1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
|
(* (c) Copyright 2006-2015 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrbool ssrfun eqtype ssrnat seq path div.
From mathcomp
Require Import fintype tuple bigop prime binomial finset ssralg fingroup finalg.
From mathcomp
Require Import morphism perm automorphism quotient action commutator gproduct.
From mathcomp
Require Import zmodp cyclic gfunctor center pgroup gseries nilpotent sylow.
From mathcomp
Require Import finmodule abelian frobenius maximal extremal hall.
From mathcomp
Require Import matrix mxalgebra mxrepresentation mxabelem wielandt_fixpoint.
From mathcomp
Require Import BGsection1 BGsection2.
(******************************************************************************)
(* This file covers the material in B & G, Section 3. *)
(* Note that in spite of the use of Gorenstein 2.7.6, the material in all *)
(* of Section 3, and in all likelyhood the whole of B & G, does NOT depend on *)
(* the general proof of existence of Frobenius kernels, because results on *)
(* Frobenius groups are only used when the semidirect product decomposition *)
(* is already known, and (see file frobenius.v) in this case the kernel is *)
(* equal to the normal complement of the Frobenius complement. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope ring_scope.
Import GroupScope GRing.Theory.
Section BGsection3.
Implicit Type F : fieldType.
Implicit Type gT : finGroupType.
Implicit Type p : nat.
(* B & G, Lemma 3.1 is covered by frobenius.Frobenius_semiregularP. *)
(* This is B & G, Lemma 3.2. *)
Section FrobeniusQuotient.
Variables (gT : finGroupType) (G K R : {group gT}).
Implicit Type N : {group gT}.
(* This is a special case of B & G, Lemma 3.2 (b). *)
Lemma Frobenius_proper_quotient N :
[Frobenius G = K ><| R] -> solvable K -> N <| G -> N \proper K ->
[Frobenius G / N = (K / N) ><| (R / N)].
Proof.
move=> frobG solK nsNG /andP[sNK ltNK].
have [defG _ ntR _ _] := Frobenius_context frobG.
have [nsKG sRG defKR nKR tiKR] := sdprod_context defG; have [sKG _]:= andP nsKG.
have nsNK := normalS sNK sKG nsNG.
apply/Frobenius_semiregularP=> [|||Nx].
- rewrite sdprodE ?quotient_norms //.
by rewrite -quotientMl ?defKR ?normal_norm.
by rewrite -quotientGI // tiKR quotient1.
- by rewrite -subG1 quotient_sub1 ?normal_norm.
- rewrite -subG1 quotient_sub1; last by rewrite (subset_trans sRG) ?normal_norm.
apply: contra ntR => sRN.
by rewrite -subG1 -tiKR subsetI (subset_trans sRN) /=.
rewrite !inE andbC => /andP[/morphimP[x nNx Rx ->{Nx}] notNx].
apply/trivgP; rewrite /= -cent_cycle -quotient_cycle //.
rewrite -coprime_quotient_cent ?cycle_subG //; last first.
by apply: coprimegS (Frobenius_coprime frobG); rewrite cycle_subG.
rewrite cent_cycle (Frobenius_reg_ker frobG) ?quotient1 // !inE Rx andbT.
by apply: contraNneq notNx => ->; rewrite morph1.
Qed.
(* This is B & G, Lemma 3.2 (a). *)
Lemma Frobenius_normal_proper_ker N :
[Frobenius G = K ><| R] -> solvable K -> N <| G -> ~~ (K \subset N) ->
N \proper K.
Proof.
move=> frobG solK nsNG ltNK; have [sNG nNG] := andP nsNG; pose H := N :&: K.
have [defG _ ntR _ _] := Frobenius_context frobG.
have [nsKG _ /mulG_sub[sKG _] nKR tiKR] := sdprod_context defG.
have nsHG: H <| G := normalI nsNG nsKG; have [_ nHG] := andP nsHG.
have ltHK: H \proper K by rewrite /proper subsetIr subsetI subxx andbT.
suffices /eqP tiNR: N :&: R == 1.
rewrite /proper ltNK andbT -(setIidPl sNG).
rewrite -(cover_partition (Frobenius_partition frobG)) big_distrr /=.
apply/bigcupsP=> _ /setU1P[->| /imsetP[x Kx ->]]; first exact: subsetIr.
rewrite conjD1g setIDA subDset -(normsP (subset_trans sKG nNG) x) //.
by rewrite -conjIg tiNR conjs1g subsetUl.
suffices: (N :&: R) / H \subset [1].
by rewrite -subG1 quotient_sub1 ?normsGI // -subsetIidr setIACA tiKR setIg1.
have frobGq := Frobenius_proper_quotient frobG solK nsHG ltHK.
have [_ ntKq _ _ _] := Frobenius_context frobGq.
rewrite -(cent_semiregular (Frobenius_reg_compl frobGq) _ ntKq) //.
rewrite subsetI quotientS ?subsetIr // quotient_cents2r //.
by rewrite commg_subI ?setIS // subsetIidl (subset_trans sKG).
Qed.
(* This is B & G, Lemma 3.2 (b). *)
Lemma Frobenius_quotient N :
[Frobenius G = K ><| R] -> solvable K -> N <| G -> ~~ (K \subset N) ->
[Frobenius G / N = (K / N) ><| (R / N)].
Proof.
move=> frobG solK nsNG ltKN; apply: Frobenius_proper_quotient => //.
exact: (Frobenius_normal_proper_ker frobG).
Qed.
End FrobeniusQuotient.
(* This is B & G, Lemma 3.3. *)
Lemma Frobenius_rfix_compl F gT (G K R : {group gT}) n
(rG : mx_representation F G n) :
[Frobenius G = K ><| R] -> [char F]^'.-group K ->
~~ (K \subset rker rG) -> rfix_mx rG R != 0.
Proof.
rewrite /pgroup charf'_nat => frobG nzK.
have [defG _ _ ltKG ltRG]:= Frobenius_context frobG.
have{ltKG ltRG} [sKG sRG]: K \subset G /\ R \subset G by rewrite !proper_sub.
apply: contraNneq => fixR0; rewrite rfix_mx_rstabC // -(eqmx_scale _ nzK).
pose gsum H := gring_op rG (gset_mx F G H).
have fixsum (H : {group gT}): H \subset G -> (gsum H <= rfix_mx rG H)%MS.
move/subsetP=> sHG; apply/rfix_mxP=> x Hx; have Gx := sHG x Hx.
rewrite -gring_opG // -gring_opM ?envelop_mx_id //; congr (gring_op _ _).
rewrite {2}/gset_mx (reindex_acts 'R _ Hx) ?astabsR //= mulmx_suml.
by apply:eq_bigr=> y; move/sHG=> Gy; rewrite repr_mxM.
have: gsum G + rG 1 *+ #|K| = gsum K + \sum_(x in K) gsum (R :^ x).
rewrite -gring_opG // -sumr_const -!linear_sum -!linearD; congr gring_op.
rewrite {1}/gset_mx (set_partition_big _ (Frobenius_partition frobG)) /=.
rewrite big_setU1 -?addrA /=; last first.
by apply: contraL (group1 K) => /imsetP[x _ ->]; rewrite conjD1g !inE eqxx.
congr (_ + _); rewrite big_imset /= => [|x y Kx Ky /= eqRxy]; last first.
have [/eqP/sdprodP[_ _ _ tiKR] _ _ _ /eqP snRG] := and5P frobG.
apply/eqP; rewrite eq_mulgV1 -in_set1 -set1gE -tiKR -snRG setIA.
by rewrite (setIidPl sKG) !inE conjsgM eqRxy actK groupM /= ?groupV.
rewrite -big_split; apply: eq_bigr => x Kx /=.
by rewrite addrC conjD1g -big_setD1 ?group1.
have ->: gsum G = 0.
apply/eqP; rewrite -submx0 -fixR0; apply: submx_trans (rfix_mxS rG sRG).
exact: fixsum.
rewrite repr_mx1 -scaler_nat add0r => ->.
rewrite big1 ?addr0 ?fixsum // => x Kx; have Gx := subsetP sKG x Kx.
apply/eqP; rewrite -submx0 (submx_trans (fixsum _ _)) ?conj_subG //.
by rewrite -(mul0mx _ (rG x)) -fixR0 rfix_mx_conjsg.
Qed.
(* This is Aschbacher (40.6)(3), or G. (3.14)(iii). *)
Lemma regular_pq_group_cyclic gT p q (H R : {group gT}) :
[/\ prime p, prime q & p != q] -> #|R| = (p * q)%N ->
H :!=: 1 -> R \subset 'N(H) -> semiregular H R ->
cyclic R.
Proof.
case=> pr_p pr_q q'p oR ntH nHR regHR.
without loss{q'p} ltpq: p q pr_p pr_q oR / p < q.
by move=> IH; case: ltngtP q'p => // /IH-> //; rewrite mulnC.
have [p_gt0 q_gt0]: 0 < p /\ 0 < q by rewrite !prime_gt0.
have [[P sylP] [Q sylQ]] := (Sylow_exists p R, Sylow_exists q R).
have [sPR sQR] := (pHall_sub sylP, pHall_sub sylQ).
have [oP oQ]: #|P| = p /\ #|Q| = q.
rewrite (card_Hall sylQ) (card_Hall sylP) oR !p_part !lognM ?logn_prime //.
by rewrite !eqxx eq_sym gtn_eqF.
have [ntP ntQ]: P :!=: 1 /\ Q :!=: 1 by rewrite -!cardG_gt1 oP oQ !prime_gt1.
have nQR: R \subset 'N(Q).
rewrite -subsetIidl -indexg_eq1 -(card_Syl_mod R pr_q) (card_Syl sylQ) /=.
rewrite modn_small // -divgS ?subsetIl ?ltn_divLR // mulnC oR ltn_pmul2r //.
by rewrite (leq_trans ltpq) // -oQ subset_leq_card // subsetI sQR normG.
have coQP: coprime #|Q| #|P|.
by rewrite oP oQ prime_coprime ?dvdn_prime2 ?gtn_eqF.
have defR: Q ><| P = R.
rewrite sdprodE ?coprime_TIg ?(subset_trans sPR) //.
by apply/eqP; rewrite eqEcard mul_subG //= oR coprime_cardMg // oP oQ mulnC.
have [cycP cycQ]: cyclic P /\ cyclic Q by rewrite !prime_cyclic ?oP ?oQ.
suffices cQP: P \subset 'C(Q) by rewrite (@cyclic_dprod _ Q P) ?dprodEsd.
without loss /is_abelemP[r pr_r abelH]: H ntH nHR regHR / is_abelem H.
move=> IH; have [r _ rH] := rank_witness H.
have solR: solvable R.
apply/metacyclic_sol/metacyclicP; exists Q.
by rewrite /(Q <| R) sQR -(isog_cyclic (sdprod_isog defR)).
have coHR: coprime #|H| #|R| := regular_norm_coprime nHR regHR.
have [H1 sylH1 nH1R] := sol_coprime_Sylow_exists r solR nHR coHR.
have ntH1: H1 :!=: 1 by rewrite -rank_gt0 (rank_Sylow sylH1) -rH rank_gt0.
have [H2 minH2 sH21] := minnormal_exists ntH1 nH1R.
have [sH1H rH1 _] := and3P sylH1; have sH2H := subset_trans sH21 sH1H.
have [nH2R ntH2 abelH2] := minnormal_solvable minH2 sH21 (pgroup_sol rH1).
by apply: IH abelH2 => //; apply: semiregularS regHR.
have: rfix_mx (abelem_repr abelH ntH nHR) P == 0.
rewrite -mxrank_eq0 rfix_abelem // mxrank_eq0 rowg_mx_eq0 /=.
by rewrite (cent_semiregular regHR) ?morphim1.
apply: contraLR => not_cQP; have{not_cQP} frobR: [Frobenius R = Q ><| P].
by apply/prime_FrobeniusP; rewrite ?prime_TIg ?oP ?oQ // centsC.
apply: (Frobenius_rfix_compl frobR).
rewrite (eq_p'group _ (charf_eq (char_Fp pr_r))).
rewrite (coprime_p'group _ (abelem_pgroup abelH)) //.
by rewrite coprime_sym (coprimegS sQR) ?regular_norm_coprime.
rewrite rker_abelem subsetI sQR centsC.
by rewrite -subsetIidl (cent_semiregular regHR) ?subG1.
Qed.
(* This is B & G, Theorem 3.4. *)
Theorem odd_prime_sdprod_rfix0 F gT (G K R : {group gT}) n
(rG : mx_representation F G n) :
K ><| R = G -> solvable G -> odd #|G| -> coprime #|K| #|R| -> prime #|R| ->
[char F]^'.-group G -> rfix_mx rG R = 0 ->
[~: R, K] \subset rker rG.
Proof.
move: {2}_.+1 (ltnSn #|G|) => m; elim: m => // m IHm in gT G K R n rG *.
rewrite ltnS; set p := #|R| => leGm defG solG oddG coKR p_pr F'G regR.
have [nsKG sRG defKR nKR tiKR] := sdprod_context defG.
have [sKG nKG] := andP nsKG; have solK := solvableS sKG solG.
have [-> | ntK] := eqsVneq K 1; first by rewrite commG1 sub1G.
have ker_ltK (H : {group gT}):
H \proper K -> R \subset 'N(H) -> [~: R, H] \subset rker rG.
- move=> ltKH nHR; have sHK := proper_sub ltKH; set G1 := H <*> R.
have sG1G: G1 \subset G by rewrite join_subG (subset_trans sHK).
have coHR := coprimeSg sHK coKR.
have defG1: H ><| R = G1 by rewrite sdprodEY // coprime_TIg.
apply: subset_trans (subsetIr G1 _); rewrite -(rker_subg _ sG1G).
apply: IHm; rewrite ?(solvableS sG1G) ?(oddSg sG1G) ?(pgroupS sG1G) //.
apply: leq_trans leGm; rewrite /= norm_joinEr // -defKR !coprime_cardMg //.
by rewrite ltn_pmul2r ?proper_card.
without loss [q q_pr qK]: / exists2 q, prime q & q.-group K.
move=> IH; set q := pdiv #|K|.
have q_pr: prime q by rewrite pdiv_prime ?cardG_gt1.
have exHall := coprime_Hall_exists _ nKR coKR solK.
have [Q sylQ nQR] := exHall q; have [Q' hallQ' nQ'R] := exHall q^'.
have [sQK qQ _] := and3P sylQ; have [sQ'K q'Q' _] := and3P hallQ'.
without loss{IH} ltQK: / Q \proper K.
by rewrite properEneq; case: eqP IH => [<- -> | _ _ ->] //; exists q.
have ltQ'K: Q' \proper K.
rewrite properEneq; case: eqP (pgroupP q'Q' q q_pr) => //= ->.
by rewrite !inE pdiv_dvd eqxx; apply.
have nkerG := subset_trans _ (rker_norm rG).
rewrite -quotient_cents2 ?nkerG //.
have <-: Q * Q' = K.
apply/eqP; rewrite eqEcard mulG_subG sQK sQ'K.
rewrite coprime_cardMg ?(pnat_coprime qQ) //=.
by rewrite (card_Hall sylQ) (card_Hall hallQ') partnC.
rewrite quotientMl ?nkerG ?(subset_trans sQK) // centM subsetI.
by rewrite !quotient_cents2r ?ker_ltK.
without loss{m IHm leGm} [ffulG cycZ]: / rker rG = 1 /\ cyclic 'Z(G).
move=> IH; wlog [I M /= simM sumM _]: / mxsemisimple rG 1%:M.
exact: (mx_reducible_semisimple (mxmodule1 _) (mx_Maschke _ F'G)).
pose not_cRK_M i := ~~ ([~: R, K] \subset rstab rG (M i)).
case: (pickP not_cRK_M) => [i | cRK_M]; last first.
rewrite rfix_mx_rstabC ?comm_subG // -sumM.
apply/sumsmx_subP=> i _; move/negbFE: (cRK_M i).
by rewrite rfix_mx_rstabC ?comm_subG.
have [modM ntM _] := simM i; pose rM := kquo_repr (submod_repr modM).
do [rewrite {+}/not_cRK_M -(rker_submod modM) /=; set N := rker _] in rM *.
have [N1 _ | ntN] := eqVneq N 1.
apply: IH; split.
by apply/trivgP; rewrite -N1 /N rker_submod rstabS ?submx1.
have: mx_irreducible (submod_repr modM) by apply/submod_mx_irr.
by apply: mx_faithful_irr_center_cyclic; apply/trivgP.
have tiRN: R :&: N = 1.
by apply: prime_TIg; rewrite //= rker_submod rfix_mx_rstabC // regR submx0.
have nsNG: N <| G := rker_normal _; have [sNG nNG] := andP nsNG.
have nNR := subset_trans sRG nNG.
have sNK: N \subset K.
have [pi hallK]: exists pi, pi.-Hall(G) K.
by apply: HallP; rewrite -(coprime_sdprod_Hall_l defG).
rewrite (sub_normal_Hall hallK) //=.
apply: pnat_dvd (pHall_pgroup hallK).
rewrite -(dvdn_pmul2r (prime_gt0 p_pr)) -!TI_cardMg // 1?setIC // defKR.
by rewrite -norm_joinEr // cardSg // join_subG sNG.
have defGq: (K / N) ><| (R / N) = G / N.
rewrite sdprodE ?quotient_norms -?quotientMr ?defKR //.
by rewrite -quotientGI // tiKR quotient1.
case/negP; rewrite -quotient_cents2 ?(subset_trans _ nNG) //= -/N.
rewrite (sameP commG1P trivgP).
apply: subset_trans (kquo_mx_faithful (submod_repr modM)).
rewrite IHm ?quotient_sol ?coprime_morph ?morphim_odd ?quotient_pgroup //.
