1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path.
From mathcomp Require Import fintype div bigop prime finset fingroup morphism.
From mathcomp Require Import automorphism quotient commutator gproduct.
From mathcomp Require Import gfunctor center gseries cyclic.
(******************************************************************************)
(* This file defines nilpotent and solvable groups, and give some of their *)
(* elementary properties; more will be added later (e.g., the nilpotence of *)
(* p-groups in sylow.v, or the fact that minimal normal subgroups of solvable *)
(* groups are elementary abelian in maximal.v). This file defines: *)
(* nilpotent G == G is nilpotent, i.e., [~: H, G] is a proper subgroup of H *)
(* for all nontrivial H <| G. *)
(* solvable G == G is solvable, i.e., H^`(1) is a proper subgroup of H for *)
(* all nontrivial subgroups H of G. *)
(* 'L_n(G) == the nth term of the lower central series, namely *)
(* [~: G, ..., G] (n Gs) if n > 0, with 'L_0(G) = G. *)
(* G is nilpotent iff 'L_n(G) = 1 for some n. *)
(* 'Z_n(G) == the nth term of the upper central series, i.e., *)
(* with 'Z_0(G) = 1, 'Z_n.+1(G) / 'Z_n(G) = 'Z(G / 'Z_n(G)). *)
(* nil_class G == the nilpotence class of G, i.e., the least n such that *)
(* 'L_n.+1(G) = 1 (or, equivalently, 'Z_n(G) = G), if G is *)
(* nilpotent; we take nil_class G = #|G| when G is not *)
(* nilpotent, so nil_class G < #|G| iff G is nilpotent. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GroupScope.
Section SeriesDefs.
Variables (n : nat) (gT : finGroupType) (A : {set gT}).
Definition lower_central_at_rec := iter n (fun B => [~: B, A]) A.
Definition upper_central_at_rec := iter n (fun B => coset B @*^-1 'Z(A / B)) 1.
End SeriesDefs.
(* By convention, the lower central series starts at 1 while the upper series *)
(* starts at 0 (sic). *)
Definition lower_central_at n := lower_central_at_rec n.-1.
(* Note: 'nosimpl' MUST be used outside of a section -- the end of section *)
(* "cooking" destroys it. *)
Definition upper_central_at := nosimpl upper_central_at_rec.
Arguments lower_central_at n%N {gT} A%g.
Arguments upper_central_at n%N {gT} A%g.
Notation "''L_' n ( G )" := (lower_central_at n G)
(at level 8, n at level 2, format "''L_' n ( G )") : group_scope.
Notation "''Z_' n ( G )" := (upper_central_at n G)
(at level 8, n at level 2, format "''Z_' n ( G )") : group_scope.
Section PropertiesDefs.
Variables (gT : finGroupType) (A : {set gT}).
Definition nilpotent :=
[forall (G : {group gT} | G \subset A :&: [~: G, A]), G :==: 1].
Definition nil_class := index 1 (mkseq (fun n => 'L_n.+1(A)) #|A|).
Definition solvable :=
[forall (G : {group gT} | G \subset A :&: [~: G, G]), G :==: 1].
End PropertiesDefs.
Arguments nilpotent {gT} A%g.
Arguments nil_class {gT} A%g.
Arguments solvable {gT} A%g.
Section NilpotentProps.
Variable gT: finGroupType.
Implicit Types (A B : {set gT}) (G H : {group gT}).
Lemma nilpotent1 : nilpotent [1 gT].
Proof. by apply/forall_inP=> H; rewrite commG1 setIid -subG1. Qed.
Lemma nilpotentS A B : B \subset A -> nilpotent A -> nilpotent B.
Proof.
move=> sBA nilA; apply/forall_inP=> H sHR.
have:= forallP nilA H; rewrite (subset_trans sHR) //.
by apply: subset_trans (setIS _ _) (setSI _ _); rewrite ?commgS.
Qed.
Lemma nil_comm_properl G H A :
nilpotent G -> H \subset G -> H :!=: 1 -> A \subset 'N_G(H) ->
[~: H, A] \proper H.
Proof.
move=> nilG sHG ntH; rewrite subsetI properE; case/andP=> sAG nHA.
rewrite (subset_trans (commgS H (subset_gen A))) ?commg_subl ?gen_subG //.
apply: contra ntH => sHR; have:= forallP nilG H; rewrite subsetI sHG.
by rewrite (subset_trans sHR) ?commgS.
Qed.
Lemma nil_comm_properr G A H :
nilpotent G -> H \subset G -> H :!=: 1 -> A \subset 'N_G(H) ->
[~: A, H] \proper H.
Proof. by rewrite commGC; apply: nil_comm_properl. Qed.
Lemma centrals_nil (s : seq {group gT}) G :
G.-central.-series 1%G s -> last 1%G s = G -> nilpotent G.
Proof.
move=> cGs defG; apply/forall_inP=> H /subsetIP[sHG sHR].
move: sHG; rewrite -{}defG -subG1 -[1]/(gval 1%G).
elim: s 1%G cGs => //= L s IHs K /andP[/and3P[sRK sKL sLG] /IHs sHL] sHs.
exact: subset_trans sHR (subset_trans (commSg _ (sHL sHs)) sRK).
