sx defS] := imsetP trG.
move: primG; rewrite (trans_prim_astab Sx) // => /maximal_eqP[_].
case/(_ ('C_G[x | to] <*> H)%G) => /= [||cxH|]; first exact: joing_subl.
- by rewrite join_subG subsetIl.
- have{} cxH: H \subset 'C_G[x | to] by rewrite -cxH joing_subr.
  rewrite subsetI sHG /= in cxH; left; apply/subsetP=> a Ha.
  apply/astabP=> y Sy; have [b Gb ->] := atransP2 trG Sx Sy.
  rewrite actCJV [to x (a ^ _)](astab1P _) ?(subsetP cxH) //.
  by rewrite -mem_conjg (normsP nHG).
rewrite norm_joinEl 1?subIset ?nHG //.
by move/(subgroup_transitiveP Sx sHG trG); right.
Qed.

End Primitive.

Section NactionDef.

Variables (gT : finGroupType) (sT : finType).
Variables (to : {action gT &-> sT}) (n :  nat).

Definition n_act (t : n.-tuple sT) a := [tuple of map (to^~ a) t].

Fact n_act_is_action : is_action setT n_act.
Proof.
by apply: is_total_action => [t|t a b]; apply: eq_from_tnth => i;
    rewrite !tnth_map ?act1 ?actM.
Qed.

Canonical n_act_action := Action n_act_is_action.

End NactionDef.

Notation "to * n" := (n_act_action to n) : action_scope.

Section NTransitive.

Variables (gT : finGroupType) (sT : finType).
Variables (n :  nat) (A : {set gT}) (S : {set sT}) (to : {action gT &-> sT}).

Definition dtuple_on := [set t : n.-tuple sT | uniq t & t \subset S].
Definition ntransitive := [transitive A, on dtuple_on | to * n].

Lemma dtuple_onP t :
  reflect (injective (tnth t) /\ forall i, tnth t i \in S) (t \in dtuple_on).
Proof.
rewrite inE subset_all -forallb_tnth -[in uniq t]map_tnth_enum /=.
by apply: (iffP andP) => -[/injectiveP-f_inj /forallP].
Qed.

Lemma n_act_dtuple t a :
  a \in 'N(S | to) -> t \in dtuple_on -> n_act to t a \in dtuple_on.
Proof.
move/astabsP=> toSa /dtuple_onP[t_inj St]; apply/dtuple_onP.
split=> [i j | i]; rewrite !tnth_map ?[_ \in S]toSa //.
by move/act_inj; apply: t_inj.
Qed.

End NTransitive.

Arguments dtuple_on {sT} n%N S%g.
Arguments ntransitive {gT sT} n%N A%g S%g to%act.
Arguments n_act {gT sT} to {n} t a.

Notation "n .-dtuple ( S )" := (dtuple_on n S)
  (at level 8, format "n .-dtuple ( S )") : set_scope.

Notation "[ 'transitive' ^ n A , 'on' S | to ]" := (ntransitive n A S to)
  (at level 0, n at level 8,
   format "[ 'transitive' ^ n  A ,  'on'  S  |  to ]") : form_scope.

Section NTransitveProp.

Variables (gT : finGroupType) (sT : finType).
Variables (to : {action gT &-> sT}) (G : {group gT}) (S : {set sT}).

Lemma card_uniq_tuple n (t : n.-tuple sT) : uniq t -> #|t| = n.
Proof. by move/card_uniqP->; apply: size_tuple. Qed.

Lemma n_act0 (t : 0.-tuple sT) a : n_act to t a = [tuple].
Proof. exact: tuple0. Qed.

Lemma dtuple_on_add n x (t : n.-tuple sT) :
  ([tuple of x :: t] \in n.+1.-dtuple(S)) =
     [&& x \in S, x \notin t & t \in n.-dtuple(S)].
Proof. by rewrite !inE memtE !subset_all -!andbA; do !bool_congr. Qed.

Lemma dtuple_on_add_D1 n x (t : n.-tuple sT) :
  ([tuple of x :: t] \in n.+1.-dtuple(S))
     = (x \in S) && (t \in n.-dtuple(S :\ x)).
Proof.
rewrite dtuple_on_add !inE (andbCA (~~ _)); do 2!congr (_ && _).
rewrite -!(eq_subset (in_set (mem t))) setDE setIC subsetI; congr (_ && _).
by rewrite -setCS setCK sub1set !inE.
Qed.