- by apply: leq_trans leGm; apply: ltn_quotient.
- by rewrite card_quotient // -indexgI tiRN indexg1.
apply/eqP; rewrite -submx0 rfix_quo // rfix_submod //.
by rewrite regR capmx0 linear0 sub0mx.
without loss perfectK: / [~: K, R] = K.
move=> IH; have: [~: K, R] \subset K by rewrite commg_subl.
rewrite subEproper; case/predU1P=> //; move/ker_ltK.
by rewrite commGC commg_normr coprime_commGid // commGC => ->.
have primeR: {in R^#, forall x, 'C_K[x] = 'C_K(R)}.
move=> x; case/setD1P=> nt_x Rx; rewrite -cent_cycle ((<[x]> =P R) _) //.
rewrite eqEsubset cycle_subG Rx; apply: contraR nt_x; move/prime_TIg.
by rewrite -cycle_eq1 (setIidPr _) ?cycle_subG // => ->.
case cKK: (abelian K).
rewrite commGC perfectK; move/eqP: regR; apply: contraLR.
apply: Frobenius_rfix_compl => //; last exact: pgroupS F'G.
rewrite -{2 4}perfectK coprime_abel_cent_TI // in primeR.
by apply/Frobenius_semiregularP; rewrite // -cardG_gt1 prime_gt1.
have [spK defZK]: special K /\ 'C_K(R) = 'Z(K).
apply: (abelian_charsimple_special qK) => //.
apply/bigcupsP=> H /andP[chHK cHH].
have:= char_sub chHK; rewrite subEproper.
case/predU1P=> [eqHK | ltHK]; first by rewrite eqHK cKK in cHH.
have nHR: R \subset 'N(H) := char_norm_trans chHK nKR.
by rewrite (sameP commG1P trivgP) /= commGC -ffulG ker_ltK.
have{spK} esK: extraspecial K.
have abelZK := center_special_abelem qK spK; have [qZK _] := andP abelZK.
have /(pgroup_pdiv qZK)[_ _ []]: 'Z(K) != 1.
by case: spK => _ <-; rewrite (sameP eqP commG1P) -abelianE cKK.
case=> [|e] oK; first by split; rewrite ?oK.
suffices: cyclic 'Z(K) by rewrite (abelem_cyclic abelZK) oK pfactorK.
rewrite (cyclicS _ cycZ) // subsetI subIset ?sKG //=.
by rewrite -defKR centM subsetI -{2}defZK !subsetIr.
have [e e_gt0 oKqe] := card_extraspecial qK esK.
have cycR: cyclic R := prime_cyclic p_pr.
have co_q_p: coprime q p by rewrite oKqe coprime_pexpl in coKR.
move/eqP: regR; case/idPn.
rewrite defZK in primeR.
case: (repr_extraspecial_prime_sdprod_cycle _ _ defG _ oKqe) => // _.
apply=> //; last exact/trivgP.
apply: contraL (oddSg sRG oddG); move/eqP->; have:= oddSg sKG oddG.
by rewrite oKqe addn1 /= !odd_exp /= orbC => ->.
Qed.
(* Internal action version of B & G, Theorem 3.4. *)
Theorem odd_prime_sdprod_abelem_cent1 k gT (G K R V : {group gT}) :
solvable G -> odd #|G| -> K ><| R = G -> coprime #|K| #|R| -> prime #|R| ->
k.-abelem V -> G \subset 'N(V) -> k^'.-group G -> 'C_V(R) = 1 ->
[~: R, K] \subset 'C_K(V).
Proof.
move=> solG oddG defG coKR prR abelV nVG k'G regR.
have [_ sRG _ nKR _] := sdprod_context defG; rewrite subsetI commg_subr nKR.
case: (eqsVneq V 1) => [-> | ntV]; first exact: cents1.
pose rV := abelem_repr abelV ntV nVG.
apply: subset_trans (_ : rker rV \subset _); last first.
by rewrite rker_abelem subsetIr.
apply: odd_prime_sdprod_rfix0 => //.
have k_pr: prime k by case/pgroup_pdiv: (abelem_pgroup abelV).
by rewrite (eq_pgroup G (eq_negn (charf_eq (char_Fp k_pr)))).
by apply/eqP; rewrite -submx0 rfix_abelem //= regR morphim1 rowg_mx1.
Qed.
(* This is B & G, Theorem 3.5. *)
Theorem Frobenius_prime_rfix1 F gT (G K R : {group gT}) n
(rG : mx_representation F G n) :
K ><| R = G -> solvable G -> prime #|R| -> 'C_K(R) = 1 ->
[char F]^'.-group G -> \rank (rfix_mx rG R) = 1%N ->
K^`(1) \subset rker rG.
Proof.
move=> defG solG p_pr regR F'G fixRlin.
wlog closF: F rG F'G fixRlin / group_closure_field F gT.
move=> IH; apply: (@group_closure_field_exists gT F) => [[Fc f closFc]].
rewrite -(rker_map f) IH //; last by rewrite -map_rfix_mx mxrank_map.
by rewrite (eq_p'group _ (fmorph_char f)).
move: {2}_.+1 (ltnSn #|K|) => m.
elim: m => // m IHm in gT G K R rG solG p_pr regR F'G closF fixRlin defG *.
rewrite ltnS => leKm.
have [nsKG sRG defKR nKR tiKR] := sdprod_context defG.
have [sKG nKG] := andP nsKG; have solK := solvableS sKG solG.
have cycR := prime_cyclic p_pr.
case: (eqsVneq K 1) => [-> | ntK]; first by rewrite derg1 commG1 sub1G.
have defR x: x \in R^# -> <[x]> = R.
case/setD1P; rewrite -cycle_subG -cycle_eq1 => ntX sXR.
apply/eqP; rewrite eqEsubset sXR; apply: contraR ntX => /(prime_TIg p_pr).
by rewrite /= (setIidPr sXR) => ->.
have ntR: R :!=: 1 by rewrite -cardG_gt1 prime_gt1.
have frobG: [Frobenius G = K ><| R].
by apply/Frobenius_semiregularP=> // x Rx; rewrite -cent_cycle defR.
case: (eqVneq (rker rG) 1) => [ffulG | ntC]; last first.
set C := rker rG in ntC *; have nsCG: C <| G := rker_normal rG.
have [sCG nCG] := andP nsCG.
have nCK := subset_trans sKG nCG; have nCR := subset_trans sRG nCG.
case sKC: (K \subset C); first exact: gFsub_trans.
have sCK: C \subset K.
by rewrite proper_sub // (Frobenius_normal_proper_ker frobG) ?sKC.
have frobGq: [Frobenius G / C = (K / C) ><| (R / C)].
by apply: Frobenius_quotient; rewrite ?sKC.
have [defGq _ ntRq _ _] := Frobenius_context frobGq.
rewrite -quotient_sub1 ?comm_subG ?quotient_der //= -/C.
apply: subset_trans (kquo_mx_faithful rG).
apply: IHm defGq _; rewrite 1?(quotient_sol, quotient_pgroup, rfix_quo) //.
- rewrite card_quotient // -indexgI /= -/C setIC.
by rewrite -(setIidPl sCK) -setIA tiKR (setIidPr (sub1G _)) indexg1.
- have: cyclic (R / C) by [rewrite quotient_cyclic]; case/cyclicP=> Cx defRq.
rewrite /= defRq cent_cycle (Frobenius_reg_ker frobGq) //= !inE defRq.
by rewrite cycle_id -cycle_eq1 -defRq ntRq.
- move=> Hq; rewrite -(group_inj (cosetpreK Hq)).
by apply: quotient_splitting_field; rewrite ?subsetIl.
by apply: leq_trans leKm; apply: ltn_quotient.
have ltK_abelian (N : {group gT}): R \subset 'N(N) -> N \proper K -> abelian N.
move=> nNR ltNK; have [sNK _] := andP ltNK; apply/commG1P/trivgP.
rewrite -(setIidPr (sub1G (N <*> R))) /= -ffulG; set G1 := N <*> R.
have sG1: G1 \subset G by rewrite join_subG (subset_trans sNK).
have defG1: N ><| R = G1.
by rewrite sdprodEY //; apply/trivgP; rewrite -tiKR setSI.
rewrite -(rker_subg _ sG1).
apply: IHm defG1 _; rewrite ?(solvableS sG1) ?(pgroupS sG1) //.
by apply/trivgP; rewrite -regR setSI.
by apply: leq_trans leKm; apply: proper_card.
have cK'K': abelian K^`(1).
exact: ltK_abelian (gFnorm_trans _ nKR) (sol_der1_proper solK _ ntK).
pose fixG := rfix_mx rG; pose NRmod N (U : 'M_n) := N <*> R \subset rstabs rG U.
have dx_modK_rfix (N : {group gT}) U V:
N \subset K -> R \subset 'N(N) -> NRmod N U -> NRmod N V ->
mxdirect (U + V) -> (U <= fixG N)%MS || (V <= fixG N)%MS.
- move=> sNK nNR nUNR nVNR dxUV.
have [-> | ntN] := eqsVneq N 1; first by rewrite -rfix_mx_rstabC sub1G.
have sNRG: N <*> R \subset G by rewrite join_subG (subset_trans sNK).
pose rNR := subg_repr rG sNRG.
have nfixU W: NRmod N W -> ~~ (W <= fixG N)%MS -> (fixG R <= W)%MS.
move=> nWN not_cWN; rewrite (sameP capmx_idPr eqmxP).
rewrite -(geq_leqif (mxrank_leqif_eq (capmxSr _ _))) fixRlin lt0n.
rewrite mxrank_eq0 -(in_submodK (capmxSl _ _)) val_submod_eq0.
have modW: mxmodule rNR W by rewrite /mxmodule rstabs_subg subsetI subxx.
rewrite -(eqmx_eq0 (rfix_submod modW _)) ?joing_subr //.
apply: Frobenius_rfix_compl (pgroupS (subset_trans sNK sKG) F'G) _.
apply/Frobenius_semiregularP=> // [|x Rx].
by rewrite sdprodEY //; apply/trivgP; rewrite -tiKR setSI.
by apply/trivgP; rewrite -regR /= -cent_cycle defR ?setSI.
by rewrite rker_submod rfix_mx_rstabC ?joing_subl.
have: fixG R != 0 by rewrite -mxrank_eq0 fixRlin.
apply: contraR; case/norP=> not_fixU not_fixW.
by rewrite -submx0 -(mxdirect_addsP dxUV) sub_capmx !nfixU.
have redG := mx_Maschke rG F'G.
wlog [U simU nfixU]: / exists2 U, mxsimple rG U & ~~ (U <= fixG K)%MS.
move=> IH; wlog [I U /= simU sumU _]: / mxsemisimple rG 1%:M.
exact: (mx_reducible_semisimple (mxmodule1 _) redG).
have [i nfixU | fixK] := pickP (fun i => ~~ (U i <= fixG K)%MS).
by apply: IH; exists (U i).
rewrite gFsub_trans // rfix_mx_rstabC // -sumU.
by apply/sumsmx_subP=> i _; apply/idPn; rewrite fixK.
have [modU ntU minU] := simU; pose rU := submod_repr modU.
have irrU: mx_irreducible rU by apply/submod_mx_irr.
have [W modW sumUW dxUW] := redG U modU (submx1 U).
have cWK: (W <= fixG K)%MS.
have:= dx_modK_rfix _ _ _ (subxx _) nKR _ _ dxUW.
by rewrite /NRmod /= norm_joinEr // defKR (negPf nfixU); apply.
have nsK'G: K^`(1) <| G by rewrite gFnormal_trans.
have [sK'G nK'G] := andP nsK'G.
suffices nregK'U: (rfix_mx rU K^`(1))%MS != 0.
rewrite rfix_mx_rstabC ?normal_sub // -sumUW addsmx_sub andbC.
rewrite (submx_trans cWK) ?rfix_mxS ?der_sub //= (sameP capmx_idPl eqmxP).
rewrite minU ?capmxSl ?capmx_module ?normal_rfix_mx_module //.
apply: contra nregK'U => cUK'; rewrite (eqmx_eq0 (rfix_submod _ _)) //.
by rewrite (eqP cUK') linear0.
pose rK := subg_repr rU (normal_sub nsKG); set p := #|R| in p_pr.
wlog sK: / socleType rK by apply: socle_exists.
have [i _ def_sK]: exists2 i, i \in setT & [set: sK] = orbit 'Cl G i.
exact/imsetP/Clifford_atrans.
have card_sK: #|[set: sK]| = #|G : 'C[i | 'Cl]|.
by rewrite def_sK card_orbit_in ?indexgI.
have ciK: K \subset 'C[i | 'Cl].
apply: subset_trans (astabS _ (subsetT _)).
by apply: subset_trans (Clifford_astab _); apply: joing_subl.
pose M := socle_base i; have simM: mxsimple rK M := socle_simple i.
have [sKp | sK1 {ciK card_sK}]: #|[set: sK]| = p \/ #|[set: sK]| = 1%N.
- apply/pred2P; rewrite orbC card_sK; case/primeP: p_pr => _; apply.
by rewrite (_ : p = #|G : K|) ?indexgS // -divgS // -(sdprod_card defG) mulKn.
- have{def_sK} def_sK: [set: sK] = orbit 'Cl R i.
apply/eqP; rewrite eq_sym -subTset def_sK -[G in orbit _ G i]defKR.
apply/subsetP=> _ /imsetP[_ /imset2P[y z /(subsetP ciK)ciy Rz ->] ->].
rewrite !(inE, sub1set) in ciy; have{ciy}[Gy /eqP-ciy]:= andP ciy.
by rewrite actMin ?(subsetP sRG z Rz) // ciy mem_orbit.
have inj_i: {in R &, injective ('Cl%act i)}.
apply/dinjectiveP/card_uniqP; rewrite size_map -cardE -/p.
by rewrite -sKp def_sK /orbit [in _ @: _]unlock cardsE.
pose sM := (\sum_(y in R) M *m rU y)%MS.
have dxM: mxdirect sM.
apply/mxdirect_sumsP=> y Ry; have Gy := subsetP sRG y Ry.
pose j := 'Cl%act i y.
apply/eqP; rewrite -submx0 -{2}(mxdirect_sumsP (Socle_direct sK) j) //.
rewrite capmxS ?val_Clifford_act // ?submxMr ?component_mx_id //.
apply/sumsmx_subP => z; case/andP=> Rz ne_z_y; have Gz := subsetP sRG z Rz.
rewrite (sumsmx_sup ('Cl%act i z)) ?(inj_in_eq inj_i) //.
by rewrite val_Clifford_act // ?submxMr // ?component_mx_id.
pose inCR := \sum_(x in R) rU x.
have im_inCR: (inCR <= rfix_mx rU R)%MS.
apply/rfix_mxP=> x Rx; have Gx := subsetP sRG x Rx.
rewrite {2}[inCR](reindex_astabs 'R x) ?astabsR //= mulmx_suml.
by apply: eq_bigr => y; move/(subsetP sRG)=> Gy; rewrite repr_mxM.
pose inM := proj_mx M (\sum_(x in R | x != 1) M *m rU x)%MS.
have dxM1 := mxdirect_sumsP dxM _ (group1 R).
rewrite repr_mx1 mulmx1 in dxM1.
have inCR_K: M *m inCR *m inM = M.
rewrite mulmx_sumr (bigD1 1) //= repr_mx1 mulmx1 mulmxDl proj_mx_id //.
by rewrite proj_mx_0 ?addr0 // summx_sub_sums.
have [modM ntM _] := simM.
have linM: \rank M = 1%N.
apply/eqP; rewrite eqn_leq lt0n mxrank_eq0 ntM andbT.
rewrite -inCR_K; apply: leq_trans (mxrankM_maxl _ _) _.
apply: leq_trans (mxrankS (mulmx_sub _ im_inCR)) _.
rewrite rfix_submod //; apply: leq_trans (mxrankM_maxl _ _) _.
by rewrite -fixRlin mxrankS ?capmxSr.
apply: contra (ntM); move/eqP; rewrite -submx0 => <-.
by rewrite -(rfix_mx_rstabC rK) ?der_sub // -(rker_submod modM) rker_linear.
have{sK i M simM sK1 def_sK} irrK: mx_irreducible rK.
have cycGq: cyclic (G / K) by rewrite -defKR quotientMidl quotient_cyclic.
apply: (mx_irr_prime_index closF irrU cycGq simM) => x Gx /=.
apply: (component_mx_iso simM); first exact: Clifford_simple.
have jP: component_mx rK (M *m rU x) \in socle_enum sK.
exact/component_socle/Clifford_simple.
pose j := PackSocle jP; apply: submx_trans (_ : j <= _)%MS.
by rewrite PackSocleK component_mx_id //; apply: Clifford_simple.
have def_i: [set i] == [set: sK] by rewrite eqEcard subsetT cards1 sK1.
by rewrite ((j =P i) _) // -in_set1 (eqP def_i) inE.
pose G' := K^`(1) <*> R.
have sG'G: G' \subset G by rewrite join_subG sK'G.
pose rG' := subg_repr rU sG'G.
wlog irrG': / mx_irreducible rG'.
move=> IH; wlog [M simM sM1]: / exists2 M, mxsimple rG' M & (M <= 1%:M)%MS.
by apply: mxsimple_exists; rewrite ?mxmodule1; case: irrK.
