1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path.
From mathcomp Require Import div fintype finfun bigop finset prime binomial.
From mathcomp Require Import fingroup morphism perm automorphism action.
From mathcomp Require Import quotient gfunctor gproduct ssralg finalg zmodp.
From mathcomp Require Import cyclic pgroup gseries nilpotent sylow.
(******************************************************************************)
(* Constructions based on abelian groups and their structure, with some *)
(* emphasis on elementary abelian p-groups. *)
(* 'Ldiv_n() == the set of all x that satisfy x ^+ n = 1, or, *)
(* equivalently the set of x whose order divides n. *)
(* 'Ldiv_n(G) == the set of x in G that satisfy x ^+ n = 1. *)
(* := G :&: 'Ldiv_n() (pure Notation) *)
(* exponent G == the exponent of G: the least e such that x ^+ e = 1 *)
(* for all x in G (the LCM of the orders of x \in G). *)
(* If G is nilpotent its exponent is reached. Note that *)
(* `exponent G %| m' reads as `G has exponent m'. *)
(* 'm(G) == the generator rank of G: the size of a smallest *)
(* generating set for G (this is a basis for G if G *)
(* abelian). *)
(* abelian_type G == the abelian type of G : if G is abelian, a lexico- *)
(* graphically maximal sequence of the orders of the *)
(* elements of a minimal basis of G (if G is a p-group *)
(* this is the sequence of orders for any basis of G, *)
(* sorted in decending order). *)
(* homocyclic G == G is the direct product of cycles of equal order, *)
(* i.e., G is abelian with constant abelian type. *)
(* p.-abelem G == G is an elementary abelian p-group, i.e., it is *)
(* an abelian p-group of exponent p, and thus of order *)
(* p ^ 'm(G) and rank (logn p #|G|). *)
(* is_abelem G == G is an elementary abelian p-group for some prime p. *)
(* 'E_p(G) == the set of elementary abelian p-subgroups of G. *)
(* := [set E : {group _} | p.-abelem E & E \subset G] *)
(* 'E_p^n(G) == the set of elementary abelian p-subgroups of G of *)
(* order p ^ n (or, equivalently, of rank n). *)
(* := [set E in 'E_p(G) | logn p #|E| == n] *)
(* := [set E in 'E_p(G) | #|E| == p ^ n]%N if p is prime *)
(* 'E*_p(G) == the set of maximal elementary abelian p-subgroups *)
(* of G. *)
(* := [set E | [max E | E \in 'E_p(G)]] *)
(* 'E^n(G) == the set of elementary abelian subgroups of G that *)
(* have gerank n (i.e., p-rank n for some prime p). *)
(* := \bigcup_(0 <= p < #|G|.+1) 'E_p^n(G) *)
(* 'r_p(G) == the p-rank of G: the maximal rank of an elementary *)
(* subgroup of G. *)
(* := \max_(E in 'E_p(G)) logn p #|E|. *)
(* 'r(G) == the rank of G. *)
(* := \max_(0 <= p < #|G|.+1) 'm_p(G). *)
(* Note that 'r(G) coincides with 'r_p(G) if G is a p-group, and with 'm(G) *)
(* if G is abelian, but is much more useful than 'm(G) in the proof of the *)
(* Odd Order Theorem. *)
(* 'Ohm_n(G) == the group generated by the x in G with order p ^ m *)
(* for some prime p and some m <= n. Usually, G will be *)
(* a p-group, so 'Ohm_n(G) will be generated by *)
(* 'Ldiv_(p ^ n)(G), set of elements of G of order at *)
(* most p ^ n. If G is also abelian then 'Ohm_n(G) *)
(* consists exactly of those element, and the abelian *)
(* type of G can be computed from the orders of the *)
(* 'Ohm_n(G) subgroups. *)
(* 'Mho^n(G) == the group generated by the x ^+ (p ^ n) for x a *)
(* p-element of G for some prime p. Usually G is a *)
(* p-group, and 'Mho^n(G) is generated by all such *)
(* x ^+ (p ^ n); it consists of exactly these if G is *)
(* also abelian. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GroupScope.
Section AbelianDefs.
(* We defer the definition of the functors ('Omh_n(G), 'Mho^n(G)) because *)
(* they must quantify over the finGroupType explicitly. *)
Variable gT : finGroupType.
Implicit Types (x : gT) (A B : {set gT}) (pi : nat_pred) (p n : nat).
Definition Ldiv n := [set x : gT | x ^+ n == 1].
Definition exponent A := \big[lcmn/1%N]_(x in A) #[x].
Definition abelem p A := [&& p.-group A, abelian A & exponent A %| p].
Definition is_abelem A := abelem (pdiv #|A|) A.
Definition pElem p A := [set E : {group gT} | E \subset A & abelem p E].
Definition pnElem p n A := [set E in pElem p A | logn p #|E| == n].
Definition nElem n A := \bigcup_(0 <= p < #|A|.+1) pnElem p n A.
Definition pmaxElem p A := [set E | [max E | E \in pElem p A]].
Definition p_rank p A := \max_(E in pElem p A) logn p #|E|.
Definition rank A := \max_(0 <= p < #|A|.+1) p_rank p A.
Definition gen_rank A := #|[arg min_(B < A | <<B>> == A) #|B|]|.
(* The definition of abelian_type depends on an existence lemma. *)
(* The definition of homocyclic depends on abelian_type. *)
End AbelianDefs.
Arguments exponent {gT} A%g.
Arguments abelem {gT} p%N A%g.
Arguments is_abelem {gT} A%g.
Arguments pElem {gT} p%N A%g.
Arguments pnElem {gT} p%N n%N A%g.
Arguments nElem {gT} n%N A%g.
Arguments pmaxElem {gT} p%N A%g.
Arguments p_rank {gT} p%N A%g.
Arguments rank {gT} A%g.
Arguments gen_rank {gT} A%g.
Notation "''Ldiv_' n ()" := (Ldiv _ n)
(at level 8, n at level 2, format "''Ldiv_' n ()") : group_scope.
Notation "''Ldiv_' n ( G )" := (G :&: 'Ldiv_n())
(at level 8, n at level 2, format "''Ldiv_' n ( G )") : group_scope.
Prenex Implicits exponent.
Notation "p .-abelem" := (abelem p)
(at level 2, format "p .-abelem") : group_scope.
Notation "''E_' p ( G )" := (pElem p G)
(at level 8, p at level 2, format "''E_' p ( G )") : group_scope.
Notation "''E_' p ^ n ( G )" := (pnElem p n G)
(at level 8, p, n at level 2, format "''E_' p ^ n ( G )") : group_scope.
Notation "''E' ^ n ( G )" := (nElem n G)
(at level 8, n at level 2, format "''E' ^ n ( G )") : group_scope.
Notation "''E*_' p ( G )" := (pmaxElem p G)
(at level 8, p at level 2, format "''E*_' p ( G )") : group_scope.
Notation "''m' ( A )" := (gen_rank A)
(at level 8, format "''m' ( A )") : group_scope.
Notation "''r' ( A )" := (rank A)
(at level 8, format "''r' ( A )") : group_scope.
Notation "''r_' p ( A )" := (p_rank p A)
(at level 8, p at level 2, format "''r_' p ( A )") : group_scope.
Section Functors.
(* A functor needs to quantify over the finGroupType just beore the set. *)
Variables (n : nat) (gT : finGroupType) (A : {set gT}).
Definition Ohm := <<[set x in A | x ^+ (pdiv #[x] ^ n) == 1]>>.
Definition Mho := <<[set x ^+ (pdiv #[x] ^ n) | x in A & (pdiv #[x]).-elt x]>>.
Canonical Ohm_group : {group gT} := Eval hnf in [group of Ohm].
Canonical Mho_group : {group gT} := Eval hnf in [group of Mho].
Lemma pdiv_p_elt (p : nat) (x : gT) : p.-elt x -> x != 1 -> pdiv #[x] = p.
Proof.
move=> p_x; rewrite /order -cycle_eq1.
by case/(pgroup_pdiv p_x)=> p_pr _ [k ->]; rewrite pdiv_pfactor.
Qed.
Lemma OhmPredP (x : gT) :
reflect (exists2 p, prime p & x ^+ (p ^ n) = 1) (x ^+ (pdiv #[x] ^ n) == 1).
Proof.
have [-> | nt_x] := eqVneq x 1.
by rewrite expg1n eqxx; left; exists 2; rewrite ?expg1n.
apply: (iffP idP) => [/eqP | [p p_pr /eqP x_pn]].
by exists (pdiv #[x]); rewrite ?pdiv_prime ?order_gt1.
rewrite (@pdiv_p_elt p) //; rewrite -order_dvdn in x_pn.
by rewrite [p_elt _ _](pnat_dvd x_pn) // pnat_exp pnat_id.
Qed.
Lemma Mho_p_elt (p : nat) x : x \in A -> p.-elt x -> x ^+ (p ^ n) \in Mho.
Proof.
move=> Ax p_x; case: (eqVneq x 1) => [-> | ntx]; first by rewrite groupX.
by apply: mem_gen; apply/imsetP; exists x; rewrite ?inE ?Ax (pdiv_p_elt p_x).
Qed.
End Functors.
Arguments Ohm n%N {gT} A%g.
Arguments Ohm_group n%N {gT} A%g.
Arguments Mho n%N {gT} A%g.
Arguments Mho_group n%N {gT} A%g.
Arguments OhmPredP {n gT x}.
Notation "''Ohm_' n ( G )" := (Ohm n G)
(at level 8, n at level 2, format "''Ohm_' n ( G )") : group_scope.
Notation "''Ohm_' n ( G )" := (Ohm_group n G) : Group_scope.
Notation "''Mho^' n ( G )" := (Mho n G)
(at level 8, n at level 2, format "''Mho^' n ( G )") : group_scope.
Notation "''Mho^' n ( G )" := (Mho_group n G) : Group_scope.
Section ExponentAbelem.
Variable gT : finGroupType.
Implicit Types (p n : nat) (pi : nat_pred) (x : gT) (A B C : {set gT}).
Implicit Types E G H K P X Y : {group gT}.
Lemma LdivP A n x : reflect (x \in A /\ x ^+ n = 1) (x \in 'Ldiv_n(A)).
Proof. by rewrite !inE; apply: (iffP andP) => [] [-> /eqP]. Qed.
Lemma dvdn_exponent x A : x \in A -> #[x] %| exponent A.
Proof. by move=> Ax; rewrite (biglcmn_sup x). Qed.
Lemma expg_exponent x A : x \in A -> x ^+ exponent A = 1.
Proof. by move=> Ax; apply/eqP; rewrite -order_dvdn dvdn_exponent. Qed.
Lemma exponentS A B : A \subset B -> exponent A %| exponent B.
Proof.
by move=> sAB; apply/dvdn_biglcmP=> x Ax; rewrite dvdn_exponent ?(subsetP sAB).
Qed.
Lemma exponentP A n :
reflect (forall x, x \in A -> x ^+ n = 1) (exponent A %| n).
Proof.
apply: (iffP (dvdn_biglcmP _ _ _)) => eAn x Ax.
by apply/eqP; rewrite -order_dvdn eAn.
by rewrite order_dvdn eAn.
Qed.
Arguments exponentP {A n}.
Lemma trivg_exponent G : (G :==: 1) = (exponent G %| 1).
Proof.
rewrite -subG1.
by apply/subsetP/exponentP=> trG x /trG; rewrite expg1 => /set1P.
Qed.
Lemma exponent1 : exponent [1 gT] = 1%N.
Proof. by apply/eqP; rewrite -dvdn1 -trivg_exponent eqxx. Qed.
Lemma exponent_dvdn G : exponent G %| #|G|.
Proof. by apply/dvdn_biglcmP=> x Gx; apply: order_dvdG. Qed.
Lemma exponent_gt0 G : 0 < exponent G.
Proof. exact: dvdn_gt0 (exponent_dvdn G). Qed.
Hint Resolve exponent_gt0 : core.
Lemma pnat_exponent pi G : pi.-nat (exponent G) = pi.-group G.
Proof.
congr (_ && _); first by rewrite cardG_gt0 exponent_gt0.
apply: eq_all_r => p; rewrite !mem_primes cardG_gt0 exponent_gt0 /=.
apply: andb_id2l => p_pr; apply/idP/idP=> pG.
exact: dvdn_trans pG (exponent_dvdn G).
by case/Cauchy: pG => // x Gx <-; apply: dvdn_exponent.
Qed.
Lemma exponentJ A x : exponent (A :^ x) = exponent A.
Proof.
rewrite /exponent (reindex_inj (conjg_inj x)).
by apply: eq_big => [y | y _]; rewrite ?orderJ ?memJ_conjg.
Qed.
Lemma exponent_witness G : nilpotent G -> {x | x \in G & exponent G = #[x]}.
Proof.
move=> nilG; have [//=| /= x Gx max_x] := @arg_maxP _ 1 (mem G) order.
exists x => //; apply/eqP; rewrite eqn_dvd dvdn_exponent // andbT.
apply/dvdn_biglcmP=> y Gy; apply/dvdn_partP=> //= p.
rewrite mem_primes => /andP[p_pr _]; have p_gt1: p > 1 := prime_gt1 p_pr.
rewrite p_part pfactor_dvdn // -(leq_exp2l _ _ p_gt1) -!p_part.
rewrite -(leq_pmul2r (part_gt0 p^' #[x])) partnC // -!order_constt.
rewrite -orderM ?order_constt ?coprime_partC // ?max_x ?groupM ?groupX //.
case/dprodP: (nilpotent_pcoreC p nilG) => _ _ cGpGp' _.
have inGp := mem_normal_Hall (nilpotent_pcore_Hall _ nilG) (pcore_normal _ _).
by red; rewrite -(centsP cGpGp') // inGp ?p_elt_constt ?groupX.
Qed.
Lemma exponent_cycle x : exponent <[x]> = #[x].
Proof. by apply/eqP; rewrite eqn_dvd exponent_dvdn dvdn_exponent ?cycle_id. Qed.
Lemma exponent_cyclic X : cyclic X -> exponent X = #|X|.
Proof. by case/cyclicP=> x ->; apply: exponent_cycle. Qed.
Lemma primes_exponent G : primes (exponent G) = primes (#|G|).
Proof.
apply/eq_primes => p; rewrite !mem_primes exponent_gt0 cardG_gt0 /=.
by apply: andb_id2l => p_pr; apply: negb_inj; rewrite -!p'natE // pnat_exponent.
Qed.
Lemma pi_of_exponent G : \pi(exponent G) = \pi(G).
Proof. by rewrite /pi_of primes_exponent. Qed.
Lemma partn_exponentS pi H G :
H \subset G -> #|G|`_pi %| #|H| -> (exponent H)`_pi = (exponent G)`_pi.
Proof.
move=> sHG Gpi_dvd_H; apply/eqP; rewrite eqn_dvd.
rewrite partn_dvd ?exponentS ?exponent_gt0 //=; apply/dvdn_partP=> // p.
rewrite pi_of_part ?exponent_gt0 // => /andP[_ /= pi_p].
have sppi: {subset (p : nat_pred) <= pi} by move=> q /eqnP->.
have [P sylP] := Sylow_exists p H; have sPH := pHall_sub sylP.
have{sylP} sylP: p.-Sylow(G) P.
rewrite pHallE (subset_trans sPH) //= (card_Hall sylP) eqn_dvd andbC.
by rewrite -{1}(partn_part _ sppi) !partn_dvd ?cardSg ?cardG_gt0.
rewrite partn_part ?partn_biglcm //.
apply: (@big_ind _ (dvdn^~ _)) => [|m n|x Gx]; first exact: dvd1n.
by rewrite dvdn_lcm => ->.
rewrite -order_constt; have p_y := p_elt_constt p x; set y := x.`_p in p_y *.
have sYG: <[y]> \subset G by rewrite cycle_subG groupX.
have [z _ Pyz] := Sylow_Jsub sylP sYG p_y.
rewrite (bigD1 (y ^ z)) ?(subsetP sPH) -?cycle_subG ?cycleJ //=.
by rewrite orderJ part_pnat_id ?dvdn_lcml // (pi_pnat p_y).
