aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/field/closed_field.v
blob: c338002128e7bca902741e8267a7ab6e21683d77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype choice ssrnat seq fintype generic_quotient.
From mathcomp
Require Import bigop ssralg poly polydiv matrix mxpoly countalg ring_quotient.

(******************************************************************************)
(* This files contains two main contributions:                                *)
(* 1. Theorem "closed_field_QEMixin"                                          *)
(*    A proof that algebraically closed field enjoy quantifier elimination,   *)
(*    as described in                                                         *)
(*    ``A formal quantifier elimination for algebraically closed fields'',    *)
(*     proceedings of Calculemus 2010, by Cyril Cohen and Assia Mahboubi      *)
(*                                                                            *)
(* We constructs an instance of quantifier elimination mixin,                 *)
(* (see the ssralg library) from the theory of polynomials with coefficients  *)
(* is an algebraically closed field (see the polydiv library).                *)
(* The algebraic operations operating on fomulae are implemented in CPS style *)
(* We provide one CPS counterpart for each operation involved in the proof    *)
(* of quantifier elimination. See the paper  for more details.                *)
(*                                                                            *)
(* 2. Theorems "countable_field_extension" and "countable_algebraic_closure"  *)
(*    constructions for both simple extension and algebraic closure of        *)
(*    countable fields, by Georges Gonthier.                                  *)
(*    Note that the construction of the algebraic closure relies on the       *)
(*    above mentionned quantifier elimination.                                *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import GRing.Theory.
Local Open Scope ring_scope.

Import Pdiv.Ring.
Import PreClosedField.

Module ClosedFieldQE.
Section ClosedFieldQE.

Variables (F : fieldType) (F_closed : GRing.ClosedField.axiom F).

Notation fF := (@GRing.formula F).
Notation tF := (@GRing.term F).
Notation qf f := (GRing.qf_form f && GRing.rformula f).
Definition polyF := seq tF.

Lemma qf_simpl (f : fF) :
  (qf f -> GRing.qf_form f) * (qf f -> GRing.rformula f).
Proof. by split=> /andP[]. Qed.

Notation cps T := ((T -> fF) -> fF).
Definition ret T1 : T1 -> cps T1 := fun x k => k x.
Arguments ret {T1} x k /.

Definition bind T1 T2 (x : cps T1) (f : T1 -> cps T2) : cps T2 :=
  fun k => x (fun x => f x k).
Arguments bind {T1 T2} x f k /.
Notation "''let' x <- y ; z" :=
  (bind y (fun x => z)) (at level 99, x at level 0, y at level 0,
    format "'[hv' ''let'  x  <-  y ;  '/' z ']'").

Definition cpsif T (c : fF) (t : T) (e : T) : cps T :=
  fun k => GRing.If c (k t) (k e).
Arguments cpsif {T} c t e k /.
Notation "''if' c1 'then' c2 'else' c3" := (cpsif c1%T c2%T c3%T)
  (at level 200, right associativity, format
"'[hv   ' ''if'  c1  '/' '[' 'then'  c2  ']' '/' '[' 'else'  c3 ']' ']'").

Notation eval := GRing.eval.
Notation rterm := GRing.rterm.
Notation qf_eval := GRing.qf_eval.

Fixpoint eval_poly (e : seq F) pf :=
  if pf is c :: q then eval_poly e q * 'X + (eval e c)%:P else 0.

Definition rpoly (p : polyF) := all (@rterm F) p.

Definition sizeT : polyF -> cps nat := (fix loop p :=
  if p isn't c :: q then ret 0%N
  else 'let n <- loop q;
       if n is m.+1 then ret m.+2 else
       'if (c == 0) then 0%N else 1%N).

Definition qf_red_cps T (x : cps T) (y : _ -> T) :=
   forall e k, qf_eval e (x k) = qf_eval e (k (y e)).
Notation "x ->_ e y" := (qf_red_cps x (fun e => y))
  (e ident, at level 90, format "x  ->_ e  y").

Definition qf_cps T D (x : cps T) :=
  forall k, (forall y, D y -> qf (k y)) -> qf (x k).

Lemma qf_cps_ret T D (x : T) : D x -> qf_cps D (ret x).
Proof. move=> ??; exact. Qed.
Hint Resolve qf_cps_ret : core.

Lemma qf_cps_bind T1 D1 T2 D2 (x : cps T1) (f : T1 -> cps T2) :
  qf_cps D1 x -> (forall x, D1 x -> qf_cps D2 (f x)) -> qf_cps D2 (bind x f).
Proof. by move=> xP fP k kP /=; apply: xP => y ?; apply: fP. Qed.

Lemma qf_cps_if T D (c : fF) (t : T) (e : T) : qf c -> D t -> D e ->
  qf_cps D ('if c then t else e).
Proof.
move=> qfc Dt De k kP /=; have [qft qfe] := (kP _ Dt, kP _ De).
by do !rewrite qf_simpl //.
Qed.

Lemma sizeTP (pf : polyF) : sizeT pf ->_e size (eval_poly e pf).
Proof.
elim: pf=> [|c qf qfP /=]; first by rewrite /= size_poly0.
move=> e k; rewrite size_MXaddC qfP -(size_poly_eq0 (eval_poly _ _)).
by case: (size (eval_poly e qf))=> //=; case: eqP; rewrite // orbF.
Qed.

Lemma sizeT_qf (p : polyF) : rpoly p -> qf_cps xpredT (sizeT p).
Proof.
elim: p => /= [_|c p ihp /andP[rc rq]]; first exact: qf_cps_ret.
apply: qf_cps_bind; first exact: ihp.
move=> [|n] //= _; last exact: qf_cps_ret.
by apply: qf_cps_if; rewrite //= rc.
Qed.

Definition isnull (p : polyF) : cps bool :=
  'let n <- sizeT p; ret (n == 0%N).

Lemma isnullP (p : polyF) : isnull p ->_e (eval_poly e p == 0).
Proof. by move=> e k; rewrite sizeTP size_poly_eq0. Qed.

