aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/solvable/gseries.v
blob: a96295fdc7600ec7215483cb37c5a7db8c44f322 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path.
From mathcomp Require Import fintype bigop finset fingroup morphism.
From mathcomp Require Import automorphism quotient action commutator center.

(******************************************************************************)
(*           H <|<| G   <=> H is subnormal in G, i.e., H <| ... <| G.         *)
(* invariant_factor A H G <=> A normalises both H and G, and H <| G.          *)
(*         A.-invariant <=> the (invariant_factor A) relation, in the context *)
(*                          of the g_rel.-series notation.                    *)
(*    g_rel.-series H s <=> H :: s is a sequence of groups whose projection   *)
(*                          to sets satisfies relation g_rel pairwise; for    *)
(*                          example H <|<| G iff G = last H s for some s such *)
(*                          that normal.-series H s.                          *)
(*   stable_factor A H G == H <| G and A centralises G / H.                   *)
(*             A.-stable == the stable_factor relation, in the scope of the   *)
(*                          r.-series notation.                               *)
(*            G.-central == the central_factor relation, in the scope of the  *)
(*                          r.-series notation.                               *)
(*           maximal M G == M is a maximal proper subgroup of G.              *)
(*        maximal_eq M G == (M == G) or (maximal M G).                        *)
(*       maxnormal M G N == M is a maximal subgroup of G normalized by N.     *)
(*         minnormal M N == M is a minimal nontrivial group normalized by N.  *)
(*              simple G == G is a (nontrivial) simple group.                 *)
(*                       := minnormal G G                                     *)
(*              G.-chief == the chief_factor relation, in the scope of the    *)
(*                          r.-series notation.                               *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import GroupScope.

Section GroupDefs.

Variable gT : finGroupType.
Implicit Types A B U V : {set gT}.

Local Notation groupT := (group_of (Phant gT)).

Definition subnormal A B :=
  (A \subset B) && (iter #|B| (fun N => generated (class_support A N)) B == A).

Definition invariant_factor A B C :=
  [&& A \subset 'N(B), A \subset 'N(C) & B <| C].

Definition group_rel_of (r : rel {set gT}) := [rel H G : groupT | r H G].

Definition stable_factor A V U :=
  ([~: U, A] \subset V) && (V <| U). (* this orders allows and3P to be used *)

Definition central_factor A V U :=
  [&& [~: U, A] \subset V, V \subset U & U \subset A].

Definition maximal A B := [max A of G | G \proper B].

Definition maximal_eq A B := (A == B) || maximal A B.

Definition maxnormal A B U := [max A of G | G \proper B & U \subset 'N(G)].

Definition minnormal A B := [min A of G | G :!=: 1 & B \subset 'N(G)].

Definition simple A := minnormal A A.

Definition chief_factor A V U := maxnormal V U A && (U <| A).
End GroupDefs.

Arguments subnormal {gT} A%g B%g.
Arguments invariant_factor {gT} A%g B%g C%g.
Arguments stable_factor {gT} A%g V%g U%g.
Arguments central_factor {gT} A%g V%g U%g.
Arguments maximal {gT} A%g B%g.
Arguments maximal_eq {gT} A%g B%g.
Arguments maxnormal {gT} A%g B%g U%g.
Arguments minnormal {gT} A%g B%g.
Arguments simple {gT} A%g.
Arguments chief_factor {gT} A%g V%g U%g.

Notation "H <|<| G" := (subnormal H G)
  (at level 70, no associativity) : group_scope.

Notation "A .-invariant" := (invariant_factor A)
  (at level 2, format "A .-invariant") : group_rel_scope.
Notation "A .-stable" := (stable_factor A)
  (at level 2, format "A .-stable") : group_rel_scope.
Notation "A .-central" := (central_factor A)
  (at level 2, format "A .-central") : group_rel_scope.
Notation "G .-chief" := (chief_factor G)
  (at level 2, format "G .-chief") : group_rel_scope.

Arguments group_rel_of {gT} r%group_rel_scope _%G _%G : extra scopes.

Notation "r .-series" := (path (rel_of_simpl_rel (group_rel_of r)))
  (at level 2, format "r .-series") : group_scope.

Section Subnormal.

Variable gT : finGroupType.
Implicit Types (A B C D : {set gT}) (G H K : {group gT}).

Let setIgr H G := (G :&: H)%G.
Let sub_setIgr G H : G \subset H -> G = setIgr H G.
Proof. by move/setIidPl/group_inj. Qed.