have [modM ntM _] := simM.
have [M' modM' sumM dxM] := mx_Maschke rG' (pgroupS sG'G F'G) modM sM1.
wlog{IH} ntM': / M' != 0.
case: eqP sumM => [-> M1 _ | _ _ -> //]; apply: IH.
by apply: mx_iso_simple simM; apply: eqmx_iso; rewrite addsmx0_id in M1.
suffices: (K^`(1) \subset rstab rG' M) || (K^`(1) \subset rstab rG' M').
rewrite !rfix_mx_rstabC ?joing_subl //; rewrite -!submx0 in ntM ntM' *.
by case/orP; move/submx_trans=> sM; apply: (contra (sM _ _)).
rewrite !rstab_subg !rstab_submod !subsetI joing_subl !rfix_mx_rstabC //.
rewrite /mxmodule !rstabs_subg !rstabs_submod !subsetI !subxx in modM modM'.
do 2!rewrite orbC -genmxE.
rewrite dx_modK_rfix // /NRmod ?(eqmx_rstabs _ (genmxE _)) ?der_sub //.
exact: subset_trans sRG nK'G.
apply/mxdirect_addsP; apply/eqP; rewrite -genmx_cap (eqmx_eq0 (genmxE _)).
rewrite -(in_submodK (submx_trans (capmxSl _ _) (val_submodP _))).
rewrite val_submod_eq0 in_submodE -submx0 (submx_trans (capmxMr _ _ _)) //.
by rewrite -!in_submodE !val_submodK (mxdirect_addsP dxM).
have nsK'K: K^`(1) <| K by apply: der_normal.
pose rK'K := subg_repr rK (normal_sub nsK'K).
have irrK'K: mx_absolutely_irreducible rK'K.
wlog sK'K: / socleType rK'K by apply: socle_exists.
have sK'_dv_K: #|[set: sK'K]| %| #|K|.
exact: atrans_dvd_in (Clifford_atrans _ _).
have nsK'G': K^`(1) <| G' := normalS (joing_subl _ _) sG'G nsK'G.
pose rK'G' := subg_repr rG' (normal_sub nsK'G').
wlog sK'G': / socleType rK'G' by apply: socle_exists.
have coKp: coprime #|K| p := Frobenius_coprime frobG.
have nK'R := subset_trans sRG nK'G.
have sK'_dv_p: #|[set: sK'G']| %| p.
suffices: #|G' : 'C([set: sK'G'] | 'Cl)| %| #|G' : K^`(1)|.
rewrite -(divgS (joing_subl _ _)) /= {2}norm_joinEr //.
rewrite coprime_cardMg ?(coprimeSg (normal_sub nsK'K)) //.
rewrite mulKn ?cardG_gt0 // -indexgI; apply: dvdn_trans.
exact: atrans_dvd_index_in (Clifford_atrans _ _).
rewrite indexgS //; apply: subset_trans (Clifford_astab sK'G').
exact: joing_subl.
have eq_sK': #|[set: sK'K]| = #|[set: sK'G']|.
rewrite !cardsT !cardE -!(size_map (fun i => socle_val i)).
apply: perm_eq_size.
rewrite uniq_perm_eq 1?(map_inj_uniq val_inj) 1?enum_uniq // => V.
apply/mapP/mapP=> [] [i _ ->{V}].
exists (PackSocle (component_socle sK'G' (socle_simple i))).
by rewrite mem_enum.
by rewrite PackSocleK.
exists (PackSocle (component_socle sK'K (socle_simple i))).
by rewrite mem_enum.
by rewrite PackSocleK.
have [i def_i]: exists i, [set: sK'G'] = [set i].
apply/cards1P; rewrite -dvdn1 -{7}(eqnP coKp) dvdn_gcd.
by rewrite -{1}eq_sK' sK'_dv_K sK'_dv_p.
pose M := socle_base i; have simM : mxsimple rK'G' M := socle_simple i.
have cycGq: cyclic (G' / K^`(1)).
by rewrite /G' joingC quotientYidr ?quotient_cyclic.
apply closF; apply: (mx_irr_prime_index closF irrG' cycGq simM) => x K'x /=.
apply: (component_mx_iso simM); first exact: Clifford_simple.
have jP: component_mx rK'G' (M *m rG' x) \in socle_enum sK'G'.
exact/component_socle/Clifford_simple.
pose j := PackSocle jP; apply: submx_trans (_ : j <= _)%MS.
by rewrite PackSocleK component_mx_id //; apply: Clifford_simple.
by rewrite ((j =P i) _) // -in_set1 -def_i inE.
have linU: \rank U = 1%N by apply/eqP; rewrite abelian_abs_irr in irrK'K.
case: irrU => _ nz1 _; apply: contra nz1; move/eqP=> fix0.
by rewrite -submx0 -fix0 -(rfix_mx_rstabC rK) ?der_sub // rker_linear.
Qed.
(* Internal action version of B & G, Theorem 3.5. *)
Theorem Frobenius_prime_cent_prime k gT (G K R V : {group gT}) :
solvable G -> K ><| R = G -> prime #|R| -> 'C_K(R) = 1 ->
k.-abelem V -> G \subset 'N(V) -> k^'.-group G -> #|'C_V(R)| = k ->
K^`(1) \subset 'C_K(V).
Proof.
move=> solG defG prR regRK abelV nVG k'G primeRV.
have [_ sRG _ nKR _] := sdprod_context defG; rewrite subsetI der_sub.
have [-> | ntV] := eqsVneq V 1; first exact: cents1.
pose rV := abelem_repr abelV ntV nVG.
apply: subset_trans (_ : rker rV \subset _); last first.
by rewrite rker_abelem subsetIr.
have k_pr: prime k by case/pgroup_pdiv: (abelem_pgroup abelV).
apply: (Frobenius_prime_rfix1 defG) => //.
by rewrite (eq_pgroup G (eq_negn (charf_eq (char_Fp k_pr)))).
apply/eqP; rewrite rfix_abelem // -(eqn_exp2l _ _ (prime_gt1 k_pr)).
rewrite -{1}(card_Fp k_pr) -card_rowg rowg_mxK.
by rewrite card_injm ?abelem_rV_injm ?subsetIl ?primeRV.
Qed.
Section Theorem_3_6.
(* Limit the scope of the FiniteModule notations *)
Import FiniteModule.
(* This is B & G, Theorem 3.6. *)
Theorem odd_sdprod_Zgroup_cent_prime_plength1 p gT (G H R R0 : {group gT}) :
solvable G -> odd #|G| -> H ><| R = G -> coprime #|H| #|R| ->
R0 \subset R -> prime #|R0| -> Zgroup 'C_H(R0) ->
p.-length_1 [~: H, R].
Proof.
move: {2}_.+1 (ltnSn #|G|) => n; elim: n => // n IHn in gT G H R R0 *.
rewrite ltnS; move oR0: #|R0| => r leGn solG oddG defG coHR sR0R r_pr ZgrCHR0.
have rR0: r.-group R0 by rewrite /pgroup oR0 pnat_id.
have [nsHG sRG mulHR nHR tiHR]:= sdprod_context defG.
have [sHG nHG] := andP nsHG; have solH := solvableS sHG solG.
have IHsub (H1 R1 : {group gT}):
H1 \subset H -> H1 * R1 \subset 'N(H1) -> R0 \subset R1 -> R1 \subset R ->
(#|H1| < #|H|) || (#|R1| < #|R|) -> p.-length_1 [~: H1, R1].
- move=> sH1 nH1 sR01 sR1 ltG1; set G1 := H1 <*> R1.
have coHR1: coprime #|H1| #|R1| by rewrite (coprimeSg sH1) // (coprimegS sR1).
have defG1: H1 ><| R1 = G1.
by rewrite sdprodEY ?coprime_TIg ?(subset_trans (mulG_subr H1 R1)).
have sG1: G1 \subset G by rewrite join_subG -mulG_subG -mulHR mulgSS.
have{ltG1} ltG1n: #|G1| < n.
rewrite (leq_trans _ leGn) // -(sdprod_card defG1) -(sdprod_card defG).
have leqifS := leqif_geq (subset_leq_card _).
rewrite ltn_neqAle !(leqif_mul (leqifS _ _ _ sH1) (leqifS _ _ _ sR1)).
by rewrite muln_eq0 !negb_or negb_and -!ltnNge ltG1 -!lt0n !cardG_gt0.
apply: IHn defG1 _ sR01 _ _; rewrite ?oR0 ?(solvableS sG1) ?(oddSg sG1) //.
exact: ZgroupS (setSI _ sH1) ZgrCHR0.
without loss defHR: / [~: H, R] = H; last rewrite defHR.
have sHR_H: [~: H, R] \subset H by rewrite commg_subl.
have:= sHR_H; rewrite subEproper; case/predU1P=> [-> -> //|ltHR_H _].
rewrite -coprime_commGid // IHsub 1?proper_card //.
by apply: subset_trans (commg_norm H R); rewrite norm_joinEr ?mulSg.
have{n leGn IHn tiHR} IHquo (X : {group gT}):
X :!=: 1 -> X \subset H -> G \subset 'N(X) -> p.-length_1 (H / X).
- move=> ntX sXH nXG; have nXH := subset_trans sHG nXG.
have nXR := subset_trans sRG nXG; have nXR0 := subset_trans sR0R nXR.
rewrite -defHR quotientE morphimR // -!quotientE.
have ltGbn: #|G / X| < n.
exact: leq_trans (ltn_quotient ntX (subset_trans sXH sHG)) _.
have defGb: (H / X) ><| (R / X) = G / X by apply: quotient_coprime_sdprod.
have pr_R0b: prime #|R0 / X|.
have tiXR0: X :&: R0 = 1 by apply/trivgP; rewrite -tiHR setISS.
by rewrite card_quotient // -indexgI setIC tiXR0 indexg1 oR0.
have solGb: solvable (G / X) by apply: quotient_sol.
have coHRb: coprime #|H / X| #|R / X| by apply: coprime_morph.
apply: IHn defGb coHRb _ pr_R0b _; rewrite ?quotientS ?quotient_odd //.
by rewrite -coprime_quotient_cent ?(coprimegS sR0R) // morphim_Zgroup.
without loss Op'H: / 'O_p^'(H) = 1.
have [_ -> // | ntO _] := eqVneq 'O_p^'(H) 1.
suffices: p.-length_1 (H / 'O_p^'(H)).
by rewrite p'quo_plength1 ?pcore_normal ?pcore_pgroup.
apply: IHquo => //; first by rewrite normal_sub ?pcore_normal.
by rewrite normal_norm // gFnormal_trans.
move defV: 'F(H)%G => V.
have charV: V \char H by rewrite -defV Fitting_char.
have /andP[sVH nVH]: V <| H := char_normal charV.
have nsVG: V <| G := char_normal_trans charV nsHG.
have [_ nVG] := andP nsVG; have nVR: R \subset 'N(V) := subset_trans sRG nVG.
without loss ntV: / V :!=: 1.
by rewrite -defV trivg_Fitting //; case: eqP => [|_] ->; rewrite ?plength1_1.
have scVHV: 'C_H(V) \subset V by rewrite -defV cent_sub_Fitting.
have{defV Op'H} defV: 'O_p(H) = V by rewrite -(Fitting_eq_pcore Op'H) -defV.
have pV: p.-group V by rewrite -defV pcore_pgroup.
have [p_pr p_dv_V _] := pgroup_pdiv pV ntV.
have p'r: r != p.
rewrite eq_sym -dvdn_prime2 // -prime_coprime // (coprime_dvdl p_dv_V) //.
by rewrite -oR0 (coprimegS sR0R) // (coprimeSg sVH).
without loss{charV} abelV: / p.-abelem V; last have [_ cVV eV] := and3P abelV.
move/implyP; rewrite implybE -trivg_Phi //; case/orP=> // ntPhi.
have charPhi: 'Phi(V) \char H := gFchar_trans _ charV.
have nsPhiH := char_normal charPhi; have [sPhiH nPhiH] := andP nsPhiH.
have{charPhi} nPhiG: G \subset 'N('Phi(V)):= char_norm_trans charPhi nHG.
rewrite -(pquo_plength1 nsPhiH) 1?IHquo ?(pgroupS (Phi_sub _)) //.
have [/= W defW sPhiW nsWH] := inv_quotientN nsPhiH (pcore_normal p^' _).
have p'Wb: p^'.-group (W / 'Phi(V)) by rewrite -defW pcore_pgroup.
have{p'Wb} tiWb := coprime_TIg (pnat_coprime (quotient_pgroup _ _) p'Wb).
suffices pW: p.-group W by rewrite -(tiWb W pW) setIid.
apply/pgroupP=> q q_pr; case/Cauchy=> // x Wx ox; apply: wlog_neg => q'p.
suffices Vx: x \in V by rewrite (pgroupP pV) // -ox order_dvdG.
have [sWH nWH] := andP nsWH; rewrite (subsetP scVHV) // inE (subsetP sWH) //=.
have coVx: coprime #|V| #[x] by rewrite ox (pnat_coprime pV) // pnatE.
rewrite -cycle_subG (coprime_cent_Phi pV coVx) //.
have: V :&: W \subset 'Phi(V); last apply: subset_trans.
rewrite -quotient_sub1; last by rewrite subIset ?(subset_trans sWH) ?orbT.
by rewrite quotientIG ?tiWb.
rewrite commg_subI //; first by rewrite subsetI subxx (subset_trans sVH).
by rewrite cycle_subG inE Wx (subsetP nVH) // (subsetP sWH).
have{scVHV} scVH: 'C_H(V) = V by apply/eqP; rewrite eqEsubset scVHV subsetI sVH.
without loss{IHquo} indecomposableV: / forall U W,
U \x W = V -> G \subset 'N(U) :&: 'N(W) -> U = 1 \/ U = V.
- pose decV UW := let: (U, W) := UW in
[&& U \x W == V, G \subset 'N(U) :&: 'N(W), U != 1 & W != 1].
case: (pickP decV) => [[A B /=] | indecV]; last first.
apply=> U W defUW nUW_G; have:= indecV (U, W); rewrite /= -defUW nUW_G eqxx.
by rewrite -negb_or; case/pred2P=> ->; [left | right; rewrite dprodg1].
rewrite subsetI -!andbA => /and5P[/eqP/dprodP[[U W -> ->{A B}]]].
move=> defUW _ tiUW nUG nWG ntU ntW _.
have [sUH sWH]: U \subset H /\ W \subset H.
by apply/andP; rewrite -mulG_subG defUW.
have [nsUH nsWH]: U <| H /\ W <| H.
by rewrite /normal !(subset_trans sHG) ?andbT.
by rewrite -(quo2_plength1 _ nsUH nsWH) ?tiUW ?IHquo.
have nsFb: 'F(H / V) <| G / V by rewrite gFnormal_trans ?quotient_normal.
have{nsVG nsFb} [/= U defU sVU nsUG] := inv_quotientN nsVG nsFb.
have{nsUG} [sUG nUG] := andP nsUG.
have [solU nVU] := (solvableS sUG solG, subset_trans sUG nVG).
have sUH: U \subset H by rewrite -(quotientSGK nVU sVH) -defU Fitting_sub.
have [K hallK nKR]: exists2 K : {group gT}, p^'.-Hall(U) K & R \subset 'N(K).
by apply: coprime_Hall_exists; rewrite ?(coprimeSg sUH) ?(subset_trans sRG).
have [sKU p'K _] := and3P hallK; have{sUG} sKG := subset_trans sKU sUG.
have coVK: coprime #|V| #|K| := pnat_coprime pV p'K.
have [sKH nVK] := (subset_trans sKU sUH, subset_trans sKU nVU).
have{defV} p'Ub: p^'.-group (U / V).
rewrite -defU -['F(H / V)](nilpotent_pcoreC p (Fitting_nil _)) /=.
by rewrite p_core_Fitting -defV trivg_pcore_quotient dprod1g pcore_pgroup.
have{p'Ub} sylV: p.-Sylow(U) V by rewrite /pHall sVU pV -card_quotient.
have{sKU} mulVK: V * K = U.
apply/eqP; rewrite eqEcard mul_subG //= coprime_cardMg //.
by rewrite (card_Hall sylV) (card_Hall hallK) partnC.
have [sKN sNH]: K \subset 'N_H(K) /\ 'N_H(K) \subset H.
by rewrite subsetIl subsetI sKH normG.
have [solN nVN] := (solvableS sNH solH, subset_trans sNH nVH).
have{solU hallK sUH nUG} defH: V * 'N_H(K) = H.
have nsUH: U <| H by apply/andP; rewrite (subset_trans sHG).
by rewrite -(mulSGid sKN) mulgA mulVK (Hall_Frattini_arg solU nsUH hallK).
have [P sylP nPR]: exists2 P : {group _}, p.-Sylow('N_H(K)) P & R \subset 'N(P).
apply: coprime_Hall_exists (coprimeSg sNH coHR) solN.
by rewrite normsI ?norms_norm.
have [sPN pP _]: [/\ P \subset 'N_H(K), p.-group P & _] := and3P sylP.
have [sPH nKP]: P \subset H /\ P \subset 'N(K) by apply/andP; rewrite -subsetI.
have nVP := subset_trans sPH nVH.
have coKP: coprime #|K| #|P| by rewrite coprime_sym (pnat_coprime pP).
have{sylP} sylVP: p.-Sylow(H) (V <*> P).
rewrite pHallE /= norm_joinEr ?mul_subG //= -defH -!LagrangeMl.
rewrite partnM // part_pnat_id // -!card_quotient //.