Lemma isnull_qf (p : polyF) : rpoly p -> qf_cps xpredT (isnull p).
Proof.
move=> rp; apply: qf_cps_bind; first exact: sizeT_qf.
by move=> ? _; apply: qf_cps_ret.
Qed.

Definition lt_sizeT (p q : polyF) : cps bool :=
  'let n <- sizeT p; 'let m <- sizeT q; ret (n < m).

Definition lift (p : {poly F}) := map GRing.Const p.

Lemma eval_lift (e : seq F) (p : {poly F}) : eval_poly e (lift p) = p.
Proof.
elim/poly_ind: p => [|p c]; first by rewrite /lift polyseq0.
rewrite -cons_poly_def /lift polyseq_cons /nilp.
case pn0: (_ == _) => /=; last by move->; rewrite -cons_poly_def.
move=> _; rewrite polyseqC.
case c0: (_==_)=> /=.
  move: pn0; rewrite (eqP c0) size_poly_eq0; move/eqP->.
  by apply: val_inj=> /=; rewrite polyseq_cons // polyseq0.
by rewrite mul0r add0r; apply: val_inj=> /=; rewrite polyseq_cons // /nilp pn0.
Qed.

Fixpoint lead_coefT p : cps tF :=
  if p is c :: q then
    'let l <- lead_coefT q; 'if (l == 0) then c else l
  else ret 0%T.

Lemma lead_coefTP (k : tF -> fF) :
 (forall x e, qf_eval e (k x) = qf_eval e (k (eval e x)%:T%T)) ->
  forall (p : polyF) (e : seq F),
  qf_eval e (lead_coefT p k) = qf_eval e (k (lead_coef (eval_poly e p))%:T%T).
Proof.
move=> kP p e; elim: p => [|a p IHp]/= in k kP e *.
  by rewrite lead_coef0 kP.
rewrite IHp; last by move=> *; rewrite //= -kP.
rewrite GRing.eval_If /= lead_coef_eq0.
case p'0: (_ == _); first by rewrite (eqP p'0) mul0r add0r lead_coefC -kP.
rewrite lead_coefDl ?lead_coefMX // polyseqC size_mul ?p'0 //; last first.
  by rewrite -size_poly_eq0 size_polyX.
rewrite size_polyX addnC /=; case: (_ == _)=> //=.
by rewrite ltnS lt0n size_poly_eq0 p'0.
Qed.

Lemma lead_coefT_qf (p : polyF) : rpoly p -> qf_cps (@rterm _) (lead_coefT p).
Proof.
elim: p => [_|c q ihp //= /andP[rc rq]]; first by apply: qf_cps_ret.
apply: qf_cps_bind => [|y ty]; first exact: ihp.
by apply: qf_cps_if; rewrite //= ty.
Qed.

Fixpoint amulXnT (a : tF) (n : nat) : polyF :=
  if n is n'.+1 then 0%T :: (amulXnT a n') else [:: a].

Lemma eval_amulXnT  (a : tF) (n : nat) (e : seq F) :
  eval_poly e (amulXnT a n) = (eval e a)%:P * 'X^n.
Proof.
elim: n=> [|n] /=; first by rewrite expr0 mulr1 mul0r add0r.
by move->; rewrite addr0 -mulrA -exprSr.
Qed.

Lemma ramulXnT: forall a n, rterm a -> rpoly (amulXnT a n).
Proof. by move=> a n; elim: n a=> [a /= -> //|n ihn a ra]; apply: ihn. Qed.

Fixpoint sumpT (p q : polyF) :=
  match p, q with a :: p, b :: q => (a + b)%T :: sumpT p q
                | [::], q => q | p, [::] => p end.

Lemma eval_sumpT (p q : polyF) (e : seq F) :
  eval_poly e (sumpT p q) = (eval_poly e p) + (eval_poly e q).
Proof.
elim: p q => [|a p Hp] q /=; first by rewrite add0r.
case: q => [|b q] /=; first by rewrite addr0.
rewrite Hp mulrDl -!addrA; congr (_ + _); rewrite polyC_add addrC -addrA.
by congr (_ + _); rewrite addrC.
Qed.

Lemma rsumpT (p q : polyF) : rpoly p -> rpoly q -> rpoly (sumpT p q).
Proof.
elim: p q=> [|a p ihp] q rp rq //; move: rp; case/andP=> ra rp.
case: q rq => [|b q]; rewrite /= ?ra ?rp //=.
by case/andP=> -> rq //=; apply: ihp.
Qed.

Fixpoint mulpT (p q : polyF) :=
  if p isn't a :: p then [::]
  else sumpT [seq (a * x)%T | x <- q] (0%T :: mulpT p q).

Lemma eval_mulpT (p q : polyF) (e : seq F) :
  eval_poly e (mulpT p q) = (eval_poly e p) * (eval_poly e q).
Proof.
elim: p q=> [|a p Hp] q /=; first by rewrite mul0r.
rewrite eval_sumpT /= Hp addr0 mulrDl addrC mulrAC; congr (_ + _).
elim: q=> [|b q Hq] /=; first by rewrite mulr0.
by rewrite Hq polyC_mul mulrDr mulrA.
Qed.

Lemma rpoly_map_mul (t : tF) (p : polyF) (rt : rterm t) :
  rpoly [seq (t * x)%T | x <- p] = rpoly p.
Proof.
by rewrite /rpoly all_map /= (@eq_all _ _ (@rterm _)) // => x; rewrite /= rt.
Qed.

Lemma rmulpT (p q : polyF) : rpoly p -> rpoly q -> rpoly (mulpT p q).
Proof.
elim: p q=> [|a p ihp] q rp rq //=; move: rp; case/andP=> ra rp /=.
apply: rsumpT; last exact: ihp.
by rewrite rpoly_map_mul.
Qed.

Definition opppT : polyF -> polyF := map (GRing.Mul (- 1%T)%T).

Lemma eval_opppT (p : polyF) (e : seq F) :
  eval_poly e (opppT p) = - eval_poly e p.
Proof.
by elim: p; rewrite /= ?oppr0 // => ? ? ->; rewrite !mulNr opprD polyC_opp mul1r.
Qed.