Qed.
Lemma exponent_Hall pi G H : pi.-Hall(G) H -> exponent H = (exponent G)`_pi.
Proof.
move=> hallH; have [sHG piH _] := and3P hallH.
rewrite -(partn_exponentS sHG) -?(card_Hall hallH) ?part_pnat_id //.
by apply: pnat_dvd piH; apply: exponent_dvdn.
Qed.
Lemma exponent_Zgroup G : Zgroup G -> exponent G = #|G|.
Proof.
move/forall_inP=> ZgG; apply/eqP; rewrite eqn_dvd exponent_dvdn.
apply/(dvdn_partP _ (cardG_gt0 _)) => p _.
have [S sylS] := Sylow_exists p G; rewrite -(card_Hall sylS).
have /cyclicP[x defS]: cyclic S by rewrite ZgG ?(p_Sylow sylS).
by rewrite defS dvdn_exponent // -cycle_subG -defS (pHall_sub sylS).
Qed.
Lemma cprod_exponent A B G :
A \* B = G -> lcmn (exponent A) (exponent B) = (exponent G).
Proof.
case/cprodP=> [[K H -> ->{A B}] <- cKH].
apply/eqP; rewrite eqn_dvd dvdn_lcm !exponentS ?mulG_subl ?mulG_subr //=.
apply/exponentP=> _ /imset2P[x y Kx Hy ->].
rewrite -[1]mulg1 expgMn; last by red; rewrite -(centsP cKH).
congr (_ * _); apply/eqP; rewrite -order_dvdn.
by rewrite (dvdn_trans (dvdn_exponent Kx)) ?dvdn_lcml.
by rewrite (dvdn_trans (dvdn_exponent Hy)) ?dvdn_lcmr.
Qed.
Lemma dprod_exponent A B G :
A \x B = G -> lcmn (exponent A) (exponent B) = (exponent G).
Proof.
case/dprodP=> [[K H -> ->{A B}] defG cKH _].
by apply: cprod_exponent; rewrite cprodE.
Qed.
Lemma sub_LdivT A n : (A \subset 'Ldiv_n()) = (exponent A %| n).
Proof. by apply/subsetP/exponentP=> eAn x /eAn; rewrite inE => /eqP. Qed.
Lemma LdivT_J n x : 'Ldiv_n() :^ x = 'Ldiv_n().
Proof.
apply/setP=> y; rewrite !inE mem_conjg inE -conjXg.
by rewrite (canF_eq (conjgKV x)) conj1g.
Qed.
Lemma LdivJ n A x : 'Ldiv_n(A :^ x) = 'Ldiv_n(A) :^ x.
Proof. by rewrite conjIg LdivT_J. Qed.
Lemma sub_Ldiv A n : (A \subset 'Ldiv_n(A)) = (exponent A %| n).
Proof. by rewrite subsetI subxx sub_LdivT. Qed.
Lemma group_Ldiv G n : abelian G -> group_set 'Ldiv_n(G).
Proof.
move=> cGG; apply/group_setP.
split=> [|x y]; rewrite !inE ?group1 ?expg1n //=.
case/andP=> Gx /eqP xn /andP[Gy /eqP yn].
by rewrite groupM //= expgMn ?xn ?yn ?mulg1 //; apply: (centsP cGG).
Qed.
Lemma abelian_exponent_gen A : abelian A -> exponent <<A>> = exponent A.
Proof.
rewrite -abelian_gen; set n := exponent A; set G := <<A>> => cGG.
apply/eqP; rewrite eqn_dvd andbC exponentS ?subset_gen //= -sub_Ldiv.
rewrite -(gen_set_id (group_Ldiv n cGG)) genS // subsetI subset_gen /=.
by rewrite sub_LdivT.
Qed.
Lemma abelem_pgroup p A : p.-abelem A -> p.-group A.
Proof. by case/andP. Qed.
Lemma abelem_abelian p A : p.-abelem A -> abelian A.
Proof. by case/and3P. Qed.
Lemma abelem1 p : p.-abelem [1 gT].
Proof. by rewrite /abelem pgroup1 abelian1 exponent1 dvd1n. Qed.
Lemma abelemE p G : prime p -> p.-abelem G = abelian G && (exponent G %| p).
Proof.
move=> p_pr; rewrite /abelem -pnat_exponent andbA -!(andbC (_ %| _)).
by case: (dvdn_pfactor _ 1 p_pr) => // [[k _ ->]]; rewrite pnat_exp pnat_id.
Qed.
Lemma abelemP p G :
prime p ->
reflect (abelian G /\ forall x, x \in G -> x ^+ p = 1) (p.-abelem G).
Proof.
by move=> p_pr; rewrite abelemE //; apply: (iffP andP) => [] [-> /exponentP].
Qed.
Lemma abelem_order_p p G x : p.-abelem G -> x \in G -> x != 1 -> #[x] = p.
Proof.
case/and3P=> pG _ eG Gx; rewrite -cycle_eq1 => ntX.
have{ntX} [p_pr p_x _] := pgroup_pdiv (mem_p_elt pG Gx) ntX.
by apply/eqP; rewrite eqn_dvd p_x andbT order_dvdn (exponentP eG).
Qed.
Lemma cyclic_abelem_prime p X : p.-abelem X -> cyclic X -> X :!=: 1 -> #|X| = p.
Proof.
move=> abelX cycX; case/cyclicP: cycX => x -> in abelX *.
by rewrite cycle_eq1; apply: abelem_order_p abelX (cycle_id x).
Qed.
Lemma cycle_abelem p x : p.-elt x || prime p -> p.-abelem <[x]> = (#[x] %| p).
Proof.
move=> p_xVpr; rewrite /abelem cycle_abelian /=.
apply/andP/idP=> [[_ xp1] | x_dvd_p].
by rewrite order_dvdn (exponentP xp1) ?cycle_id.
split; last exact: dvdn_trans (exponent_dvdn _) x_dvd_p.
by case/orP: p_xVpr => // /pnat_id; apply: pnat_dvd.
Qed.
Lemma exponent2_abelem G : exponent G %| 2 -> 2.-abelem G.
Proof.
move/exponentP=> expG; apply/abelemP=> //; split=> //.
apply/centsP=> x Gx y Gy; apply: (mulIg x); apply: (mulgI y).
by rewrite -!mulgA !(mulgA y) -!(expgS _ 1) !expG ?mulg1 ?groupM.
Qed.
Lemma prime_abelem p G : prime p -> #|G| = p -> p.-abelem G.
Proof.
move=> p_pr oG; rewrite /abelem -oG exponent_dvdn.
by rewrite /pgroup cyclic_abelian ?prime_cyclic ?oG ?pnat_id.
Qed.
Lemma abelem_cyclic p G : p.-abelem G -> cyclic G = (logn p #|G| <= 1).
Proof.
move=> abelG; have [pG _ expGp] := and3P abelG.
case: (eqsVneq G 1) => [-> | ntG]; first by rewrite cyclic1 cards1 logn1.
have [p_pr _ [e oG]] := pgroup_pdiv pG ntG; apply/idP/idP.
case/cyclicP=> x defG; rewrite -(pfactorK 1 p_pr) dvdn_leq_log ?prime_gt0 //.
by rewrite defG order_dvdn (exponentP expGp) // defG cycle_id.
by rewrite oG pfactorK // ltnS leqn0 => e0; rewrite prime_cyclic // oG (eqP e0).
Qed.
Lemma abelemS p H G : H \subset G -> p.-abelem G -> p.-abelem H.
Proof.
move=> sHG /and3P[cGG pG Gp1]; rewrite /abelem.
by rewrite (pgroupS sHG) // (abelianS sHG) // (dvdn_trans (exponentS sHG)).
Qed.
Lemma abelemJ p G x : p.-abelem (G :^ x) = p.-abelem G.
Proof. by rewrite /abelem pgroupJ abelianJ exponentJ. Qed.
Lemma cprod_abelem p A B G :
A \* B = G -> p.-abelem G = p.-abelem A && p.-abelem B.
Proof.
case/cprodP=> [[H K -> ->{A B}] defG cHK].
apply/idP/andP=> [abelG | []].
by rewrite !(abelemS _ abelG) // -defG (mulG_subl, mulG_subr).
case/and3P=> pH cHH expHp; case/and3P=> pK cKK expKp.
rewrite -defG /abelem pgroupM pH pK abelianM cHH cKK cHK /=.
apply/exponentP=> _ /imset2P[x y Hx Ky ->].
rewrite expgMn; last by red; rewrite -(centsP cHK).
by rewrite (exponentP expHp) // (exponentP expKp) // mul1g.
Qed.
Lemma dprod_abelem p A B G :
A \x B = G -> p.-abelem G = p.-abelem A && p.-abelem B.
Proof.
move=> defG; case/dprodP: (defG) => _ _ _ tiHK.
by apply: cprod_abelem; rewrite -dprodEcp.
Qed.
Lemma is_abelem_pgroup p G : p.-group G -> is_abelem G = p.-abelem G.
Proof.
rewrite /is_abelem => pG.
case: (eqsVneq G 1) => [-> | ntG]; first by rewrite !abelem1.
by have [p_pr _ [k ->]] := pgroup_pdiv pG ntG; rewrite pdiv_pfactor.
Qed.
Lemma is_abelemP G : reflect (exists2 p, prime p & p.-abelem G) (is_abelem G).
Proof.
apply: (iffP idP) => [abelG | [p p_pr abelG]].
case: (eqsVneq G 1) => [-> | ntG]; first by exists 2; rewrite ?abelem1.
by exists (pdiv #|G|); rewrite ?pdiv_prime // ltnNge -trivg_card_le1.
by rewrite (is_abelem_pgroup (abelem_pgroup abelG)).
Qed.
Lemma pElemP p A E : reflect (E \subset A /\ p.-abelem E) (E \in 'E_p(A)).
Proof. by rewrite inE; apply: andP. Qed.
Arguments pElemP {p A E}.
Lemma pElemS p A B : A \subset B -> 'E_p(A) \subset 'E_p(B).
Proof.
by move=> sAB; apply/subsetP=> E; rewrite !inE => /andP[/subset_trans->].
Qed.
Lemma pElemI p A B : 'E_p(A :&: B) = 'E_p(A) :&: subgroups B.
Proof. by apply/setP=> E; rewrite !inE subsetI andbAC. Qed.
Lemma pElemJ x p A E : ((E :^ x)%G \in 'E_p(A :^ x)) = (E \in 'E_p(A)).
Proof. by rewrite !inE conjSg abelemJ. Qed.
Lemma pnElemP p n A E :
reflect [/\ E \subset A, p.-abelem E & logn p #|E| = n] (E \in 'E_p^n(A)).
Proof. by rewrite !inE -andbA; apply: (iffP and3P) => [] [-> -> /eqP]. Qed.
Arguments pnElemP {p n A E}.
Lemma pnElemPcard p n A E :
E \in 'E_p^n(A) -> [/\ E \subset A, p.-abelem E & #|E| = p ^ n]%N.
Proof.
by case/pnElemP=> -> abelE <-; rewrite -card_pgroup // abelem_pgroup.
Qed.
Lemma card_pnElem p n A E : E \in 'E_p^n(A) -> #|E| = (p ^ n)%N.
Proof. by case/pnElemPcard. Qed.
Lemma pnElem0 p G : 'E_p^0(G) = [set 1%G].
Proof.
apply/setP=> E; rewrite !inE -andbA; apply/and3P/idP=> [[_ pE] | /eqP->].
apply: contraLR; case/(pgroup_pdiv (abelem_pgroup pE)) => p_pr _ [k ->].
by rewrite pfactorK.
by rewrite sub1G abelem1 cards1 logn1.
Qed.
Lemma pnElem_prime p n A E : E \in 'E_p^n.+1(A) -> prime p.
Proof. by case/pnElemP=> _ _; rewrite lognE; case: prime. Qed.
Lemma pnElemE p n A :
prime p -> 'E_p^n(A) = [set E in 'E_p(A) | #|E| == (p ^ n)%N].
Proof.
move/pfactorK=> pnK; apply/setP=> E; rewrite 3!inE.
case: (@andP (E \subset A)) => //= [[_]] /andP[/p_natP[k ->] _].
by rewrite pnK (can_eq pnK).
Qed.
Lemma pnElemS p n A B : A \subset B -> 'E_p^n(A) \subset 'E_p^n(B).
Proof.
move=> sAB; apply/subsetP=> E.
by rewrite !inE -!andbA => /andP[/subset_trans->].
Qed.
Lemma pnElemI p n A B : 'E_p^n(A :&: B) = 'E_p^n(A) :&: subgroups B.
Proof. by apply/setP=> E; rewrite !inE subsetI -!andbA; do !bool_congr. Qed.
Lemma pnElemJ x p n A E : ((E :^ x)%G \in 'E_p^n(A :^ x)) = (E \in 'E_p^n(A)).
Proof. by rewrite inE pElemJ cardJg !inE. Qed.
Lemma abelem_pnElem p n G :
p.-abelem G -> n <= logn p #|G| -> exists E, E \in 'E_p^n(G).
Proof.
case: n => [|n] abelG lt_nG; first by exists 1%G; rewrite pnElem0 set11.
have p_pr: prime p by move: lt_nG; rewrite lognE; case: prime.
case/(normal_pgroup (abelem_pgroup abelG)): lt_nG => // E [sEG _ oE].
by exists E; rewrite pnElemE // !inE oE sEG (abelemS sEG) /=.
Qed.
Lemma card_p1Elem p A X : X \in 'E_p^1(A) -> #|X| = p.
Proof. exact: card_pnElem. Qed.
Lemma p1ElemE p A : prime p -> 'E_p^1(A) = [set X in subgroups A | #|X| == p].
Proof.
move=> p_pr; apply/setP=> X; rewrite pnElemE // !inE -andbA; congr (_ && _).
by apply: andb_idl => /eqP oX; rewrite prime_abelem ?oX.
Qed.
Lemma TIp1ElemP p A X Y :
X \in 'E_p^1(A) -> Y \in 'E_p^1(A) -> reflect (X :&: Y = 1) (X :!=: Y).
Proof.
move=> EpX EpY; have p_pr := pnElem_prime EpX.
have [oX oY] := (card_p1Elem EpX, card_p1Elem EpY).
have [<- |] := altP eqP.
by right=> X1; rewrite -oX -(setIid X) X1 cards1 in p_pr.
by rewrite eqEcard oX oY leqnn andbT; left; rewrite prime_TIg ?oX.
Qed.
Lemma card_p1Elem_pnElem p n A E :
E \in 'E_p^n(A) -> #|'E_p^1(E)| = (\sum_(i < n) p ^ i)%N.
Proof.
case/pnElemP=> _ {A} abelE dimE; have [pE cEE _] := and3P abelE.
have [E1 | ntE] := eqsVneq E 1.
rewrite -dimE E1 cards1 logn1 big_ord0 eq_card0 // => X.
by rewrite !inE subG1 trivg_card1; case: eqP => // ->; rewrite logn1 andbF.
have [p_pr _ _] := pgroup_pdiv pE ntE; have p_gt1 := prime_gt1 p_pr.
apply/eqP; rewrite -(@eqn_pmul2l (p - 1)) ?subn_gt0 // subn1 -predn_exp.
have groupD1_inj: injective (fun X => (gval X)^#).
apply: can_inj (@generated_group _) _ => X.
by apply: val_inj; rewrite /= genD1 ?group1 ?genGid.
rewrite -dimE -card_pgroup // (cardsD1 1 E) group1 /= mulnC.
rewrite -(card_imset _ groupD1_inj) eq_sym.
apply/eqP; apply: card_uniform_partition => [X'|].
case/imsetP=> X; rewrite pnElemE // expn1 => /setIdP[_ /eqP <-] ->.
by rewrite (cardsD1 1 X) group1.
apply/and3P; split; last 1 first.
- apply/imsetP=> [[X /card_p1Elem oX X'0]].
by rewrite -oX (cardsD1 1) -X'0 group1 cards0 in p_pr.