Qed.
End NilpotentProps.
Section LowerCentral.
Variable gT : finGroupType.
Implicit Types (A B : {set gT}) (G H : {group gT}).
Lemma lcn0 A : 'L_0(A) = A. Proof. by []. Qed.
Lemma lcn1 A : 'L_1(A) = A. Proof. by []. Qed.
Lemma lcnSn n A : 'L_n.+2(A) = [~: 'L_n.+1(A), A]. Proof. by []. Qed.
Lemma lcnSnS n G : [~: 'L_n(G), G] \subset 'L_n.+1(G).
Proof. by case: n => //; apply: der1_subG. Qed.
Lemma lcnE n A : 'L_n.+1(A) = lower_central_at_rec n A.
Proof. by []. Qed.
Lemma lcn2 A : 'L_2(A) = A^`(1). Proof. by []. Qed.
Lemma lcn_group_set n G : group_set 'L_n(G).
Proof. by case: n => [|[|n]]; apply: groupP. Qed.
Canonical lower_central_at_group n G := Group (lcn_group_set n G).
Lemma lcn_char n G : 'L_n(G) \char G.
Proof. by case: n; last elim=> [|n IHn]; rewrite ?char_refl ?lcnSn ?charR. Qed.
Lemma lcn_normal n G : 'L_n(G) <| G.
Proof. exact/char_normal/lcn_char. Qed.
Lemma lcn_sub n G : 'L_n(G) \subset G.
Proof. exact/char_sub/lcn_char. Qed.
Lemma lcn_norm n G : G \subset 'N('L_n(G)).
Proof. exact/char_norm/lcn_char. Qed.
Lemma lcn_subS n G : 'L_n.+1(G) \subset 'L_n(G).
Proof.
case: n => // n; rewrite lcnSn commGC commg_subr.
by case/andP: (lcn_normal n.+1 G).
Qed.
Lemma lcn_normalS n G : 'L_n.+1(G) <| 'L_n(G).
Proof. by apply: normalS (lcn_normal _ _); rewrite (lcn_subS, lcn_sub). Qed.
Lemma lcn_central n G : 'L_n(G) / 'L_n.+1(G) \subset 'Z(G / 'L_n.+1(G)).
Proof.
case: n => [|n]; first by rewrite trivg_quotient sub1G.
by rewrite subsetI quotientS ?lcn_sub ?quotient_cents2r.
Qed.
Lemma lcn_sub_leq m n G : n <= m -> 'L_m(G) \subset 'L_n(G).
Proof.
by move/subnK <-; elim: {m}(m - n) => // m; apply: subset_trans (lcn_subS _ _).
Qed.
Lemma lcnS n A B : A \subset B -> 'L_n(A) \subset 'L_n(B).
Proof.
by case: n => // n sAB; elim: n => // n IHn; rewrite !lcnSn genS ?imset2S.
Qed.
Lemma lcn_cprod n A B G : A \* B = G -> 'L_n(A) \* 'L_n(B) = 'L_n(G).
Proof.
case: n => // n /cprodP[[H K -> ->{A B}] defG cHK].
have sL := subset_trans (lcn_sub _ _); rewrite cprodE ?(centSS _ _ cHK) ?sL //.
symmetry; elim: n => // n; rewrite lcnSn => ->; rewrite commMG /=; last first.
by apply: subset_trans (commg_normr _ _); rewrite sL // -defG mulG_subr.
rewrite -!(commGC G) -defG -{1}(centC cHK).
rewrite !commMG ?normsR ?lcn_norm ?cents_norm // 1?centsC //.
by rewrite -!(commGC 'L__(_)) -!lcnSn !(commG1P _) ?mul1g ?sL // centsC.
Qed.
Lemma lcn_dprod n A B G : A \x B = G -> 'L_n(A) \x 'L_n(B) = 'L_n(G).
Proof.
move=> defG; have [[K H defA defB] _ _ tiAB] := dprodP defG.
rewrite !dprodEcp // in defG *; first exact: lcn_cprod.
by rewrite defA defB; apply/trivgP; rewrite -tiAB defA defB setISS ?lcn_sub.
Qed.
Lemma der_cprod n A B G : A \* B = G -> A^`(n) \* B^`(n) = G^`(n).
Proof. by move=> defG; elim: n => {defG}// n; apply: (lcn_cprod 2). Qed.
Lemma der_dprod n A B G : A \x B = G -> A^`(n) \x B^`(n) = G^`(n).
Proof. by move=> defG; elim: n => {defG}// n; apply: (lcn_dprod 2). Qed.
Lemma lcn_bigcprod n I r P (F : I -> {set gT}) G :
\big[cprod/1]_(i <- r | P i) F i = G ->
\big[cprod/1]_(i <- r | P i) 'L_n(F i) = 'L_n(G).
Proof.
elim/big_rec2: _ G => [_ <- | i A Z _ IH G dG]; first exact/esym/trivgP/lcn_sub.
by rewrite -(lcn_cprod n dG); have [[_ H _ dH]] := cprodP dG; rewrite dH (IH H).