Definition natmulpT n : polyF -> polyF := map (GRing.Mul n%:R%T).

Lemma eval_natmulpT  (p : polyF) (n : nat) (e : seq F) :
  eval_poly e (natmulpT n p) = (eval_poly e p) *+ n.
Proof.
elim: p; rewrite //= ?mul0rn // => c p ->.
rewrite mulrnDl mulr_natl polyC_muln; congr (_ + _).
by rewrite -mulr_natl mulrAC -mulrA mulr_natl mulrC.
Qed.

Fixpoint redivp_rec_loopT (q : polyF) sq cq (c : nat) (qq r : polyF)
  (n : nat) {struct n} : cps (nat * polyF * polyF) :=
  'let sr <- sizeT r;
  if sr < sq then ret (c, qq, r) else
  'let lr <- lead_coefT r;
  let m := amulXnT lr (sr - sq) in
  let qq1 := sumpT (mulpT qq [::cq]) m in
  let r1 := sumpT (mulpT r ([::cq])) (opppT (mulpT m q)) in
  if n is n1.+1 then redivp_rec_loopT q sq cq c.+1 qq1 r1 n1
  else ret (c.+1, qq1, r1).

Fixpoint redivp_rec_loop (q : {poly F}) sq cq
   (k : nat) (qq r : {poly F}) (n : nat) {struct n} :=
    if size r < sq then (k, qq, r) else
      let m := (lead_coef r) *: 'X^(size r - sq) in
      let qq1 := qq * cq%:P + m in
      let r1 := r * cq%:P - m * q in
      if n is n1.+1 then redivp_rec_loop q sq cq k.+1 qq1 r1 n1 else
        (k.+1, qq1, r1).

Lemma redivp_rec_loopTP (k : nat * polyF * polyF -> fF) :
  (forall c qq r e,  qf_eval e (k (c,qq,r))
    = qf_eval e (k (c, lift (eval_poly e qq), lift (eval_poly e r))))
  -> forall q sq cq c qq r n e
    (d := redivp_rec_loop (eval_poly e q) sq (eval e cq)
      c (eval_poly e qq) (eval_poly e r) n),
    qf_eval e (redivp_rec_loopT q sq cq c qq r n k)
    = qf_eval e (k (d.1.1, lift d.1.2, lift d.2)).
Proof.
move=> Pk q sq cq c qq r n e /=.
elim: n c qq r k Pk e => [|n Pn] c qq r k Pk e; rewrite sizeTP.
  case ltrq : (_ < _); first by rewrite /= ltrq /= -Pk.
  rewrite lead_coefTP => [|a p]; rewrite Pk.
    rewrite ?(eval_mulpT,eval_amulXnT,eval_sumpT,eval_opppT) //=.
    by rewrite ltrq //= mul_polyC ?(mul0r,add0r).
  by symmetry; rewrite Pk ?(eval_mulpT,eval_amulXnT,eval_sumpT, eval_opppT).
case ltrq : (_<_); first by rewrite /= ltrq Pk.
rewrite lead_coefTP.
  rewrite Pn ?(eval_mulpT,eval_amulXnT,eval_sumpT,eval_opppT) //=.
  by rewrite ltrq //= mul_polyC ?(mul0r,add0r).
rewrite -/redivp_rec_loopT => x e'.
rewrite Pn; last by move=> *; rewrite Pk.
symmetry; rewrite Pn; last by move=> *; rewrite Pk.
rewrite Pk ?(eval_lift,eval_mulpT,eval_amulXnT,eval_sumpT,eval_opppT).
by rewrite mul_polyC ?(mul0r,add0r).
Qed.

Lemma redivp_rec_loopT_qf (q : polyF) (sq : nat) (cq : tF)
  (c : nat) (qq r : polyF) (n : nat) :
  rpoly q -> rterm cq -> rpoly qq -> rpoly r ->
  qf_cps (fun x => [&& rpoly x.1.2 & rpoly x.2])
         (redivp_rec_loopT q sq cq c qq r n).
Proof.
do ![move=>x/(pair x){x}] => rw; elim: n => [|n IHn]//= in q sq cq c qq r rw *;
apply: qf_cps_bind; do ?[by apply: sizeT_qf; rewrite !rw] => sr _;
case: ifPn => // _; do ?[by apply: qf_cps_ret; rewrite //= ?rw];
apply: qf_cps_bind; do ?[by apply: lead_coefT_qf; rewrite !rw] => lr /= rlr;
[apply: qf_cps_ret|apply: IHn];
by do !rewrite ?(rsumpT,rmulpT,ramulXnT,rpoly_map_mul,rlr,rw) //=.
Qed.

Definition redivpT (p : polyF) (q : polyF) : cps (nat * polyF * polyF) :=
  'let b <- isnull q;
  if b then ret (0%N, [::0%T], p) else
  'let sq <- sizeT q; 'let sp <- sizeT p;
  'let lq <- lead_coefT q;
  redivp_rec_loopT q sq lq 0 [::0%T] p sp.

Lemma redivp_rec_loopP  (q : {poly F}) (c : nat) (qq r : {poly F}) (n : nat) :
  redivp_rec q c qq r n = redivp_rec_loop q (size q) (lead_coef q) c qq r n.
Proof. by elim: n c qq r => [| n Pn] c qq r //=; rewrite Pn. Qed.

Lemma redivpTP (k : nat * polyF * polyF -> fF) :
  (forall c qq r e,
     qf_eval e (k (c,qq,r)) =
     qf_eval e (k (c, lift (eval_poly e qq), lift (eval_poly e r)))) ->
  forall p q e (d := redivp (eval_poly e p) (eval_poly e q)),
    qf_eval e (redivpT p q k) = qf_eval e (k (d.1.1, lift d.1.2, lift d.2)).
Proof.
move=> Pk p q e /=; rewrite isnullP unlock /=.
case q0 : (eval_poly e q == 0) => /=; first by rewrite Pk /= mul0r add0r polyC0.
rewrite !sizeTP lead_coefTP /=; last by move=> *; rewrite !redivp_rec_loopTP.
rewrite redivp_rec_loopTP /=; last by move=> *; rewrite Pk.
by rewrite mul0r add0r polyC0 redivp_rec_loopP.
Qed.