- rewrite eqEsubset; apply/andP; split.
by apply/bigcupsP=> _ /imsetP[X /pnElemP[sXE _ _] ->]; apply: setSD.
apply/subsetP=> x /setD1P[ntx Ex].
apply/bigcupP; exists <[x]>^#; last by rewrite !inE ntx cycle_id.
apply/imsetP; exists <[x]>%G; rewrite ?p1ElemE // !inE cycle_subG Ex /=.
by rewrite -orderE (abelem_order_p abelE).
apply/trivIsetP=> _ _ /imsetP[X EpX ->] /imsetP[Y EpY ->]; apply/implyP.
rewrite (inj_eq groupD1_inj) -setI_eq0 -setDIl setD_eq0 subG1.
by rewrite (sameP eqP (TIp1ElemP EpX EpY)) implybb.
Qed.
Lemma card_p1Elem_p2Elem p A E : E \in 'E_p^2(A) -> #|'E_p^1(E)| = p.+1.
Proof. by move/card_p1Elem_pnElem->; rewrite big_ord_recl big_ord1. Qed.
Lemma p2Elem_dprodP p A E X Y :
E \in 'E_p^2(A) -> X \in 'E_p^1(E) -> Y \in 'E_p^1(E) ->
reflect (X \x Y = E) (X :!=: Y).
Proof.
move=> Ep2E EpX EpY; have [_ abelE oE] := pnElemPcard Ep2E.
apply: (iffP (TIp1ElemP EpX EpY)) => [tiXY|]; last by case/dprodP.
have [[sXE _ oX] [sYE _ oY]] := (pnElemPcard EpX, pnElemPcard EpY).
rewrite dprodE ?(sub_abelian_cent2 (abelem_abelian abelE)) //.
by apply/eqP; rewrite eqEcard mul_subG //= TI_cardMg // oX oY oE.
Qed.
Lemma nElemP n G E : reflect (exists p, E \in 'E_p^n(G)) (E \in 'E^n(G)).
Proof.
rewrite ['E^n(G)]big_mkord.
apply: (iffP bigcupP) => [[[p /= _] _] | [p]]; first by exists p.
case: n => [|n EpnE]; first by rewrite pnElem0; exists ord0; rewrite ?pnElem0.
suffices lepG: p < #|G|.+1 by exists (Ordinal lepG).
have:= EpnE; rewrite pnElemE ?(pnElem_prime EpnE) // !inE -andbA ltnS.
case/and3P=> sEG _ oE; rewrite dvdn_leq // (dvdn_trans _ (cardSg sEG)) //.
by rewrite (eqP oE) dvdn_exp.
Qed.
Arguments nElemP {n G E}.
Lemma nElem0 G : 'E^0(G) = [set 1%G].
Proof.
apply/setP=> E; apply/nElemP/idP=> [[p] |]; first by rewrite pnElem0.
by exists 2; rewrite pnElem0.
Qed.
Lemma nElem1P G E :
reflect (E \subset G /\ exists2 p, prime p & #|E| = p) (E \in 'E^1(G)).
Proof.
apply: (iffP nElemP) => [[p pE] | [sEG [p p_pr oE]]].
have p_pr := pnElem_prime pE; rewrite pnElemE // !inE -andbA in pE.
by case/and3P: pE => -> _ /eqP; split; last exists p.
exists p; rewrite pnElemE // !inE sEG oE eqxx abelemE // -oE exponent_dvdn.
by rewrite cyclic_abelian // prime_cyclic // oE.
Qed.
Lemma nElemS n G H : G \subset H -> 'E^n(G) \subset 'E^n(H).
Proof.
move=> sGH; apply/subsetP=> E /nElemP[p EpnG_E].
by apply/nElemP; exists p; rewrite // (subsetP (pnElemS _ _ sGH)).
Qed.
Lemma nElemI n G H : 'E^n(G :&: H) = 'E^n(G) :&: subgroups H.
Proof.
apply/setP=> E; apply/nElemP/setIP=> [[p] | []].
by rewrite pnElemI; case/setIP; split=> //; apply/nElemP; exists p.
by case/nElemP=> p EpnG_E sHE; exists p; rewrite pnElemI inE EpnG_E.
Qed.
Lemma def_pnElem p n G : 'E_p^n(G) = 'E_p(G) :&: 'E^n(G).
Proof.
apply/setP=> E; rewrite inE in_setI; apply: andb_id2l => /pElemP[sEG abelE].
apply/idP/nElemP=> [|[q]]; first by exists p; rewrite !inE sEG abelE.
rewrite !inE -2!andbA => /and4P[_ /pgroupP qE _].
case: (eqVneq E 1%G) => [-> | ]; first by rewrite cards1 !logn1.
case/(pgroup_pdiv (abelem_pgroup abelE)) => p_pr pE _.
by rewrite (eqnP (qE p p_pr pE)).
Qed.
Lemma pmaxElemP p A E :
reflect (E \in 'E_p(A) /\ forall H, H \in 'E_p(A) -> E \subset H -> H :=: E)
(E \in 'E*_p(A)).
Proof. by rewrite [E \in 'E*_p(A)]inE; apply: (iffP maxgroupP). Qed.
Lemma pmaxElem_exists p A D :
D \in 'E_p(A) -> {E | E \in 'E*_p(A) & D \subset E}.
Proof.
move=> EpD; have [E maxE sDE] := maxgroup_exists (EpD : mem 'E_p(A) D).
by exists E; rewrite // inE.
Qed.
Lemma pmaxElem_LdivP p G E :
prime p -> reflect ('Ldiv_p('C_G(E)) = E) (E \in 'E*_p(G)).
Proof.
move=> p_pr; apply: (iffP (pmaxElemP p G E)) => [[] | defE].
case/pElemP=> sEG abelE maxE; have [_ cEE eE] := and3P abelE.
apply/setP=> x; rewrite !inE -andbA; apply/and3P/idP=> [[Gx cEx xp] | Ex].
rewrite -(maxE (<[x]> <*> E)%G) ?joing_subr //.
by rewrite -cycle_subG joing_subl.
rewrite inE join_subG cycle_subG Gx sEG /=.
rewrite (cprod_abelem _ (cprodEY _)); last by rewrite centsC cycle_subG.
by rewrite cycle_abelem ?p_pr ?orbT // order_dvdn xp.
by rewrite (subsetP sEG) // (subsetP cEE) // (exponentP eE).
split=> [|H]; last first.
case/pElemP=> sHG /abelemP[// | cHH Hp1] sEH.
apply/eqP; rewrite eqEsubset sEH andbC /= -defE; apply/subsetP=> x Hx.
by rewrite 3!inE (subsetP sHG) // Hp1 ?(subsetP (centsS _ cHH)) /=.
apply/pElemP; split; first by rewrite -defE -setIA subsetIl.
apply/abelemP=> //; rewrite /abelian -{1 3}defE setIAC subsetIr.
by split=> //; apply/exponentP; rewrite -sub_LdivT setIAC subsetIr.
Qed.
Lemma pmaxElemS p A B :
A \subset B -> 'E*_p(B) :&: subgroups A \subset 'E*_p(A).
Proof.
move=> sAB; apply/subsetP=> E; rewrite !inE.
case/andP=> /maxgroupP[/pElemP[_ abelE] maxE] sEA.
apply/maxgroupP; rewrite inE sEA; split=> // D EpD.
by apply: maxE; apply: subsetP EpD; apply: pElemS.
Qed.
Lemma pmaxElemJ p A E x : ((E :^ x)%G \in 'E*_p(A :^ x)) = (E \in 'E*_p(A)).
Proof.
apply/pmaxElemP/pmaxElemP=> [] [EpE maxE].
rewrite pElemJ in EpE; split=> //= H EpH sEH; apply: (act_inj 'Js x).
by apply: maxE; rewrite ?conjSg ?pElemJ.
rewrite pElemJ; split=> // H; rewrite -(actKV 'JG x H) pElemJ conjSg => EpHx'.
by move/maxE=> /= ->.
Qed.
Lemma grank_min B : 'm(<<B>>) <= #|B|.
Proof.
by rewrite /gen_rank; case: arg_minP => [|_ _ -> //]; rewrite genGid.
Qed.
Lemma grank_witness G : {B | <<B>> = G & #|B| = 'm(G)}.
Proof.
rewrite /gen_rank; case: arg_minP => [|B defG _]; first by rewrite genGid.
by exists B; first apply/eqP.
Qed.
Lemma p_rank_witness p G : {E | E \in 'E_p^('r_p(G))(G)}.
Proof.
have [E EG_E mE]: {E | E \in 'E_p(G) & 'r_p(G) = logn p #|E| }.
by apply: eq_bigmax_cond; rewrite (cardD1 1%G) inE sub1G abelem1.
by exists E; rewrite inE EG_E -mE /=.
Qed.
Lemma p_rank_geP p n G : reflect (exists E, E \in 'E_p^n(G)) (n <= 'r_p(G)).
Proof.
apply: (iffP idP) => [|[E]]; last first.
by rewrite inE => /andP[Ep_E /eqP <-]; rewrite (bigmax_sup E).
have [D /pnElemP[sDG abelD <-]] := p_rank_witness p G.
by case/abelem_pnElem=> // E; exists E; apply: (subsetP (pnElemS _ _ sDG)).
Qed.
Lemma p_rank_gt0 p H : ('r_p(H) > 0) = (p \in \pi(H)).
Proof.
rewrite mem_primes cardG_gt0 /=; apply/p_rank_geP/andP=> [[E] | [p_pr]].
case/pnElemP=> sEG _; rewrite lognE; case: and3P => // [[-> _ pE] _].
by rewrite (dvdn_trans _ (cardSg sEG)).
case/Cauchy=> // x Hx ox; exists <[x]>%G; rewrite 2!inE [#|_|]ox cycle_subG.
by rewrite Hx (pfactorK 1) ?abelemE // cycle_abelian -ox exponent_dvdn.
Qed.
Lemma p_rank1 p : 'r_p([1 gT]) = 0.
Proof. by apply/eqP; rewrite eqn0Ngt p_rank_gt0 /= cards1. Qed.
Lemma logn_le_p_rank p A E : E \in 'E_p(A) -> logn p #|E| <= 'r_p(A).
Proof. by move=> EpA_E; rewrite (bigmax_sup E). Qed.
Lemma p_rank_le_logn p G : 'r_p(G) <= logn p #|G|.
Proof.
have [E EpE] := p_rank_witness p G.
by have [sEG _ <-] := pnElemP EpE; apply: lognSg.
Qed.
Lemma p_rank_abelem p G : p.-abelem G -> 'r_p(G) = logn p #|G|.
Proof.
move=> abelG; apply/eqP; rewrite eqn_leq andbC (bigmax_sup G) //.
by apply/bigmax_leqP=> E; rewrite inE => /andP[/lognSg->].
by rewrite inE subxx.
Qed.
Lemma p_rankS p A B : A \subset B -> 'r_p(A) <= 'r_p(B).
Proof.
move=> sAB; apply/bigmax_leqP=> E /(subsetP (pElemS p sAB)) EpB_E.
by rewrite (bigmax_sup E).
Qed.
Lemma p_rankElem_max p A : 'E_p^('r_p(A))(A) \subset 'E*_p(A).
Proof.
apply/subsetP=> E /setIdP[EpE dimE].
apply/pmaxElemP; split=> // F EpF sEF; apply/eqP.
have pF: p.-group F by case/pElemP: EpF => _ /and3P[].
have pE: p.-group E by case/pElemP: EpE => _ /and3P[].
rewrite eq_sym eqEcard sEF dvdn_leq // (card_pgroup pE) (card_pgroup pF).
by rewrite (eqP dimE) dvdn_exp2l // logn_le_p_rank.
Qed.
Lemma p_rankJ p A x : 'r_p(A :^ x) = 'r_p(A).
Proof.
rewrite /p_rank (reindex_inj (act_inj 'JG x)).
by apply: eq_big => [E | E _]; rewrite ?cardJg ?pElemJ.
Qed.
Lemma p_rank_Sylow p G H : p.-Sylow(G) H -> 'r_p(H) = 'r_p(G).
Proof.
move=> sylH; apply/eqP; rewrite eqn_leq (p_rankS _ (pHall_sub sylH)) /=.
apply/bigmax_leqP=> E; rewrite inE => /andP[sEG abelE].
have [P sylP sEP] := Sylow_superset sEG (abelem_pgroup abelE).
have [x _ ->] := Sylow_trans sylP sylH.
by rewrite p_rankJ -(p_rank_abelem abelE) (p_rankS _ sEP).
Qed.
Lemma p_rank_Hall pi p G H : pi.-Hall(G) H -> p \in pi -> 'r_p(H) = 'r_p(G).
Proof.
move=> hallH pi_p; have [P sylP] := Sylow_exists p H.
by rewrite -(p_rank_Sylow sylP) (p_rank_Sylow (subHall_Sylow hallH pi_p sylP)).
Qed.
Lemma p_rank_pmaxElem_exists p r G :
'r_p(G) >= r -> exists2 E, E \in 'E*_p(G) & 'r_p(E) >= r.
Proof.
case/p_rank_geP=> D /setIdP[EpD /eqP <- {r}].
have [E EpE sDE] := pmaxElem_exists EpD; exists E => //.
case/pmaxElemP: EpE => /setIdP[_ abelE] _.
by rewrite (p_rank_abelem abelE) lognSg.
Qed.
Lemma rank1 : 'r([1 gT]) = 0.
Proof. by rewrite ['r(1)]big1_seq // => p _; rewrite p_rank1. Qed.
Lemma p_rank_le_rank p G : 'r_p(G) <= 'r(G).
Proof.
case: (posnP 'r_p(G)) => [-> //|]; rewrite p_rank_gt0 mem_primes.
case/and3P=> p_pr _ pG; have lepg: p < #|G|.+1 by rewrite ltnS dvdn_leq.
by rewrite ['r(G)]big_mkord (bigmax_sup (Ordinal lepg)).
Qed.
Lemma rank_gt0 G : ('r(G) > 0) = (G :!=: 1).
Proof.
case: (eqsVneq G 1) => [-> |]; first by rewrite rank1.
case: (trivgVpdiv G) => [-> | [p p_pr]]; first by rewrite eqxx.
case/Cauchy=> // x Gx oxp _; apply: leq_trans (p_rank_le_rank p G).
have EpGx: <[x]>%G \in 'E_p(G).
by rewrite inE cycle_subG Gx abelemE // cycle_abelian -oxp exponent_dvdn.
by apply: leq_trans (logn_le_p_rank EpGx); rewrite -orderE oxp logn_prime ?eqxx.
Qed.
Lemma rank_witness G : {p | prime p & 'r(G) = 'r_p(G)}.
Proof.
have [p _ defmG]: {p : 'I_(#|G|.+1) | true & 'r(G) = 'r_p(G)}.
by rewrite ['r(G)]big_mkord; apply: eq_bigmax_cond; rewrite card_ord.
case: (eqsVneq G 1) => [-> | ]; first by exists 2; rewrite // rank1 p_rank1.
by rewrite -rank_gt0 defmG p_rank_gt0 mem_primes; case/andP; exists p.
Qed.
Lemma rank_pgroup p G : p.-group G -> 'r(G) = 'r_p(G).
Proof.
move=> pG; apply/eqP; rewrite eqn_leq p_rank_le_rank andbT.
rewrite ['r(G)]big_mkord; apply/bigmax_leqP=> [[q /= _] _].
case: (posnP 'r_q(G)) => [-> // |]; rewrite p_rank_gt0 mem_primes.
by case/and3P=> q_pr _ qG; rewrite (eqnP (pgroupP pG q q_pr qG)).
Qed.
Lemma rank_Sylow p G P : p.-Sylow(G) P -> 'r(P) = 'r_p(G).
Proof.
move=> sylP; have pP := pHall_pgroup sylP.
by rewrite -(p_rank_Sylow sylP) -(rank_pgroup pP).
Qed.
Lemma rank_abelem p G : p.-abelem G -> 'r(G) = logn p #|G|.
Proof.
by move=> abelG; rewrite (rank_pgroup (abelem_pgroup abelG)) p_rank_abelem.
Qed.
Lemma nt_pnElem p n E A : E \in 'E_p^n(A) -> n > 0 -> E :!=: 1.