Let path_setIgr H G s :
   normal.-series H s -> normal.-series (setIgr G H) (map (setIgr G) s).
Proof.
elim: s H => //= K s IHs H /andP[/andP[sHK nHK] Ksn].
by rewrite /normal setSI ?normsIG ?IHs.
Qed.

Lemma subnormalP H G :
  reflect (exists2 s, normal.-series H s & last H s = G) (H <|<| G).
Proof.
apply: (iffP andP) => [[sHG snHG] | [s Hsn <-{G}]].
  move: #|G| snHG => m; elim: m => [|m IHm] in G sHG *.
    by exists [::]; last by apply/eqP; rewrite eq_sym.
  rewrite iterSr => /IHm[|s Hsn defG].
    by rewrite sub_gen // class_supportEr (bigD1 1) //= conjsg1 subsetUl.
  exists (rcons s G); rewrite ?last_rcons // -cats1 cat_path Hsn defG /=.
  rewrite /normal gen_subG class_support_subG //=.
  by rewrite norms_gen ?class_support_norm.
set f := fun _ => <<_>>; have idf: iter _ f H == H.
  by elim=> //= m IHm; rewrite (eqP IHm) /f class_support_id genGid.
have [m] := ubnP (size s); elim: m s Hsn => // m IHm /lastP[//|s G].
rewrite size_rcons last_rcons rcons_path /= ltnS.
set K := last H s => /andP[Hsn /andP[sKG nKG]] lt_s_m.
have:= sKG; rewrite subEproper => /predU1P[<-|prKG]; first exact: IHm.
pose L := [group of f G].
have sHK: H \subset K by case/IHm: Hsn.
have sLK: L \subset K by rewrite gen_subG class_support_sub_norm.
rewrite -(subnK (proper_card (sub_proper_trans sLK prKG))) iter_add iterSr.
have defH: H = setIgr L H by rewrite -sub_setIgr ?sub_gen ?sub_class_support.
have: normal.-series H (map (setIgr L) s) by rewrite defH path_setIgr.
case/IHm=> [|_]; first by rewrite size_map.
rewrite [in last _]defH last_map (subset_trans sHK) //=.
by rewrite (setIidPr sLK) => /eqP->.
Qed.

Lemma subnormal_refl G : G <|<| G.
Proof. by apply/subnormalP; exists [::]. Qed.

Lemma subnormal_trans K H G : H <|<| K -> K <|<| G -> H <|<| G.
Proof.
case/subnormalP=> [s1 Hs1 <-] /subnormalP[s2 Hs12 <-].
by apply/subnormalP; exists (s1 ++ s2); rewrite ?last_cat // cat_path Hs1.
Qed.

Lemma normal_subnormal H G : H <| G -> H <|<| G.
Proof. by move=> nsHG; apply/subnormalP; exists [:: G]; rewrite //= nsHG. Qed.

Lemma setI_subnormal G H K : K \subset G -> H <|<| G -> H :&: K <|<| K.
Proof.
move=> sKG /subnormalP[s Hs defG]; apply/subnormalP.
exists (map (setIgr K) s); first exact: path_setIgr.
rewrite (last_map (setIgr K)) defG.
by apply: val_inj; rewrite /= (setIidPr sKG).
Qed.

Lemma subnormal_sub G H : H <|<| G -> H \subset G.
Proof. by case/andP. Qed.

Lemma invariant_subnormal A G H :
    A \subset 'N(G) -> A \subset 'N(H) -> H <|<| G ->
  exists2 s, (A.-invariant).-series H s & last H s = G.
Proof.
move=> nGA nHA /andP[]; move: #|G| => m.
elim: m => [|m IHm] in G nGA * => sHG.
  by rewrite eq_sym; exists [::]; last apply/eqP.
rewrite iterSr; set K := <<_>>.
have nKA: A \subset 'N(K) by rewrite norms_gen ?norms_class_support.
have sHK: H \subset K by rewrite sub_gen ?sub_class_support.
case/IHm=> // s Hsn defK; exists (rcons s G); last by rewrite last_rcons.
rewrite rcons_path Hsn !andbA defK nGA nKA /= -/K.
by rewrite gen_subG class_support_subG ?norms_gen ?class_support_norm.
Qed.

Lemma subnormalEsupport G H :
  H <|<| G -> H :=: G \/ <<class_support H G>> \proper G.
Proof.
case/andP=> sHG; set K := <<_>> => /eqP <-.
have: K \subset G by rewrite gen_subG class_support_subG.
rewrite subEproper; case/predU1P=> [defK|]; [left | by right].
by elim: #|G| => //= _ ->.
Qed.