Lemma redivpT_qf (p : polyF) (q : polyF) : rpoly p -> rpoly q ->
  qf_cps (fun x => [&& rpoly x.1.2 & rpoly x.2]) (redivpT p q).
Proof.
move=> rp rq; apply: qf_cps_bind => [|[] _]; first exact: isnull_qf.
  by apply: qf_cps_ret.
apply: qf_cps_bind => [|sp _]; first exact: sizeT_qf.
apply: qf_cps_bind => [|sq _]; first exact: sizeT_qf.
apply: qf_cps_bind => [|lq rlq]; first exact: lead_coefT_qf.
by apply: redivp_rec_loopT_qf => //=.
Qed.

Definition rmodpT (p : polyF) (q : polyF) : cps polyF :=
  'let d <- redivpT p q; ret d.2.
Definition rdivpT (p : polyF) (q : polyF) : cps polyF :=
  'let d <- redivpT p q; ret d.1.2.
Definition rscalpT (p : polyF) (q : polyF) : cps nat :=
  'let d <- redivpT p q; ret d.1.1.
Definition rdvdpT (p : polyF) (q : polyF) : cps bool :=
  'let d <- rmodpT p q; isnull d.

Fixpoint rgcdp_loop n (pp qq : {poly F}) {struct n} :=
  let rr := rmodp pp qq in if rr == 0 then qq
    else if n is n1.+1 then rgcdp_loop n1 qq rr else rr.

Fixpoint rgcdp_loopT n (pp : polyF) (qq : polyF) : cps polyF :=
  'let rr <- rmodpT pp qq; 'let nrr <- isnull rr; if nrr then ret qq
    else if n is n1.+1 then rgcdp_loopT n1 qq rr else ret rr.

Lemma rgcdp_loopP (k : polyF -> fF) :
  (forall p e, qf_eval e (k p) = qf_eval e (k (lift (eval_poly e p)))) ->
  forall n p q e,
    qf_eval e (rgcdp_loopT n p q k) =
    qf_eval e (k (lift (rgcdp_loop n (eval_poly e p) (eval_poly e q)))).
Proof.
move=> Pk n p q e; elim: n => /= [| m IHm] in p q e *;
rewrite redivpTP /==> *; rewrite ?isnullP ?eval_lift -/(rmodp _ _);
by case: (_ == _); do ?by rewrite -?Pk ?IHm ?eval_lift.
Qed.

Lemma rgcdp_loopT_qf (n : nat) (p : polyF) (q : polyF) :
  rpoly p -> rpoly q -> qf_cps rpoly (rgcdp_loopT n p q).
Proof.
elim: n => [|n IHn] in p q * => rp rq /=;
(apply: qf_cps_bind=> [|rr rrr]; [
  apply: qf_cps_bind => [|[[a u] v]]; do ?exact: redivpT_qf;
  by move=> /andP[/= ??]; apply: (@qf_cps_ret _ rpoly)|
apply: qf_cps_bind => [|[] _];
by [apply: isnull_qf|apply: qf_cps_ret|apply: IHn]]).
Qed.

Definition rgcdpT (p : polyF) (q : polyF) : cps polyF :=
  let aux p1 q1 : cps polyF :=
    'let b <- isnull p1; if b then ret q1
    else 'let n <- sizeT p1; rgcdp_loopT n p1 q1 in
  'let b <- lt_sizeT p q; if b then aux q p else aux p q.

Lemma rgcdpTP (k : polyF -> fF) :
  (forall p e, qf_eval e (k p) = qf_eval e (k (lift (eval_poly e p)))) ->
   forall p q e, qf_eval e (rgcdpT p q k) =
                 qf_eval e (k (lift (rgcdp (eval_poly e p) (eval_poly e q)))).
Proof.
move=> Pk p q e; rewrite /rgcdpT /rgcdp !sizeTP /=.
case: (_ < _); rewrite !isnullP /=; case: (_ == _); rewrite -?Pk ?sizeTP;
by rewrite ?rgcdp_loopP.
Qed.

Lemma rgcdpT_qf (p : polyF) (q : polyF) :
   rpoly p -> rpoly q -> qf_cps rpoly (rgcdpT p q).
Proof.
move=> rp rq k kP; rewrite /rgcdpT /=; do ![rewrite sizeT_qf => // ? _].
case: (_ < _); rewrite ?isnull_qf // => -[]; rewrite ?kP // => _;
by rewrite sizeT_qf => // ? _; rewrite rgcdp_loopT_qf.
Qed.

Fixpoint rgcdpTs (ps : seq polyF) : cps polyF :=
  if ps is p :: pr then 'let pr <- rgcdpTs pr; rgcdpT p pr else ret [::0%T].

Lemma rgcdpTsP (k : polyF -> fF) :
  (forall p e, qf_eval e (k p) = qf_eval e (k (lift (eval_poly e p)))) ->
  forall ps e,
    qf_eval e (rgcdpTs ps k) =
    qf_eval e (k (lift (\big[@rgcdp _/0%:P]_(i <- ps)(eval_poly e i)))).
Proof.
move=> Pk ps e; elim: ps k Pk => [|p ps Pps] /= k Pk.
  by rewrite /= big_nil Pk /= mul0r add0r.
by rewrite big_cons Pps => *; rewrite !rgcdpTP // !eval_lift -?Pk.
Qed.

Lemma rgcdpTs_qf (ps : seq polyF) :
   all rpoly ps -> qf_cps rpoly (rgcdpTs ps).
Proof.
elim: ps => [_|c p ihp /andP[rc rp]] //=; first exact: qf_cps_ret.
by apply: qf_cps_bind => [|r rr]; [apply: ihp|apply: rgcdpT_qf].
Qed.

Fixpoint rgdcop_recT n (q : polyF) (p : polyF) :=
  if n is m.+1 then
    'let g <- rgcdpT p q; 'let sg <- sizeT g;
    if sg == 1%N then ret p
    else 'let r <- rdivpT p g;
          rgdcop_recT m q r
  else 'let b <- isnull q; ret [::b%:R%T].