Proof. by case/pnElemP=> _ /rank_abelem <- <-; rewrite rank_gt0. Qed.
Lemma rankJ A x : 'r(A :^ x) = 'r(A).
Proof. by rewrite /rank cardJg; apply: eq_bigr => p _; rewrite p_rankJ. Qed.
Lemma rankS A B : A \subset B -> 'r(A) <= 'r(B).
Proof.
move=> sAB; rewrite /rank !big_mkord; apply/bigmax_leqP=> p _.
have leAB: #|A| < #|B|.+1 by rewrite ltnS subset_leq_card.
by rewrite (bigmax_sup (widen_ord leAB p)) // p_rankS.
Qed.
Lemma rank_geP n G : reflect (exists E, E \in 'E^n(G)) (n <= 'r(G)).
Proof.
apply: (iffP idP) => [|[E]].
have [p _ ->] := rank_witness G; case/p_rank_geP=> E.
by rewrite def_pnElem; case/setIP; exists E.
case/nElemP=> p; rewrite inE => /andP[EpG_E /eqP <-].
by rewrite (leq_trans (logn_le_p_rank EpG_E)) ?p_rank_le_rank.
Qed.
End ExponentAbelem.
Arguments LdivP {gT A n x}.
Arguments exponentP {gT A n}.
Arguments abelemP {gT p G}.
Arguments is_abelemP {gT G}.
Arguments pElemP {gT p A E}.
Arguments pnElemP {gT p n A E}.
Arguments nElemP {gT n G E}.
Arguments nElem1P {gT G E}.
Arguments pmaxElemP {gT p A E}.
Arguments pmaxElem_LdivP {gT p G E}.
Arguments p_rank_geP {gT p n G}.
Arguments rank_geP {gT n G}.
Section MorphAbelem.
Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}).
Implicit Types (G H E : {group aT}) (A B : {set aT}).
Lemma exponent_morphim G : exponent (f @* G) %| exponent G.
Proof.
apply/exponentP=> _ /morphimP[x Dx Gx ->].
by rewrite -morphX // expg_exponent // morph1.
Qed.
Lemma morphim_LdivT n : f @* 'Ldiv_n() \subset 'Ldiv_n().
Proof.
apply/subsetP=> _ /morphimP[x Dx xn ->]; rewrite inE in xn.
by rewrite inE -morphX // (eqP xn) morph1.
Qed.
Lemma morphim_Ldiv n A : f @* 'Ldiv_n(A) \subset 'Ldiv_n(f @* A).
Proof.
by apply: subset_trans (morphimI f A _) (setIS _ _); apply: morphim_LdivT.
Qed.
Lemma morphim_abelem p G : p.-abelem G -> p.-abelem (f @* G).
Proof.
case: (eqsVneq G 1) => [-> | ntG] abelG; first by rewrite morphim1 abelem1.
have [p_pr _ _] := pgroup_pdiv (abelem_pgroup abelG) ntG.
case/abelemP: abelG => // abG elemG; apply/abelemP; rewrite ?morphim_abelian //.
by split=> // _ /morphimP[x Dx Gx ->]; rewrite -morphX // elemG ?morph1.
Qed.
Lemma morphim_pElem p G E : E \in 'E_p(G) -> (f @* E)%G \in 'E_p(f @* G).
Proof.
by rewrite !inE => /andP[sEG abelE]; rewrite morphimS // morphim_abelem.
Qed.
Lemma morphim_pnElem p n G E :
E \in 'E_p^n(G) -> {m | m <= n & (f @* E)%G \in 'E_p^m(f @* G)}.
Proof.
rewrite inE => /andP[EpE /eqP <-].
by exists (logn p #|f @* E|); rewrite ?logn_morphim // inE morphim_pElem /=.
Qed.
Lemma morphim_grank G : G \subset D -> 'm(f @* G) <= 'm(G).
Proof.
have [B defG <-] := grank_witness G; rewrite -defG gen_subG => sBD.
by rewrite morphim_gen ?morphimEsub ?(leq_trans (grank_min _)) ?leq_imset_card.
Qed.
(* There are no general morphism relations for the p-rank. We later prove *)
(* some relations for the p-rank of a quotient in the QuotientAbelem section. *)
End MorphAbelem.
Section InjmAbelem.
Variables (aT rT : finGroupType) (D G : {group aT}) (f : {morphism D >-> rT}).
Hypotheses (injf : 'injm f) (sGD : G \subset D).
Let defG : invm injf @* (f @* G) = G := morphim_invm injf sGD.
Lemma exponent_injm : exponent (f @* G) = exponent G.
Proof. by apply/eqP; rewrite eqn_dvd -{3}defG !exponent_morphim. Qed.
Lemma injm_Ldiv n A : f @* 'Ldiv_n(A) = 'Ldiv_n(f @* A).
Proof.
apply/eqP; rewrite eqEsubset morphim_Ldiv.
rewrite -[f @* 'Ldiv_n(A)](morphpre_invm injf).
rewrite -sub_morphim_pre; last by rewrite subIset ?morphim_sub.
rewrite injmI ?injm_invm // setISS ?morphim_LdivT //.
by rewrite sub_morphim_pre ?morphim_sub // morphpre_invm.
Qed.
Lemma injm_abelem p : p.-abelem (f @* G) = p.-abelem G.
Proof. by apply/idP/idP; first rewrite -{2}defG; apply: morphim_abelem. Qed.
Lemma injm_pElem p (E : {group aT}) :
E \subset D -> ((f @* E)%G \in 'E_p(f @* G)) = (E \in 'E_p(G)).
Proof.
move=> sED; apply/idP/idP=> EpE; last exact: morphim_pElem.
by rewrite -defG -(group_inj (morphim_invm injf sED)) morphim_pElem.
Qed.
Lemma injm_pnElem p n (E : {group aT}) :
E \subset D -> ((f @* E)%G \in 'E_p^n(f @* G)) = (E \in 'E_p^n(G)).
Proof. by move=> sED; rewrite inE injm_pElem // card_injm ?inE. Qed.
Lemma injm_nElem n (E : {group aT}) :
E \subset D -> ((f @* E)%G \in 'E^n(f @* G)) = (E \in 'E^n(G)).
Proof.
move=> sED; apply/nElemP/nElemP=> [] [p EpE];
by exists p; rewrite injm_pnElem in EpE *.
Qed.
Lemma injm_pmaxElem p (E : {group aT}) :
E \subset D -> ((f @* E)%G \in 'E*_p(f @* G)) = (E \in 'E*_p(G)).
Proof.
move=> sED; have defE := morphim_invm injf sED.
apply/pmaxElemP/pmaxElemP=> [] [EpE maxE].
split=> [|H EpH sEH]; first by rewrite injm_pElem in EpE.
have sHD: H \subset D by apply: subset_trans (sGD); case/pElemP: EpH.
by rewrite -(morphim_invm injf sHD) [f @* H]maxE ?morphimS ?injm_pElem.
rewrite injm_pElem //; split=> // fH Ep_fH sfEH; have [sfHG _] := pElemP Ep_fH.
have sfHD : fH \subset f @* D by rewrite (subset_trans sfHG) ?morphimS.
rewrite -(morphpreK sfHD); congr (f @* _).
rewrite [_ @*^-1 fH]maxE -?sub_morphim_pre //.
by rewrite -injm_pElem ?subsetIl // (group_inj (morphpreK sfHD)).
Qed.
Lemma injm_grank : 'm(f @* G) = 'm(G).
Proof. by apply/eqP; rewrite eqn_leq -{3}defG !morphim_grank ?morphimS. Qed.
Lemma injm_p_rank p : 'r_p(f @* G) = 'r_p(G).
Proof.
apply/eqP; rewrite eqn_leq; apply/andP; split.
have [fE] := p_rank_witness p (f @* G); move: 'r_p(_) => n Ep_fE.
apply/p_rank_geP; exists (f @*^-1 fE)%G.
rewrite -injm_pnElem ?subsetIl ?(group_inj (morphpreK _)) //.
by case/pnElemP: Ep_fE => sfEG _ _; rewrite (subset_trans sfEG) ?morphimS.
have [E] := p_rank_witness p G; move: 'r_p(_) => n EpE.
apply/p_rank_geP; exists (f @* E)%G; rewrite injm_pnElem //.
by case/pnElemP: EpE => sEG _ _; rewrite (subset_trans sEG).
Qed.
Lemma injm_rank : 'r(f @* G) = 'r(G).
Proof.
apply/eqP; rewrite eqn_leq; apply/andP; split.
by have [p _ ->] := rank_witness (f @* G); rewrite injm_p_rank p_rank_le_rank.
by have [p _ ->] := rank_witness G; rewrite -injm_p_rank p_rank_le_rank.
Qed.
End InjmAbelem.
Section IsogAbelem.
Variables (aT rT : finGroupType) (G : {group aT}) (H : {group rT}).
Hypothesis isoGH : G \isog H.
Lemma exponent_isog : exponent G = exponent H.
Proof. by case/isogP: isoGH => f injf <-; rewrite exponent_injm. Qed.
Lemma isog_abelem p : p.-abelem G = p.-abelem H.
Proof. by case/isogP: isoGH => f injf <-; rewrite injm_abelem. Qed.
Lemma isog_grank : 'm(G) = 'm(H).
Proof. by case/isogP: isoGH => f injf <-; rewrite injm_grank. Qed.
Lemma isog_p_rank p : 'r_p(G) = 'r_p(H).
Proof. by case/isogP: isoGH => f injf <-; rewrite injm_p_rank. Qed.
Lemma isog_rank : 'r(G) = 'r(H).
Proof. by case/isogP: isoGH => f injf <-; rewrite injm_rank. Qed.
End IsogAbelem.
Section QuotientAbelem.
Variables (gT : finGroupType) (p : nat).
Implicit Types E G K H : {group gT}.
Lemma exponent_quotient G H : exponent (G / H) %| exponent G.
Proof. exact: exponent_morphim. Qed.
Lemma quotient_LdivT n H : 'Ldiv_n() / H \subset 'Ldiv_n().
Proof. exact: morphim_LdivT. Qed.
Lemma quotient_Ldiv n A H : 'Ldiv_n(A) / H \subset 'Ldiv_n(A / H).
Proof. exact: morphim_Ldiv. Qed.
Lemma quotient_abelem G H : p.-abelem G -> p.-abelem (G / H).
Proof. exact: morphim_abelem. Qed.
Lemma quotient_pElem G H E : E \in 'E_p(G) -> (E / H)%G \in 'E_p(G / H).
Proof. exact: morphim_pElem. Qed.
Lemma logn_quotient G H : logn p #|G / H| <= logn p #|G|.
Proof. exact: logn_morphim. Qed.
Lemma quotient_pnElem G H n E :
E \in 'E_p^n(G) -> {m | m <= n & (E / H)%G \in 'E_p^m(G / H)}.
Proof. exact: morphim_pnElem. Qed.
Lemma quotient_grank G H : G \subset 'N(H) -> 'm(G / H) <= 'm(G).
Proof. exact: morphim_grank. Qed.
Lemma p_rank_quotient G H : G \subset 'N(H) -> 'r_p(G) - 'r_p(H) <= 'r_p(G / H).
Proof.
move=> nHG; rewrite leq_subLR.
have [E EpE] := p_rank_witness p G; have{EpE} [sEG abelE <-] := pnElemP EpE.
rewrite -(LagrangeI E H) lognM ?cardG_gt0 //.
rewrite -card_quotient ?(subset_trans sEG) // leq_add ?logn_le_p_rank // !inE.
by rewrite subsetIr (abelemS (subsetIl E H)).
by rewrite quotientS ?quotient_abelem.
Qed.
Lemma p_rank_dprod K H G : K \x H = G -> 'r_p(K) + 'r_p(H) = 'r_p(G).
Proof.
move=> defG; apply/eqP; rewrite eqn_leq -leq_subLR andbC.
have [_ defKH cKH tiKH] := dprodP defG; have nKH := cents_norm cKH.
rewrite {1}(isog_p_rank (quotient_isog nKH tiKH)) /= -quotientMidl defKH.
rewrite p_rank_quotient; last by rewrite -defKH mul_subG ?normG.
have [[E EpE] [F EpF]] := (p_rank_witness p K, p_rank_witness p H).
have [[sEK abelE <-] [sFH abelF <-]] := (pnElemP EpE, pnElemP EpF).
have defEF: E \x F = E <*> F.
by rewrite dprodEY ?(centSS sFH sEK) //; apply/trivgP; rewrite -tiKH setISS.
apply/p_rank_geP; exists (E <*> F)%G; rewrite !inE (dprod_abelem p defEF).
rewrite -lognM ?cargG_gt0 // (dprod_card defEF) abelE abelF eqxx.
by rewrite -(genGid G) -defKH genM_join genS ?setUSS.
Qed.
Lemma p_rank_p'quotient G H :
(p : nat)^'.-group H -> G \subset 'N(H) -> 'r_p(G / H) = 'r_p(G).
Proof.
move=> p'H nHG; have [P sylP] := Sylow_exists p G.
have [sPG pP _] := and3P sylP; have nHP := subset_trans sPG nHG.
have tiHP: H :&: P = 1 := coprime_TIg (p'nat_coprime p'H pP).
rewrite -(p_rank_Sylow sylP) -(p_rank_Sylow (quotient_pHall nHP sylP)).
by rewrite (isog_p_rank (quotient_isog nHP tiHP)).
Qed.
End QuotientAbelem.
Section OhmProps.
Section Generic.
Variables (n : nat) (gT : finGroupType).
Implicit Types (p : nat) (x : gT) (rT : finGroupType).
Implicit Types (A B : {set gT}) (D G H : {group gT}).
Lemma Ohm_sub G : 'Ohm_n(G) \subset G.
Proof. by rewrite gen_subG; apply/subsetP=> x /setIdP[]. Qed.
Lemma Ohm1 : 'Ohm_n([1 gT]) = 1. Proof. exact: (trivgP (Ohm_sub _)). Qed.
Lemma Ohm_id G : 'Ohm_n('Ohm_n(G)) = 'Ohm_n(G).
Proof.
apply/eqP; rewrite eqEsubset Ohm_sub genS //.
by apply/subsetP=> x /setIdP[Gx oxn]; rewrite inE mem_gen // inE Gx.
Qed.
Lemma Ohm_cont rT G (f : {morphism G >-> rT}) :
f @* 'Ohm_n(G) \subset 'Ohm_n(f @* G).
Proof.
rewrite morphim_gen ?genS //; last by rewrite -gen_subG Ohm_sub.
apply/subsetP=> fx /morphimP[x Gx]; rewrite inE Gx /=.
case/OhmPredP=> p p_pr xpn_1 -> {fx}.
rewrite inE morphimEdom mem_imset //=; apply/OhmPredP; exists p => //.
by rewrite -morphX // xpn_1 morph1.
Qed.
Lemma OhmS H G : H \subset G -> 'Ohm_n(H) \subset 'Ohm_n(G).
Proof.
move=> sHG; apply: genS; apply/subsetP=> x; rewrite !inE => /andP[Hx ->].
by rewrite (subsetP sHG).
Qed.
Lemma OhmE p G : p.-group G -> 'Ohm_n(G) = <<'Ldiv_(p ^ n)(G)>>.
Proof.
move=> pG; congr <<_>>; apply/setP=> x; rewrite !inE; apply: andb_id2l => Gx.
case: (eqVneq x 1) => [-> | ntx]; first by rewrite !expg1n.
by rewrite (pdiv_p_elt (mem_p_elt pG Gx)).
Qed.
Lemma OhmEabelian p G :
p.-group G -> abelian 'Ohm_n(G) -> 'Ohm_n(G) = 'Ldiv_(p ^ n)(G).
Proof.
move=> pG; rewrite (OhmE pG) abelian_gen => cGGn; rewrite gen_set_id //.
rewrite -(setIidPr (subset_gen 'Ldiv_(p ^ n)(G))) setIA.
by rewrite [_ :&: G](setIidPl _) ?gen_subG ?subsetIl // group_Ldiv ?abelian_gen.
Qed.