by apply/eqP; congr (_ * _)%N; apply: card_Hall; apply: quotient_pHall.
have [trKP | {sylV sVU nVU}ntKP] := eqVneq [~: K, P] 1.
suffices sylVH: p.-Sylow(H) V.
rewrite p_elt_gen_length1 // (_ : p_elt_gen p H = V).
rewrite /pHall pcore_sub pcore_pgroup /= pnatNK.
by apply: pnat_dvd pV; apply: dvdn_indexg.
rewrite -(genGid V) -(setIidPr sVH); congr <<_>>; apply/setP=> x.
rewrite !inE; apply: andb_id2l => Hx.
by rewrite (mem_normal_Hall sylVH) /normal ?sVH.
suffices sPV: P \subset V by rewrite -(joing_idPl sPV).
suffices sPU: P \subset U by rewrite (sub_normal_Hall sylV) //; apply/andP.
have cUPb: P / V \subset 'C_(H / V)(U / V).
rewrite subsetI morphimS // -mulVK quotientMidl quotient_cents2r //.
by rewrite commGC trKP sub1G.
rewrite -(quotientSGK nVP sVU) (subset_trans cUPb) //.
by rewrite -defU cent_sub_Fitting ?quotient_sol.
have{sylVP} dxV: [~: V, K] \x 'C_V(K) = V by apply: coprime_abelian_cent_dprod.
have tiVsub_VcK: 'C_V(K) = 1 \/ 'C_V(K) = V.
apply: (indecomposableV _ [~: V, K]); first by rewrite dprodC.
rewrite -mulHR -defH -mulgA mul_subG // subsetI.
by rewrite commg_norml cents_norm // centsC subIset // -abelianE cVV.
have nK_NR: 'N_H(K) * R \subset 'N(K) by rewrite mul_subG ?subsetIr.
have nV_NR: 'N_H(K) * R \subset 'N(V) by rewrite mul_subG.
by rewrite normsR // normsI ?norms_cent.
have{tiVsub_VcK dxV} [defVK tiVcK]: [~: V, K] = V /\ 'C_V(K) = 1.
have [tiVcK | eqC] := tiVsub_VcK; first by rewrite -{2}dxV // tiVcK dprodg1.
rewrite (card1_trivg (pnat_1 (pgroupS _ pV) p'K)) ?comm1G ?eqxx // in ntKP.
by rewrite -scVH subsetI sKH centsC -eqC subsetIr.
have eqVncK: 'N_V(K) = 'C_V(K) := coprime_norm_cent nVK (pnat_coprime pV p'K).
have{eqVncK} tiVN: V :&: 'N_H(K) = 1 by rewrite setIA (setIidPl sVH) eqVncK.
have{sPN} tiVP: V :&: P = 1 by apply/trivgP; rewrite -tiVN setIS.
have{U defU mulVK} defK: 'F('N_H(K)) = K.
have [injV imV] := isomP (quotient_isom nVN tiVN).
rewrite -(im_invm injV) -injm_Fitting ?injm_invm //= {2}imV /=.
rewrite -quotientMidl defH defU -mulVK quotientMidl morphim_invmE.
by rewrite morphpre_restrm quotientK // -group_modr // setIC tiVN mul1g.
have scKH: 'C_H(K) \subset K.
rewrite -{2}defK; apply: subset_trans (cent_sub_Fitting _) => //.
by rewrite defK subsetI subsetIr setIS // cent_sub.
have{nVN} ntKR0: [~: K, R0] != 1.
rewrite (sameP eqP commG1P); apply: contra ntKP => cR0K.
have ZgrK: Zgroup K by apply: ZgroupS ZgrCHR0; rewrite subsetI sKH.
have{ZgrK} cycK: cyclic K by rewrite nil_Zgroup_cyclic // -defK Fitting_nil.
have{cycK} sNR_K: [~: 'N_H(K), R] \subset K.
apply: subset_trans scKH; rewrite subsetI; apply/andP; split.
by rewrite (subset_trans (commSg R sNH)) // commGC commg_subr.
suffices: 'N(K)^`(1) \subset 'C(K).
by apply: subset_trans; rewrite commgSS ?subsetIr.
rewrite der1_min ?cent_norm //= -ker_conj_aut (isog_abelian (first_isog _)).
exact: abelianS (Aut_conj_aut K 'N(K)) (Aut_cyclic_abelian cycK).
suffices sPV: P \subset V by rewrite -(setIidPr sPV) tiVP commG1.
have pPV: p.-group (P / V) := quotient_pgroup V pP.
rewrite -quotient_sub1 // subG1 (card1_trivg (pnat_1 pPV _)) //.
apply: pgroupS (quotient_pgroup V p'K).
apply: subset_trans (quotientS V sNR_K).
by rewrite quotientR // -quotientMidl defH -quotientR ?defHR ?quotientS.
have nKR0: R0 \subset 'N(K) := subset_trans sR0R nKR.
have mulKR0: K * R0 = K <*> R0 by rewrite norm_joinEr.
have sKR0_G : K <*> R0 \subset G by rewrite -mulKR0 -mulHR mulgSS.
have nV_KR0: K <*> R0 \subset 'N(V) := subset_trans sKR0_G nVG.
have solKR0: solvable (K <*> R0) by apply: solvableS solG.
have coKR0: coprime #|K| #|R0| by rewrite (coprimeSg sKH) ?(coprimegS sR0R).
have r'K: r^'.-group K.
by rewrite /pgroup p'natE -?prime_coprime // coprime_sym -oR0.
have tiKcV: 'C_K(V) = 1.
by apply/trivgP; rewrite -tiVN -{2}scVH -setIIr setICA setIC setSI.
have tiKR0cV: 'C_(K <*> R0)(V) = 1.
set C := 'C_(K <*> R0)(V); apply/eqP; apply: contraR ntKR0 => ntC.
have nC_KR0: K <*> R0 \subset 'N(C) by rewrite normsI ?normG ?norms_cent.
rewrite -subG1 -(coprime_TIg coKR0) commg_subI ?subsetI ?subxx //=.
suff defC: C == R0 by rewrite -(eqP defC) (subset_trans (joing_subl K R0)).
have sC_R0: C \subset R0.
rewrite -[C](coprime_mulG_setI_norm mulKR0) ?norms_cent //= tiKcV mul1g.
apply: subsetIl.
rewrite eqEsubset sC_R0; apply: contraR ntC => not_sR0C.
by rewrite -(setIidPr sC_R0) prime_TIg ?oR0.
have{nKR0 mulKR0 sKR0_G solKR0 nV_KR0} oCVR0: #|'C_V(R0)| = p.
case: (eqVneq 'C_V(R0) 1) => [tiVcR0 | ntCVR0].
case/negP: ntKR0; rewrite -subG1/= commGC -tiKcV.
have defKR0: K ><| R0 = K <*> R0 by rewrite sdprodE ?coprime_TIg.
have odd_KR0: odd #|K <*> R0| := oddSg sKR0_G oddG.
apply: odd_prime_sdprod_abelem_cent1 abelV nV_KR0 _ _; rewrite // ?oR0 //=.
by rewrite -mulKR0 pgroupM p'K /pgroup oR0 pnatE.
have [x defC]: exists x, 'C_V(R0) = <[x]>.
have ZgrC: Zgroup 'C_V(R0) by apply: ZgroupS ZgrCHR0; apply: setSI.
apply/cyclicP; apply: (forall_inP ZgrC); apply/SylowP; exists p => //.
by rewrite /pHall subxx indexgg (pgroupS (subsetIl V _)).
rewrite defC; apply: nt_prime_order => //; last by rewrite -cycle_eq1 -defC.
by rewrite (exponentP eV) // -cycle_subG -defC subsetIl.
have tiPcR0: 'C_P(R0) = 1.
rewrite -(setIidPl (joing_subl P V)) setIIl TI_Ohm1 //=.
set C := 'C_(P <*> V)(R0); suffices <-: 'C_V(R0) = 'Ohm_1(C).
by rewrite setIC -setIIl tiVP (setIidPl (sub1G _)).
have pPV: p.-group (P <*> V) by rewrite norm_joinEl // pgroupM pP.
have pC: p.-group C := pgroupS (subsetIl _ _) pPV.
have abelCVR0: p.-abelem 'C_V(R0) by rewrite prime_abelem ?oCVR0.
have sCV_C: 'C_V(R0) \subset C by rewrite setSI ?joing_subr.
apply/eqP; rewrite eqEcard -(Ohm1_id abelCVR0) OhmS //=.
have [-> | ntC] := eqVneq C 1; first by rewrite subset_leq_card ?OhmS ?sub1G.
rewrite (Ohm1_id abelCVR0) oCVR0 (Ohm1_cyclic_pgroup_prime _ pC) //=.
have ZgrC: Zgroup C by rewrite (ZgroupS _ ZgrCHR0) ?setSI // join_subG sPH.
apply: (forall_inP ZgrC); apply/SylowP; exists p => //.
by apply/pHallP; rewrite part_pnat_id.
have defP: [~: P, R0] = P.
have solvP := pgroup_sol pP; have nPR0 := subset_trans sR0R nPR.
have coPR0: coprime #|P| #|R0| by rewrite (coprimeSg sPH) ?(coprimegS sR0R).
by rewrite -{2}(coprime_cent_prod nPR0) // tiPcR0 mulg1.
have{IHsub nVH} IHsub: forall X : {group gT},
P <*> R0 \subset 'N(X) -> X \subset K ->
(#|V <*> X <*> P| < #|H|) || (#|R0| < #|R|) -> [~: X, P] = 1.
- move=> X; rewrite join_subG; case/andP=> nXP nXR0 sXK.
set H0 := V <*> X <*> P => ltG0G; have sXH := subset_trans sXK sKH.
have sXH0: X \subset H0 by rewrite /H0 joingC joingA joing_subr.
have sH0H: H0 \subset H by rewrite !join_subG sVH sXH.
have nH0R0: R0 \subset 'N(H0).
by rewrite 2?normsY ?nXR0 ?(subset_trans sR0R) // (subset_trans sRG).
have Op'H0: 'O_p^'(H0) = 1.
have [sOp' nOp'] := andP (pcore_normal _ _ : 'O_p^'(H0) <| H0).
have p'Op': p^'.-group 'O_p^'(H0) by apply: pcore_pgroup.
apply: card1_trivg (pnat_1 (pgroupS _ pV) p'Op').
rewrite -scVH subsetI (subset_trans sOp') //= centsC; apply/setIidPl.
rewrite -coprime_norm_cent ?(pnat_coprime pV p'Op') //.
by rewrite (setIidPl (subset_trans _ nOp')) // /H0 -joingA joing_subl.
exact: subset_trans (subset_trans sH0H nVH).
have Op'HR0: 'O_p^'([~: H0, R0]) = 1.
apply/trivgP; rewrite -Op'H0 pcore_max ?pcore_pgroup // gFnormal_trans //.
by rewrite /(_ <| _) commg_norml andbT commg_subl.
have{ltG0G IHsub} p1_HR0: p.-length_1 [~: H0, R0].
by apply: IHsub ltG0G => //=; rewrite mul_subG ?normG.
have{p1_HR0} sPOpHR0: P \subset 'O_p([~: H0, R0]).
rewrite sub_Hall_pcore //; last by rewrite -defP commSg ?joing_subr.
rewrite /pHall pcore_sub pcore_pgroup /= -(pseries_pop2 _ Op'HR0).
rewrite -card_quotient ?normal_norm ?pseries_normal // -/(pgroup _ _).
by rewrite -{1}((_ :=P: _) p1_HR0) (quotient_pseries [::_;_]) pcore_pgroup.
apply/trivgP; have <-: K :&: 'O_p([~: H0, R0]) = 1.
by rewrite setIC coprime_TIg // (pnat_coprime (pcore_pgroup p _)).
by rewrite commg_subI // subsetI ?sPOpHR0 ?sXK //= gFnorm_trans // normsRl.
have{defH sR0R} [defH defR0]: V * K * P = H /\ R0 :=: R.
suffices: (V * K * P == H) && (R0 :==: R) by do 2!case: eqP => // ->.
apply: contraR ntKP; rewrite -subG1 !eqEcard sR0R ?mul_subG //= negb_and.
rewrite -!ltnNge -!norm_joinEr // 1?normsY //; move/IHsub=> -> //.
by rewrite join_subG nKP (subset_trans sR0R).
move: IHsub defP oR0 rR0 ZgrCHR0 coKR0 ntKR0 tiKR0cV oCVR0 tiPcR0.
rewrite {R0}defR0 ltnn => IHsub defP oR rR ZgrCHR coKR ntKR tiKRcV oCVR tiPcR.
have mulVK: V * K = V <*> K by rewrite norm_joinEr.
have oVK: #|V <*> K| = (#|V| * #|K|)%N by rewrite -mulVK coprime_cardMg.
have tiVK_P: V <*> K :&: P = 1.
have sylV: p.-Sylow(V <*> K) V.
by rewrite /pHall pV -divgS joing_subl //= oVK mulKn.
apply/trivgP; rewrite -tiVP subsetI subsetIr.
rewrite (sub_normal_Hall sylV) ?subsetIl ?(pgroupS (subsetIr _ P)) //=.
by rewrite /normal joing_subl join_subG normG.
have{mulVK oVK} oH: (#|H| = #|V| * #|K| * #|P|)%N.
by rewrite -defH mulVK -oVK (TI_cardMg tiVK_P).
have{oH tiVK_P IHsub} IHsub: forall X : {group gT},
P <*> R \subset 'N(X) -> X \subset K -> X :=: K \/ X \subset 'C(P).
- move=> X nX_PR sXK; have p'X: p^'.-group X := pgroupS sXK p'K.
have nXP: P \subset 'N(X) := subset_trans (joing_subl P R) nX_PR.
apply/predU1P; rewrite eqEcard sXK; case: leqP => //= ltXK.
apply/commG1P; rewrite {}IHsub // orbF (norm_joinEr (normsY _ _)) //=.
rewrite TI_cardMg /=; last first.
by apply/trivgP; rewrite -tiVK_P setSI ?genS ?setUS.
rewrite oH ltn_pmul2r ?cardG_gt0 // norm_joinEr ?(subset_trans sXK) //.
by rewrite coprime_cardMg ?ltn_pmul2l ?(pnat_coprime pV).
have defKP: [~: K, P] = K.
have sKP_K: [~: K, P] \subset K by rewrite commg_subl.
have{sKP_K} [|//|cP_KP] := IHsub _ _ sKP_K.
by rewrite join_subG /= commg_normr normsR.
by case/eqP: ntKP; rewrite -coprime_commGid ?(commG1P cP_KP) ?(solvableS sKH).
have nKPR: P <*> R \subset 'N(K) by rewrite join_subG nKP.
have coPR: coprime #|P| #|R| by rewrite (coprimeSg sPH).
have{scKH} tiPRcK: 'C_(P <*> R)(K) = 1.
have tiPK: P :&: K = 1 by rewrite setIC coprime_TIg.
have tiPcK: 'C_P(K) = 1.
by apply/trivgP; rewrite /= -{1}(setIidPl sPH) -setIA -tiPK setIS.
have tiRcK: 'C_R(K) = 1.
by rewrite prime_TIg ?oR // centsC (sameP commG1P eqP).
have mulPR: P * R = P <*> R by rewrite norm_joinEr.
by rewrite -(coprime_mulG_setI_norm mulPR) ?tiPcK ?mul1g ?norms_cent.
have [K1 | ntK]:= eqsVneq K 1; first by rewrite K1 comm1G eqxx in ntKR.
have [K1 | [q q_pr q_dv_K]] := trivgVpdiv K; first by case/eqP: ntK.
have q_gt1 := prime_gt1 q_pr.
have p'q: q != p by apply: (pgroupP p'K).
have{r'K} q'r: r != q by rewrite eq_sym; apply: (pgroupP r'K).
have{defK} qK: q.-group K.
have{defK} nilK: nilpotent K by rewrite -defK Fitting_nil.
have{nilK} [_ defK _ _] := dprodP (nilpotent_pcoreC q nilK).
have{IHsub} IHpi: forall pi, 'O_pi(K) = K \/ 'O_pi(K) \subset 'C(P).
move=> pi; apply: IHsub (pcore_sub _ _).
by rewrite gFnorm_trans // join_subG nKP.
case: (IHpi q) => [<-| cPKq]; first exact: pcore_pgroup.
case/eqP: ntKP; apply/commG1P; rewrite -{}defK mul_subG //.
case: (IHpi q^') => // defK; case/idPn: q_dv_K.
by rewrite -p'natE // -defK; apply: pcore_pgroup.
pose K' := K^`(1); have charK': K' \char K := der_char 1 K.
have nsK'K: K' <| K := der_normal 1 K; have [sK'K nK'K] := andP nsK'K.
have nK'PR: P <*> R \subset 'N(K') := char_norm_trans charK' nKPR.
have iK'K: 'C_(P <*> R / K')(K / K') = 1 -> #|K / K'| > q ^ 2.
have qKb: q.-group (K / K') by apply: morphim_pgroup qK.
rewrite ltnNge => trCK'; apply: contra ntKP => Kq_le_q2.
suffices sPR_K': [~: P, R] \subset K'.
rewrite -defP -(setIidPl sPR_K') coprime_TIg ?commG1 //.
by rewrite (pnat_coprime (pgroupS _ pP) (pgroupS sK'K p'K)) ?commg_subl.
rewrite -quotient_cents2 ?(char_norm_trans charK') //.
suffices cPRbPrb: abelian (P <*> R / K').