Qed.
Lemma lcn_bigdprod n I r P (F : I -> {set gT}) G :
\big[dprod/1]_(i <- r | P i) F i = G ->
\big[dprod/1]_(i <- r | P i) 'L_n(F i) = 'L_n(G).
Proof.
elim/big_rec2: _ G => [_ <- | i A Z _ IH G dG]; first exact/esym/trivgP/lcn_sub.
by rewrite -(lcn_dprod n dG); have [[_ H _ dH]] := dprodP dG; rewrite dH (IH H).
Qed.
Lemma der_bigcprod n I r P (F : I -> {set gT}) G :
\big[cprod/1]_(i <- r | P i) F i = G ->
\big[cprod/1]_(i <- r | P i) (F i)^`(n) = G^`(n).
Proof.
elim/big_rec2: _ G => [_ <- | i A Z _ IH G dG]; first by rewrite gF1.
by rewrite -(der_cprod n dG); have [[_ H _ dH]] := cprodP dG; rewrite dH (IH H).
Qed.
Lemma der_bigdprod n I r P (F : I -> {set gT}) G :
\big[dprod/1]_(i <- r | P i) F i = G ->
\big[dprod/1]_(i <- r | P i) (F i)^`(n) = G^`(n).
Proof.
elim/big_rec2: _ G => [_ <- | i A Z _ IH G dG]; first by rewrite gF1.
by rewrite -(der_dprod n dG); have [[_ H _ dH]] := dprodP dG; rewrite dH (IH H).
Qed.
Lemma nilpotent_class G : nilpotent G = (nil_class G < #|G|).
Proof.
rewrite /nil_class; set s := mkseq _ _.
transitivity (1 \in s); last by rewrite -index_mem size_mkseq.
apply/idP/mapP=> {s}/= [nilG | [n _ Ln1]]; last first.
apply/forall_inP=> H /subsetIP[sHG sHR].
rewrite -subG1 {}Ln1; elim: n => // n IHn.
by rewrite (subset_trans sHR) ?commSg.
pose m := #|G|.-1; exists m; first by rewrite mem_iota /= prednK.
set n := m; rewrite ['L__(G)]card_le1_trivg //= -(subnn m) -[m in _ - m]/n.
elim: n => [|n]; [by rewrite subn0 prednK | rewrite lcnSn subnS].
case: (eqsVneq 'L_n.+1(G) 1) => [-> | ntLn]; first by rewrite comm1G cards1.
case: (m - n) => [|m' /= IHn]; first by rewrite leqNgt cardG_gt1 ntLn.
rewrite -ltnS (leq_trans (proper_card _) IHn) //.
by rewrite (nil_comm_properl nilG) ?lcn_sub // subsetI subxx lcn_norm.
Qed.
Lemma lcn_nil_classP n G :
nilpotent G -> reflect ('L_n.+1(G) = 1) (nil_class G <= n).
Proof.
rewrite nilpotent_class /nil_class; set s := mkseq _ _.
set c := index 1 s => lt_c_G; case: leqP => [le_c_n | lt_n_c].
have Lc1: nth 1 s c = 1 by rewrite nth_index // -index_mem size_mkseq.
by left; apply/trivgP; rewrite -Lc1 nth_mkseq ?lcn_sub_leq.
right; apply/eqP/negPf; rewrite -(before_find 1 lt_n_c) nth_mkseq //.
exact: ltn_trans lt_n_c lt_c_G.
Qed.
Lemma lcnP G : reflect (exists n, 'L_n.+1(G) = 1) (nilpotent G).
Proof.
apply: (iffP idP) => [nilG | [n Ln1]].
by exists (nil_class G); apply/lcn_nil_classP.
apply/forall_inP=> H /subsetIP[sHG sHR]; rewrite -subG1 -{}Ln1.
by elim: n => // n IHn; rewrite (subset_trans sHR) ?commSg.
Qed.
Lemma abelian_nil G : abelian G -> nilpotent G.
Proof. by move=> abG; apply/lcnP; exists 1%N; apply/commG1P. Qed.
Lemma nil_class0 G : (nil_class G == 0) = (G :==: 1).
Proof.
apply/idP/eqP=> [nilG | ->].
by apply/(lcn_nil_classP 0); rewrite ?nilpotent_class (eqP nilG) ?cardG_gt0.
by rewrite -leqn0; apply/(lcn_nil_classP 0); rewrite ?nilpotent1.
Qed.
Lemma nil_class1 G : (nil_class G <= 1) = abelian G.
Proof.
have [-> | ntG] := eqsVneq G 1.
by rewrite abelian1 leq_eqVlt ltnS leqn0 nil_class0 eqxx orbT.
apply/idP/idP=> cGG.
apply/commG1P; apply/(lcn_nil_classP 1); rewrite // nilpotent_class.
by rewrite (leq_ltn_trans cGG) // cardG_gt1.
by apply/(lcn_nil_classP 1); rewrite ?abelian_nil //; apply/commG1P.
Qed.