Lemma Ohm_p_cycle p x :
p.-elt x -> 'Ohm_n(<[x]>) = <[x ^+ (p ^ (logn p #[x] - n))]>.
Proof.
move=> p_x; apply/eqP; rewrite (OhmE p_x) eqEsubset cycle_subG mem_gen.
rewrite gen_subG andbT; apply/subsetP=> y /LdivP[x_y ypn].
case: (leqP (logn p #[x]) n) => [|lt_n_x].
by rewrite -subn_eq0 => /eqP->.
have p_pr: prime p by move: lt_n_x; rewrite lognE; case: (prime p).
have def_y: <[y]> = <[x ^+ (#[x] %/ #[y])]>.
apply: congr_group; apply/set1P.
by rewrite -cycle_sub_group ?cardSg ?inE ?cycle_subG ?x_y /=.
rewrite -cycle_subG def_y cycle_subG -{1}(part_pnat_id p_x) p_part.
rewrite -{1}(subnK (ltnW lt_n_x)) expnD -muln_divA ?order_dvdn ?ypn //.
by rewrite expgM mem_cycle.
rewrite !inE mem_cycle -expgM -expnD addnC -maxnE -order_dvdn.
by rewrite -{1}(part_pnat_id p_x) p_part dvdn_exp2l ?leq_maxr.
Qed.
Lemma Ohm_dprod A B G : A \x B = G -> 'Ohm_n(A) \x 'Ohm_n(B) = 'Ohm_n(G).
Proof.
case/dprodP => [[H K -> ->{A B}]] <- cHK tiHK.
rewrite dprodEY //; last first.
- by apply/trivgP; rewrite -tiHK setISS ?Ohm_sub.
- by rewrite (subset_trans (subset_trans _ cHK)) ?centS ?Ohm_sub.
apply/eqP; rewrite -(cent_joinEr cHK) eqEsubset join_subG /=.
rewrite !OhmS ?joing_subl ?joing_subr //= cent_joinEr //= -genM_join genS //.
apply/subsetP=> _ /setIdP[/imset2P[x y Hx Ky ->] /OhmPredP[p p_pr /eqP]].
have cxy: commute x y by red; rewrite -(centsP cHK).
rewrite ?expgMn // -eq_invg_mul => /eqP def_x.
have ypn1: y ^+ (p ^ n) = 1.
by apply/set1P; rewrite -[[set 1]]tiHK inE -{1}def_x groupV !groupX.
have xpn1: x ^+ (p ^ n) = 1 by rewrite -[x ^+ _]invgK def_x ypn1 invg1.
by rewrite mem_mulg ?mem_gen // inE (Hx, Ky); apply/OhmPredP; exists p.
Qed.
Lemma Mho_sub G : 'Mho^n(G) \subset G.
Proof.
rewrite gen_subG; apply/subsetP=> _ /imsetP[x /setIdP[Gx _] ->].
exact: groupX.
Qed.
Lemma Mho1 : 'Mho^n([1 gT]) = 1. Proof. exact: (trivgP (Mho_sub _)). Qed.
Lemma morphim_Mho rT D G (f : {morphism D >-> rT}) :
G \subset D -> f @* 'Mho^n(G) = 'Mho^n(f @* G).
Proof.
move=> sGD; have sGnD := subset_trans (Mho_sub G) sGD.
apply/eqP; rewrite eqEsubset {1}morphim_gen -1?gen_subG // !gen_subG.
apply/andP; split; apply/subsetP=> y.
case/morphimP=> xpn _ /imsetP[x /setIdP[Gx]].
set p := pdiv _ => p_x -> -> {xpn y}; have Dx := subsetP sGD x Gx.
by rewrite morphX // Mho_p_elt ?morph_p_elt ?mem_morphim.
case/imsetP=> _ /setIdP[/morphimP[x Dx Gx ->]].
set p := pdiv _ => p_fx ->{y}; rewrite -(constt_p_elt p_fx) -morph_constt //.
by rewrite -morphX ?mem_morphim ?Mho_p_elt ?groupX ?p_elt_constt.
Qed.
Lemma Mho_cont rT G (f : {morphism G >-> rT}) :
f @* 'Mho^n(G) \subset 'Mho^n(f @* G).
Proof. by rewrite morphim_Mho. Qed.
Lemma MhoS H G : H \subset G -> 'Mho^n(H) \subset 'Mho^n(G).
Proof.
move=> sHG; apply: genS; apply: imsetS; apply/subsetP=> x.
by rewrite !inE => /andP[Hx]; rewrite (subsetP sHG).
Qed.
Lemma MhoE p G : p.-group G -> 'Mho^n(G) = <<[set x ^+ (p ^ n) | x in G]>>.
Proof.
move=> pG; apply/eqP; rewrite eqEsubset !gen_subG; apply/andP.
do [split; apply/subsetP=> xpn; case/imsetP=> x] => [|Gx ->]; last first.
by rewrite Mho_p_elt ?(mem_p_elt pG).
case/setIdP=> Gx _ ->; have [-> | ntx] := eqVneq x 1; first by rewrite expg1n.
by rewrite (pdiv_p_elt (mem_p_elt pG Gx) ntx) mem_gen //; apply: mem_imset.
Qed.
Lemma MhoEabelian p G :
p.-group G -> abelian G -> 'Mho^n(G) = [set x ^+ (p ^ n) | x in G].
Proof.
move=> pG cGG; rewrite (MhoE pG); rewrite gen_set_id //; apply/group_setP.
split=> [|xn yn]; first by apply/imsetP; exists 1; rewrite ?expg1n.
case/imsetP=> x Gx ->; case/imsetP=> y Gy ->.
by rewrite -expgMn; [apply: mem_imset; rewrite groupM | apply: (centsP cGG)].
Qed.
Lemma trivg_Mho G : 'Mho^n(G) == 1 -> 'Ohm_n(G) == G.
Proof.
rewrite -subG1 gen_subG eqEsubset Ohm_sub /= => Gp1.
rewrite -{1}(Sylow_gen G) genS //; apply/bigcupsP=> P.
case/SylowP=> p p_pr /and3P[sPG pP _]; apply/subsetP=> x Px.
have Gx := subsetP sPG x Px; rewrite inE Gx //=.
rewrite (sameP eqP set1P) (subsetP Gp1) ?mem_gen //; apply: mem_imset.
by rewrite inE Gx; apply: pgroup_p (mem_p_elt pP Px).
Qed.
Lemma Mho_p_cycle p x : p.-elt x -> 'Mho^n(<[x]>) = <[x ^+ (p ^ n)]>.
Proof.
move=> p_x.
apply/eqP; rewrite (MhoE p_x) eqEsubset cycle_subG mem_gen; last first.
by apply: mem_imset; apply: cycle_id.
rewrite gen_subG andbT; apply/subsetP=> _ /imsetP[_ /cycleP[k ->] ->].
by rewrite -expgM mulnC expgM mem_cycle.
Qed.
Lemma Mho_cprod A B G : A \* B = G -> 'Mho^n(A) \* 'Mho^n(B) = 'Mho^n(G).
Proof.
case/cprodP => [[H K -> ->{A B}]] <- cHK; rewrite cprodEY //; last first.
by rewrite (subset_trans (subset_trans _ cHK)) ?centS ?Mho_sub.
apply/eqP; rewrite -(cent_joinEr cHK) eqEsubset join_subG /=.
rewrite !MhoS ?joing_subl ?joing_subr //= cent_joinEr // -genM_join.
apply: genS; apply/subsetP=> xypn /imsetP[_ /setIdP[/imset2P[x y Hx Ky ->]]].
move/constt_p_elt; move: (pdiv _) => p <- ->.
have cxy: commute x y by red; rewrite -(centsP cHK).
rewrite consttM // expgMn; last exact: commuteX2.
by rewrite mem_mulg ?Mho_p_elt ?groupX ?p_elt_constt.
Qed.
Lemma Mho_dprod A B G : A \x B = G -> 'Mho^n(A) \x 'Mho^n(B) = 'Mho^n(G).
Proof.
case/dprodP => [[H K -> ->{A B}]] defG cHK tiHK.
rewrite dprodEcp; first by apply: Mho_cprod; rewrite cprodE.
by apply/trivgP; rewrite -tiHK setISS ?Mho_sub.
Qed.
End Generic.
Canonical Ohm_igFun i := [igFun by Ohm_sub i & Ohm_cont i].
Canonical Ohm_gFun i := [gFun by Ohm_cont i].
Canonical Ohm_mgFun i := [mgFun by OhmS i].
Canonical Mho_igFun i := [igFun by Mho_sub i & Mho_cont i].
Canonical Mho_gFun i := [gFun by Mho_cont i].
Canonical Mho_mgFun i := [mgFun by MhoS i].
Section char.
Variables (n : nat) (gT rT : finGroupType) (D G : {group gT}).
Lemma Ohm_char : 'Ohm_n(G) \char G. Proof. exact: gFchar. Qed.
Lemma Ohm_normal : 'Ohm_n(G) <| G. Proof. exact: gFnormal. Qed.
Lemma Mho_char : 'Mho^n(G) \char G. Proof. exact: gFchar. Qed.
Lemma Mho_normal : 'Mho^n(G) <| G. Proof. exact: gFnormal. Qed.
Lemma morphim_Ohm (f : {morphism D >-> rT}) :
G \subset D -> f @* 'Ohm_n(G) \subset 'Ohm_n(f @* G).
Proof. exact: morphimF. Qed.
Lemma injm_Ohm (f : {morphism D >-> rT}) :
'injm f -> G \subset D -> f @* 'Ohm_n(G) = 'Ohm_n(f @* G).
Proof. by move=> injf; apply: injmF. Qed.
Lemma isog_Ohm (H : {group rT}) : G \isog H -> 'Ohm_n(G) \isog 'Ohm_n(H).
Proof. exact: gFisog. Qed.
Lemma isog_Mho (H : {group rT}) : G \isog H -> 'Mho^n(G) \isog 'Mho^n(H).
Proof. exact: gFisog. Qed.
End char.
Variable gT : finGroupType.
Implicit Types (pi : nat_pred) (p : nat).
Implicit Types (A B C : {set gT}) (D G H E : {group gT}).
Lemma Ohm0 G : 'Ohm_0(G) = 1.
Proof.
apply/trivgP; rewrite /= gen_subG.
by apply/subsetP=> x /setIdP[_]; rewrite inE.
Qed.
Lemma Ohm_leq m n G : m <= n -> 'Ohm_m(G) \subset 'Ohm_n(G).
Proof.
move/subnKC <-; rewrite genS //; apply/subsetP=> y.
by rewrite !inE expnD expgM => /andP[-> /eqP->]; rewrite expg1n /=.
Qed.
Lemma OhmJ n G x : 'Ohm_n(G :^ x) = 'Ohm_n(G) :^ x.
Proof.
rewrite -{1}(setIid G) -(setIidPr (Ohm_sub n G)).
by rewrite -!morphim_conj injm_Ohm ?injm_conj.
Qed.
Lemma Mho0 G : 'Mho^0(G) = G.
Proof.
apply/eqP; rewrite eqEsubset Mho_sub /=.
apply/subsetP=> x Gx; rewrite -[x]prod_constt group_prod // => p _.
exact: Mho_p_elt (groupX _ Gx) (p_elt_constt _ _).
Qed.
Lemma Mho_leq m n G : m <= n -> 'Mho^n(G) \subset 'Mho^m(G).
Proof.
move/subnKC <-; rewrite gen_subG //.
apply/subsetP=> _ /imsetP[x /setIdP[Gx p_x] ->].
by rewrite expnD expgM groupX ?(Mho_p_elt _ _ p_x).
Qed.
Lemma MhoJ n G x : 'Mho^n(G :^ x) = 'Mho^n(G) :^ x.
Proof.
by rewrite -{1}(setIid G) -(setIidPr (Mho_sub n G)) -!morphim_conj morphim_Mho.
Qed.
Lemma extend_cyclic_Mho G p x :
p.-group G -> x \in G -> 'Mho^1(G) = <[x ^+ p]> ->
forall k, k > 0 -> 'Mho^k(G) = <[x ^+ (p ^ k)]>.
Proof.
move=> pG Gx defG1 [//|k _]; have pX := mem_p_elt pG Gx.
apply/eqP; rewrite eqEsubset cycle_subG (Mho_p_elt _ Gx pX) andbT.
rewrite (MhoE _ pG) gen_subG; apply/subsetP=> ypk; case/imsetP=> y Gy ->{ypk}.
have: y ^+ p \in <[x ^+ p]> by rewrite -defG1 (Mho_p_elt 1 _ (mem_p_elt pG Gy)).
rewrite !expnS /= !expgM => /cycleP[j ->].
by rewrite -!expgM mulnCA mulnC expgM mem_cycle.
Qed.
Lemma Ohm1Eprime G : 'Ohm_1(G) = <<[set x in G | prime #[x]]>>.
Proof.
rewrite -['Ohm_1(G)](genD1 (group1 _)); congr <<_>>.
apply/setP=> x; rewrite !inE andbCA -order_dvdn -order_gt1; congr (_ && _).
apply/andP/idP=> [[p_gt1] | p_pr]; last by rewrite prime_gt1 ?pdiv_id.
set p := pdiv _ => ox_p; have p_pr: prime p by rewrite pdiv_prime.
by have [_ dv_p] := primeP p_pr; case/pred2P: (dv_p _ ox_p) p_gt1 => ->.
Qed.
Lemma abelem_Ohm1 p G : p.-group G -> p.-abelem 'Ohm_1(G) = abelian 'Ohm_1(G).
Proof.
move=> pG; rewrite /abelem (pgroupS (Ohm_sub 1 G)) //.
case abG1: (abelian _) => //=; apply/exponentP=> x.
by rewrite (OhmEabelian pG abG1); case/LdivP.
Qed.
Lemma Ohm1_abelem p G : p.-group G -> abelian G -> p.-abelem ('Ohm_1(G)).
Proof. by move=> pG cGG; rewrite abelem_Ohm1 ?(abelianS (Ohm_sub 1 G)). Qed.
Lemma Ohm1_id p G : p.-abelem G -> 'Ohm_1(G) = G.
Proof.
case/and3P=> pG cGG /exponentP Gp.
apply/eqP; rewrite eqEsubset Ohm_sub (OhmE 1 pG) sub_gen //.
by apply/subsetP=> x Gx; rewrite !inE Gx Gp /=.
Qed.
Lemma abelem_Ohm1P p G :
abelian G -> p.-group G -> reflect ('Ohm_1(G) = G) (p.-abelem G).
Proof.
move=> cGG pG.
by apply: (iffP idP) => [| <-]; [apply: Ohm1_id | apply: Ohm1_abelem].
Qed.
Lemma TI_Ohm1 G H : H :&: 'Ohm_1(G) = 1 -> H :&: G = 1.
Proof.
move=> tiHG1; case: (trivgVpdiv (H :&: G)) => // [[p pr_p]].
case/Cauchy=> // x /setIP[Hx Gx] ox.
suffices x1: x \in [1] by rewrite -ox (set1P x1) order1 in pr_p.
by rewrite -{}tiHG1 inE Hx Ohm1Eprime mem_gen // inE Gx ox.
Qed.
Lemma Ohm1_eq1 G : ('Ohm_1(G) == 1) = (G :==: 1).
Proof.
apply/idP/idP => [/eqP G1_1 | /eqP->]; last by rewrite -subG1 Ohm_sub.
by rewrite -(setIid G) TI_Ohm1 // G1_1 setIg1.
Qed.
Lemma meet_Ohm1 G H : G :&: H != 1 -> G :&: 'Ohm_1(H) != 1.
Proof. by apply: contraNneq => /TI_Ohm1->. Qed.
Lemma Ohm1_cent_max G E p : E \in 'E*_p(G) -> p.-group G -> 'Ohm_1('C_G(E)) = E.
Proof.
move=> EpmE pG; have [G1 | ntG]:= eqsVneq G 1.
case/pmaxElemP: EpmE; case/pElemP; rewrite G1 => /trivgP-> _ _.
by apply/trivgP; rewrite cent1T setIT Ohm_sub.
have [p_pr _ _] := pgroup_pdiv pG ntG.
by rewrite (OhmE 1 (pgroupS (subsetIl G _) pG)) (pmaxElem_LdivP _ _) ?genGid.