Lemma rgdcop_recTP (k : polyF -> fF) :
  (forall p e, qf_eval e (k p) = qf_eval e (k (lift (eval_poly e p))))
  -> forall p q n e, qf_eval e (rgdcop_recT n p q k)
    = qf_eval e (k (lift (rgdcop_rec (eval_poly e p) (eval_poly e q) n))).
Proof.
move=> Pk p q n e; elim: n => [|n Pn] /= in k Pk p q e *.
  rewrite isnullP /=.
  by case: (_ == _); rewrite Pk /= mul0r add0r ?(polyC0, polyC1).
rewrite /rcoprimep rgcdpTP ?sizeTP ?eval_lift => * /=.
  case: (_ == _);
  by do ?[rewrite /= ?(=^~Pk, redivpTP, rgcdpTP, sizeTP, Pn, eval_lift) //==> *].
do ?[rewrite /= ?(=^~Pk, redivpTP, rgcdpTP, sizeTP, Pn, eval_lift) //==> *].
case: (_ == _);
by do ?[rewrite /= ?(=^~Pk, redivpTP, rgcdpTP, sizeTP, Pn, eval_lift) //==> *].
Qed.

Lemma rgdcop_recT_qf (n : nat) (p : polyF) (q : polyF) :
  rpoly p -> rpoly q -> qf_cps rpoly (rgdcop_recT n p q).
Proof.
elim: n => [|n ihn] in p q * => k kP rp rq /=.
  by rewrite isnull_qf => //*; rewrite rq.
rewrite rgcdpT_qf=> //*; rewrite sizeT_qf=> //*.
case: (_ == _); rewrite ?kP ?rq //= redivpT_qf=> //= ? /andP[??].
by rewrite ihn.
Qed.

Definition rgdcopT q p := 'let sp <- sizeT p; rgdcop_recT sp q p.

Lemma rgdcopTP (k : polyF -> fF) :
  (forall p e, qf_eval e (k p) = qf_eval e (k (lift (eval_poly e p)))) ->
  forall p q e, qf_eval e (rgdcopT p q k) =
                qf_eval e (k (lift (rgdcop (eval_poly e p) (eval_poly e q)))).
Proof. by move=> *; rewrite sizeTP rgdcop_recTP 1?Pk. Qed.

Lemma rgdcopT_qf (p : polyF) (q : polyF) :
  rpoly p -> rpoly q -> qf_cps rpoly (rgdcopT p q).
Proof.
by move=> rp rq k kP; rewrite sizeT_qf => //*; rewrite rgdcop_recT_qf.
Qed.

Definition ex_elim_seq (ps : seq polyF) (q : polyF) : fF :=
  ('let g <- rgcdpTs ps; 'let d <- rgdcopT q g;
  'let n <- sizeT d; ret (n != 1%N)) GRing.Bool.

Lemma ex_elim_seqP (ps : seq polyF) (q : polyF) (e : seq F) :
  let gp := (\big[@rgcdp _/0%:P]_(p <- ps)(eval_poly e p)) in
  qf_eval e (ex_elim_seq ps q) = (size (rgdcop (eval_poly e q) gp) != 1%N).
Proof.
by do ![rewrite (rgcdpTsP,rgdcopTP,sizeTP,eval_lift) //= | move=> * //=].
Qed.

Lemma ex_elim_seq_qf  (ps : seq polyF) (q : polyF) :
  all rpoly ps -> rpoly q -> qf (ex_elim_seq ps q).
Proof.
move=> rps rq; apply: rgcdpTs_qf=> // g rg; apply: rgdcopT_qf=> // d rd.
exact : sizeT_qf.
Qed.

Fixpoint abstrX (i : nat) (t : tF) :=
  match t with
    | 'X_n => if n == i then [::0; 1] else [::t]
    | - x => opppT (abstrX i x)
    | x + y => sumpT (abstrX i x) (abstrX i y)
    | x * y => mulpT (abstrX i x) (abstrX i y)
    | x *+ n => natmulpT n (abstrX i x)
    | x ^+ n => let ax := (abstrX i x) in iter n (mulpT ax) [::1]
    | _ => [::t]
  end%T.

Lemma abstrXP  (i : nat) (t : tF) (e : seq F) (x : F) :
  rterm t -> (eval_poly e (abstrX i t)).[x] = eval (set_nth 0 e i x) t.
Proof.
elim: t => [n | r | n | t tP s sP | t tP | t tP n | t tP s sP | t tP | t tP n] h.
- move=> /=; case ni: (_ == _);
    rewrite //= ?(mul0r,add0r,addr0,polyC1,mul1r,hornerX,hornerC);
    by rewrite // nth_set_nth /= ni.
- by rewrite /= mul0r add0r hornerC.
- by rewrite /= mul0r add0r hornerC.
- by case/andP: h => *; rewrite /= eval_sumpT hornerD tP ?sP.
- by rewrite /= eval_opppT hornerN tP.
- by rewrite /= eval_natmulpT hornerMn tP.
- by case/andP: h => *; rewrite /= eval_mulpT hornerM tP ?sP.
- by [].
- elim: n h => [|n ihn] rt; first by rewrite /= expr0 mul0r add0r hornerC.
  by rewrite /= eval_mulpT exprSr hornerM ihn // mulrC tP.
Qed.

Lemma rabstrX (i : nat) (t : tF) : rterm t -> rpoly (abstrX i t).
Proof.
elim: t; do ?[ by move=> * //=; do ?case: (_ == _)].
- move=> t irt s irs /=; case/andP=> rt rs.
  by apply: rsumpT; rewrite ?irt ?irs //.
- by move=> t irt /= rt; rewrite rpoly_map_mul ?irt //.
- by move=> t irt /= n rt; rewrite rpoly_map_mul ?irt //.
- move=> t irt s irs /=; case/andP=> rt rs.
  by apply: rmulpT; rewrite ?irt ?irs //.
- move=> t irt /= n rt; move: (irt rt)=> {rt} rt; elim: n => [|n ihn] //=.
  exact: rmulpT.
Qed.