Lemma cprod_nil A B G : A \* B = G -> nilpotent G = nilpotent A && nilpotent B.
Proof.
move=> defG; case/cprodP: defG (defG) => [[H K -> ->{A B}] defG _] defGc.
apply/idP/andP=> [nilG | [/lcnP[m LmH1] /lcnP[n LnK1]]].
by rewrite !(nilpotentS _ nilG) // -defG (mulG_subr, mulG_subl).
apply/lcnP; exists (m + n.+1); apply/trivgP.
case/cprodP: (lcn_cprod (m.+1 + n.+1) defGc) => _ <- _.
by rewrite mulG_subG /= -{1}LmH1 -LnK1 !lcn_sub_leq ?leq_addl ?leq_addr.
Qed.
Lemma mulg_nil G H :
H \subset 'C(G) -> nilpotent (G * H) = nilpotent G && nilpotent H.
Proof. by move=> cGH; rewrite -(cprod_nil (cprodEY cGH)) /= cent_joinEr. Qed.
Lemma dprod_nil A B G : A \x B = G -> nilpotent G = nilpotent A && nilpotent B.
Proof. by case/dprodP=> [[H K -> ->] <- cHK _]; rewrite mulg_nil.
Qed.
Lemma bigdprod_nil I r (P : pred I) (A_ : I -> {set gT}) G :
\big[dprod/1]_(i <- r | P i) A_ i = G
-> (forall i, P i -> nilpotent (A_ i)) -> nilpotent G.
Proof.
move=> defG nilA; elim/big_rec: _ => [|i B Pi nilB] in G defG *.
by rewrite -defG nilpotent1.
have [[_ H _ defB] _ _ _] := dprodP defG.
by rewrite (dprod_nil defG) nilA //= defB nilB.
Qed.
End LowerCentral.
Notation "''L_' n ( G )" := (lower_central_at_group n G) : Group_scope.
Lemma lcn_cont n : GFunctor.continuous (@lower_central_at n).
Proof.
case: n => //; elim=> // n IHn g0T h0T H phi.
by rewrite !lcnSn morphimR ?lcn_sub // commSg ?IHn.
Qed.
Canonical lcn_igFun n := [igFun by lcn_sub^~ n & lcn_cont n].
Canonical lcn_gFun n := [gFun by lcn_cont n].
Canonical lcn_mgFun n := [mgFun by fun _ G H => @lcnS _ n G H].
Section UpperCentralFunctor.
Variable n : nat.
Implicit Type gT : finGroupType.
Lemma ucn_pmap : exists hZ : GFunctor.pmap, @upper_central_at n = hZ.
Proof.
elim: n => [|n' [hZ defZ]]; first by exists trivGfun_pgFun.
by exists [pgFun of @center %% hZ]; rewrite /= -defZ.
Qed.
(* Now extract all the intermediate facts of the last proof. *)
Lemma ucn_group_set gT (G : {group gT}) : group_set 'Z_n(G).
Proof. by have [hZ ->] := ucn_pmap; apply: groupP. Qed.
Canonical upper_central_at_group gT G := Group (@ucn_group_set gT G).
Lemma ucn_sub gT (G : {group gT}) : 'Z_n(G) \subset G.
Proof. by have [hZ ->] := ucn_pmap; apply: gFsub. Qed.
Lemma morphim_ucn : GFunctor.pcontinuous (@upper_central_at n).
Proof. by have [hZ ->] := ucn_pmap; apply: pmorphimF. Qed.
Canonical ucn_igFun := [igFun by ucn_sub & morphim_ucn].
Canonical ucn_gFun := [gFun by morphim_ucn].
Canonical ucn_pgFun := [pgFun by morphim_ucn].
Variable (gT : finGroupType) (G : {group gT}).
Lemma ucn_char : 'Z_n(G) \char G. Proof. exact: gFchar. Qed.
Lemma ucn_norm : G \subset 'N('Z_n(G)). Proof. exact: gFnorm. Qed.
Lemma ucn_normal : 'Z_n(G) <| G. Proof. exact: gFnormal. Qed.
End UpperCentralFunctor.
Notation "''Z_' n ( G )" := (upper_central_at_group n G) : Group_scope.
Section UpperCentral.
Variable gT : finGroupType.
Implicit Types (A B : {set gT}) (G H : {group gT}).
Lemma ucn0 A : 'Z_0(A) = 1.
Proof. by []. Qed.
Lemma ucnSn n A : 'Z_n.+1(A) = coset 'Z_n(A) @*^-1 'Z(A / 'Z_n(A)).
Proof. by []. Qed.
Lemma ucnE n A : 'Z_n(A) = upper_central_at_rec n A.
Proof. by []. Qed.
Lemma ucn_subS n G : 'Z_n(G) \subset 'Z_n.+1(G).
Proof. by rewrite -{1}['Z_n(G)]ker_coset morphpreS ?sub1G. Qed.
Lemma ucn_sub_geq m n G : n >= m -> 'Z_m(G) \subset 'Z_n(G).
Proof.
move/subnK <-; elim: {n}(n - m) => // n IHn.
exact: subset_trans (ucn_subS _ _).
Qed.