Qed.
Lemma Ohm1_cyclic_pgroup_prime p G :
cyclic G -> p.-group G -> G :!=: 1 -> #|'Ohm_1(G)| = p.
Proof.
move=> cycG pG ntG; set K := 'Ohm_1(G).
have abelK: p.-abelem K by rewrite Ohm1_abelem ?cyclic_abelian.
have sKG: K \subset G := Ohm_sub 1 G.
case/cyclicP: (cyclicS sKG cycG) => x /=; rewrite -/K => defK.
rewrite defK -orderE (abelem_order_p abelK) //= -/K ?defK ?cycle_id //.
rewrite -cycle_eq1 -defK -(setIidPr sKG).
by apply: contraNneq ntG => /TI_Ohm1; rewrite setIid => ->.
Qed.
Lemma cyclic_pgroup_dprod_trivg p A B C :
p.-group C -> cyclic C -> A \x B = C ->
A = 1 /\ B = C \/ B = 1 /\ A = C.
Proof.
move=> pC cycC; case/cyclicP: cycC pC => x ->{C} pC defC.
case/dprodP: defC => [] [G H -> ->{A B}] defC _ tiGH; rewrite -defC.
case: (eqVneq <[x]> 1) => [|ntC].
move/trivgP; rewrite -defC mulG_subG => /andP[/trivgP-> _].
by rewrite mul1g; left.
have [pr_p _ _] := pgroup_pdiv pC ntC; pose K := 'Ohm_1(<[x]>).
have prK : prime #|K| by rewrite (Ohm1_cyclic_pgroup_prime _ pC) ?cycle_cyclic.
case: (prime_subgroupVti G prK) => [sKG |]; last first.
move/TI_Ohm1; rewrite -defC (setIidPl (mulG_subl _ _)) => ->.
by left; rewrite mul1g.
case: (prime_subgroupVti H prK) => [sKH |]; last first.
move/TI_Ohm1; rewrite -defC (setIidPl (mulG_subr _ _)) => ->.
by right; rewrite mulg1.
have K1: K :=: 1 by apply/trivgP; rewrite -tiGH subsetI sKG.
by rewrite K1 cards1 in prK.
Qed.
Lemma piOhm1 G : \pi('Ohm_1(G)) = \pi(G).
Proof.
apply/eq_piP => p; apply/idP/idP; first exact: (piSg (Ohm_sub 1 G)).
rewrite !mem_primes !cardG_gt0 => /andP[p_pr /Cauchy[] // x Gx oxp].
by rewrite p_pr -oxp order_dvdG //= Ohm1Eprime mem_gen // inE Gx oxp.
Qed.
Lemma Ohm1Eexponent p G :
prime p -> exponent 'Ohm_1(G) %| p -> 'Ohm_1(G) = 'Ldiv_p(G).
Proof.
move=> p_pr expG1p; have pG: p.-group G.
apply: sub_in_pnat (pnat_pi (cardG_gt0 G)) => q _.
rewrite -piOhm1 mem_primes; case/and3P=> q_pr _; apply: pgroupP q_pr.
by rewrite -pnat_exponent (pnat_dvd expG1p) ?pnat_id.
apply/eqP; rewrite eqEsubset {2}(OhmE 1 pG) subset_gen subsetI Ohm_sub.
by rewrite sub_LdivT expG1p.
Qed.
Lemma p_rank_Ohm1 p G : 'r_p('Ohm_1(G)) = 'r_p(G).
Proof.
apply/eqP; rewrite eqn_leq p_rankS ?Ohm_sub //.
apply/bigmax_leqP=> E /setIdP[sEG abelE].
by rewrite (bigmax_sup E) // inE -{1}(Ohm1_id abelE) OhmS.
Qed.
Lemma rank_Ohm1 G : 'r('Ohm_1(G)) = 'r(G).
Proof.
apply/eqP; rewrite eqn_leq rankS ?Ohm_sub //.
by have [p _ ->] := rank_witness G; rewrite -p_rank_Ohm1 p_rank_le_rank.
Qed.
Lemma p_rank_abelian p G : abelian G -> 'r_p(G) = logn p #|'Ohm_1(G)|.
Proof.
move=> cGG; have nilG := abelian_nil cGG; case p_pr: (prime p); last first.
by apply/eqP; rewrite lognE p_pr eqn0Ngt p_rank_gt0 mem_primes p_pr.
case/dprodP: (Ohm_dprod 1 (nilpotent_pcoreC p nilG)) => _ <- _ /TI_cardMg->.
rewrite mulnC logn_Gauss; last first.
rewrite prime_coprime // -p'natE // -/(pgroup _ _).
exact: pgroupS (Ohm_sub _ _) (pcore_pgroup _ _).
rewrite -(p_rank_Sylow (nilpotent_pcore_Hall p nilG)) -p_rank_Ohm1.
rewrite p_rank_abelem // Ohm1_abelem ?pcore_pgroup //.
exact: abelianS (pcore_sub _ _) cGG.
Qed.
Lemma rank_abelian_pgroup p G :
p.-group G -> abelian G -> 'r(G) = logn p #|'Ohm_1(G)|.
Proof. by move=> pG cGG; rewrite (rank_pgroup pG) p_rank_abelian. Qed.
End OhmProps.
Section AbelianStructure.
Variable gT : finGroupType.
Implicit Types (p : nat) (G H K E : {group gT}).
Lemma abelian_splits x G :
x \in G -> #[x] = exponent G -> abelian G -> [splits G, over <[x]>].
Proof.
move=> Gx ox cGG; apply/splitsP; move: {2}_.+1 (ltnSn #|G|) => n.
elim: n gT => // n IHn aT in x G Gx ox cGG *; rewrite ltnS => leGn.
have: <[x]> \subset G by [rewrite cycle_subG]; rewrite subEproper.
case/predU1P=> [<-|]; first by exists 1%G; rewrite inE -subG1 subsetIr mulg1 /=.
case/properP=> sxG [y]; elim: {y}_.+1 {-2}y (ltnSn #[y]) => // m IHm y.
rewrite ltnS => leym Gy x'y; case: (trivgVpdiv <[y]>) => [y1 | [p p_pr p_dv_y]].
by rewrite -cycle_subG y1 sub1G in x'y.
case x_yp: (y ^+ p \in <[x]>); last first.
apply: IHm (negbT x_yp); rewrite ?groupX ?(leq_trans _ leym) //.
by rewrite orderXdiv // ltn_Pdiv ?prime_gt1.
have{x_yp} xp_yp: (y ^+ p \in <[x ^+ p]>).
have: <[y ^+ p]>%G \in [set <[x ^+ (#[x] %/ #[y ^+ p])]>%G].
by rewrite -cycle_sub_group ?order_dvdG // inE cycle_subG x_yp eqxx.
rewrite inE -cycle_subG -val_eqE /=; move/eqP->.
rewrite cycle_subG orderXdiv // divnA // mulnC ox.
by rewrite -muln_divA ?dvdn_exponent ?expgM 1?groupX ?cycle_id.
have: p <= #[y] by rewrite dvdn_leq.
rewrite leq_eqVlt; case/predU1P=> [{xp_yp m IHm leym}oy | ltpy]; last first.
case/cycleP: xp_yp => k; rewrite -expgM mulnC expgM => def_yp.
suffices: #[y * x ^- k] < m.
by move/IHm; apply; rewrite groupMr // groupV groupX ?cycle_id.
apply: leq_ltn_trans (leq_trans ltpy leym).
rewrite dvdn_leq ?prime_gt0 // order_dvdn expgMn.
by rewrite expgVn def_yp mulgV.
by apply: (centsP cGG); rewrite ?groupV ?groupX.
pose Y := <[y]>; have nsYG: Y <| G by rewrite -sub_abelian_normal ?cycle_subG.
have [sYG nYG] := andP nsYG; have nYx := subsetP nYG x Gx.
have GxY: coset Y x \in G / Y by rewrite mem_morphim.
have tiYx: Y :&: <[x]> = 1 by rewrite prime_TIg ?indexg1 -?[#|_|]oy ?cycle_subG.
have: #[coset Y x] = exponent (G / Y).
apply/eqP; rewrite eqn_dvd dvdn_exponent //.
apply/exponentP=> _ /morphimP[z Nz Gz ->].
rewrite -morphX // ((z ^+ _ =P 1) _) ?morph1 //.
rewrite orderE -quotient_cycle ?card_quotient ?cycle_subG // -indexgI /=.
by rewrite setIC tiYx indexg1 -orderE ox -order_dvdn dvdn_exponent.
case/IHn => // [||Hq]; first exact: quotient_abelian.
apply: leq_trans leGn; rewrite ltn_quotient // cycle_eq1.
by apply: contra x'y; move/eqP->; rewrite group1.
case/complP=> /= ti_x_Hq defGq.
have: Hq \subset G / Y by rewrite -defGq mulG_subr.
case/inv_quotientS=> // H defHq sYH sHG; exists H.
have nYX: <[x]> \subset 'N(Y) by rewrite cycle_subG.
rewrite inE -subG1 eqEsubset mul_subG //= -tiYx subsetI subsetIl andbT.
rewrite -{2}(mulSGid sYH) mulgA (normC nYX) -mulgA -quotientSK ?quotientMl //.
rewrite -quotient_sub1 ?(subset_trans (subsetIl _ _)) // quotientIG //= -/Y.
by rewrite -defHq quotient_cycle // ti_x_Hq defGq !subxx.
Qed.
Lemma abelem_splits p G H : p.-abelem G -> H \subset G -> [splits G, over H].
Proof.
elim: {G}_.+1 {-2}G H (ltnSn #|G|) => // m IHm G H.
rewrite ltnS => leGm abelG sHG; case: (eqsVneq H 1) => [-> | ].
by apply/splitsP; exists G; rewrite inE mul1g -subG1 subsetIl /=.
case/trivgPn=> x Hx ntx; have Gx := subsetP sHG x Hx.
have [_ cGG eGp] := and3P abelG.
have ox: #[x] = exponent G.
by apply/eqP; rewrite eqn_dvd dvdn_exponent // (abelem_order_p abelG).
case/splitsP: (abelian_splits Gx ox cGG) => K; case/complP=> tixK defG.
have sKG: K \subset G by rewrite -defG mulG_subr.
have ltKm: #|K| < m.
rewrite (leq_trans _ leGm) ?proper_card //; apply/properP; split=> //.
exists x => //; apply: contra ntx => Kx; rewrite -cycle_eq1 -subG1 -tixK.
by rewrite subsetI subxx cycle_subG.
case/splitsP: (IHm _ _ ltKm (abelemS sKG abelG) (subsetIr H K)) => L.
case/complP=> tiHKL defK; apply/splitsP; exists L; rewrite inE.
rewrite -subG1 -tiHKL -setIA setIS; last by rewrite subsetI -defK mulG_subr /=.
by rewrite -(setIidPr sHG) -defG -group_modl ?cycle_subG //= setIC -mulgA defK.
Qed.
Fact abelian_type_subproof G :
{H : {group gT} & abelian G -> {x | #[x] = exponent G & <[x]> \x H = G}}.
Proof.
case cGG: (abelian G); last by exists G.
have [x Gx ox] := exponent_witness (abelian_nil cGG).
case/splitsP/ex_mingroup: (abelian_splits Gx (esym ox) cGG) => H.
case/mingroupp/complP=> tixH defG; exists H => _.
exists x; rewrite ?dprodE // (sub_abelian_cent2 cGG) ?cycle_subG //.
by rewrite -defG mulG_subr.
Qed.
Fixpoint abelian_type_rec n G :=
if n is n'.+1 then if abelian G && (G :!=: 1) then
exponent G :: abelian_type_rec n' (tag (abelian_type_subproof G))
else [::] else [::].
Definition abelian_type (A : {set gT}) := abelian_type_rec #|A| <<A>>.
Lemma abelian_type_dvdn_sorted A : sorted [rel m n | n %| m] (abelian_type A).
Proof.
set R := SimplRel _; pose G := <<A>>%G.
suffices: path R (exponent G) (abelian_type A) by case: (_ A) => // m t /andP[].
rewrite /abelian_type -/G; elim: {A}#|A| G {2 3}G (subxx G) => // n IHn G M sGM.
simpl; case: ifP => //= /andP[cGG ntG]; rewrite exponentS ?IHn //=.
case: (abelian_type_subproof G) => H /= [//| x _] /dprodP[_ /= <- _ _].
exact: mulG_subr.
Qed.
Lemma abelian_type_gt1 A : all [pred m | m > 1] (abelian_type A).
Proof.
rewrite /abelian_type; elim: {A}#|A| <<A>>%G => //= n IHn G.
case: ifP => //= /andP[_ ntG]; rewrite {n}IHn.
by rewrite ltn_neqAle exponent_gt0 eq_sym -dvdn1 -trivg_exponent ntG.
Qed.
Lemma abelian_type_sorted A : sorted geq (abelian_type A).
Proof.
have:= abelian_type_dvdn_sorted A; have:= abelian_type_gt1 A.
case: (abelian_type A) => //= m t; elim: t m => //= n t IHt m /andP[].
by move/ltnW=> m_gt0 t_gt1 /andP[n_dv_m /IHt->]; rewrite // dvdn_leq.
Qed.
Theorem abelian_structure G :
abelian G ->
{b | \big[dprod/1]_(x <- b) <[x]> = G & map order b = abelian_type G}.
Proof.
rewrite /abelian_type genGidG.
elim: {G}#|G| {-2 5}G (leqnn #|G|) => /= [|n IHn] G leGn cGG.
by rewrite leqNgt cardG_gt0 in leGn.
rewrite {1}cGG /=; case: ifP => [ntG|/eqP->]; last first.
by exists [::]; rewrite ?big_nil.
case: (abelian_type_subproof G) => H /= [//|x ox xdefG]; rewrite -ox.
have [_ defG cxH tixH] := dprodP xdefG.
have sHG: H \subset G by rewrite -defG mulG_subr.
case/IHn: (abelianS sHG cGG) => [|b defH <-].
rewrite -ltnS (leq_trans _ leGn) // -defG TI_cardMg // -orderE.
rewrite ltn_Pmull ?cardG_gt0 // ltn_neqAle order_gt0 eq_sym -dvdn1.
by rewrite ox -trivg_exponent ntG.
by exists (x :: b); rewrite // big_cons defH xdefG.
Qed.
Lemma count_logn_dprod_cycle p n b G :
\big[dprod/1]_(x <- b) <[x]> = G ->
count [pred x | logn p #[x] > n] b = logn p #|'Ohm_n.+1(G) : 'Ohm_n(G)|.