by rewrite (sub_abelian_cent2 cPRbPrb) ?quotientS ?joing_subl ?joing_subr.
have nKbPR: P <*> R / K' \subset 'N(K / K') by apply: quotient_norms.
case cycK: (cyclic (K / K')).
rewrite (isog_abelian (quotient1_isog _)) -trCK' -ker_conj_aut.
rewrite (isog_abelian (first_isog_loc _ _)) //.
by rewrite (abelianS (Aut_conj_aut _ _)) ?Aut_cyclic_abelian.
have{cycK} [oKb abelKb]: #|K / K'| = (q ^ 2)%N /\ q.-abelem (K / K').
have sKb1: 'Ohm_1(K / K') \subset K / K' by apply: Ohm_sub.
have cKbKb: abelian (K / K') by rewrite sub_der1_abelian.
have: #|'Ohm_1(K / K')| >= q ^ 2.
rewrite (card_pgroup (pgroupS sKb1 qKb)) leq_exp2l // ltnNge.
by rewrite -p_rank_abelian -?rank_pgroup // -abelian_rank1_cyclic ?cycK.
rewrite (geq_leqif (leqif_trans (subset_leqif_card sKb1) (leqif_eq _))) //.
by case/andP=> sKbKb1; move/eqP->; rewrite (abelemS sKbKb1) ?Ohm1_abelem.
have ntKb: K / K' != 1 by rewrite -cardG_gt1 oKb (ltn_exp2l 0).
pose rPR := abelem_repr abelKb ntKb nKbPR.
have: mx_faithful rPR by rewrite abelem_mx_faithful.
move: rPR; rewrite (dim_abelemE abelKb ntKb) oKb pfactorK // => rPR ffPR.
apply: charf'_GL2_abelian ffPR _.
by rewrite quotient_odd ?(oddSg _ oddG) // join_subG (subset_trans sPH).
rewrite (eq_pgroup _ (eq_negn (charf_eq (char_Fp q_pr)))).
rewrite quotient_pgroup //= norm_joinEr // pgroupM.
by rewrite /pgroup (pi_pnat rR) // (pi_pnat pP) // !inE eq_sym.
case cKK: (abelian K); last first.
have [|[dPhiK dK'] dCKP] := abelian_charsimple_special qK coKP defKP.
apply/bigcupsP=> L /andP[charL]; have sLK := char_sub charL.
by case/IHsub: sLK cKK => // [|-> -> //]; apply: char_norm_trans charL _.
have eK: exponent K %| q.
have oddK: odd #|K| := oddSg sKG oddG.
have [Q [charQ _ _ eQ qCKQ]] := critical_odd qK oddK ntK; rewrite -eQ.
have sQK: Q \subset K := char_sub charQ.
have [<- // | cQP] := IHsub Q (char_norm_trans charQ nKPR) sQK.
case/negP: ntKP; rewrite (sameP eqP commG1P) centsC.
rewrite -ker_conj_aut -sub_morphim_pre // subG1 trivg_card1.
rewrite (pnat_1 (morphim_pgroup _ pP) (pi_pnat (pgroupS _ qCKQ) _)) //.
apply/subsetP=> a; case/morphimP=> x nKx Px ->{a}.
rewrite /= astab_ract inE /= Aut_aut; apply/astabP=> y Qy.
rewrite [_ y _]norm_conj_autE ?(subsetP sQK) //.
by rewrite /conjg (centsP cQP y) ?mulKg.
have tiPRcKb: 'C_(P <*> R / K')(K / K') = 1.
rewrite -quotient_astabQ -quotientIG /=; last first.
by rewrite sub_astabQ normG trivg_quotient sub1G.
apply/trivgP; rewrite -quotient1 quotientS // -tiPRcK subsetI subsetIl /=.
rewrite (coprime_cent_Phi qK) ?(coprimegS (subsetIl _ _)) //=.
by rewrite norm_joinEr // coprime_cardMg // coprime_mulr coKP.
rewrite dPhiK -dK' -/K' (subset_trans (commgS _ (subsetIr _ _))) //.
by rewrite astabQ -quotient_cents2 ?subsetIl // cosetpreK centsC /=.
have [nK'P nK'R] := (char_norm_trans charK' nKP, char_norm_trans charK' nKR).
have solK: solvable K := pgroup_sol qK.
have dCKRb: 'C_K(R) / K' = 'C_(K / K')(R / K').
by rewrite coprime_quotient_cent.
have abelKb: q.-abelem (K / K') by rewrite [K']dK' -dPhiK Phi_quotient_abelem.
have [qKb cKbKb _] := and3P abelKb.
have [tiKcRb | ntCKRb]:= eqVneq 'C_(K / K')(R / K') 1.
have coK'P: coprime #|K'| #|P| by rewrite (coprimeSg sK'K).
suffices sPK': P \subset K'.
by case/negP: ntKP; rewrite -(setIidPr sPK') coprime_TIg ?commG1.
rewrite -quotient_sub1 // -defP commGC quotientR //= -/K'.
have <-: 'C_(P / K')(K / K') = 1.
by apply/trivgP; rewrite -tiPRcKb setSI ?morphimS ?joing_subl.
have q'P: q^'.-group P by rewrite /pgroup (pi_pnat pP) // !inE eq_sym.
move: tiKcRb; have: q^'.-group (P <*> R / K').
rewrite quotient_pgroup //= norm_joinEr //.
by rewrite pgroupM q'P /pgroup oR pnatE.
have sPRG: P <*> R \subset G by rewrite join_subG sRG (subset_trans sPH).
have coPRb: coprime #|P / K'| #|R / K'| by rewrite coprime_morph.
apply: odd_prime_sdprod_abelem_cent1 abelKb _; rewrite ?quotient_norms //.
- by rewrite quotient_sol // (solvableS sPRG).
- by rewrite quotient_odd // (oddSg sPRG).
- by rewrite /= quotientY // sdprodEY ?quotient_norms ?coprime_TIg.
rewrite -(card_isog (quotient_isog nK'R _)) ?oR //.
by rewrite coprime_TIg // (coprimeSg sK'K).
have{ntCKRb} not_sCKR_K': ~~ ('C_K(R) \subset K').
by rewrite -quotient_sub1 ?subIset ?nK'K // dCKRb subG1.
have oCKR: #|'C_K(R)| = q.
have [x defCKR]: exists x, 'C_K(R) = <[x]>.
have ZgrCKR: Zgroup 'C_K(R) := ZgroupS (setSI _ sKH) ZgrCHR.
have qCKR: q.-group 'C_K(R) by rewrite (pgroupS (subsetIl K _)).
by apply/cyclicP; apply: nil_Zgroup_cyclic (pgroup_nil qCKR).
have Kx: x \in K by rewrite -cycle_subG -defCKR subsetIl.
rewrite defCKR cycle_subG in not_sCKR_K' *.
exact: nt_prime_order (exponentP eK x Kx) (group1_contra not_sCKR_K').
have tiCKR_K': 'C_K(R) :&: K' = 1 by rewrite prime_TIg ?oCKR.
have sKR_K: [~: K, R] \subset K by rewrite commg_subl nKR.
have ziKRcR: 'C_K(R) :&: [~: K, R] \subset K'.
rewrite -quotient_sub1 ?subIset ?nK'K // setIC.
rewrite (subset_trans (quotientI _ _ _)) // dCKRb setIA.
rewrite (setIidPl (quotientS _ sKR_K)) // ?quotientR //= -/K'.
by rewrite coprime_abel_cent_TI ?quotient_norms ?coprime_morph.
have not_sK_KR: ~~ (K \subset [~: K, R]).
by apply: contra not_sCKR_K' => sK_KR; rewrite -{1}(setIidPl sK_KR) setIAC.
have tiKRcR: 'C_[~: K, R](R) = 1.
rewrite -(setIidPr sKR_K) setIAC -(setIidPl ziKRcR) setIAC tiCKR_K'.
by rewrite (setIidPl (sub1G _)).
have cKR_KR: abelian [~: K, R].
have: 'C_[~: K, R](V) \subset [1].
rewrite -tiVN -{2}scVH -setIIr setICA setIC setIS //.
exact: subset_trans sKR_K sKN.
rewrite /abelian (sameP commG1P trivgP) /= -derg1; apply: subset_trans.
have nKR_R: R \subset 'N([~: K, R]) by rewrite commg_normr.
have sKRR_G: [~: K, R] <*> R \subset G by rewrite join_subG comm_subG.
move: oCVR; have: p^'.-group ([~: K, R] <*> R).
by rewrite norm_joinEr // pgroupM (pgroupS sKR_K p'K) /pgroup oR pnatE.
have solKR_R := solvableS sKRR_G solG.
apply: Frobenius_prime_cent_prime; rewrite ?oR ?(subset_trans _ nVG) //.
by rewrite sdprodEY // coprime_TIg // (coprimeSg sKR_K).
case nKR_P: (P \subset 'N([~: K, R])).
have{nKR_P} nKR_PR: P <*> R \subset 'N([~: K, R]).
by rewrite join_subG nKR_P commg_normr.
have{nKR_PR} [dKR | cP_KR] := IHsub _ nKR_PR sKR_K.
by rewrite dKR subxx in not_sK_KR.
have{cP_KR} cKRb: R / K' \subset 'C(K / K').
by rewrite quotient_cents2r //= dK' -dCKP commGC subsetI sKR_K.
case/negP: ntKR; rewrite (sameP eqP commG1P) centsC.
by rewrite (coprime_cent_Phi qK) // dPhiK -dK' commGC -quotient_cents2.
have{nKR_P} [x Px not_nKRx] := subsetPn (negbT nKR_P).
have iKR: #|K : [~: K, R]| = q.
rewrite -divgS // -{1}(coprime_cent_prod nKR) // TI_cardMg ?mulKn //.
by rewrite setIA (setIidPl sKR_K).
have sKRx_K: [~: K, R] :^ x \subset K by rewrite -{2}(normsP nKP x Px) conjSg.
have nKR_K: K \subset 'N([~: K, R]) by apply: commg_norml.
have mulKR_Krx: [~: K, R] * [~: K, R] :^ x = K.
have maxKR: maximal [~: K, R] K by rewrite p_index_maximal ?iKR.
apply: mulg_normal_maximal; rewrite ?(p_maximal_normal qK) //.
by rewrite inE in not_nKRx.
have ziKR_KRx: [~: K, R] :&: [~: K, R] :^ x \subset K'.
rewrite /K' dK' subsetI subIset ?sKR_K // -{3}mulKR_Krx centM centJ.
by rewrite setISS ?conjSg.
suffices: q ^ 2 >= #|K / K'| by rewrite leqNgt iK'K.
rewrite -divg_normal // leq_divLR ?cardSg //.
rewrite -(@leq_pmul2l (#|[~: K, R]| ^ 2)) ?expn_gt0 ?cardG_gt0 // mulnA.
rewrite -expnMn -iKR Lagrange // -mulnn -{2}(cardJg _ x) mul_cardG.
by rewrite mulKR_Krx mulnAC leq_pmul2l ?muln_gt0 ?cardG_gt0 ?subset_leq_card.
have tiKcP: 'C_K(P) = 1 by rewrite -defKP coprime_abel_cent_TI.
have{IHsub} abelK: q.-abelem K.
have [/abelem_Ohm1P->//|cPK1] := IHsub _ (gFnorm_trans _ nKPR) (Ohm_sub 1 K).
rewrite -(setIid K) TI_Ohm1 ?eqxx // in ntK.
by apply/eqP; rewrite -subG1 -tiKcP setIS.
have{K' iK'K charK' nsK'K sK'K nK'K nK'PR} oKq2: q ^ 2 < #|K|.
have K'1: K' :=: 1 by apply/commG1P.
rewrite -indexg1 -K'1 -card_quotient ?normal_norm // iK'K // K'1.
by rewrite -injm_subcent ?coset1_injm ?norms1 //= tiPRcK morphim1.
pose S := [set Vi : {group gT} | 'C_V('C_K(Vi)) == Vi & maximal 'C_K(Vi) K].
have defSV Vi: Vi \in S -> 'C_V('C_K(Vi)) = Vi by rewrite inE; case: eqP.
have maxSK Vi: Vi \in S -> maximal 'C_K(Vi) K by case/setIdP.
have sSV Vi: Vi \in S -> Vi \subset V by move/defSV <-; rewrite subsetIl.
have ntSV Vi: Vi \in S -> Vi :!=: 1.
move=> Si; apply: contraTneq (maxgroupp (maxSK _ Si)) => ->.
by rewrite /= cent1T setIT proper_irrefl.
have nSK Vi: Vi \in S -> K \subset 'N(Vi).
by move/defSV <-; rewrite normsI ?norms_cent // sub_abelian_norm ?subsetIl.
have defV: <<\bigcup_(Vi in S) Vi>> = V.
apply/eqP; rewrite eqEsubset gen_subG.
apply/andP; split; first by apply/bigcupsP; apply: sSV.
rewrite -(coprime_abelian_gen_cent cKK nVK) ?(pnat_coprime pV) // gen_subG.
apply/bigcupsP=> Kj /= /and3P[cycKbj sKjK nKjK].
have [xb defKbj] := cyclicP cycKbj.
have Kxb: xb \in K / Kj by rewrite defKbj cycle_id.
set Vj := 'C_V(Kj); have [-> | ntVj] := eqsVneq Vj 1; first exact: sub1G.
have nt_xb: xb != 1.
apply: contra ntVj; rewrite -cycle_eq1 -defKbj -!subG1 -tiVcK.
by rewrite quotient_sub1 // => sKKj; rewrite setIS ?centS.
have maxKj: maximal Kj K.
rewrite p_index_maximal // -card_quotient // defKbj -orderE.
by rewrite (abelem_order_p (quotient_abelem Kj abelK) Kxb nt_xb).
suffices defKj: 'C_K(Vj) = Kj.
by rewrite sub_gen // (bigcup_max 'C_V(Kj))%G // inE defKj eqxx.
have{maxKj} [_ maxKj] := maxgroupP maxKj.
rewrite ['C_K(Vj)]maxKj //; last by rewrite subsetI sKjK centsC subsetIr.
rewrite properEneq subsetIl andbT (sameP eqP setIidPl) centsC.
by apply: contra ntVj; rewrite -subG1 -tiVcK subsetI subsetIl.
pose dxp := [fun D : {set {group gT}} => \big[dprod/1]_(Vi in D) Vi].
have{defV} defV: \big[dprod/1]_(Vi in S) Vi = V.
have [D maxD]: {D | maxset [pred E | group_set (dxp E) & E \subset S] D}.
by apply: ex_maxset; exists set0; rewrite /= sub0set big_set0 groupP.
have [gW sDS] := andP (maxsetp maxD); have{maxD} [_ maxD] := maxsetP maxD.
have{gW} [W /= defW]: {W : {group gT} | dxp D = W} by exists (Group gW).
have [eqDS | ltDS] := eqVproper sDS.
by rewrite eqDS in defW; rewrite defW -(bigdprodWY defW).
have{ltDS} [_ [Vi Si notDi]] := properP ltDS.
have sWV: W \subset V.
rewrite -(bigdprodWY defW) gen_subG.
by apply/bigcupsP=> Vj Dj; rewrite sSV ?(subsetP sDS).
suffices{maxD sWV defV} tiWcKi: 'C_W('C_K(Vi)) = 1.
have:= notDi; rewrite -(maxD (Vi |: D)) ?setU11 ?subsetUr //= subUset sDS.
rewrite sub1set Si big_setU1 //= defW dprodEY ?groupP //.
by rewrite (sub_abelian_cent2 cVV) // sSV.
by rewrite -(defSV Vi Si) setIAC (setIidPr sWV).
apply/trivgP/subsetP=> w /setIP[Ww cKi_w].
have [v [Vv def_w v_uniq]] := mem_bigdprod defW Ww.
rewrite def_w big1 ?inE // => Vj Dj; have Sj := subsetP sDS Vj Dj.
have cKi_vj: v Vj \in 'C('C_K(Vi)).
apply/centP=> x Ki_x; apply/commgP/conjg_fixP.
apply: (v_uniq (fun Vk => v Vk ^ x)) => // [Vk Dk|].
have [[Kx _] Sk]:= (setIP Ki_x, subsetP sDS Vk Dk).
by rewrite memJ_norm ?Vv // (subsetP (nSK Vk Sk)).
rewrite -(mulKg x w) -(centP cKi_w) // -conjgE def_w.
by apply: (big_morph (conjg^~ x)) => [y z|]; rewrite ?conj1g ?conjMg.
suffices mulKji: 'C_K(Vj) * 'C_K(Vi) = K.
by apply/set1gP; rewrite -tiVcK -mulKji centM setIA defSV // inE Vv.
have maxKj := maxSK Vj Sj; have [_ maxKi] := maxgroupP (maxSK Vi Si).
rewrite (mulg_normal_maximal _ maxKj) -?sub_abelian_normal ?subsetIl //.
have [eqVji|] := eqVneq Vj Vi; first by rewrite -eqVji Dj in notDi.
apply: contra => /= sKiKj; rewrite -val_eqE /= -(defSV Vj Sj).
by rewrite (maxKi _ (maxgroupp maxKj) sKiKj) defSV.
have nVPR: P <*> R \subset 'N(V) by rewrite join_subG nVP.
have actsPR: [acts P <*> R, on S | 'JG].
apply/subsetP=> x PRx; rewrite !inE; apply/subsetP=> Vi.
rewrite !inE /= => Si; rewrite -(normsP nKPR x PRx) !centJ -!conjIg centJ .
by rewrite -(normsP nVPR x PRx) -conjIg (inj_eq (@conjsg_inj _ _)) maximalJ.
have transPR: [transitive P <*> R, on S | 'JG].
pose ndxp D (U A B : {group gT}) := dxp (S :&: D) = U -> A * B \subset 'N(U).
have nV_VK D U: ndxp D U V K.
move/bigdprodWY <-; rewrite norms_gen ?norms_bigcup //.
apply/bigcapsP=> Vi /setIP[Si _].
by rewrite mulG_subG nSK // sub_abelian_norm // sSV.
have nV_PR D U: [acts P <*> R, on S :&: D | 'JG] -> ndxp D U P R.
move=> actsU /bigdprodWY<-; rewrite -norm_joinEr ?norms_gen //.
apply/subsetP=> x PRx; rewrite inE sub_conjg; apply/bigcupsP=> Vi Di.
by rewrite -sub_conjg (bigcup_max (Vi :^ x)%G) //= (acts_act actsU).
have [S0 | [V1 S1]] := set_0Vmem S.
by case/eqP: ntV; rewrite -defV S0 big_set0.
apply/imsetP; exists V1 => //; set D := orbit _ _ _.
rewrite (big_setID D) /= setDE in defV.
have [[U W defU defW] _ _ tiUW] := dprodP defV.
rewrite defU defW in defV tiUW.
have [|U1|eqUV]:= indecomposableV _ _ defV.