Lemma ucn_central n G : 'Z_n.+1(G) / 'Z_n(G) = 'Z(G / 'Z_n(G)).
Proof. by rewrite ucnSn cosetpreK. Qed.
Lemma ucn_normalS n G : 'Z_n(G) <| 'Z_n.+1(G).
Proof. by rewrite (normalS _ _ (ucn_normal n G)) ?ucn_subS ?ucn_sub. Qed.
Lemma ucn_comm n G : [~: 'Z_n.+1(G), G] \subset 'Z_n(G).
Proof.
rewrite -quotient_cents2 ?normal_norm ?ucn_normal ?ucn_normalS //.
by rewrite ucn_central subsetIr.
Qed.
Lemma ucn1 G : 'Z_1(G) = 'Z(G).
Proof.
apply: (quotient_inj (normal1 _) (normal1 _)).
by rewrite /= (ucn_central 0) -injmF ?norms1 ?coset1_injm.
Qed.
Lemma ucnSnR n G : 'Z_n.+1(G) = [set x in G | [~: [set x], G] \subset 'Z_n(G)].
Proof.
apply/setP=> x; rewrite inE -(setIidPr (ucn_sub n.+1 G)) inE ucnSn.
case Gx: (x \in G) => //=; have nZG := ucn_norm n G.
rewrite -sub1set -sub_quotient_pre -?quotient_cents2 ?sub1set ?(subsetP nZG) //.
by rewrite subsetI quotientS ?sub1set.
Qed.
Lemma ucn_cprod n A B G : A \* B = G -> 'Z_n(A) \* 'Z_n(B) = 'Z_n(G).
Proof.
case/cprodP=> [[H K -> ->{A B}] mulHK cHK].
elim: n => [|n /cprodP[_ /= defZ cZn]]; first exact: cprod1g.
set Z := 'Z_n(G) in defZ cZn; rewrite (ucnSn n G) /= -/Z.
have /mulGsubP[nZH nZK]: H * K \subset 'N(Z) by rewrite mulHK gFnorm.
have <-: 'Z(H / Z) * 'Z(K / Z) = 'Z(G / Z).
by rewrite -mulHK quotientMl // center_prod ?quotient_cents.
have ZquoZ (B A : {group gT}):
B \subset 'C(A) -> 'Z_n(A) * 'Z_n(B) = Z -> 'Z(A / Z) = 'Z_n.+1(A) / Z.
- move=> cAB {defZ}defZ; have cAZnB: 'Z_n(B) \subset 'C(A) := gFsub_trans _ cAB.
have /second_isom[/=]: A \subset 'N(Z).
by rewrite -defZ normsM ?gFnorm ?cents_norm // centsC.
suffices ->: Z :&: A = 'Z_n(A).
by move=> f inj_f im_f; rewrite -!im_f ?gFsub // ucn_central injm_center.
rewrite -defZ -group_modl ?gFsub //; apply/mulGidPl.
have [-> | n_gt0] := posnP n; first exact: subsetIl.
by apply: subset_trans (ucn_sub_geq A n_gt0); rewrite /= setIC ucn1 setIS.
rewrite (ZquoZ H K) 1?centsC 1?(centC cZn) // {ZquoZ}(ZquoZ K H) //.
have cZn1: 'Z_n.+1(K) \subset 'C('Z_n.+1(H)) by apply: centSS cHK; apply: gFsub.
rewrite -quotientMl ?quotientK ?mul_subG ?gFsub_trans //=.
rewrite cprodE // -cent_joinEr ?mulSGid //= cent_joinEr //= -/Z.
by rewrite -defZ mulgSS ?ucn_subS.
Qed.
Lemma ucn_dprod n A B G : A \x B = G -> 'Z_n(A) \x 'Z_n(B) = 'Z_n(G).
Proof.
move=> defG; have [[K H defA defB] _ _ tiAB] := dprodP defG.
rewrite !dprodEcp // in defG *; first exact: ucn_cprod.
by rewrite defA defB; apply/trivgP; rewrite -tiAB defA defB setISS ?ucn_sub.
Qed.
Lemma ucn_bigcprod n I r P (F : I -> {set gT}) G :
\big[cprod/1]_(i <- r | P i) F i = G ->
\big[cprod/1]_(i <- r | P i) 'Z_n(F i) = 'Z_n(G).
Proof.
elim/big_rec2: _ G => [_ <- | i A Z _ IH G dG]; first by rewrite gF1.
by rewrite -(ucn_cprod n dG); have [[_ H _ dH]] := cprodP dG; rewrite dH (IH H).
Qed.
Lemma ucn_bigdprod n I r P (F : I -> {set gT}) G :
\big[dprod/1]_(i <- r | P i) F i = G ->
\big[dprod/1]_(i <- r | P i) 'Z_n(F i) = 'Z_n(G).
Proof.
elim/big_rec2: _ G => [_ <- | i A Z _ IH G dG]; first by rewrite gF1.
by rewrite -(ucn_dprod n dG); have [[_ H _ dH]] := dprodP dG; rewrite dH (IH H).
Qed.