Lemma subnormalEr G H : H <|<| G -> 
  H :=: G \/ (exists K : {group gT}, [/\ H <|<| K, K <| G & K \proper G]).
Proof.
case/subnormalP=> s Hs <-{G}.
elim/last_ind: s Hs => [|s G IHs]; first by left.
rewrite last_rcons -cats1 cat_path /= andbT; set K := last H s.
case/andP=> Hs nsKG; have:= normal_sub nsKG; rewrite subEproper.
case/predU1P=> [<- | prKG]; [exact: IHs | right; exists K; split=> //].
by apply/subnormalP; exists s.
Qed.

Lemma subnormalEl G H : H <|<| G ->
  H :=: G \/ (exists K : {group gT}, [/\ H <| K, K <|<| G & H \proper K]).
Proof.
case/subnormalP=> s Hs <-{G}; elim: s H Hs => /= [|K s IHs] H; first by left.
case/andP=> nsHK Ks; have:= normal_sub nsHK; rewrite subEproper.
case/predU1P=> [-> | prHK]; [exact: IHs | right; exists K; split=> //].
by apply/subnormalP; exists s.
Qed.

End Subnormal.

Arguments subnormalP {gT H G}.

Section MorphSubNormal.

Variable gT : finGroupType.
Implicit Type G H K : {group gT}.

Lemma morphim_subnormal (rT : finGroupType) G (f : {morphism G >-> rT}) H K :
  H <|<| K -> f @* H <|<| f @* K.
Proof.
case/subnormalP => s Hs <-{K}; apply/subnormalP.
elim: s H Hs => [|K s IHs] H /=; first by exists [::].
case/andP=> nsHK /IHs[fs Hfs <-].
by exists ([group of f @* K] :: fs); rewrite /= ?morphim_normal.
Qed.

Lemma quotient_subnormal H G K : G <|<| K -> G / H <|<| K / H.
Proof. exact: morphim_subnormal. Qed.

End MorphSubNormal.

Section MaxProps.

Variable gT : finGroupType.
Implicit Types G H M : {group gT}.

Lemma maximal_eqP M G :
  reflect (M \subset G  /\
             forall H, M \subset H -> H \subset G -> H :=: M \/ H :=: G)
       (maximal_eq M G).
Proof.
rewrite subEproper /maximal_eq; case: eqP => [->|_]; first left.
  by split=> // H sGH sHG; right; apply/eqP; rewrite eqEsubset sHG.
apply: (iffP maxgroupP) => [] [sMG maxM]; split=> // H.
  by move/maxM=> maxMH; rewrite subEproper; case/predU1P; auto.
by rewrite properEneq => /andP[/eqP neHG sHG] /maxM[].
Qed.

Lemma maximal_exists H G :
    H \subset G ->
  H :=: G \/ (exists2 M : {group gT}, maximal M G & H \subset M).
Proof.
rewrite subEproper; case/predU1P=> sHG; first by left.
suff [M *]: {M : {group gT} | maximal M G & H \subset M} by right; exists M.
exact: maxgroup_exists.
Qed.

Lemma mulg_normal_maximal G M H :
  M <| G -> maximal M G -> H \subset G -> ~~ (H \subset M) -> (M * H = G)%g.
Proof.
case/andP=> sMG nMG /maxgroupP[_ maxM] sHG not_sHM.
apply/eqP; rewrite eqEproper mul_subG // -norm_joinEr ?(subset_trans sHG) //.
by apply: contra not_sHM => /maxM <-; rewrite ?joing_subl ?joing_subr.
Qed.

End MaxProps.

Section MinProps.

Variable gT : finGroupType.
Implicit Types G H M : {group gT}.

Lemma minnormal_exists G H : H :!=: 1 -> G \subset 'N(H) ->
  {M : {group gT} | minnormal M G & M \subset H}.
Proof. by move=> ntH nHG; apply: mingroup_exists (H) _; rewrite ntH. Qed.

End MinProps.

Section MorphPreMax.

Variables (gT rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
Variables (M G : {group rT}).
Hypotheses (dM : M \subset f @* D) (dG : G \subset f @* D).