- rewrite -mulHR -defH -mulgA mul_subG //.
by rewrite subsetI (nV_VK _ _ defU) (nV_VK _ _ defW).
rewrite subsetI (nV_PR _ _ _ defU) ?actsI ?acts_orbit ?subsetT //=.
by rewrite (nV_PR _ _ _ defW) // actsI ?astabsC ?acts_orbit ?subsetT /=.
- case/negP: (ntSV V1 S1); rewrite -subG1 -U1 -(bigdprodWY defU) sub_gen //.
by rewrite (bigcup_max V1) // inE S1 orbit_refl.
apply/eqP; rewrite eqEsubset (acts_sub_orbit _ actsPR) S1 andbT.
apply/subsetP=> Vi Si; apply: contraR (ntSV Vi Si) => D'i; rewrite -subG1.
rewrite -tiUW eqUV subsetI sSV // -(bigdprodWY defW).
by rewrite (bigD1 Vi) ?joing_subl // inE Si inE.
have [cSR | not_cSR] := boolP (R \subset 'C(S | 'JG)).
have{cSR} sRnSV: R \subset \bigcap_(Vi in S) 'N(Vi).
apply/bigcapsP=> Vi Si.
by rewrite -astab1JG (subset_trans cSR) ?astabS ?sub1set.
have sPRnSV: P <*> R \subset 'N(\bigcap_(Vi in S) 'N(Vi)).
apply/subsetP=> x PRx; rewrite inE; apply/bigcapsP=> Vi Si.
by rewrite sub_conjg -normJ bigcap_inf ?(acts_act actsPR) ?groupV.
have [V1 S1] := imsetP transPR.
have: P <*> R \subset 'N(V1).
rewrite join_subG (subset_trans sRnSV) /= ?bigcap_inf // andbT -defP.
apply: (subset_trans (commgS P sRnSV)).
have:= subset_trans (joing_subl P R) sPRnSV; rewrite -commg_subr /=.
by move/subset_trans; apply; apply: bigcap_inf.
rewrite -afixJG; move/orbit1P => -> allV1.
have defV1: V1 = V by apply: group_inj; rewrite /= -defV allV1 big_set1.
case/idPn: oKq2; rewrite -(Lagrange (subsetIl K 'C(V1))).
rewrite (p_maximal_index qK (maxSK V1 S1)) defV1 /= tiKcV cards1 mul1n.
by rewrite (ltn_exp2l 2 1).
have actsR: [acts R, on S | 'JG] := subset_trans (joing_subr P R) actsPR.
have ntSRcR Vi:
Vi \in S -> ~~ (R \subset 'N(Vi)) ->
#|Vi| = p /\ 'C_V(R) \subset <<class_support Vi R>>.
- move=> Si not_nViR; have [sVi nV] := (subsetP (sSV Vi Si), subsetP nVR).
pose f v := fmval (\sum_(x in R) fmod cVV v ^@ x).
have fM: {in Vi &, {morph f: u v / u * v}}.
move=> u v /sVi Vu /sVi Vv; rewrite -fmvalA -big_split.
by congr (fmval _); apply: eq_bigr => x Rx; rewrite /= -actAr fmodM.
have injf: 'injm (Morphism fM).
apply/subsetP=> v /morphpreP[Vi_v]; have Vv := sVi v Vi_v.
rewrite (bigD1 Vi) //= in defV; have [[_ W _ dW] _ _ _] := dprodP defV.
have [u [w [_ _ uw Uuw]]] := mem_dprod defV (group1 V).
case: (Uuw 1 1) => // [||u1 w1]; rewrite ?dW ?mulg1 // !inE eq_sym /f /=.
move/eqP; rewrite (big_setD1 1) // actr1 ?fmodK // fmvalA //= fmval_sum.
do [case/Uuw; rewrite ?dW ?fmodK -?u1 ?group_prod //] => [x R'x | ->] //.
rewrite (nt_gen_prime _ R'x) ?cycle_subG ?oR // inE in not_nViR nVR actsR.
rewrite fmvalJ ?fmodK // -(bigdprodWY dW) ?mem_gen //; apply/bigcupP.
exists (Vi :^ x)%G; rewrite ?memJ_conjg // (astabs_act _ actsR) Si.
by apply: contraNneq not_nViR => /congr_group->.
have im_f: Morphism fM @* Vi \subset 'C_V(R).
apply/subsetP=> _ /morphimP[v _ Vi_v ->]; rewrite inE fmodP.
apply/centP=> x Rx; red; rewrite conjgC -fmvalJ ?nV //; congr (x * fmval _).
rewrite {2}(reindex_acts 'R _ Rx) ?astabsR //= actr_sum.
by apply: eq_bigr => y Ry; rewrite actrM ?nV.
have defCVR: Morphism fM @* Vi = 'C_V(R).
apply/eqP; rewrite eqEcard im_f (prime_nt_dvdP _ _ (cardSg im_f)) ?oCVR //=.
by rewrite -trivg_card1 morphim_injm_eq1 ?ntSV.
rewrite -oCVR -defCVR; split; first by rewrite card_injm.
apply/subsetP=> _ /morphimP[v _ Vi_v ->] /=; rewrite /f fmval_sum.
have Vv := sVi v Vi_v; apply: group_prod => x Rx.
by rewrite fmvalJ ?fmodK ?nV // mem_gen // mem_imset2.
have{not_cSR} [V1 S1 not_nV1R]: exists2 V1, V1 \in S & ~~ (R \subset 'N(V1)).
by move: not_cSR; rewrite astabC; case/subsetPn=> v; rewrite afixJG; exists v.
set D := orbit 'JG%act R V1.
have oD: #|D| = r by rewrite card_orbit astab1JG prime_TIg ?indexg1 ?oR.
have oSV Vi: Vi \in S -> #|Vi| = p.
move=> Si; have [z _ ->]:= atransP2 transPR S1 Si.
by rewrite cardJg; case/ntSRcR: not_nV1R.
have cSnS' Vi: Vi \in S -> 'N(Vi)^`(1) \subset 'C(Vi).
move=> Si; rewrite der1_min ?cent_norm //= -ker_conj_aut.
rewrite (isog_abelian (first_isog _)) (abelianS (Aut_conj_aut _ _)) //.
by rewrite Aut_cyclic_abelian // prime_cyclic // oSV.
have nVjR Vj: Vj \in S :\: D -> 'C_K(Vj) = [~: K, R].
case/setDP=> Sj notDj; set Kj := 'C_K(Vj).
have [nVjR|] := boolP (R \subset 'N(Vj)).
have{nVjR} sKRVj: [~: K, R] \subset Kj.
rewrite subsetI {1}commGC commg_subr nKR.
by rewrite (subset_trans _ (cSnS' Vj Sj)) // commgSS ?nSK.
have iKj: #|K : Kj| = q by rewrite (p_maximal_index qK (maxSK Vj Sj)).
have dxKR: [~: K, R] \x 'C_K(R) = K by rewrite coprime_abelian_cent_dprod.
have{dxKR} [_ defKR _ tiKRcR] := dprodP dxKR.
have Z_CK: Zgroup 'C_K(R) by apply: ZgroupS ZgrCHR; apply: setSI.
have abelCKR: q.-abelem 'C_K(R) := abelemS (subsetIl _ _) abelK.
have [qCKR _] := andP abelCKR.
apply/eqP; rewrite eq_sym eqEcard sKRVj -(leq_pmul2r (ltnW q_gt1)).
rewrite -{1}iKj Lagrange ?subsetIl // -{1}defKR (TI_cardMg tiKRcR).
rewrite leq_pmul2l ?cardG_gt0 //= (card_pgroup qCKR).
rewrite (leq_exp2l _ 1) // -abelem_cyclic // (forall_inP Z_CK) //.
by rewrite (@p_Sylow _ q) // /pHall subxx indexgg qCKR.
case/ntSRcR=> // _ sCVj; case/ntSRcR: not_nV1R => // _ sCV1.
suffices trCVR: 'C_V(R) = 1 by rewrite -oCVR trCVR cards1 in p_pr.
apply/trivgP; rewrite (big_setID D) in defV.
have{defV} [[W U /= defW defU] _ _ <-] := dprodP defV.
rewrite defW defU subsetI (subset_trans sCV1) /=; last first.
rewrite class_supportEr -(bigdprodWY defW) genS //.
apply/bigcupsP=> x Rx; rewrite (bigcup_max (V1 :^ x)%G) // inE.
by rewrite (actsP actsR) //= S1 mem_imset.
rewrite (subset_trans sCVj) // class_supportEr -(bigdprodWY defU) genS //.
apply/bigcupsP=> x Rx; rewrite (bigcup_max (Vj :^ x)%G) // inE.
by rewrite (actsP actsR) // Sj andbT (orbit_transl _ (mem_orbit 'JG Vj Rx)).
have sDS: D \subset S.
by rewrite acts_sub_orbit //; apply: subset_trans actsPR; apply: joing_subr.
have [eqDS | ltDS] := eqVproper sDS.
have [fix0 | [Vj cVjP]] := set_0Vmem 'Fix_(S | 'JG)(P).
case/negP: p'r; rewrite eq_sym -dvdn_prime2 // -oD eqDS /dvdn.
rewrite (pgroup_fix_mod pP (subset_trans (joing_subl P R) actsPR)).
by rewrite fix0 cards0 mod0n.
have{cVjP} [Sj nVjP] := setIP cVjP; rewrite afixJG in nVjP.
case/negP: (ntSV Vj Sj); rewrite -subG1 -tiVcK subsetI sSV // centsC -defKP.
by rewrite (subset_trans _ (cSnS' Vj Sj)) // commgSS ?nSK.
have [_ [Vj Sj notDj]] := properP ltDS.
have defS: S = Vj |: D.
apply/eqP; rewrite eqEsubset andbC subUset sub1set Sj sDS.
apply/subsetP=> Vi Si; rewrite !inE orbC /= -val_eqE /= -(defSV Vi Si).
have [//|notDi] := boolP (Vi \in _); rewrite -(defSV Vj Sj) /=.
by rewrite !nVjR // inE ?notDi ?notDj.
suffices: odd #|S| by rewrite defS cardsU1 (negPf notDj) /= oD -oR (oddSg sRG).
rewrite (dvdn_odd (atrans_dvd transPR)) // (oddSg _ oddG) //.
by rewrite join_subG (subset_trans sPH).
Qed.
End Theorem_3_6.
(* This is B & G, Theorem 3.7. *)
Theorem prime_Frobenius_sol_kernel_nil gT (G K R : {group gT}) :
K ><| R = G -> solvable G -> prime #|R| -> 'C_K(R) = 1 -> nilpotent K.
Proof.
move=> defG solG R_pr regR.
elim: {K}_.+1 {-2}K (ltnSn #|K|) => // m IHm K leKm in G defG solG regR *.
have [nsKG sRG defKR nKR tiKR] := sdprod_context defG.
have [sKG nKG] := andP nsKG.
wlog ntK: / K :!=: 1 by case: eqP => [-> _ | _ ->] //; apply: nilpotent1.
have [L maxL _]: {L : {group gT} | maxnormal L K G & [1] \subset L}.
by apply: maxgroup_exists; rewrite proper1G ntK norms1.
have [ltLK nLG]:= andP (maxgroupp maxL); have [sLK not_sKL]:= andP ltLK.
have{m leKm IHm}nilL: nilpotent L.
pose G1 := L <*> R; have nLR := subset_trans sRG nLG.
have sG1G: G1 \subset G by rewrite join_subG (subset_trans sLK).
have defG1: L ><| R = G1.
by rewrite sdprodEY //; apply/eqP; rewrite -subG1 -tiKR setSI.
apply: (IHm _ _ _ defG1); rewrite ?(solvableS sG1G) ?(oddSg sG1G) //.
exact: leq_trans (proper_card ltLK) _.
by apply/eqP; rewrite -subG1 -regR setSI.
have sLG := subset_trans sLK sKG; have nsLG: L <| G by apply/andP.
have sLF: L \subset 'F(G) by apply: Fitting_max.
have frobG: [Frobenius G = K ><| R] by apply/prime_FrobeniusP.
have solK := solvableS sKG solG.
have frobGq := Frobenius_quotient frobG solK nsLG not_sKL.
suffices sKF: K \subset 'F(K) by apply: nilpotentS sKF (Fitting_nil K).
apply: subset_trans (chief_stab_sub_Fitting solG nsKG).
rewrite subsetI subxx; apply/bigcapsP=> [[X Y] /= /andP[chiefXY sXF]].
set V := X / Y; have [maxY nsXG] := andP chiefXY.
have [ltYX nYG] := andP (maxgroupp maxY); have [sYX _]:= andP ltYX.
have [sXG nXG] := andP nsXG; have sXK := subset_trans sXF (Fitting_sub K).
have minV := chief_factor_minnormal chiefXY.
have cVL: L \subset 'C(V | 'Q).
apply: subset_trans (subset_trans sLF (Fitting_stab_chief solG _)) _ => //.
exact: (bigcap_inf (X, Y)).
have nVG: {acts G, on group V | 'Q}.
by split; rewrite ?quotientS ?subsetT // actsQ // normal_norm.
pose V1 := sdpair1 <[nVG]> @* V.
have [p p_pr abelV]: exists2 p, prime p & p.-abelem V.
apply/is_abelemP; apply: charsimple_solvable (quotient_sol _ _).
exact: minnormal_charsimple minV.
exact: nilpotent_sol (nilpotentS sXF (Fitting_nil _)).
have abelV1: p.-abelem V1 by rewrite morphim_abelem.
have injV1 := injm_sdpair1 <[nVG]>.
have ntV1: V1 :!=: 1.
by rewrite -cardG_gt1 card_injm // cardG_gt1; case/andP: (mingroupp minV).
have nV1_G1 := im_sdpair_norm <[nVG]>.
pose rV := morphim_repr (abelem_repr abelV1 ntV1 nV1_G1) (subxx G).
have def_kerV: rker rV = 'C_G(V | 'Q).
rewrite rker_morphim rker_abelem morphpreIdom morphpreIim -astabEsd //.
by rewrite astab_actby setIid.
have kerL: L \subset rker rV by rewrite def_kerV subsetI sLG.
pose rVq := quo_repr kerL nLG.
suffices: K / L \subset rker rVq.
rewrite rker_quo def_kerV quotientSGK //= 1?subsetI 1?(subset_trans sKG) //.
by rewrite sLG.
have irrVq: mx_irreducible rVq.
apply/quo_mx_irr; apply/morphim_mx_irr; apply/abelem_mx_irrP.
apply/mingroupP; rewrite ntV1; split=> // U1; case/andP=> ntU1 nU1G sU1V.
rewrite -(morphpreK sU1V); congr (_ @* _).
case/mingroupP: minV => _; apply; last by rewrite sub_morphpre_injm.
rewrite -subG1 sub_morphpre_injm ?sub1G // morphim1 subG1 ntU1 /=.
set U := _ @*^-1 U1; rewrite -(cosetpreK U) quotient_norms //.
have: [acts G, on U | <[nVG]>] by rewrite actsEsd ?subsetIl // morphpreK.
rewrite astabs_actby subsetI subxx (setIidPr _) ?subsetIl //=.
by rewrite -{1}(cosetpreK U) astabsQ ?normal_cosetpre //= -/U subsetI nYG.
have [q q_pr abelKq]: exists2 q, prime q & q.-abelem (K / L).
apply/is_abelemP; apply: charsimple_solvable (quotient_sol _ solK).
exact: maxnormal_charsimple maxL.
case (eqVneq q p) => [def_q | neq_qp].
have sKGq: K / L \subset G / L by apply: quotientS.
rewrite rfix_mx_rstabC //; have [_ _]:= irrVq; apply; rewrite ?submx1 //.
by rewrite normal_rfix_mx_module ?quotient_normal.
rewrite -(rfix_subg _ sKGq) (@rfix_pgroup_char _ p) ?char_Fp -?def_q //.
exact: (abelem_pgroup abelKq).
suffices: rfix_mx rVq (R / L) == 0.
apply: contraLR; apply: (Frobenius_rfix_compl frobGq).
apply: pi_pnat (abelem_pgroup abelKq) _.
by rewrite inE /= (charf_eq (char_Fp p_pr)).
rewrite -mxrank_eq0 (rfix_quo _ _ sRG) (rfix_morphim _ _ sRG).
rewrite (rfix_abelem _ _ _ (morphimS _ sRG)) mxrank_eq0 rowg_mx_eq0 -subG1.
rewrite (sub_abelem_rV_im _ _ _ (subsetIl _ _)) -(morphpreSK _ (subsetIl _ _)).
rewrite morphpreIim -gacentEsd gacent_actby gacentQ (setIidPr sRG) /=.
rewrite -coprime_quotient_cent ?(solvableS sXG) ?(subset_trans sRG) //.
by rewrite {1}['C_X(R)](trivgP _) ?quotient1 ?sub1G // -regR setSI.
by apply: coprimeSg sXK _; apply: Frobenius_coprime frobG.