Lemma ucn_lcnP n G : ('L_n.+1(G) == 1) = ('Z_n(G) == G).
Proof.
rewrite !eqEsubset sub1G ucn_sub /= andbT -(ucn0 G); set i := (n in LHS).
have: i + 0 = n by [rewrite addn0]; elim: i 0 => [j <- //|i IHi j].
rewrite addSnnS => /IHi <- {IHi}; rewrite ucnSn lcnSn.
rewrite -sub_morphim_pre ?gFsub_trans ?gFnorm_trans // subsetI.
by rewrite morphimS ?gFsub // quotient_cents2 ?gFsub_trans ?gFnorm_trans.
Qed.
Lemma ucnP G : reflect (exists n, 'Z_n(G) = G) (nilpotent G).
Proof.
apply: (iffP (lcnP G)) => -[n /eqP-clGn];
by exists n; apply/eqP; rewrite ucn_lcnP in clGn *.
Qed.
Lemma ucn_nil_classP n G :
nilpotent G -> reflect ('Z_n(G) = G) (nil_class G <= n).
Proof.
move=> nilG; rewrite (sameP (lcn_nil_classP n nilG) eqP) ucn_lcnP; apply: eqP.
Qed.
Lemma ucn_id n G : 'Z_n('Z_n(G)) = 'Z_n(G).
Proof. exact: gFid. Qed.
Lemma ucn_nilpotent n G : nilpotent 'Z_n(G).
Proof. by apply/ucnP; exists n; rewrite ucn_id. Qed.
Lemma nil_class_ucn n G : nil_class 'Z_n(G) <= n.
Proof. by apply/ucn_nil_classP; rewrite ?ucn_nilpotent ?ucn_id. Qed.
End UpperCentral.
Section MorphNil.
Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}).
Implicit Type G : {group aT}.
Lemma morphim_lcn n G : G \subset D -> f @* 'L_n(G) = 'L_n(f @* G).
Proof.
move=> sHG; case: n => //; elim=> // n IHn.
by rewrite !lcnSn -IHn morphimR // (subset_trans _ sHG) // lcn_sub.
Qed.
Lemma injm_ucn n G : 'injm f -> G \subset D -> f @* 'Z_n(G) = 'Z_n(f @* G).
Proof. exact: injmF. Qed.
Lemma morphim_nil G : nilpotent G -> nilpotent (f @* G).
Proof.
case/ucnP=> n ZnG; apply/ucnP; exists n; apply/eqP.
by rewrite eqEsubset ucn_sub /= -{1}ZnG morphim_ucn.
Qed.
Lemma injm_nil G : 'injm f -> G \subset D -> nilpotent (f @* G) = nilpotent G.
Proof.
move=> injf sGD; apply/idP/idP; last exact: morphim_nil.
case/ucnP=> n; rewrite -injm_ucn // => /injm_morphim_inj defZ.
by apply/ucnP; exists n; rewrite defZ ?gFsub_trans.
Qed.
Lemma nil_class_morphim G : nilpotent G -> nil_class (f @* G) <= nil_class G.
Proof.
move=> nilG; rewrite (sameP (ucn_nil_classP _ (morphim_nil nilG)) eqP) /=.
by rewrite eqEsubset ucn_sub -{1}(ucn_nil_classP _ nilG (leqnn _)) morphim_ucn.
Qed.
Lemma nil_class_injm G :
'injm f -> G \subset D -> nil_class (f @* G) = nil_class G.
Proof.
move=> injf sGD; case nilG: (nilpotent G).
apply/eqP; rewrite eqn_leq nil_class_morphim //.
rewrite (sameP (lcn_nil_classP _ nilG) eqP) -subG1.
rewrite -(injmSK injf) ?gFsub_trans // morphim1.
by rewrite morphim_lcn // (lcn_nil_classP _ _ (leqnn _)) //= injm_nil.
transitivity #|G|; apply/eqP; rewrite eqn_leq.
rewrite -(card_injm injf sGD) (leq_trans (index_size _ _)) ?size_mkseq //.
by rewrite leqNgt -nilpotent_class injm_nil ?nilG.
rewrite (leq_trans (index_size _ _)) ?size_mkseq // leqNgt -nilpotent_class.
by rewrite nilG.
Qed.
End MorphNil.
Section QuotientNil.
Variables gT : finGroupType.
Implicit Types (rT : finGroupType) (G H : {group gT}).
Lemma quotient_ucn_add m n G : 'Z_(m + n)(G) / 'Z_n(G) = 'Z_m(G / 'Z_n(G)).
Proof.
elim: m => [|m IHm]; first exact: trivg_quotient.
apply/setP=> Zx; have [x Nx ->{Zx}] := cosetP Zx.
have [sZG nZG] := andP (ucn_normal n G).
rewrite (ucnSnR m) inE -!sub1set -morphim_set1 //= -quotientR ?sub1set // -IHm.
rewrite !quotientSGK ?(ucn_sub_geq, leq_addl, comm_subG _ nZG, sub1set) //=.
by rewrite addSn /= ucnSnR inE.
Qed.
Lemma isog_nil rT G (L : {group rT}) : G \isog L -> nilpotent G = nilpotent L.