Lemma morphpre_maximal : maximal (f @*^-1 M) (f @*^-1 G) = maximal M G.
Proof.
apply/maxgroupP/maxgroupP; rewrite morphpre_proper //= => [] [ltMG maxM].
  split=> // H ltHG sMH; have dH := subset_trans (proper_sub ltHG) dG.
  rewrite -(morphpreK dH) [f @*^-1 H]maxM ?morphpreK ?morphpreSK //.
  by rewrite morphpre_proper.
split=> // H ltHG sMH.
have dH: H \subset D := subset_trans (proper_sub ltHG) (subsetIl D _).
have defH: f @*^-1 (f @* H) = H.
  by apply: morphimGK dH; apply: subset_trans sMH; apply: ker_sub_pre.
rewrite -defH morphpre_proper ?morphimS // in ltHG.
by rewrite -defH [f @* H]maxM // -(morphpreK dM) morphimS.
Qed.

Lemma morphpre_maximal_eq : maximal_eq (f @*^-1 M) (f @*^-1 G) = maximal_eq M G.
Proof. by rewrite /maximal_eq morphpre_maximal !eqEsubset !morphpreSK. Qed.

End MorphPreMax.

Section InjmMax.

Variables (gT rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
Variables M G L : {group gT}.

Hypothesis injf : 'injm f.
Hypotheses (dM : M \subset D) (dG : G \subset D) (dL : L \subset D).

Lemma injm_maximal : maximal (f @* M) (f @* G) = maximal M G.
Proof.
rewrite -(morphpre_invm injf) -(morphpre_invm injf G).
by rewrite morphpre_maximal ?morphim_invm.
Qed.

Lemma injm_maximal_eq : maximal_eq (f @* M) (f @* G) = maximal_eq M G.
Proof. by rewrite /maximal_eq injm_maximal // injm_eq. Qed.

Lemma injm_maxnormal : maxnormal (f @* M) (f @* G) (f @* L) = maxnormal M G L.
Proof.
pose injfm := (injm_proper injf, injm_norms, injmSK injf, subsetIl).
apply/maxgroupP/maxgroupP; rewrite !injfm // => [[nML maxM]].
  split=> // H nHL sMH; have [/proper_sub sHG _] := andP nHL.
  have dH := subset_trans sHG dG; apply: (injm_morphim_inj injf) => //.
  by apply: maxM; rewrite !injfm.
split=> // fH nHL sMH; have [/proper_sub sfHG _] := andP nHL.
have{sfHG} dfH: fH \subset f @* D := subset_trans sfHG (morphim_sub f G).
by rewrite -(morphpreK dfH) !injfm // in nHL sMH *; rewrite (maxM _ nHL).
Qed.

Lemma injm_minnormal : minnormal (f @* M) (f @* G) = minnormal M G.
Proof.
pose injfm := (morphim_injm_eq1 injf, injm_norms, injmSK injf, subsetIl).
apply/mingroupP/mingroupP; rewrite !injfm // => [[nML minM]].
  split=> // H nHG sHM; have dH := subset_trans sHM dM.
  by apply: (injm_morphim_inj injf) => //; apply: minM; rewrite !injfm.
split=> // fH nHG sHM; have dfH := subset_trans sHM (morphim_sub f M).
by rewrite -(morphpreK dfH) !injfm // in nHG sHM *; rewrite (minM _ nHG).
Qed.

End InjmMax.

Section QuoMax.

Variables (gT : finGroupType) (K G H : {group gT}).

Lemma cosetpre_maximal (Q R : {group coset_of K}) :
  maximal (coset K @*^-1 Q) (coset K @*^-1 R) = maximal Q R.
Proof. by rewrite morphpre_maximal ?sub_im_coset. Qed.

Lemma cosetpre_maximal_eq (Q R : {group coset_of K}) :
  maximal_eq (coset K @*^-1 Q) (coset K @*^-1 R) = maximal_eq Q R.
Proof. by rewrite /maximal_eq !eqEsubset !cosetpreSK cosetpre_maximal. Qed.

Lemma quotient_maximal :
  K <| G -> K <| H -> maximal (G / K) (H / K) = maximal G H.
Proof. by move=> nKG nKH; rewrite -cosetpre_maximal ?quotientGK. Qed.

Lemma quotient_maximal_eq :
  K <| G -> K <| H -> maximal_eq (G / K) (H / K) = maximal_eq G H.
Proof. by move=> nKG nKH; rewrite -cosetpre_maximal_eq ?quotientGK. Qed.

Lemma maximalJ x : maximal (G :^ x) (H :^ x) = maximal G H.
Proof.
rewrite -{1}(setTI G) -{1}(setTI H) -!morphim_conj.
by rewrite injm_maximal ?subsetT ?injm_conj.
Qed.