Implicit Types tx ty : tF.

Lemma abstrX_mulM (i : nat) : {morph abstrX i : x y / x * y >-> mulpT x y}%T.
Proof. by []. Qed.

Lemma abstrX1 (i : nat) : abstrX i 1%T = [::1%T].
Proof. done. Qed.

Lemma eval_poly_mulM e : {morph eval_poly e : x y / mulpT x y >-> x * y}.
Proof. by move=> x y; rewrite eval_mulpT. Qed.

Lemma eval_poly1 e : eval_poly e [::1%T] = 1.
Proof. by rewrite /= mul0r add0r. Qed.

Notation abstrX_bigmul := (big_morph _ (abstrX_mulM _) (abstrX1 _)).
Notation eval_bigmul := (big_morph _ (eval_poly_mulM _) (eval_poly1 _)).
Notation bigmap_id := (big_map _ (fun _ => true) id).

Lemma rseq_poly_map (x : nat) (ts : seq tF) :
  all (@rterm _) ts ->  all rpoly (map (abstrX x) ts).
Proof.
by elim: ts => //= t ts iht; case/andP=> rt rts; rewrite rabstrX // iht.
Qed.

Definition ex_elim (x : nat) (pqs : seq tF * seq tF) :=
  ex_elim_seq (map (abstrX x) pqs.1)
  (abstrX x (\big[GRing.Mul/1%T]_(q <- pqs.2) q)).

Lemma ex_elim_qf (x : nat) (pqs : seq tF * seq tF) :
  GRing.dnf_rterm pqs -> qf (ex_elim x pqs).
case: pqs => ps qs; case/andP=> /= rps rqs.
apply: ex_elim_seq_qf; first exact: rseq_poly_map.
apply: rabstrX=> /=.
elim: qs rqs=> [|t ts iht] //=; first by rewrite big_nil.
by case/andP=> rt rts; rewrite big_cons /= rt /= iht.
Qed.

Lemma holds_conj : forall e i x ps, all (@rterm _) ps ->
  (GRing.holds (set_nth 0 e i x)
               (foldr (fun t : tF => GRing.And (t == 0)) GRing.True%T ps)
  <-> all ((@root _)^~ x) (map (eval_poly e \o abstrX i) ps)).
Proof.
move=> e i x; elim=> [|p ps ihps] //=.
case/andP=> rp rps; rewrite rootE abstrXP //.
constructor; first by case=> -> hps; rewrite eqxx /=; apply/ihps.
by case/andP; move/eqP=> -> psr; split=> //; apply/ihps.
Qed.

Lemma holds_conjn (e : seq F) (i : nat) (x : F) (ps : seq tF) :
  all (@rterm _) ps ->
  (GRing.holds (set_nth 0 e i x)
               (foldr (fun t : tF => GRing.And (t != 0)) GRing.True ps) <->
  all (fun p => ~~root p x) (map (eval_poly e \o abstrX i) ps)).
Proof.
elim: ps => [|p ps ihps] //=.
case/andP=> rp rps; rewrite rootE abstrXP //.
constructor; first by case=> /eqP-> hps /=; apply/ihps.
by case/andP=> pr psr; split; first apply/eqP=> //; apply/ihps.
Qed.

Lemma holds_ex_elim: GRing.valid_QE_proj ex_elim.
Proof.
move=> i [ps qs] /= e; case/andP=> /= rps rqs.
rewrite ex_elim_seqP big_map.
have -> : \big[@rgcdp _/0%:P]_(j <- ps) eval_poly e (abstrX i j) =
          \big[@rgcdp _/0%:P]_(j <- (map (eval_poly e) (map (abstrX i) (ps)))) j.
  by rewrite !big_map.
rewrite -!map_comp.
  have aux I (l : seq I) (P : I -> {poly F}) :
    \big[(@gcdp F)/0]_(j <- l) P j %= \big[(@rgcdp F)/0]_(j <- l) P j.
    elim: l => [| u l ihl] /=; first by rewrite !big_nil eqpxx.
    rewrite !big_cons; move: ihl; move/(eqp_gcdr (P u)) => h.
    by apply: eqp_trans h _; rewrite eqp_sym; apply: eqp_rgcd_gcd.
case g0: (\big[(@rgcdp F)/0%:P]_(j <- map (eval_poly e \o abstrX i) ps) j == 0).
  rewrite (eqP g0) rgdcop0.
  case m0 : (_ == 0)=> //=; rewrite ?(size_poly1,size_poly0) //=.
    rewrite abstrX_bigmul eval_bigmul -bigmap_id in m0.
    constructor=> [[x] // []] //.
    case=> _; move/holds_conjn=> hc; move/hc:rqs.
    by rewrite -root_bigmul //= (eqP m0) root0.
  constructor; move/negP:m0; move/negP=>m0.
  case: (closed_nonrootP F_closed _ m0) => x {m0}.
  rewrite abstrX_bigmul eval_bigmul -bigmap_id root_bigmul=> m0.
  exists x; do 2?constructor=> //; last by apply/holds_conjn.
  apply/holds_conj; rewrite //= -root_biggcd.
  by rewrite (eqp_root (aux _ _ _ )) (eqP g0) root0.
apply: (iffP (closed_rootP F_closed _)) => -[x Px]; exists x; move: Px => //=.
  rewrite (eqp_root (eqp_rgdco_gdco _ _)) root_gdco ?g0 //.
  rewrite -(eqp_root (aux _ _ _ )) root_biggcd  abstrX_bigmul eval_bigmul.
  rewrite -bigmap_id root_bigmul; case/andP=> psr qsr.
  do 2?constructor; first by apply/holds_conj.
  by apply/holds_conjn.
rewrite (eqp_root (eqp_rgdco_gdco _ _)) root_gdco ?g0 // -(eqp_root (aux _ _ _)).
rewrite root_biggcd abstrX_bigmul eval_bigmul -bigmap_id.
rewrite root_bigmul=> [[] // [hps hqs]]; apply/andP.
constructor; first by apply/holds_conj.
by apply/holds_conjn.
Qed.