Proof. by case/isogP=> f injf <-; rewrite injm_nil. Qed.
Lemma isog_nil_class rT G (L : {group rT}) :
G \isog L -> nil_class G = nil_class L.
Proof. by case/isogP=> f injf <-; rewrite nil_class_injm. Qed.
Lemma quotient_nil G H : nilpotent G -> nilpotent (G / H).
Proof. exact: morphim_nil. Qed.
Lemma quotient_center_nil G : nilpotent (G / 'Z(G)) = nilpotent G.
Proof.
rewrite -ucn1; apply/idP/idP; last exact: quotient_nil.
case/ucnP=> c nilGq; apply/ucnP; exists c.+1; have nsZ1G := ucn_normal 1 G.
apply: (quotient_inj _ nsZ1G); last by rewrite /= -(addn1 c) quotient_ucn_add.
by rewrite (normalS _ _ nsZ1G) ?ucn_sub ?ucn_sub_geq.
Qed.
Lemma nil_class_quotient_center G :
nilpotent (G) -> nil_class (G / 'Z(G)) = (nil_class G).-1.
Proof.
move=> nilG; have nsZ1G := ucn_normal 1 G.
apply/eqP; rewrite -ucn1 eqn_leq; apply/andP; split.
apply/ucn_nil_classP; rewrite ?quotient_nil //= -quotient_ucn_add ucn1.
by rewrite (ucn_nil_classP _ _ _) ?addn1 ?leqSpred.
rewrite -subn1 leq_subLR addnC; apply/ucn_nil_classP => //=.
apply: (quotient_inj _ nsZ1G) => /=.
by apply: normalS (ucn_sub _ _) nsZ1G; rewrite /= addnS ucn_sub_geq.
by rewrite quotient_ucn_add; apply/ucn_nil_classP; rewrite //= quotient_nil.
Qed.
Lemma nilpotent_sub_norm G H :
nilpotent G -> H \subset G -> 'N_G(H) \subset H -> G :=: H.
Proof.
move=> nilG sHG sNH; apply/eqP; rewrite eqEsubset sHG andbT; apply/negP=> nsGH.
have{nsGH} [i sZH []]: exists2 i, 'Z_i(G) \subset H & ~ 'Z_i.+1(G) \subset H.
case/ucnP: nilG => n ZnG; rewrite -{}ZnG in nsGH.
elim: n => [|i IHi] in nsGH *; first by rewrite sub1G in nsGH.
by case sZH: ('Z_i(G) \subset H); [exists i | apply: IHi; rewrite sZH].
apply: subset_trans sNH; rewrite subsetI ucn_sub -commg_subr.
by apply: subset_trans sZH; apply: subset_trans (ucn_comm i G); apply: commgS.
Qed.
Lemma nilpotent_proper_norm G H :
nilpotent G -> H \proper G -> H \proper 'N_G(H).
Proof.
move=> nilG; rewrite properEneq properE subsetI normG => /andP[neHG sHG].
by rewrite sHG; apply: contra neHG => /(nilpotent_sub_norm nilG)->.
Qed.
Lemma nilpotent_subnormal G H : nilpotent G -> H \subset G -> H <|<| G.
Proof.
move=> nilG; have [m] := ubnP (#|G| - #|H|).
elim: m H => // m IHm H /ltnSE-leGHm sHG.
have [->|] := eqVproper sHG; first exact: subnormal_refl.
move/(nilpotent_proper_norm nilG); set K := 'N_G(H) => prHK.
have snHK: H <|<| K by rewrite normal_subnormal ?normalSG.
have sKG: K \subset G by rewrite subsetIl.
apply: subnormal_trans snHK (IHm _ (leq_trans _ leGHm) sKG).
by rewrite ltn_sub2l ?proper_card ?(proper_sub_trans prHK).
Qed.
Lemma TI_center_nil G H : nilpotent G -> H <| G -> H :&: 'Z(G) = 1 -> H :=: 1.
Proof.
move=> nilG /andP[sHG nHG] tiHZ.
rewrite -{1}(setIidPl sHG); have{nilG} /ucnP[n <-] := nilG.
elim: n => [|n IHn]; apply/trivgP; rewrite ?subsetIr // -tiHZ.
rewrite [H :&: 'Z(G)]setIA subsetI setIS ?ucn_sub //= (sameP commG1P trivgP).
rewrite -commg_subr commGC in nHG.
rewrite -IHn subsetI (subset_trans _ nHG) ?commSg ?subsetIl //=.
by rewrite (subset_trans _ (ucn_comm n G)) ?commSg ?subsetIr.
Qed.
Lemma meet_center_nil G H :
nilpotent G -> H <| G -> H :!=: 1 -> H :&: 'Z(G) != 1.
Proof. by move=> nilG nsHG; apply: contraNneq => /TI_center_nil->. Qed.
Lemma center_nil_eq1 G : nilpotent G -> ('Z(G) == 1) = (G :==: 1).
Proof.
move=> nilG; apply/eqP/eqP=> [Z1 | ->]; last exact: center1.
by rewrite (TI_center_nil nilG) // (setIidPr (center_sub G)).