Qed.
Corollary Frobenius_sol_kernel_nil gT (G K H : {group gT}) :
[Frobenius G = K ><| H] -> solvable G -> nilpotent K.
Proof.
move=> frobG solG; have [defG ntK ntH _ _] := Frobenius_context frobG.
have{defG} /sdprodP[_ defG nKH tiKH] := defG.
have[H1 | [p p_pr]] := trivgVpdiv H; first by case/eqP: ntH.
case/Cauchy=> // x Hx ox; rewrite -ox in p_pr.
have nKx: <[x]> \subset 'N(K) by rewrite cycle_subG (subsetP nKH).
have tiKx: K :&: <[x]> = 1 by apply/trivgP; rewrite -tiKH setIS ?cycle_subG.
apply: (prime_Frobenius_sol_kernel_nil (sdprodEY nKx tiKx)) => //.
by rewrite (solvableS _ solG) // join_subG -mulG_subG -defG mulgS ?cycle_subG.
by rewrite cent_cycle (Frobenius_reg_ker frobG) // !inE -order_gt1 prime_gt1.
Qed.
(* This is B & G, Theorem 3.8. *)
Theorem odd_sdprod_primact_commg_sub_Fitting gT (G K R : {group gT}) :
K ><| R = G -> odd #|G| -> solvable G ->
(*1*) coprime #|K| #|R| ->
(*2*) semiprime K R ->
(*3*) 'C_('F(K))(R) = 1 ->
[~: K, R] \subset 'F(K).
Proof.
elim: {G}_.+1 {-2}G (ltnSn #|G|) K R => // n IHn G.
rewrite ltnS => leGn K R defG oddG solG coKR primR regR_F.
have [nsKG sRG defKR nKR tiKR] := sdprod_context defG.
have [sKG nKG] := andP nsKG.
have chF: 'F(K) \char K := Fitting_char K; have nFR := char_norm_trans chF nKR.
have nsFK := char_normal chF; have [sFK nFK] := andP nsFK.
pose KqF := K / 'F(K); have solK := solvableS sKG solG.
without loss [p p_pr pKqF]: / exists2 p, prime p & p.-group KqF.
move=> IHp; apply: wlog_neg => IH_KR; rewrite -quotient_cents2 //= -/KqF.
set Rq := R / 'F(K); have nKRq: Rq \subset 'N(KqF) by apply: quotient_norms.
rewrite centsC.
apply: subset_trans (coprime_cent_Fitting nKRq _ _); last first.
- exact: quotient_sol.
- exact: coprime_morph.
rewrite subsetI subxx centsC -['F(KqF)]Sylow_gen gen_subG.
apply/bigcupsP=> Pq /SylowP[p p_pr /= sylPq]; rewrite -/KqF in sylPq.
have chPq: Pq \char KqF.
apply: char_trans (Fitting_char _); rewrite /= -/KqF.
by rewrite (nilpotent_Hall_pcore (Fitting_nil _) sylPq) ?pcore_char.
have [P defPq sFP sPK] := inv_quotientS nsFK (char_sub chPq).
have nsFP: 'F(K) <| P by rewrite /normal sFP (subset_trans sPK).
have{chPq} chP: P \char K.
by apply: char_from_quotient nsFP (Fitting_char _) _; rewrite -defPq.
have defFP: 'F(P) = 'F(K).
apply/eqP; rewrite eqEsubset !Fitting_max ?Fitting_nil //.
by rewrite char_normal ?gFchar_trans.
have coPR := coprimeSg sPK coKR.
have nPR: R \subset 'N(P) := char_norm_trans chP nKR.
pose G1 := P <*> R.
have sG1G: G1 \subset G by rewrite /G1 -defKR norm_joinEr ?mulSg.
have defG1: P ><| R = G1 by rewrite sdprodEY ?coprime_TIg.
rewrite defPq quotient_cents2r //= -defFP.
have:= sPK; rewrite subEproper; case/predU1P=> [defP | ltPK].
rewrite IHp // in IH_KR; exists p => //.
by rewrite /KqF -{2}defP -defPq (pHall_pgroup sylPq).
move/IHn: defG1 => ->; rewrite ?(oddSg sG1G) ?(solvableS sG1G) ?defFP //.
apply: leq_trans leGn; rewrite /= norm_joinEr //.
by rewrite -defKR !coprime_cardMg // ltn_pmul2r ?proper_card.
by move=> x Rx; rewrite -(setIidPl sPK) -!setIA primR.
without loss r_pr: / prime #|R|; last set r := #|R| in r_pr.
have [-> _ | [r r_pr]] := trivgVpdiv R; first by rewrite commG1 sub1G.
case/Cauchy=> // x; rewrite -cycle_subG subEproper orderE; set X := <[x]>.
case/predU1P=> [-> -> -> // | ltXR rX _]; have sXR := proper_sub ltXR.
have defCX: 'C_K(X) = 'C_K(R).
rewrite cent_cycle primR // !inE -order_gt1 orderE rX prime_gt1 //=.
by rewrite -cycle_subG.
have primX: semiprime K X.
by move=> y; case/setD1P=> nty Xy; rewrite primR // !inE nty (subsetP sXR).
have nKX := subset_trans sXR nKR; have coKX := coprimegS sXR coKR.
pose H := K <*> X; have defH: K ><| X = H by rewrite sdprodEY ?coprime_TIg.
have sHG: H \subset G by rewrite /H -defKR norm_joinEr ?mulgSS.
have ltHn: #|H| < n.
rewrite (leq_trans _ leGn) /H ?norm_joinEr // -defKR !coprime_cardMg //.
by rewrite ltn_pmul2l ?proper_card.
have oddH := oddSg sHG oddG; have solH := solvableS sHG solG.
have regX_F: 'C_('F(K))(X) = 1.
by rewrite -regR_F -(setIidPl sFK) -!setIA defCX.
have:= IHn _ ltHn _ _ defH oddH solH coKX primX regX_F.
rewrite -!quotient_cents2 ?(subset_trans sXR) //; move/setIidPl <-.
rewrite -coprime_quotient_cent ?(subset_trans sXR) // defCX.
by rewrite coprime_quotient_cent ?subsetIr.
apply: subset_trans (chief_stab_sub_Fitting solG nsKG) => //.
rewrite subsetI commg_subl nKR; apply/bigcapsP => [[U V]] /=.
case/andP=> chiefUV sUF; set W := U / V.
have minW := chief_factor_minnormal chiefUV.
have [ntW nWG] := andP (mingroupp minW).
have /andP[/maxgroupp/andP[/andP[sVU _] nVG] nsUG] := chiefUV.
have sUK := subset_trans sUF sFK; have sVK := subset_trans sVU sUK.
have nVK := subset_trans sKG nVG; have nVR := subset_trans sRG nVG.
have [q q_pr abelW]: exists2 q, prime q & q.-abelem W.
apply/is_abelemP; apply: charsimple_solvable (minnormal_charsimple minW) _.
by rewrite quotient_sol // (solvableS sUK).
have regR_W: 'C_(W)(R / V) = 1.
rewrite -coprime_quotient_cent ?(coprimeSg sUK) ?(solvableS sUK) //.
by rewrite -(setIidPl sUF) -setIA regR_F (setIidPr _) ?quotient1 ?sub1G.
rewrite sub_astabQ comm_subG ?quotientR //=.
have defGv: (K / V) * (R / V) = G / V by rewrite -defKR quotientMl.
have oRv: #|R / V| = r.
rewrite card_quotient // -indexgI -(setIidPr sVK) setICA setIA tiKR.
by rewrite (setIidPl (sub1G _)) indexg1.
have defCW: 'C_(G / V)(W) = 'C_(K / V)(W).
apply/eqP; rewrite eqEsubset andbC setSI ?quotientS //=.
rewrite subsetI subsetIr /= andbT.
rewrite -(coprime_mulG_setI_norm defGv) ?coprime_morph ?norms_cent //=.
suffices ->: 'C_(R / V)(W) = 1 by rewrite mulg1 subsetIl.
apply/trivgP; apply/subsetP=> x; case/setIP=> Rx cWx.
apply: contraR ntW => ntx; rewrite -subG1 -regR_W subsetI subxx centsC /= -/W.
by apply: contraR ntx; move/prime_TIg <-; rewrite ?oRv // inE Rx.
have [P sylP nPR] := coprime_Hall_exists p nKR coKR solK.
have [sPK pP _] := and3P sylP.
have nVP := subset_trans sPK nVK; have nFP := subset_trans sPK nFK.
have sylPv: p.-Sylow(K / V) (P / V) by rewrite quotient_pHall.
have defKv: (P / V) * 'C_(G / V)(W) = (K / V).
rewrite defCW; apply/eqP; rewrite eqEsubset mulG_subG subsetIl quotientS //=.
have sK_PF: K \subset P * 'F(K).
rewrite (normC nFP) -quotientSK // subEproper eq_sym eqEcard quotientS //=.
by rewrite (card_Hall (quotient_pHall nFP sylP)) part_pnat_id ?leqnn.
rewrite (subset_trans (quotientS _ sK_PF)) // quotientMl // mulgS //.
rewrite subsetI -quotient_astabQ !quotientS //.
by rewrite (subset_trans (Fitting_stab_chief solG nsKG)) ?(bigcap_inf (U, V)).
have nW_ := subset_trans (quotientS _ _) nWG; have nWK := nW_ _ sKG.
rewrite -quotient_cents2 ?norms_cent ?(nW_ _ sRG) //.
have [eq_qp | p'q] := eqVneq q p.
apply: subset_trans (sub1G _); rewrite -trivg_quotient quotientS // centsC.
apply/setIidPl; case/mingroupP: minW => _; apply; last exact: subsetIl.
rewrite andbC normsI ?norms_cent // ?quotient_norms //=.
have nsWK: W <| K / V by rewrite /normal quotientS.
have sWP: W \subset P / V.
by rewrite (normal_sub_max_pgroup (Hall_max sylPv)) -?eq_qp ?abelem_pgroup.
rewrite -defKv centM setIA setIAC /=.
rewrite ['C_W(_)](setIidPl _); last by rewrite centsC subsetIr.
have nilPv: nilpotent (P / V) := pgroup_nil (pHall_pgroup sylPv).
rewrite -/W -(setIidPl sWP) -setIA meet_center_nil //.
exact: normalS (quotientS V sPK) nsWK.
rewrite -defKv -quotientMidr -mulgA mulSGid ?subsetIr // quotientMidr.
have sPG := subset_trans sPK sKG.
rewrite quotient_cents2 ?norms_cent ?nW_ //= commGC.
pose Hv := (P / V) <*> (R / V).
have sHGv: Hv \subset G / V by rewrite join_subG !quotientS.
have solHv: solvable Hv := solvableS sHGv (quotient_sol V solG).
have sPHv: P / V \subset Hv by apply: joing_subl.
have nPRv: R / V \subset 'N(P / V) := quotient_norms _ nPR.
have coPRv: coprime #|P / V| #|R / V| := coprime_morph _ (coprimeSg sPK coKR).
apply: subset_trans (subsetIr (P / V) _).
have oHv: #|Hv| = (#|P / V| * #|R / V|)%N.
by rewrite /Hv norm_joinEr // coprime_cardMg // oRv.
move/(odd_prime_sdprod_abelem_cent1 solHv): (abelW); apply=> //.
- exact: oddSg sHGv (quotient_odd _ _).
- by rewrite sdprodEY ?quotient_norms // coprime_TIg.
- by rewrite oRv.
- by rewrite (subset_trans _ nWG) ?join_subG ?quotientS.
rewrite /= norm_joinEr // pgroupM /pgroup.
rewrite (pi_pnat (quotient_pgroup _ pP)) ?inE 1?eq_sym //=.
apply: coprime_p'group (abelem_pgroup abelW) ntW.
by rewrite coprime_sym coprime_morph // (coprimeSg sUK).
Qed.
(* This is B & G, Proposition 3.9 (for external action), with the incorrectly *)
(* omitted nontriviality assumption reinstated. *)
Proposition ext_odd_regular_pgroup_cyclic (aT rT : finGroupType) p
(D R : {group aT}) (K H : {group rT}) (to : groupAction D K) :
p.-group R -> odd #|R| -> H :!=: 1 ->
{acts R, on group H | to} -> {in R^#, forall x, 'C_(H | to)[x] = 1} ->
cyclic R.
Proof.
move: R H => R0 H0 pR0 oddR0 ntH0 actsR0 regR0.
pose gT := sdprod_groupType <[actsR0]>.
pose H : {group gT} := (sdpair1 <[actsR0]> @* H0)%G.
pose R : {group gT} := (sdpair2 <[actsR0]> @* R0)%G.
pose G : {group gT} := [set: gT]%G.
have{pR0} pR: p.-group R by rewrite morphim_pgroup.
have{oddR0} oddR: odd #|R| by rewrite morphim_odd.
have [R1 | ntR] := eqsVneq R 1.
by rewrite -(im_invm (injm_sdpair2 <[actsR0]>)) {2}R1 morphim1 cyclic1.
have{ntH0} ntH: H :!=: 1.
apply: contraNneq ntH0 => H1.
by rewrite -(im_invm (injm_sdpair1 <[actsR0]>)) {2}H1 morphim1.
have{regR0 ntR} frobG: [Frobenius G = H ><| R].
apply/Frobenius_semiregularP => // [|x]; first exact: sdprod_sdpair.
case/setD1P=> nt_x; case/morphimP=> x2 _ Rx2 def_x.
apply/trivgP; rewrite -(morphpreSK _ (subsetIl _ _)) morphpreI.
rewrite /= -cent_cycle def_x -morphim_cycle // -gacentEsd.
rewrite injmK ?injm_sdpair1 // (trivgP (injm_sdpair1 _)).
rewrite -(regR0 x2) ?inE ?Rx2 ?andbT; last first.
by apply: contra nt_x; rewrite def_x; move/eqP->; rewrite morph1.
have [sRD sHK]: R0 \subset D /\ H0 \subset K by case actsR0; move/acts_dom.
have sx2R: <[x2]> \subset R0 by rewrite cycle_subG.
rewrite gacent_actby setIA setIid (setIidPr sx2R).
rewrite !gacentE ?cycle_subG ?sub1set ?(subsetP sRD) //.
by rewrite !setIS ?afixS ?sub_gen.
suffices: cyclic R by rewrite (injm_cyclic (injm_sdpair2 _)).
move: gT H R G => {aT rT to D K H0 R0 actsR0} gT H R G in ntH pR oddR frobG *.
have [defG _ _ _ _] := Frobenius_context frobG; case/sdprodP: defG => _ _ nHR _.
have coHR := Frobenius_coprime frobG.
rewrite (odd_pgroup_rank1_cyclic pR oddR) leqNgt.
apply: contra ntH => /p_rank_geP[E /pnElemP[sER abelE dimE2]].
have ncycE: ~~ cyclic E by rewrite (abelem_cyclic abelE) dimE2.
have nHE := subset_trans sER nHR; have coHE := coprimegS sER coHR.
rewrite -subG1 -(coprime_abelian_gen_cent1 _ _ nHE) ?(abelem_abelian abelE) //.
rewrite -bigprodGE big1 // => x /setD1P[nt_x Ex]; apply: val_inj => /=.
by apply: (Frobenius_reg_ker frobG); rewrite !inE nt_x (subsetP sER).
Qed.
(* Internal action version of B & G, Proposition 3.9 (possibly, the only one *)
(* we should keep). *)
Proposition odd_regular_pgroup_cyclic gT p (H R : {group gT}) :
p.-group R -> odd #|R| -> H :!=: 1 -> R \subset 'N(H) -> semiregular H R ->
cyclic R.
Proof.
move=> pR oddR ntH nHR regR.
have actsR: {acts R, on group H | 'J} by split; rewrite ?subsetT ?astabsJ.
apply: ext_odd_regular_pgroup_cyclic pR oddR ntH actsR _ => // x Rx.
by rewrite gacentJ cent_set1 regR.
Qed.
(* Another proof of Proposition 3.9, which avoids Frobenius groups entirely. *)
Proposition simple_odd_regular_pgroup_cyclic gT p (H R : {group gT}) :
p.-group R -> odd #|R| -> H :!=: 1 -> R \subset 'N(H) -> semiregular H R ->
cyclic R.
Proof.
move=> pR oddR ntH nHR regR; rewrite (odd_pgroup_rank1_cyclic pR oddR) leqNgt.
apply: contra ntH => /p_rank_geP[E /pnElemP[sER abelE dimE2]].
have ncycE: ~~ cyclic E by rewrite (abelem_cyclic abelE) dimE2.
have nHE := subset_trans sER nHR.
have coHE := coprimegS sER (regular_norm_coprime nHR regR).
rewrite -subG1 -(coprime_abelian_gen_cent1 _ _ nHE) ?(abelem_abelian abelE) //.
rewrite -bigprodGE big1 // => x; case/setD1P=> nt_x Ex; apply: val_inj => /=.
by rewrite regR // !inE nt_x (subsetP sER).