Lemma wf_ex_elim : GRing.wf_QE_proj ex_elim.
Proof. by move=> i bc /= rbc; apply: ex_elim_qf. Qed.

Definition Mixin := QEdecFieldMixin wf_ex_elim holds_ex_elim.

End ClosedFieldQE.
End ClosedFieldQE.
Notation closed_field_QEMixin := ClosedFieldQE.Mixin.

Import CodeSeq.

Lemma countable_field_extension (F : countFieldType) (p : {poly F}) :
    size p > 1 ->
  {E : countFieldType & {FtoE : {rmorphism F -> E} &
  {w : E | root (map_poly FtoE p) w
         & forall u : E, exists q, u = (map_poly FtoE q).[w]}}}.
Proof.
pose fix d i :=
  if i is i1.+1 then
    let d1 := oapp (gcdp (d i1)) 0 (unpickle i1) in
    if size d1 > 1 then d1 else d i1
  else p.
move=> p_gt1; have sz_d i: size (d i) > 1 by elim: i => //= i IHi; case: ifP.
have dv_d i j: i <= j -> d j %| d i.
  move/subnK <-; elim: {j}(j - i)%N => //= j IHj; case: ifP => //=.
  case: (unpickle _) => /= [q _|]; last by rewrite size_poly0.
  exact: dvdp_trans (dvdp_gcdl _ _) IHj.
pose I : pred {poly F} := [pred q | d (pickle q).+1 %| q].
have I'co q i: q \notin I -> i > pickle q -> coprimep q (d i).
  rewrite inE => I'q /dv_d/coprimep_dvdl-> //; apply: contraR I'q.
  rewrite coprimep_sym /coprimep /= pickleK /= neq_ltn.
  case: ifP => [_ _| ->]; first exact: dvdp_gcdr.
  rewrite orbF ltnS leqn0 size_poly_eq0 gcdp_eq0 -size_poly_eq0.
  by rewrite -leqn0 leqNgt ltnW //.
have memI q: reflect (exists i, d i %| q) (q \in I).
  apply: (iffP idP) => [|[i dv_di_q]]; first by exists (pickle q).+1.
  have [le_i_q | /I'co i_co_q] := leqP i (pickle q).
    rewrite inE /= pickleK /=; case: ifP => _; first exact: dvdp_gcdr.
    exact: dvdp_trans (dv_d _ _ le_i_q) dv_di_q.
  apply: contraR i_co_q _.
  by rewrite /coprimep (eqp_size (dvdp_gcd_idr dv_di_q)) neq_ltn sz_d orbT.
have I_ideal : idealr_closed I.
  split=> [||a q1 q2 Iq1 Iq2]; first exact: dvdp0.
    by apply/memI=> [[i /idPn[]]]; rewrite dvdp1 neq_ltn sz_d orbT.
  apply/memI; exists (maxn (pickle q1).+1 (pickle q2).+1); apply: dvdp_add.
    by apply: dvdp_mull; apply: dvdp_trans Iq1; apply/dv_d/leq_maxl.
  by apply: dvdp_trans Iq2; apply/dv_d/leq_maxr.
pose Iaddkey := GRing.Pred.Add (DefaultPredKey I) I_ideal.
pose Iidkey := MkIdeal (GRing.Pred.Zmod Iaddkey I_ideal) I_ideal.
pose E := ComRingType _ (@Quotient.mulqC _ _ _ (KeyedPred Iidkey)).
pose PtoE : {rmorphism {poly F} -> E} := [rmorphism of \pi_E%qT : {poly F} -> E].
have PtoEd i: PtoE (d i) = 0.
  by apply/eqP; rewrite piE Quotient.equivE subr0; apply/memI; exists i.
pose Einv (z : E) (q := repr z) (dq := d (pickle q).+1) :=
  let q_unitP := Bezout_eq1_coprimepP q dq in
  if q_unitP is ReflectT ex_uv then PtoE (sval (sig_eqW ex_uv)).1 else 0.
have Einv0: Einv 0 = 0.
  rewrite /Einv; case: Bezout_eq1_coprimepP => // ex_uv.
  case/negP: (oner_neq0 E); rewrite piE -[_ 1]/(PtoE 1); have [uv <-] := ex_uv.
  by rewrite rmorphD !rmorphM PtoEd /= reprK !mulr0 addr0.
have EmulV: GRing.Field.axiom Einv.
  rewrite /Einv=> z nz_z; case: Bezout_eq1_coprimepP => [ex_uv |]; last first.
    move/Bezout_eq1_coprimepP; rewrite I'co //.
    by rewrite piE -{1}[z]reprK -Quotient.idealrBE subr0 in nz_z.
  apply/eqP; case: sig_eqW => {ex_uv} [uv uv1]; set i := _.+1 in uv1 *.
  rewrite piE /= -[z]reprK -(rmorphM PtoE) -Quotient.idealrBE.
  by rewrite -uv1 opprD addNKr -mulNr; apply/memI; exists i; apply: dvdp_mull.
pose Efield := FieldType _ (FieldMixin EmulV Einv0).
pose Ecount := CountType Efield (CanCountMixin reprK).
pose FtoE := [rmorphism of PtoE \o polyC]; pose w : E := PtoE 'X.
have defPtoE q: (map_poly FtoE q).[w] = PtoE q.
  by rewrite map_poly_comp horner_map [_.['X]]comp_polyXr.
exists [countFieldType of Ecount], FtoE, w => [|u].
  by rewrite /root defPtoE (PtoEd 0%N).
by exists (repr u); rewrite defPtoE /= reprK.
Qed.