Lemma maximal_eqJ x : maximal_eq (G :^ x) (H :^ x) = maximal_eq G H.
Proof. by rewrite /maximal_eq !eqEsubset !conjSg maximalJ. Qed.

End QuoMax.

Section MaxNormalProps.

Variables (gT : finGroupType).
Implicit Types (A B C : {set gT}) (G H K L M : {group gT}).

Lemma maxnormal_normal A B : maxnormal A B B -> A <| B.
Proof.
by case/maxsetP=> /and3P[/gen_set_id /= -> pAB nAB]; rewrite /normal proper_sub.
Qed.

Lemma maxnormal_proper A B C : maxnormal A B C -> A \proper B.
Proof.
by case/maxsetP=> /and3P[gA pAB _] _; apply: (sub_proper_trans (subset_gen A)).
Qed.

Lemma maxnormal_sub A B C : maxnormal A B C -> A \subset B.
Proof.
by move=> maxA; rewrite proper_sub //; apply: (maxnormal_proper maxA).
Qed.

Lemma ex_maxnormal_ntrivg G : G :!=: 1-> {N : {group gT} | maxnormal N G G}.
Proof.
move=> ntG; apply: ex_maxgroup; exists [1 gT]%G; rewrite norm1 proper1G.
by rewrite subsetT ntG.
Qed.

Lemma maxnormalM G H K :
  maxnormal H G G -> maxnormal K G G -> H :<>: K -> H * K = G.
Proof.
move=> maxH maxK /eqP; apply: contraNeq => ltHK_G.
have [nsHG nsKG] := (maxnormal_normal maxH, maxnormal_normal maxK).
have cHK: commute H K.
  exact: normC (subset_trans (normal_sub nsHG) (normal_norm nsKG)).
wlog suffices: H K {maxH} maxK nsHG nsKG cHK ltHK_G / H \subset K.
  by move=> IH; rewrite eqEsubset !IH // -cHK.
have{maxK} /maxgroupP[_ maxK] := maxK.
apply/joing_idPr/maxK; rewrite ?joing_subr //= comm_joingE //.
by rewrite properEneq ltHK_G; apply: normalM.
Qed.

Lemma maxnormal_minnormal G L M :
    G \subset 'N(M) -> L \subset 'N(G) ->  maxnormal M G L ->
  minnormal (G / M) (L / M).
Proof.
move=> nMG nGL /maxgroupP[/andP[/andP[sMG ltMG] nML] maxM]; apply/mingroupP.
rewrite -subG1 quotient_sub1 ?ltMG ?quotient_norms //.
split=> // Hb /andP[ntHb nHbL]; have nsMG: M <| G by apply/andP.
case/inv_quotientS=> // H defHb sMH sHG; rewrite defHb; congr (_ / M).
apply/eqP; rewrite eqEproper sHG /=; apply: contra ntHb => ltHG.
have nsMH: M <| H := normalS sMH sHG nsMG.
rewrite defHb quotientS1 // (maxM H) // ltHG /=  -(quotientGK nsMH) -defHb.
exact: norm_quotient_pre.
Qed.

Lemma minnormal_maxnormal G L M :
  M <| G -> L \subset 'N(M) -> minnormal (G / M) (L / M) -> maxnormal M G L.
Proof.
case/andP=> sMG nMG nML /mingroupP[/andP[/= ntGM _] minGM]; apply/maxgroupP.
split=> [|H /andP[/andP[sHG ltHG] nHL] sMH].
  by rewrite /proper sMG nML andbT; apply: contra ntGM => /quotientS1 ->.
apply/eqP; rewrite eqEsubset sMH andbT -quotient_sub1 ?(subset_trans sHG) //.
rewrite subG1; apply: contraR ltHG => ntHM; rewrite -(quotientSGK nMG) //.
by rewrite (minGM (H / M)%G) ?quotientS // ntHM quotient_norms.
Qed.

End MaxNormalProps.

Section Simple.

Implicit Types gT rT : finGroupType.

Lemma simpleP gT (G : {group gT}) :
  reflect (G :!=: 1 /\ forall H : {group gT}, H <| G -> H :=: 1 \/ H :=: G)
          (simple G).
Proof.
apply: (iffP mingroupP); rewrite normG andbT => [[ntG simG]].
  split=> // N /andP[sNG nNG].
  by case: (eqsVneq N 1) => [|ntN]; [left | right; apply: simG; rewrite ?ntN].
split=> // N /andP[ntN nNG] sNG.
by case: (simG N) ntN => // [|->]; [apply/andP | case/eqP].
Qed.