Qed.
Lemma cyclic_nilpotent_quo_der1_cyclic G :
nilpotent G -> cyclic (G / G^`(1)) -> cyclic G.
Proof.
move=> nG; rewrite (isog_cyclic (quotient1_isog G)).
have [-> // | ntG' cGG'] := (eqVneq G^`(1) 1)%g.
suffices: 'L_2(G) \subset G :&: 'L_3(G) by move/(eqfun_inP nG)=> <-.
rewrite subsetI lcn_sub /= -quotient_cents2 ?lcn_norm //.
apply: cyclic_factor_abelian (lcn_central 2 G) _.
by rewrite (isog_cyclic (third_isog _ _ _)) ?lcn_normal // lcn_subS.
Qed.
End QuotientNil.
Section Solvable.
Variable gT : finGroupType.
Implicit Types G H : {group gT}.
Lemma nilpotent_sol G : nilpotent G -> solvable G.
Proof.
move=> nilG; apply/forall_inP=> H /subsetIP[sHG sHH'].
by rewrite (forall_inP nilG) // subsetI sHG (subset_trans sHH') ?commgS.
Qed.
Lemma abelian_sol G : abelian G -> solvable G.
Proof. by move/abelian_nil/nilpotent_sol. Qed.
Lemma solvable1 : solvable [1 gT]. Proof. exact: abelian_sol (abelian1 gT). Qed.
Lemma solvableS G H : H \subset G -> solvable G -> solvable H.
Proof.
move=> sHG solG; apply/forall_inP=> K /subsetIP[sKH sKK'].
by rewrite (forall_inP solG) // subsetI (subset_trans sKH).
Qed.
Lemma sol_der1_proper G H :
solvable G -> H \subset G -> H :!=: 1 -> H^`(1) \proper H.
Proof.
move=> solG sHG ntH; rewrite properE comm_subG //; apply: implyP ntH.
by have:= forallP solG H; rewrite subsetI sHG implybNN.
Qed.
Lemma derivedP G : reflect (exists n, G^`(n) = 1) (solvable G).
Proof.
apply: (iffP idP) => [solG | [n solGn]]; last first.
apply/forall_inP=> H /subsetIP[sHG sHH'].
rewrite -subG1 -{}solGn; elim: n => // n IHn.
exact: subset_trans sHH' (commgSS _ _).
suffices IHn n: #|G^`(n)| <= (#|G|.-1 - n).+1.
by exists #|G|.-1; rewrite [G^`(_)]card_le1_trivg ?(leq_trans (IHn _)) ?subnn.
elim: n => [|n IHn]; first by rewrite subn0 prednK.
rewrite dergSn subnS -ltnS.
have [-> | ntGn] := eqVneq G^`(n) 1; first by rewrite commG1 cards1.
case: (_ - _) IHn => [|n']; first by rewrite leqNgt cardG_gt1 ntGn.
by apply: leq_trans (proper_card _); apply: sol_der1_proper (der_sub _ _) _.
Qed.
End Solvable.
Section MorphSol.
Variables (gT rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
Variable G : {group gT}.
Lemma morphim_sol : solvable G -> solvable (f @* G).
Proof.
move/(solvableS (subsetIr D G)); case/derivedP=> n Gn1; apply/derivedP.
by exists n; rewrite /= -morphimIdom -morphim_der ?subsetIl // Gn1 morphim1.
Qed.
Lemma injm_sol : 'injm f -> G \subset D -> solvable (f @* G) = solvable G.
Proof.
move=> injf sGD; apply/idP/idP; last exact: morphim_sol.
case/derivedP=> n Gn1; apply/derivedP; exists n; apply/trivgP.
by rewrite -(injmSK injf) ?gFsub_trans ?morphim_der // Gn1 morphim1.
Qed.
End MorphSol.
Section QuotientSol.
Variables gT rT : finGroupType.
Implicit Types G H K : {group gT}.
Lemma isog_sol G (L : {group rT}) : G \isog L -> solvable G = solvable L.
Proof. by case/isogP=> f injf <-; rewrite injm_sol. Qed.
Lemma quotient_sol G H : solvable G -> solvable (G / H).
Proof. exact: morphim_sol. Qed.
Lemma series_sol G H : H <| G -> solvable G = solvable H && solvable (G / H).
Proof.
case/andP=> sHG nHG; apply/idP/andP=> [solG | [solH solGH]].
by rewrite quotient_sol // (solvableS sHG).
apply/forall_inP=> K /subsetIP[sKG sK'K].
suffices sKH: K \subset H by rewrite (forall_inP solH) // subsetI sKH.
have nHK := subset_trans sKG nHG.
rewrite -quotient_sub1 // subG1 (forall_inP solGH) //.
by rewrite subsetI -morphimR ?morphimS.
Qed.
Lemma metacyclic_sol G : metacyclic G -> solvable G.
Proof.
case/metacyclicP=> K [cycK nsKG cycGq].
by rewrite (series_sol nsKG) !abelian_sol ?cyclic_abelian.
Qed.
End QuotientSol.
|