Proof.
have sOn1 := @Ohm_leq gT _ _ _ (leqnSn n).
pose lnO i (A : {set gT}) := logn p #|'Ohm_i(A)|.
have lnO_le H: lnO n H <= lnO n.+1 H.
by rewrite dvdn_leq_log ?cardG_gt0 // cardSg ?sOn1.
have lnOx i A B H: A \x B = H -> lnO i A + lnO i B = lnO i H.
move=> defH; case/dprodP: defH (defH) => {A B}[[A B -> ->]] _ _ _ defH.
rewrite /lnO; case/dprodP: (Ohm_dprod i defH) => _ <- _ tiOAB.
by rewrite TI_cardMg ?lognM.
rewrite -divgS //= logn_div ?cardSg //= -/(lnO _ _) -/(lnO _ _).
elim: b G => [_ <-|x b IHb G] /=.
by rewrite big_nil /lnO !(trivgP (Ohm_sub _ _)) subnn.
rewrite /= big_cons => defG; rewrite -!(lnOx _ _ _ _ defG) subnDA.
case/dprodP: defG => [[_ H _ defH] _ _ _] {G}; rewrite defH (IHb _ defH).
symmetry; do 2!rewrite addnC -addnBA ?lnO_le //; congr (_ + _).
pose y := x.`_p; have p_y: p.-elt y by rewrite p_elt_constt.
have{lnOx} lnOy i: lnO i <[x]> = lnO i <[y]>.
have cXX := cycle_abelian x.
have co_yx': coprime #[y] #[x.`_p^'] by rewrite !order_constt coprime_partC.
have defX: <[y]> \x <[x.`_p^']> = <[x]>.
rewrite dprodE ?coprime_TIg //.
by rewrite -cycleM ?consttC //; apply: (centsP cXX); apply: mem_cycle.
by apply: (sub_abelian_cent2 cXX); rewrite cycle_subG mem_cycle.
rewrite -(lnOx i _ _ _ defX) addnC {1}/lnO lognE.
case: and3P => // [[p_pr _ /idPn[]]]; rewrite -p'natE //.
exact: pgroupS (Ohm_sub _ _) (p_elt_constt _ _).
rewrite -logn_part -order_constt -/y !{}lnOy /lnO !(Ohm_p_cycle _ p_y).
case: leqP => [| lt_n_y].
by rewrite -subn_eq0 -addn1 subnDA => /eqP->; rewrite subnn.
rewrite -!orderE -(subSS n) subSn // expnSr expgM.
have p_pr: prime p by move: lt_n_y; rewrite lognE; case: prime.
set m := (p ^ _)%N; have m_gt0: m > 0 by rewrite expn_gt0 prime_gt0.
suffices p_ym: p %| #[y ^+ m].
rewrite -logn_div ?orderXdvd // (orderXdiv p_ym) divnA // mulKn //.
by rewrite logn_prime ?eqxx.
rewrite orderXdiv ?pfactor_dvdn ?leq_subr // -(dvdn_pmul2r m_gt0).
by rewrite -expnS -subSn // subSS divnK pfactor_dvdn ?leq_subr.
Qed.
Lemma abelian_type_pgroup p b G :
p.-group G -> \big[dprod/1]_(x <- b) <[x]> = G -> 1 \notin b ->
perm_eq (abelian_type G) (map order b).
Proof.
rewrite perm_sym; move: b => b1 pG defG1 ntb1.
have cGG: abelian G.
elim: (b1) {pG}G defG1 => [_ <-|x b IHb G]; first by rewrite big_nil abelian1.
rewrite big_cons; case/dprodP=> [[_ H _ defH]] <-; rewrite defH => cxH _.
by rewrite abelianM cycle_abelian IHb.
have p_bG b: \big[dprod/1]_(x <- b) <[x]> = G -> all (p_elt p) b.
elim: b {defG1 cGG}G pG => //= x b IHb G pG; rewrite big_cons.
case/dprodP=> [[_ H _ defH]]; rewrite defH andbC => defG _ _.
by rewrite -defG pgroupM in pG; case/andP: pG => p_x /IHb->.
have [b2 defG2 def_t] := abelian_structure cGG.
have ntb2: 1 \notin b2.
apply: contraL (abelian_type_gt1 G) => b2_1.
rewrite -def_t -has_predC has_map.
by apply/hasP; exists 1; rewrite //= order1.
rewrite -{}def_t; apply/allP=> m; rewrite -map_cat => /mapP[x b_x def_m].
have{ntb1 ntb2} ntx: x != 1.
by apply: contraL b_x; move/eqP->; rewrite mem_cat negb_or ntb1 ntb2.
have p_x: p.-elt x by apply: allP (x) b_x; rewrite all_cat !p_bG.
rewrite -cycle_eq1 in ntx; have [p_pr _ [k ox]] := pgroup_pdiv p_x ntx.
apply/eqnP; rewrite {m}def_m orderE ox !count_map.
pose cnt_p k := count [pred x : gT | logn p #[x] > k].
have cnt_b b: \big[dprod/1]_(x <- b) <[x]> = G ->
count [pred x | #[x] == p ^ k.+1]%N b = cnt_p k b - cnt_p k.+1 b.
- move/p_bG; elim: b => //= _ b IHb /andP[/p_natP[j ->] /IHb-> {IHb}].
rewrite eqn_leq !leq_exp2l ?prime_gt1 // -eqn_leq pfactorK //.
case: ltngtP => // _ {j}; rewrite subSn // add0n; elim: b => //= y b IHb.
by rewrite leq_add // ltn_neqAle; case: (~~ _).
by rewrite !cnt_b // /cnt_p !(@count_logn_dprod_cycle _ _ _ G).
Qed.
Lemma size_abelian_type G : abelian G -> size (abelian_type G) = 'r(G).
Proof.
move=> cGG; have [b defG def_t] := abelian_structure cGG.
apply/eqP; rewrite -def_t size_map eqn_leq andbC; apply/andP; split.
have [p p_pr ->] := rank_witness G; rewrite p_rank_abelian //.
by rewrite -indexg1 -(Ohm0 G) -(count_logn_dprod_cycle _ _ defG) count_size.
case/lastP def_b: b => // [b' x]; pose p := pdiv #[x].
have p_pr: prime p.
have:= abelian_type_gt1 G; rewrite -def_t def_b map_rcons -cats1 all_cat.
by rewrite /= andbT => /andP[_]; apply: pdiv_prime.
suffices: all [pred y | logn p #[y] > 0] b.
rewrite all_count (count_logn_dprod_cycle _ _ defG) -def_b; move/eqP <-.
by rewrite Ohm0 indexg1 -p_rank_abelian ?p_rank_le_rank.
apply/allP=> y; rewrite def_b mem_rcons inE /= => b_y.
rewrite lognE p_pr order_gt0 (dvdn_trans (pdiv_dvd _)) //.
case/predU1P: b_y => [-> // | b'_y].
have:= abelian_type_dvdn_sorted G; rewrite -def_t def_b.
case/splitPr: b'_y => b1 b2; rewrite -cat_rcons rcons_cat map_cat !map_rcons.
rewrite headI /= cat_path -(last_cons 2) -headI last_rcons.
case/andP=> _ /order_path_min min_y.
apply: (allP (min_y _)) => [? ? ? ? dv|]; first exact: (dvdn_trans dv).
by rewrite mem_rcons mem_head.
Qed.
Lemma mul_card_Ohm_Mho_abelian n G :
abelian G -> (#|'Ohm_n(G)| * #|'Mho^n(G)|)%N = #|G|.
Proof.
case/abelian_structure => b defG _.
elim: b G defG => [_ <-|x b IHb G].
by rewrite !big_nil (trivgP (Ohm_sub _ _)) (trivgP (Mho_sub _ _)) !cards1.
rewrite big_cons => defG; rewrite -(dprod_card defG).
rewrite -(dprod_card (Ohm_dprod n defG)) -(dprod_card (Mho_dprod n defG)) /=.
rewrite mulnCA -!mulnA mulnCA mulnA; case/dprodP: defG => [[_ H _ defH] _ _ _].
rewrite defH {b G defH IHb}(IHb H defH); congr (_ * _)%N => {H}.
elim: {x}_.+1 {-2}x (ltnSn #[x]) => // m IHm x; rewrite ltnS => lexm.
case p_x: (p_group <[x]>); last first.
case: (eqVneq x 1) p_x => [-> |]; first by rewrite cycle1 p_group1.
rewrite -order_gt1 /p_group -orderE; set p := pdiv _ => ntx p'x.
have def_x: <[x.`_p]> \x <[x.`_p^']> = <[x]>.
have ?: coprime #[x.`_p] #[x.`_p^'] by rewrite !order_constt coprime_partC.
have ?: commute x.`_p x.`_p^' by apply: commuteX2.
rewrite dprodE ?coprime_TIg -?cycleM ?consttC //.
by rewrite cent_cycle cycle_subG; apply/cent1P.
rewrite -(dprod_card (Ohm_dprod n def_x)) -(dprod_card (Mho_dprod n def_x)).
rewrite mulnCA -mulnA mulnCA mulnA.
rewrite !{}IHm ?(dprod_card def_x) ?(leq_trans _ lexm) {m lexm}//.
rewrite /order -(dprod_card def_x) -!orderE !order_constt ltn_Pmull //.
rewrite p_part -(expn0 p) ltn_exp2l 1?lognE ?prime_gt1 ?pdiv_prime //.
by rewrite order_gt0 pdiv_dvd.
rewrite proper_card // properEneq cycle_subG mem_cycle andbT.
by apply: contra (negbT p'x); move/eqP <-; apply: p_elt_constt.
case/p_groupP: p_x => p p_pr p_x.
rewrite (Ohm_p_cycle n p_x) (Mho_p_cycle n p_x) -!orderE.
set k := logn p #[x]; have ox: #[x] = (p ^ k)%N by rewrite -card_pgroup.
case: (leqP k n) => [le_k_n | lt_n_k].
rewrite -(subnKC le_k_n) subnDA subnn expg1 expnD expgM -ox.
by rewrite expg_order expg1n order1 muln1.
rewrite !orderXgcd ox -{-3}(subnKC (ltnW lt_n_k)) expnD.
rewrite gcdnC gcdnMl gcdnC gcdnMr.
by rewrite mulnK ?mulKn ?expn_gt0 ?prime_gt0.
Qed.
Lemma grank_abelian G : abelian G -> 'm(G) = 'r(G).
Proof.
move=> cGG; apply/eqP; rewrite eqn_leq; apply/andP; split.
rewrite -size_abelian_type //; case/abelian_structure: cGG => b defG <-.
suffices <-: <<[set x in b]>> = G.
by rewrite (leq_trans (grank_min _)) // size_map cardsE card_size.
rewrite -{G defG}(bigdprodWY defG).
elim: b => [|x b IHb]; first by rewrite big_nil gen0.
by rewrite big_cons -joingE -joing_idr -IHb joing_idl joing_idr set_cons.
have [p p_pr ->] := rank_witness G; pose K := 'Mho^1(G).
have ->: 'r_p(G) = logn p #|G / K|.
rewrite p_rank_abelian // card_quotient /= ?gFnorm // -divgS ?Mho_sub //.
by rewrite -(mul_card_Ohm_Mho_abelian 1 cGG) mulnK ?cardG_gt0.
case: (grank_witness G) => B genB <-; rewrite -genB.
have: <<B>> \subset G by rewrite genB.
elim: {B genB}_.+1 {-2}B (ltnSn #|B|) => // m IHm B; rewrite ltnS.
case: (set_0Vmem B) => [-> | [x Bx]].
by rewrite gen0 quotient1 cards1 logn1.
rewrite (cardsD1 x) Bx -{2 3}(setD1K Bx); set B' := B :\ x => ltB'm.
rewrite -joingE -joing_idl -joing_idr -/<[x]> join_subG => /andP[Gx sB'G].
rewrite cent_joinEl ?(sub_abelian_cent2 cGG) //.
have nKx: x \in 'N(K) by rewrite -cycle_subG (subset_trans Gx) ?gFnorm.
rewrite quotientMl ?cycle_subG // quotient_cycle //= -/K.
have le_Kxp_1: logn p #[coset K x] <= 1.
rewrite -(dvdn_Pexp2l _ _ (prime_gt1 p_pr)) -p_part -order_constt.
rewrite order_dvdn -morph_constt // -morphX ?groupX //= coset_id //.
by rewrite Mho_p_elt ?p_elt_constt ?groupX -?cycle_subG.
apply: leq_trans (leq_add le_Kxp_1 (IHm _ ltB'm sB'G)).
by rewrite -lognM ?dvdn_leq_log ?muln_gt0 ?cardG_gt0 // mul_cardG dvdn_mulr.
Qed.
Lemma rank_cycle (x : gT) : 'r(<[x]>) = (x != 1).
Proof.
have [->|ntx] := altP (x =P 1); first by rewrite cycle1 rank1.
apply/eqP; rewrite eqn_leq rank_gt0 cycle_eq1 ntx andbT.
by rewrite -grank_abelian ?cycle_abelian //= -(cards1 x) grank_min.
Qed.
Lemma abelian_rank1_cyclic G : abelian G -> cyclic G = ('r(G) <= 1).
Proof.
move=> cGG; have [b defG atypG] := abelian_structure cGG.
apply/idP/idP; first by case/cyclicP=> x ->; rewrite rank_cycle leq_b1.
rewrite -size_abelian_type // -{}atypG -{}defG unlock.
by case: b => [|x []] //= _; rewrite ?cyclic1 // dprodg1 cycle_cyclic.
Qed.
Definition homocyclic A := abelian A && constant (abelian_type A).
Lemma homocyclic_Ohm_Mho n p G :
p.-group G -> homocyclic G -> 'Ohm_n(G) = 'Mho^(logn p (exponent G) - n)(G).
Proof.
move=> pG /andP[cGG homoG]; set e := exponent G.
have{pG} p_e: p.-nat e by apply: pnat_dvd pG; apply: exponent_dvdn.
have{homoG}: all (pred1 e) (abelian_type G).
move: homoG; rewrite /abelian_type -(prednK (cardG_gt0 G)) /=.
by case: (_ && _) (tag _); rewrite //= genGid eqxx.
have{cGG} [b defG <-] := abelian_structure cGG.
move: e => e in p_e *; elim: b => /= [|x b IHb] in G defG *.
by rewrite -defG big_nil (trivgP (Ohm_sub _ _)) (trivgP (Mho_sub _ _)).
case/andP=> /eqP ox e_b; rewrite big_cons in defG.
rewrite -(Ohm_dprod _ defG) -(Mho_dprod _ defG).
case/dprodP: defG => [[_ H _ defH] _ _ _]; rewrite defH IHb //; congr (_ \x _).
by rewrite -ox in p_e *; rewrite (Ohm_p_cycle _ p_e) (Mho_p_cycle _ p_e).
Qed.
Lemma Ohm_Mho_homocyclic (n p : nat) G :
abelian G -> p.-group G -> 0 < n < logn p (exponent G) ->
'Ohm_n(G) = 'Mho^(logn p (exponent G) - n)(G) -> homocyclic G.
Proof.
set e := exponent G => cGG pG /andP[n_gt0 n_lte] eq_Ohm_Mho.
suffices: all (pred1 e) (abelian_type G).
by rewrite /homocyclic cGG; apply: all_pred1_constant.
case/abelian_structure: cGG (abelian_type_gt1 G) => b defG <-.
elim: b {-3}G defG (subxx G) eq_Ohm_Mho => //= x b IHb H.
rewrite big_cons => defG; case/dprodP: defG (defG) => [[_ K _ defK]].
rewrite defK => defHm cxK; rewrite setIC; move/trivgP=> tiKx defHd.
rewrite -{1}defHm {defHm} mulG_subG cycle_subG ltnNge -trivg_card_le1.
case/andP=> Gx sKG; rewrite -(Mho_dprod _ defHd) => /esym defMho /andP[ntx ntb].
have{defHd} defOhm := Ohm_dprod n defHd.
apply/andP; split; last first.
apply: (IHb K) => //; have:= dprod_modr defMho (Mho_sub _ _).
rewrite -(dprod_modr defOhm (Ohm_sub _ _)).
rewrite !(trivgP (subset_trans (setIS _ _) tiKx)) ?Ohm_sub ?Mho_sub //.
by rewrite !dprod1g.
have:= dprod_modl defMho (Mho_sub _ _).
rewrite -(dprod_modl defOhm (Ohm_sub _ _)) .
rewrite !(trivgP (subset_trans (setSI _ _) tiKx)) ?Ohm_sub ?Mho_sub //.
move/eqP; rewrite eqEcard => /andP[_].
have p_x: p.-elt x := mem_p_elt pG Gx.
have [p_pr p_dv_x _] := pgroup_pdiv p_x ntx.
rewrite !dprodg1 (Ohm_p_cycle _ p_x) (Mho_p_cycle _ p_x) -!orderE.
rewrite orderXdiv ?leq_divLR ?pfactor_dvdn ?leq_subr //.
rewrite orderXgcd divn_mulAC ?dvdn_gcdl // leq_divRL ?gcdn_gt0 ?order_gt0 //.
rewrite leq_pmul2l //; apply: contraLR.
rewrite eqn_dvd dvdn_exponent //= -ltnNge => lt_x_e.
rewrite (leq_trans (ltn_Pmull (prime_gt1 p_pr) _)) ?expn_gt0 ?prime_gt0 //.
rewrite -expnS dvdn_leq // ?gcdn_gt0 ?order_gt0 // dvdn_gcd.
rewrite pfactor_dvdn // dvdn_exp2l.
by rewrite -{2}[logn p _]subn0 ltn_sub2l // lognE p_pr order_gt0 p_dv_x.
rewrite ltn_sub2r // ltnNge -(dvdn_Pexp2l _ _ (prime_gt1 p_pr)) -!p_part.
by rewrite !part_pnat_id // (pnat_dvd (exponent_dvdn G)).