Lemma dtuple_on_subset n (S1 S2 : {set sT}) t :
  S1 \subset S2 -> t \in n.-dtuple(S1) -> t \in n.-dtuple(S2).
Proof. by move=> sS12; rewrite !inE => /andP[-> /subset_trans]; apply. Qed.

Lemma n_act_add n x (t : n.-tuple sT) a :
  n_act to [tuple of x :: t] a = [tuple of to x a :: n_act to t a].
Proof. exact: val_inj. Qed.

Lemma ntransitive0 : [transitive^0 G, on S | to].
Proof.
have dt0: [tuple] \in 0.-dtuple(S) by rewrite inE memtE subset_all.
apply/imsetP; exists [tuple of Nil sT] => //.
by apply/setP=> x; rewrite [x]tuple0 orbit_refl.
Qed.

Lemma ntransitive_weak k m :
  k <= m -> [transitive^m G, on S | to] -> [transitive^k G, on S | to].
Proof.
move/subnKC <-; rewrite addnC; elim: {m}(m - k) => // m IHm.
rewrite addSn => tr_m1; apply: IHm; move: {m k}(m + k) tr_m1 => m tr_m1.
have ext_t t: t \in dtuple_on m S ->
  exists x, [tuple of x :: t] \in m.+1.-dtuple(S).
- move=> dt.
  have [sSt | /subsetPn[x Sx ntx]] := boolP (S \subset t); last first.
    by exists x; rewrite dtuple_on_add andbA /= Sx ntx.
  case/imsetP: tr_m1 dt => t1; rewrite !inE => /andP[Ut1 St1] _ /andP[Ut _].
  have /subset_leq_card := subset_trans St1 sSt.
  by rewrite !card_uniq_tuple // ltnn.
case/imsetP: (tr_m1); case/tupleP=> [x t]; rewrite dtuple_on_add.
case/and3P=> Sx ntx dt; set xt := [tuple of _] => tr_xt.
apply/imsetP; exists t => //.
apply/setP=> u; apply/idP/imsetP=> [du | [a Ga ->{u}]].
  case: (ext_t u du) => y; rewrite tr_xt.
  by case/imsetP=> a Ga [_ def_u]; exists a => //; apply: val_inj.
have: n_act to xt a \in dtuple_on _ S by rewrite tr_xt imset_f.
by rewrite n_act_add dtuple_on_add; case/and3P.
Qed.

Lemma ntransitive1 m :
  0 < m -> [transitive^m G, on S | to] -> [transitive G, on S | to].
Proof.
have trdom1 x: ([tuple x] \in 1.-dtuple(S)) = (x \in S).
  by rewrite dtuple_on_add !inE memtE subset_all andbT.
move=> m_gt0 /(ntransitive_weak m_gt0) {m m_gt0}.
case/imsetP; case/tupleP=> x t0; rewrite {t0}(tuple0 t0) trdom1 => Sx trx.
apply/imsetP; exists x => //; apply/setP=> y; rewrite -trdom1 trx.
by apply/imsetP/imsetP=> [[a ? [->]]|[a ? ->]]; exists a => //; apply: val_inj.
Qed.

Lemma ntransitive_primitive m :
  1 < m -> [transitive^m G, on S | to] -> [primitive G, on S | to].
Proof.
move=> lt1m /(ntransitive_weak lt1m) {m lt1m}tr2G.
have trG: [transitive G, on S | to] by apply: ntransitive1 tr2G.
have [x Sx _]:= imsetP trG; rewrite (trans_prim_astab Sx trG).
apply/maximal_eqP; split=> [|H]; first exact: subsetIl; rewrite subEproper.
case/predU1P; first by [left]; case/andP=> sCH /subsetPn[a Ha nCa] sHG.
right; rewrite -(subgroup_transitiveP Sx sHG trG _) ?mulSGid //.
have actH := subset_trans sHG (atrans_acts trG).
pose y := to x a; have Sy: y \in S by rewrite (actsP actH).
have{nCa} yx: y != x by rewrite inE (sameP astab1P eqP) (subsetP sHG) in nCa.
apply/imsetP; exists y => //; apply/eqP.
rewrite eqEsubset acts_sub_orbit // Sy andbT; apply/subsetP=> z Sz.
have [-> | zx] := eqVneq z x; first by rewrite orbit_sym mem_orbit.
pose ty := [tuple y; x]; pose tz := [tuple z; x].
have [Sty Stz]: ty \in 2.-dtuple(S) /\ tz \in 2.-dtuple(S).
  by rewrite !inE !memtE !subset_all /= !mem_seq1 !andbT; split; apply/and3P.
case: (atransP2 tr2G Sty Stz) => b Gb [->] /esym/astab1P cxb.
by rewrite mem_orbit // (subsetP sCH) // inE Gb.
Qed.