Qed.
(* This is Aschbacher (40.6)(4). *)
Lemma odd_regular_metacyclic gT (H R : {group gT}) :
odd #|R| -> H :!=: 1 -> R \subset 'N(H) -> semiregular H R ->
metacyclic R.
Proof.
move=> oddR ntH nHR regHR.
apply/Zgroup_metacyclic/forall_inP=> P /SylowP[p pr_p /and3P[sPR pP _]].
have [oddP nHP] := (oddSg sPR oddR, subset_trans sPR nHR).
exact: odd_regular_pgroup_cyclic pP oddP ntH nHP (semiregularS _ sPR regHR).
Qed.
(* This is Huppert, Kapitel V, Satz 18.8 b (used in Peterfalvi, Section 13). *)
Lemma prime_odd_regular_normal gT (H R P : {group gT}) :
prime #|P| -> odd #|R| -> P \subset R ->
H :!=: 1 -> R \subset 'N(H) -> semiregular H R ->
P <| R.
Proof.
set p := #|P| => pr_p oddR sPR ntH nHR regHR.
have pP: p.-group P := pnat_id pr_p.
have cycQ (q : nat) (Q : {group gT}) : q.-group Q -> Q \subset R -> cyclic Q.
move=> qQ sQR; have [oddQ nHQ] := (oddSg sQR oddR, subset_trans sQR nHR).
exact: odd_regular_pgroup_cyclic qQ oddQ ntH nHQ (semiregularS _ sQR regHR).
have cycRq (q : nat): cyclic 'O_q(R) by rewrite (cycQ q) ?pcore_pgroup ?gFsub.
suffices cFP: P \subset 'C('F(R)).
have nilF: nilpotent 'F(R) := Fitting_nil R.
have hallRp: p.-Hall('F(R)) 'O_p('F(R)) := nilpotent_pcore_Hall p nilF.
apply: char_normal_trans (pcore_normal p R); rewrite sub_cyclic_char //=.
rewrite -p_core_Fitting (sub_normal_Hall hallRp) ?gFnormal //.
have solR: solvable R.
by apply: metacyclic_sol; apply: odd_regular_metacyclic regHR.
by apply: subset_trans (cent_sub_Fitting solR); rewrite subsetI sPR.
rewrite centsC -(bigdprodWY (erefl 'F(R))) gen_subG big_tnth.
apply/bigcupsP=> i _; move: {i}(tuple.tnth _ i) => q.
have [<- | q'p] := eqVneq p q.
have [Q sylQ sPQ] := Sylow_superset sPR pP; have [sQR pQ _] := and3P sylQ.
rewrite (sub_abelian_cent2 (cyclic_abelian (cycQ _ _ pQ sQR))) //.
by rewrite pcore_sub_Hall.
have [-> | ntRq] := eqVneq 'O_q(R) 1%g; first exact: sub1G.
have /andP[sRqR qRq]: q.-subgroup(R) 'O_q(R) by apply: pcore_psubgroup.
have [pr_q _ _] := pgroup_pdiv qRq ntRq.
have coRqP: coprime #|'O_q(R)| p by rewrite (pnat_coprime qRq) // pnatE.
have nRqP: P \subset 'N('O_q(R)) by rewrite (subset_trans sPR) ?gFnorm.
rewrite centsC (coprime_odd_faithful_Ohm1 qRq) ?(oddSg sRqR) //.
apply: sub_abelian_cent2 (joing_subl _ _) (joing_subr _ _) => /=.
set PQ := P <*> _; have oPQ: #|PQ| = (p * q)%N.
rewrite /PQ norm_joinEl 1?gFnorm_trans //.
rewrite coprime_cardMg 1?coprime_sym ?(coprimeSg (Ohm_sub 1 _)) // -/p.
by congr (p * _)%N; apply: Ohm1_cyclic_pgroup_prime => /=.
have sPQ_R: PQ \subset R by rewrite join_subG sPR (subset_trans (Ohm_sub 1 _)).
have nH_PQ := subset_trans sPQ_R nHR.
apply: cyclic_abelian; apply: regular_pq_group_cyclic oPQ ntH nH_PQ _ => //.
exact: semiregularS regHR.
Qed.
Section Wielandt_Frobenius.
Variables (gT : finGroupType) (G K R : {group gT}).
Implicit Type A : {group gT}.
(* This is Peterfalvi (9.1). *)
Lemma Frobenius_Wielandt_fixpoint (M : {group gT}) :
[Frobenius G = K ><| R] ->
G \subset 'N(M) -> coprime #|M| #|G| -> solvable M ->
[/\ (#|'C_M(G)| ^ #|R| * #|M| = #|'C_M(R)| ^ #|R| * #|'C_M(K)|)%N,
'C_M(R) = 1 -> K \subset 'C(M)
& 'C_M(K) = 1 -> (#|M| = #|'C_M(R)| ^ #|R|)%N].
Proof.
move=> frobG nMG coMG solM; have [defG _ ntR _ _] := Frobenius_context frobG.
have [_ _ _ _ /eqP snRG] := and5P frobG.
have [nsKG sRG _ _ tiKR] := sdprod_context defG; have [sKG _] := andP nsKG.
pose m0 (_ : {group gT}) := 0%N.
pose Dm := [set 1%G; G]; pose Dn := K |: orbit 'JG K R.
pose m := [fun A => 0%N with 1%G |-> #|K|, G |-> 1%N].
pose n A : nat := A \in Dn.
have out_m: {in [predC Dm], m =1 m0}.
by move=> A; rewrite !inE /=; case/norP; do 2!move/negbTE->.
have out_n: {in [predC Dn], n =1 m0}.
by rewrite /n => A /=; move/negbTE=> /= ->.
have ntG: G != 1%G by case: eqP sRG => // -> <-; rewrite subG1.
have neqKR: K \notin orbit 'JG K R.
apply/imsetP=> [[x _ defK]]; have:= Frobenius_dvd_ker1 frobG.
by rewrite defK cardJg gtnNdvd // ?prednK // -subn1 subn_gt0 cardG_gt1.
have Gmn A: m A + n A > 0 -> A \subset G.
rewrite /=; case: eqP => [-> | ] _; first by rewrite sub1G.
rewrite /n 2!inE; do 2!case: eqP => [-> // | ] _.
case R_A: (A \in _) => // _; case/imsetP: R_A => x Kx ->{A}.
by rewrite conj_subG ?(subsetP sKG).
have partG: {in G, forall a,
\sum_(A | a \in gval A) m A = \sum_(A | a \in gval A) n A}%N.
- move=> a Ga; have [-> | nt_a] := eqVneq a 1.
rewrite (bigD1 1%G) ?inE ?eqxx //= (bigD1 G) ?inE ?group1 //=.
rewrite (negbTE ntG) !eqxx big1 ?addn1 => [|A]; last first.
by rewrite group1 -negb_or -in_set2; apply: out_m.
rewrite (bigID (mem Dn)) /= addnC big1 => [|A]; last first.
by rewrite group1; apply: out_n.
transitivity #|Dn|.
rewrite cardsU1 neqKR card_orbit astab1JG.
by rewrite -{3}(setIidPl sKG) -setIA -normD1 snRG tiKR indexg1.
by rewrite -sum1_card /n; apply: eq_big => [A | A ->]; rewrite ?group1.
rewrite (bigD1 G) //= (negbTE ntG) eqxx big1 => [|A]; last first.
case/andP=> Aa neAG; apply: out_m; rewrite !inE; case: eqP => // A1.
by rewrite A1 inE (negbTE nt_a) in Aa.
have [partG tiG _] := and3P (Frobenius_partition frobG).
do [rewrite -(eqP partG); set pG := _ |: _] in Ga tiG.
rewrite (bigD1 <<pblock pG a>>%G) /=; last by rewrite mem_gen // mem_pblock.
rewrite big1 => [|B]; last first.
case/andP=> Ba neqBA; rewrite -/(false : nat); congr (nat_of_bool _).
apply: contraTF neqBA; rewrite negbK -val_eqE /=.
case/setU1P=> [BK | /imsetP[x Kx defB]].
by rewrite (def_pblock tiG _ Ba) BK ?setU11 ?genGid.
have Rxa: a \in R^# :^ x by rewrite conjD1g !inE nt_a -(congr_group defB).
rewrite (def_pblock tiG _ Rxa) ?setU1r ?mem_imset // conjD1g.
by rewrite genD1 ?group1 // genGid defB.
rewrite /n !inE -val_eqE /= -/(true : nat); congr ((_ : bool) + _)%N.
case/setU1P: (pblock_mem Ga) => [-> |]; first by rewrite genGid eqxx.
case/imsetP=> x Kx ->; symmetry; apply/orP; right.
apply/imsetP; exists x => //.
by apply: val_inj; rewrite conjD1g /= genD1 ?group1 // genGid.
move/eqP: (solvable_Wielandt_fixpoint Gmn nMG coMG solM partG).
rewrite (bigD1 1%G) // (bigD1 G) //= eqxx (setIidPl (cents1 _)) cards1 muln1.
rewrite (negbTE ntG) eqxx mul1n -(sdprod_card defG) (mulnC #|K|) expnM.
rewrite mulnA -expnMn big1 ?muln1 => [|A]; last first.
by rewrite -negb_or -in_set2; move/out_m; rewrite /m => /= ->.
rewrite mulnC eq_sym (bigID (mem Dn)) /= mulnC.
rewrite big1 ?mul1n => [|A]; last by move/out_n->.
rewrite big_setU1 //= /n setU11 mul1n.
rewrite (eq_bigr (fun _ => #|'C_M(R)| ^ #|R|)%N) => [|A R_A]; last first.
rewrite inE R_A orbT mul1n; case/imsetP: R_A => x Kx ->.
suffices nMx: x \in 'N(M) by rewrite -{1}(normP nMx) centJ -conjIg !cardJg.
exact: subsetP (subsetP sKG x Kx).
rewrite mulnC prod_nat_const card_orbit astab1JG.
have ->: 'N_K(R) = 1 by rewrite -(setIidPl sKG) -setIA -normD1 snRG tiKR.
rewrite indexg1 -expnMn eq_sym eqn_exp2r ?cardG_gt0 //; move/eqP=> eq_fix.
split=> // [regR | regK].
rewrite centsC (sameP setIidPl eqP) eqEcard subsetIl /=.
move: eq_fix; rewrite regR cards1 exp1n mul1n => <-.
suffices ->: 'C_M(G) = 1 by rewrite cards1 exp1n mul1n.
by apply/trivgP; rewrite -regR setIS ?centS //; case/sdprod_context: defG.
move: eq_fix; rewrite regK cards1 muln1 => <-.
suffices ->: 'C_M(G) = 1 by rewrite cards1 exp1n mul1n.
by apply/trivgP; rewrite -regK setIS ?centS.
Qed.
End Wielandt_Frobenius.
(* This is B & G, Theorem 3.10. *)
Theorem Frobenius_primact gT (G K R M : {group gT}) :
[Frobenius G = K ><| R] -> solvable G ->
G \subset 'N(M) -> solvable M -> M :!=: 1 ->
(*1*) coprime #|M| #|G| ->
(*2*) semiprime M R ->
(*3*) 'C_M(K) = 1 ->
[/\ prime #|R|,
#|M| = (#|'C_M(R)| ^ #|R|)%N
& cyclic 'C_M(R) -> K^`(1) \subset 'C_K(M)].
Proof.
move: {2}_.+1 (ltnSn #|M|) => n; elim: n => // n IHn in gT G K R M *.
rewrite ltnS => leMn frobG solG nMG solM ntM coMG primRM tcKM.
case: (Frobenius_Wielandt_fixpoint frobG nMG) => // _ _ /(_ tcKM) oM.
have [defG ntK ntR ltKG _]:= Frobenius_context frobG.
have Rpr: prime #|R|.
have [R1 | [r r_pr]] := trivgVpdiv R; first by case/eqP: ntR.
case/Cauchy=> // x Rx ox; pose R0 := <[x]>; pose G0 := K <*> R0.
have [_ defKR nKR tiKR] := sdprodP defG.
have sR0R: R0 \subset R by rewrite cycle_subG.
have sG0G: G0 \subset G by rewrite /G0 -genM_join gen_subG -defKR mulgS.
have nKR0 := subset_trans sR0R nKR; have nMG0 := subset_trans sG0G nMG.
have ntx: <[x]> != 1 by rewrite cycle_eq1 -order_gt1 ox prime_gt1.
have [tcRM | ntcRM] := eqVneq 'C_M(R) 1.
by rewrite -cardG_gt1 oM tcRM cards1 exp1n in ntM.
have frobG0: [Frobenius G0 = K ><| R0].
apply/Frobenius_semiregularP=> // [|y /setD1P[nty x_y]].
by apply: sdprodEY nKR0 (trivgP _); rewrite -tiKR setIS.
by apply: (Frobenius_reg_ker frobG); rewrite !inE nty (subsetP sR0R).
case: (Frobenius_Wielandt_fixpoint frobG0 nMG0 (coprimegS _ coMG)) => // _ _.
move/(_ tcKM)/eqP; rewrite oM cent_cycle.
rewrite primRM; last by rewrite !inE Rx andbT -cycle_eq1.
by rewrite eqn_exp2l ?cardG_gt1 // -orderE ox => /eqP->.
split=> // cyc_cMR.
have nM_MG: M <*> G \subset 'N(M) by rewrite join_subG normG.
have [V minV sVM] := minnormal_exists ntM nM_MG.
have [] := minnormal_solvable minV sVM solM.
rewrite join_subG; case/andP=> nVM nVG ntV; case/is_abelemP=> [q q_pr abelV].
have coVG := coprimeSg sVM coMG; have solV := solvableS sVM solM.
have cVK': K^`(1) \subset 'C_K(V).
case: (eqVneq 'C_V(R) 1) => [tcVR | ntcRV].
case: (Frobenius_Wielandt_fixpoint frobG nVG) => // _.
by move/(_ tcVR)=> cVK _; rewrite (setIidPl cVK) der_sub.
have ocVR: #|'C_V(R)| = q.
have [u def_u]: exists u, 'C_V(R) = <[u]>.
by apply/cyclicP; apply: cyclicS (setSI _ sVM) cyc_cMR.
rewrite def_u -orderE (abelem_order_p abelV) -?cycle_eq1 -?def_u //.
by rewrite -cycle_subG -def_u subsetIl.
apply: (Frobenius_prime_cent_prime _ defG _ _ abelV) => //.
by case/prime_FrobeniusP: frobG.
by rewrite (coprime_p'group _ (abelem_pgroup abelV) ntV) // coprime_sym.
have cMK': K^`(1) / V \subset 'C_(K / V)(M / V).
have [-> | ntMV] := eqVneq (M / V) 1.
by rewrite subsetI cents1 quotientS ?der_sub.
have coKR := Frobenius_coprime frobG.
case/prime_FrobeniusP: frobG => //.
case/sdprod_context=> nsKG sRG defKR nKR tiKR regR; have [sKG _] := andP nsKG.
have nVK := subset_trans sKG nVG; have nVR := subset_trans sRG nVG.
have RVpr: prime #|R / V|.
rewrite card_quotient // -indexgI setIC coprime_TIg ?(coprimegS sRG) //.
by rewrite indexg1.
have frobGV: [Frobenius G / V = (K / V) ><| (R / V)].
apply/prime_FrobeniusP; rewrite // -?cardG_gt1 ?card_quotient //.
rewrite -indexgI setIC coprime_TIg ?(coprimegS sKG) //.
by rewrite indexg1 cardG_gt1.
rewrite -coprime_norm_quotient_cent ?(coprimegS sRG) //= regR quotient1.
rewrite -defKR quotientMl // sdprodE ?quotient_norms //.
by rewrite coprime_TIg ?coprime_morph.
have ltMVn: #|M / V| < n by apply: leq_trans leMn; rewrite ltn_quotient.
rewrite quotient_der //; move/IHn: frobGV.
case/(_ _ ltMVn); rewrite ?quotient_sol ?quotient_norms ?coprime_morph //.
- move=> Vx; case/setD1P=> ntVx; case/morphimP=> x nVx Rx defVx.
rewrite defVx /= -cent_cycle -quotient_cycle //; congr 'C__(_ / V).
apply/eqP; rewrite eqEsubset cycle_subG Rx /=.
apply: contraR ntVx => /(prime_TIg Rpr)/trivgP.
by rewrite defVx /= (setIidPr _) cycle_subG // => /set1P->; rewrite morph1.
- rewrite -coprime_norm_quotient_cent ?(coprimegS sKG) ?(subset_trans sKG) //.
by rewrite tcKM quotient1.
move=> _ _ -> //; rewrite -coprime_quotient_cent ?quotient_cyclic //.
by rewrite (coprimegS sRG).
have{cVK' cMK'} [[sK'K cVK'] [_ cMVK']] := (subsetIP cVK', subsetIP cMK').
have sK'G: K^`(1) \subset G by rewrite (subset_trans sK'K) ?proper_sub.
have coMK': coprime #|M| #|K^`(1)| := coprimegS sK'G coMG.
rewrite subsetI sK'K (stable_factor_cent cVK') //; apply/and3P; split=> //.
by rewrite commGC -quotient_cents2 // (subset_trans sK'G).
Qed.
End BGsection3.
|