Lemma quotient_simple gT (G H : {group gT}) :
  H <| G -> simple (G / H) = maxnormal H G G.
Proof.
move=> nsHG; have nGH := normal_norm nsHG.
by apply/idP/idP; [apply: minnormal_maxnormal | apply: maxnormal_minnormal].
Qed.

Lemma isog_simple gT rT (G : {group gT}) (M : {group rT}) :
  G \isog M -> simple G = simple M.
Proof.
move=> eqGM; wlog suffices: gT rT G M eqGM / simple M -> simple G.
  by move=> IH; apply/idP/idP; apply: IH; rewrite // isog_sym.
case/isogP: eqGM => f injf <- /simpleP[ntGf simGf].
apply/simpleP; split=> [|N nsNG]; first by rewrite -(morphim_injm_eq1 injf).
rewrite -(morphim_invm injf (normal_sub nsNG)).
have: f @* N <| f @* G by rewrite morphim_normal.
by case/simGf=> /= ->; [left | right]; rewrite (morphim1, morphim_invm).
Qed.

Lemma simple_maxnormal gT (G : {group gT}) : simple G = maxnormal 1 G G.
Proof.
by rewrite -quotient_simple ?normal1 // -(isog_simple (quotient1_isog G)).
Qed.

End Simple.

Section Chiefs.

Variable gT : finGroupType.
Implicit Types G H U V : {group gT}.

Lemma chief_factor_minnormal G V U :
  chief_factor G V U -> minnormal (U / V) (G / V).
Proof.
case/andP=> maxV /andP[sUG nUG]; apply: maxnormal_minnormal => //.
by have /andP[_ nVG] := maxgroupp maxV; apply: subset_trans sUG nVG.
Qed.

Lemma acts_irrQ G U V :
    G \subset 'N(V) -> V <| U ->
  acts_irreducibly G (U / V) 'Q = minnormal (U / V) (G / V).
Proof.
move=> nVG nsVU; apply/mingroupP/mingroupP; case=> /andP[->] /=.
  rewrite astabsQ // subsetI nVG /= => nUG minUV.
  rewrite quotient_norms //; split=> // H /andP[ntH nHG] sHU.
  by apply: minUV (sHU); rewrite ntH -(cosetpreK H) actsQ // norm_quotient_pre.
rewrite sub_quotient_pre // => nUG minU; rewrite astabsQ //.
rewrite (subset_trans nUG); last first.
  by rewrite subsetI subsetIl /= -{2}(quotientGK nsVU) morphpre_norm.
split=> // H /andP[ntH nHG] sHU.
rewrite -{1}(cosetpreK H) astabsQ ?normal_cosetpre ?subsetI ?nVG //= in nHG.
apply: minU sHU; rewrite ntH; apply: subset_trans (quotientS _ nHG) _.
by rewrite -{2}(cosetpreK H) quotient_norm.
Qed.

Lemma chief_series_exists H G :
  H <| G -> {s | (G.-chief).-series 1%G s & last 1%G s = H}.
Proof.
have [m] := ubnP #|H|; elim: m H => // m IHm U leUm nsUG.
have [-> | ntU] := eqVneq U 1%G; first by exists [::].
have [V maxV]: {V : {group gT} | maxnormal V U G}.
  by apply: ex_maxgroup; exists 1%G; rewrite proper1G ntU norms1.
have /andP[ltVU nVG] := maxgroupp maxV.
have [||s ch_s defV] := IHm V; first exact: leq_trans (proper_card ltVU) _.
  by rewrite /normal (subset_trans (proper_sub ltVU) (normal_sub nsUG)).
exists (rcons s U); last by rewrite last_rcons.
by rewrite rcons_path defV /= ch_s /chief_factor; apply/and3P.
Qed.

End Chiefs.

Section Central.

Variables (gT : finGroupType) (G : {group gT}).
Implicit Types H K : {group gT}.

Lemma central_factor_central H K :
  central_factor G H K -> (K / H) \subset 'Z(G / H).
Proof. by case/and3P=> /quotient_cents2r *; rewrite subsetI quotientS. Qed.


Lemma central_central_factor H K :
  (K / H) \subset 'Z(G / H) -> H <| K -> H <| G -> central_factor G H K.
Proof.
case/subsetIP=> sKGb cGKb /andP[sHK nHK] /andP[sHG nHG].
by rewrite /central_factor -quotient_cents2 // cGKb sHK -(quotientSGK nHK).
Qed.

End Central.