End NTransitveProp.

Section NTransitveProp1.

Variables (gT : finGroupType) (sT : finType).
Variables (to : {action gT &-> sT}) (G : {group gT}) (S : {set sT}).

(* This is the forward implication of Aschbacher (15.12).1  *)
Theorem stab_ntransitive m x :
    0 < m -> x \in S -> [transitive^m.+1 G, on S | to] ->
  [transitive^m 'C_G[x | to], on S :\ x | to].
Proof.
move=> m_gt0 Sx Gtr; have sSxS: S :\ x \subset S by rewrite subsetDl.
case: (imsetP Gtr); case/tupleP=> x1 t1; rewrite dtuple_on_add.
case/and3P=> Sx1 nt1x1 dt1 trt1; have Gtr1 := ntransitive1 (ltn0Sn _) Gtr.
case: (atransP2 Gtr1 Sx1 Sx) => // a Ga x1ax.
pose t := n_act to t1 a.
have dxt: [tuple of x :: t] \in m.+1.-dtuple(S).
  by rewrite trt1 x1ax; apply/imsetP; exists a => //; apply: val_inj.
apply/imsetP; exists t; first by rewrite dtuple_on_add_D1 Sx in dxt.
apply/setP=> t2; apply/idP/imsetP => [dt2|[b]].
  have: [tuple of x :: t2] \in dtuple_on _ S by rewrite dtuple_on_add_D1 Sx.
  case/(atransP2 Gtr dxt)=> b Gb [xbx tbt2].
  by exists b; [rewrite inE Gb; apply/astab1P | apply: val_inj].
case/setIP=> Gb /astab1P xbx ->{t2}.
rewrite n_act_dtuple //; last by rewrite dtuple_on_add_D1 Sx in dxt.
apply/astabsP=> y; rewrite !inE -{1}xbx (inj_eq (act_inj _ _)).
by rewrite (actsP (atrans_acts Gtr1)).
Qed.

(* This is the converse implication of Aschbacher (15.12).1  *)
Theorem stab_ntransitiveI m x :
     x \in S -> [transitive G, on S | to] ->
     [transitive^m 'C_G[x | to], on S :\ x | to] ->
  [transitive^m.+1 G, on S | to].
Proof.
move=> Sx Gtr Gntr.
have t_to_x t: t \in m.+1.-dtuple(S) ->
  exists2 a, a \in G & exists2 t', t' \in m.-dtuple(S :\ x)
                                 & t = n_act to [tuple of x :: t'] a.
- case/tupleP: t => y t St.
  have Sy: y \in S by rewrite dtuple_on_add_D1 in St; case/andP: St.
  rewrite -(atransP Gtr _ Sy) in Sx; case/imsetP: Sx => a Ga toya.
  exists a^-1; first exact: groupVr.
  exists (n_act to t a); last by rewrite n_act_add toya !actK.
  move/(n_act_dtuple (subsetP (atrans_acts Gtr) a Ga)): St.
  by rewrite n_act_add -toya dtuple_on_add_D1 => /andP[].
case: (imsetP Gntr) => t dt S_tG; pose xt := [tuple of x :: t].
have dxt: xt \in m.+1.-dtuple(S) by rewrite dtuple_on_add_D1 Sx.
apply/imsetP; exists xt => //; apply/setP=> t2.
apply/esym; apply/imsetP/idP=> [[a Ga ->] | ].
  by apply: n_act_dtuple; rewrite // (subsetP (atrans_acts Gtr)).
case/t_to_x=> a2 Ga2 [t2']; rewrite S_tG.
case/imsetP=> a /setIP[Ga /astab1P toxa] -> -> {t2 t2'}.
by exists (a * a2); rewrite (groupM, actM) //= !n_act_add toxa.
Qed.

End NTransitveProp1.