Qed.
Lemma abelem_homocyclic p G : p.-abelem G -> homocyclic G.
Proof.
move=> abelG; have [_ cGG _] := and3P abelG.
rewrite /homocyclic cGG (@all_pred1_constant _ p) //.
case/abelian_structure: cGG (abelian_type_gt1 G) => b defG <- => b_gt1.
apply/allP=> _ /mapP[x b_x ->] /=; rewrite (abelem_order_p abelG) //.
rewrite -cycle_subG -(bigdprodWY defG) ?sub_gen //.
by rewrite bigcup_seq (bigcup_sup x).
by rewrite -order_gt1 [_ > 1](allP b_gt1) ?map_f.
Qed.
Lemma homocyclic1 : homocyclic [1 gT].
Proof. exact: abelem_homocyclic (abelem1 _ 2). Qed.
Lemma Ohm1_homocyclicP p G : p.-group G -> abelian G ->
reflect ('Ohm_1(G) = 'Mho^(logn p (exponent G)).-1(G)) (homocyclic G).
Proof.
move=> pG cGG; set e := logn p (exponent G); rewrite -subn1.
apply: (iffP idP) => [homoG | ]; first exact: homocyclic_Ohm_Mho.
case: (ltnP 1 e) => [lt1e | ]; first exact: Ohm_Mho_homocyclic.
rewrite -subn_eq0 => /eqP->; rewrite Mho0 => <-.
exact: abelem_homocyclic (Ohm1_abelem pG cGG).
Qed.
Lemma abelian_type_homocyclic G :
homocyclic G -> abelian_type G = nseq 'r(G) (exponent G).
Proof.
case/andP=> cGG; rewrite -size_abelian_type // /abelian_type.
rewrite -(prednK (cardG_gt0 G)) /=; case: andP => //= _; move: (tag _) => H.
by move/all_pred1P->; rewrite genGid size_nseq.
Qed.
Lemma abelian_type_abelem p G : p.-abelem G -> abelian_type G = nseq 'r(G) p.
Proof.
move=> abelG; rewrite (abelian_type_homocyclic (abelem_homocyclic abelG)).
case: (eqVneq G 1%G) => [-> | ntG]; first by rewrite rank1.
congr nseq; apply/eqP; rewrite eqn_dvd; have [pG _ ->] := and3P abelG.
have [p_pr] := pgroup_pdiv pG ntG; case/Cauchy=> // x Gx <- _.
exact: dvdn_exponent.
Qed.
Lemma max_card_abelian G :
abelian G -> #|G| <= exponent G ^ 'r(G) ?= iff homocyclic G.
Proof.
move=> cGG; have [b defG def_tG] := abelian_structure cGG.
have Gb: all (mem G) b.
apply/allP=> x b_x; rewrite -(bigdprodWY defG); have [b1 b2] := splitPr b_x.
by rewrite big_cat big_cons /= mem_gen // setUCA inE cycle_id.
have ->: homocyclic G = all (pred1 (exponent G)) (abelian_type G).
rewrite /homocyclic cGG /abelian_type; case: #|G| => //= n.
by move: (_ (tag _)) => t; case: ifP => //= _; rewrite genGid eqxx.
rewrite -size_abelian_type // -{}def_tG -{defG}(bigdprod_card defG) size_map.
rewrite unlock; elim: b Gb => //= x b IHb; case/andP=> Gx Gb.
have eGgt0: exponent G > 0 := exponent_gt0 G.
have le_x_G: #[x] <= exponent G by rewrite dvdn_leq ?dvdn_exponent.
have:= leqif_mul (leqif_eq le_x_G) (IHb Gb).
by rewrite -expnS expn_eq0 eqn0Ngt eGgt0.
Qed.
Lemma card_homocyclic G : homocyclic G -> #|G| = (exponent G ^ 'r(G))%N.
Proof.
by move=> homG; have [cGG _] := andP homG; apply/eqP; rewrite max_card_abelian.
Qed.
Lemma abelian_type_dprod_homocyclic p K H G :
K \x H = G -> p.-group G -> homocyclic G ->
abelian_type K = nseq 'r(K) (exponent G)
/\ abelian_type H = nseq 'r(H) (exponent G).
Proof.
move=> defG pG homG; have [cGG _] := andP homG.
have /mulG_sub[sKG sHG]: K * H = G by case/dprodP: defG.
have [cKK cHH] := (abelianS sKG cGG, abelianS sHG cGG).
suffices: all (pred1 (exponent G)) (abelian_type K ++ abelian_type H).
rewrite all_cat => /andP[/all_pred1P-> /all_pred1P->].
by rewrite !size_abelian_type.
suffices def_atG: abelian_type K ++ abelian_type H =i abelian_type G.
rewrite (eq_all_r def_atG); apply/all_pred1P.
by rewrite size_abelian_type // -abelian_type_homocyclic.
have [bK defK atK] := abelian_structure cKK.
have [bH defH atH] := abelian_structure cHH.
apply/perm_mem; rewrite perm_sym -atK -atH -map_cat.
apply: (abelian_type_pgroup pG); first by rewrite big_cat defK defH.
have: all [pred m | m > 1] (map order (bK ++ bH)).
by rewrite map_cat all_cat atK atH !abelian_type_gt1.
by rewrite all_map (eq_all (@order_gt1 _)) all_predC has_pred1.
Qed.
Lemma dprod_homocyclic p K H G :
K \x H = G -> p.-group G -> homocyclic G -> homocyclic K /\ homocyclic H.
Proof.
move=> defG pG homG; have [cGG _] := andP homG.
have /mulG_sub[sKG sHG]: K * H = G by case/dprodP: defG.
have [abtK abtH] := abelian_type_dprod_homocyclic defG pG homG.
by rewrite /homocyclic !(abelianS _ cGG) // abtK abtH !constant_nseq.
Qed.
Lemma exponent_dprod_homocyclic p K H G :
K \x H = G -> p.-group G -> homocyclic G -> K :!=: 1 ->
exponent K = exponent G.
Proof.
move=> defG pG homG ntK; have [homK _] := dprod_homocyclic defG pG homG.
have [] := abelian_type_dprod_homocyclic defG pG homG.
by rewrite abelian_type_homocyclic // -['r(K)]prednK ?rank_gt0 => [[]|].
Qed.
End AbelianStructure.
Arguments abelian_type {gT} A%g.
Arguments homocyclic {gT} A%g.
Section IsogAbelian.
Variables aT rT : finGroupType.
Implicit Type (gT : finGroupType) (D G : {group aT}) (H : {group rT}).
Lemma isog_abelian_type G H : isog G H -> abelian_type G = abelian_type H.
Proof.
pose lnO p n gT (A : {set gT}) := logn p #|'Ohm_n.+1(A) : 'Ohm_n(A)|.
pose lni i p gT (A : {set gT}) := \max_(e < logn p #|A| | i < lnO p e _ A) e.+1.
suffices{G} nth_abty gT (G : {group gT}) i:
abelian G -> i < size (abelian_type G) ->
nth 1%N (abelian_type G) i = (\prod_(p < #|G|.+1) p ^ lni i p _ G)%N.
- move=> isoGH; case cGG: (abelian G); last first.
rewrite /abelian_type -(prednK (cardG_gt0 G)) -(prednK (cardG_gt0 H)) /=.
by rewrite {1}(genGid G) {1}(genGid H) -(isog_abelian isoGH) cGG.
have cHH: abelian H by rewrite -(isog_abelian isoGH).
have eq_sz: size (abelian_type G) = size (abelian_type H).
by rewrite !size_abelian_type ?(isog_rank isoGH).
apply: (@eq_from_nth _ 1%N) => // i lt_i_G; rewrite !nth_abty // -?eq_sz //.
rewrite /lni (card_isog isoGH); apply: eq_bigr => p _; congr (p ^ _)%N.
apply: eq_bigl => e; rewrite /lnO -!divgS ?(Ohm_leq _ (leqnSn _)) //=.
by have:= card_isog (gFisog _ isoGH) => /= eqF; rewrite !eqF.
move=> cGG.
have (p): path leq 0 (map (logn p) (rev (abelian_type G))).
move: (abelian_type_gt1 G) (abelian_type_dvdn_sorted G).
case: abelian_type => //= m t; rewrite rev_cons map_rcons.
elim: t m => //= n t IHt m /andP[/ltnW m_gt0 nt_gt1].
rewrite -cats1 cat_path rev_cons map_rcons last_rcons /=.
by case/andP=> /dvdn_leq_log-> // /IHt->.
have{cGG} [b defG <- b_sorted] := abelian_structure cGG.
rewrite size_map => ltib; rewrite (nth_map 1 _ _ ltib); set x := nth 1 b i.
have Gx: x \in G.
have: x \in b by rewrite mem_nth.
rewrite -(bigdprodWY defG); case/splitPr=> bl br.
by rewrite mem_gen // big_cat big_cons !inE cycle_id orbT.
have lexG: #[x] <= #|G| by rewrite dvdn_leq ?order_dvdG.
rewrite -[#[x]]partn_pi // (widen_partn _ lexG) big_mkord big_mkcond.
apply: eq_bigr => p _; transitivity (p ^ logn p #[x])%N.
by rewrite -logn_gt0; case: posnP => // ->.
suffices lti_lnO e: (i < lnO p e _ G) = (e < logn p #[x]).
congr (p ^ _)%N; apply/eqP; rewrite eqn_leq andbC; apply/andP; split.
by apply/bigmax_leqP=> e; rewrite lti_lnO.
case: (posnP (logn p #[x])) => [-> // | logx_gt0].
have lexpG: (logn p #[x]).-1 < logn p #|G|.
by rewrite prednK // dvdn_leq_log ?order_dvdG.
by rewrite (@bigmax_sup _ (Ordinal lexpG)) ?(prednK, lti_lnO).
rewrite /lnO -(count_logn_dprod_cycle _ _ defG).
case: (ltnP e _) (b_sorted p) => [lt_e_x | le_x_e].
rewrite -(cat_take_drop i.+1 b) -map_rev rev_cat !map_cat cat_path.
case/andP=> _ ordb; rewrite count_cat ((count _ _ =P i.+1) _) ?leq_addr //.
rewrite -{2}(size_takel ltib) -all_count.
move: ordb; rewrite (take_nth 1 ltib) -/x rev_rcons all_rcons /= lt_e_x.
case/andP=> _ /=; move/(order_path_min leq_trans); apply: contraLR.
rewrite -!has_predC !has_map; case/hasP=> y b_y /= le_y_e; apply/hasP.
by exists y; rewrite ?mem_rev //=; apply: contra le_y_e; apply: leq_trans.
rewrite -(cat_take_drop i b) -map_rev rev_cat !map_cat cat_path.
case/andP=> ordb _; rewrite count_cat -{1}(size_takel (ltnW ltib)) ltnNge.
rewrite addnC ((count _ _ =P 0) _) ?count_size //.
rewrite eqn0Ngt -has_count; apply/hasPn=> y b_y /=; rewrite -leqNgt.
apply: leq_trans le_x_e; have ->: x = last x (rev (drop i b)).
by rewrite (drop_nth 1 ltib) rev_cons last_rcons.
rewrite -mem_rev in b_y; case/splitPr: (rev _) / b_y ordb => b1 b2.
rewrite !map_cat cat_path last_cat /=; case/and3P=> _ _.
move/(order_path_min leq_trans); case/lastP: b2 => // b3 x'.
by move/allP; apply; rewrite ?map_f ?last_rcons ?mem_rcons ?mem_head.
Qed.
Lemma eq_abelian_type_isog G H :
abelian G -> abelian H -> isog G H = (abelian_type G == abelian_type H).
Proof.
move=> cGG cHH; apply/idP/eqP; first exact: isog_abelian_type.
have{cGG} [bG defG <-] := abelian_structure cGG.
have{cHH} [bH defH <-] := abelian_structure cHH.
elim: bG bH G H defG defH => [|x bG IHb] [|y bH] // G H.
rewrite !big_nil => <- <- _.
by rewrite isog_cyclic_card ?cyclic1 ?cards1.
rewrite !big_cons => defG defH /= [eqxy eqb].
apply: (isog_dprod defG defH).
by rewrite isog_cyclic_card ?cycle_cyclic -?orderE ?eqxy /=.
case/dprodP: defG => [[_ G' _ defG]] _ _ _; rewrite defG.
case/dprodP: defH => [[_ H' _ defH]] _ _ _; rewrite defH.
exact: IHb eqb.
Qed.
Lemma isog_abelem_card p G H :
p.-abelem G -> isog G H = p.-abelem H && (#|H| == #|G|).
Proof.
move=> abelG; apply/idP/andP=> [isoGH | [abelH eqGH]].
by rewrite -(isog_abelem isoGH) (card_isog isoGH).
rewrite eq_abelian_type_isog ?(@abelem_abelian _ p) //.
by rewrite !(@abelian_type_abelem _ p) ?(@rank_abelem _ p) // (eqP eqGH).
Qed.
Variables (D : {group aT}) (f : {morphism D >-> rT}).
Lemma morphim_rank_abelian G : abelian G -> 'r(f @* G) <= 'r(G).
Proof.
move=> cGG; have sHG := subsetIr D G; apply: leq_trans (rankS sHG).
rewrite -!grank_abelian ?morphim_abelian ?(abelianS sHG) //=.
by rewrite -morphimIdom morphim_grank ?subsetIl.
Qed.
Lemma morphim_p_rank_abelian p G : abelian G -> 'r_p(f @* G) <= 'r_p(G).
Proof.
move=> cGG; have sHG := subsetIr D G; apply: leq_trans (p_rankS p sHG).
have cHH := abelianS sHG cGG; rewrite -morphimIdom /=; set H := D :&: G.
have sylP := nilpotent_pcore_Hall p (abelian_nil cHH).
have sPH := pHall_sub sylP.
have sPD: 'O_p(H) \subset D by rewrite (subset_trans sPH) ?subsetIl.
rewrite -(p_rank_Sylow (morphim_pHall f sPD sylP)) -(p_rank_Sylow sylP) //.
rewrite -!rank_pgroup ?morphim_pgroup ?pcore_pgroup //.
by rewrite morphim_rank_abelian ?(abelianS sPH).
Qed.
Lemma isog_homocyclic G H : G \isog H -> homocyclic G = homocyclic H.
Proof.
move=> isoGH.
by rewrite /homocyclic (isog_abelian isoGH) (isog_abelian_type isoGH).
Qed.
End IsogAbelian.
Section QuotientRank.
Variables (gT : finGroupType) (p : nat) (G H : {group gT}).
Hypothesis cGG : abelian G.
Lemma quotient_rank_abelian : 'r(G / H) <= 'r(G).
Proof. exact: morphim_rank_abelian. Qed.
Lemma quotient_p_rank_abelian : 'r_p(G / H) <= 'r_p(G).
Proof. exact: morphim_p_rank_abelian. Qed.
End QuotientRank.
Section FimModAbelem.
Import GRing.Theory FinRing.Theory.
Lemma fin_lmod_char_abelem p (R : ringType) (V : finLmodType R):
p \in [char R]%R -> p.-abelem [set: V].
Proof.
case/andP=> p_pr /eqP-pR0; apply/abelemP=> //.
by split=> [|v _]; rewrite ?zmod_abelian // zmodXgE -scaler_nat pR0 scale0r.
Qed.
Lemma fin_Fp_lmod_abelem p (V : finLmodType 'F_p) :
prime p -> p.-abelem [set: V].
Proof. by move/char_Fp/fin_lmod_char_abelem->. Qed.
Lemma fin_ring_char_abelem p (R : finRingType) :
p \in [char R]%R -> p.-abelem [set: R].
Proof. exact: fin_lmod_char_abelem [finLmodType R of R^o]. Qed.
End FimModAbelem.
|