Lemma countable_algebraic_closure (F : countFieldType) :
  {K : countClosedFieldType & {FtoK : {rmorphism F -> K} | integralRange FtoK}}.
Proof.
pose minXp (R : ringType) (p : {poly R}) := if size p > 1 then p else 'X.
have minXp_gt1 R p: size (minXp R p) > 1.
  by rewrite /minXp; case: ifP => // _; rewrite size_polyX.
have minXpE (R : ringType) (p : {poly R}) : size p > 1 -> minXp R p = p.
  by rewrite /minXp => ->.
have ext1 p := countable_field_extension (minXp_gt1 _ p).
pose ext1fT E p := tag (ext1 E p).
pose ext1to E p : {rmorphism _ -> ext1fT E p} := tag (tagged (ext1 E p)).
pose ext1w E p : ext1fT E p := s2val (tagged (tagged (ext1 E p))).
have ext1root E p: root (map_poly (ext1to E p) (minXp E p)) (ext1w E p).
  by rewrite /ext1w; case: (tagged (tagged (ext1 E p))).
have ext1gen E p u: {q | u = (map_poly (ext1to E p) q).[ext1w E p]}.
  by apply: sig_eqW; rewrite /ext1w; case: (tagged (tagged (ext1 E p))) u.
pose pExtEnum (E : countFieldType) := nat -> {poly E}.
pose Ext := {E : countFieldType & pExtEnum E}; pose MkExt : Ext := Tagged _ _.
pose EtoInc (E : Ext) i := ext1to (tag E) (tagged E i).
pose incEp E i j :=
  let v := map_poly (EtoInc E i) (tagged E j) in
  if decode j is [:: i1; k] then
    if i1 == i then odflt v (unpickle k) else v
  else v.
pose fix E_ i := if i is i1.+1 then MkExt _ (incEp (E_ i1) i1) else MkExt F \0.
pose E i := tag (E_ i); pose Krep := {i : nat & E i}.
pose fix toEadd i k : {rmorphism E i -> E (k + i)%N} :=
  if k is k1.+1 then [rmorphism of EtoInc _ (k1 + i)%N \o toEadd _ _]
  else [rmorphism of idfun].
pose toE i j (le_ij : i <= j) :=
  ecast j {rmorphism E i -> E j} (subnK le_ij) (toEadd i (j - i)%N).
have toEeq i le_ii: toE i i le_ii =1 id.
  by rewrite /toE; move: (subnK _); rewrite subnn => ?; rewrite eq_axiomK.
have toEleS i j leij leiSj z: toE i j.+1 leiSj z = EtoInc _ _ (toE i j leij z).
  rewrite /toE; move: (j - i)%N {leij leiSj}(subnK _) (subnK _) => k.
  by case: j /; rewrite (addnK i k.+1) => eq_kk; rewrite [eq_kk]eq_axiomK.
have toEirr := congr1 ((toE _ _)^~ _) (bool_irrelevance _ _).
have toEtrans j i k leij lejk leik z:
  toE i k leik z = toE j k lejk (toE i j leij z).
- elim: k leik lejk => [|k IHk] leiSk lejSk.
    by case: j => // in leij lejSk *; rewrite toEeq.
  have:= lejSk; rewrite {1}leq_eqVlt ltnS => /predU1P[Dk | lejk].
    by rewrite -Dk in leiSk lejSk *; rewrite toEeq.
  by have leik := leq_trans leij lejk; rewrite !toEleS -IHk.
have [leMl leMr] := (leq_maxl, leq_maxr); pose le_max := (leq_max, leqnn, orbT).
pose pairK (x y : Krep) (m := maxn _ _) :=
  (toE _ m (leMl _ _) (tagged x), toE _ m (leMr _ _) (tagged y)).
pose eqKrep x y := prod_curry (@eq_op _) (pairK x y).
have eqKrefl : reflexive eqKrep by move=> z; apply/eqP; apply: toEirr.
have eqKsym : symmetric eqKrep.
  move=> z1 z2; rewrite {1}/eqKrep /= eq_sym; move: (leMl _ _) (leMr _ _).
  by rewrite maxnC => lez1m lez2m; congr (_ == _); apply: toEirr.
have eqKtrans : transitive eqKrep.
  rewrite /eqKrep /= => z2 z1 z3 /eqP eq_z12 /eqP eq_z23.
  rewrite -(inj_eq (fmorph_inj (toE _ _ (leMr (tag z2) _)))).
  rewrite -!toEtrans ?le_max // maxnCA maxnA => lez3m lez1m.
  rewrite {lez1m}(toEtrans (maxn (tag z1) (tag z2))) // {}eq_z12.
  do [rewrite -toEtrans ?le_max // -maxnA => lez2m] in lez3m *.
  by rewrite (toEtrans (maxn (tag z2) (tag z3))) // eq_z23 -toEtrans.
pose K := {eq_quot (EquivRel _  eqKrefl eqKsym eqKtrans)}%qT.
have cntK : Countable.mixin_of K := CanCountMixin reprK.
pose EtoKrep i (x : E i) : K := \pi%qT (Tagged E x).
have [EtoK piEtoK]: {EtoK | forall i, EtoKrep i =1 EtoK i} by exists EtoKrep.
pose FtoK := EtoK 0%N; rewrite {}/EtoKrep in piEtoK.
have eqEtoK i j x y:
  toE i _ (leMl i j) x = toE j _ (leMr i j) y -> EtoK i x = EtoK j y.
- by move/eqP=> eq_xy; rewrite -!piEtoK; apply/eqmodP.
have toEtoK j i leij x : EtoK j (toE i j leij x) = EtoK i x.
  by apply: eqEtoK; rewrite -toEtrans.
have EtoK_0 i: EtoK i 0 = FtoK 0 by apply: eqEtoK; rewrite !rmorph0.
have EtoK_1 i: EtoK i 1 = FtoK 1 by apply: eqEtoK; rewrite !rmorph1.
have EtoKeq0 i x: (EtoK i x == FtoK 0) = (x == 0).
  by rewrite /FtoK -!piEtoK eqmodE /= /eqKrep /= rmorph0 fmorph_eq0.
have toErepr m i leim x lerm:
  toE _ m lerm (tagged (repr (EtoK i x))) = toE i m leim x.
- have: (Tagged E x == repr (EtoK i x) %[mod K])%qT by rewrite reprK piEtoK.
  rewrite eqmodE /= /eqKrep; case: (repr _) => j y /= in lerm * => /eqP /=.
  have leijm: maxn i j <= m by rewrite geq_max leim.
  by move/(congr1 (toE _ _ leijm)); rewrite -!toEtrans.
pose Kadd (x y : K) := EtoK _ (prod_curry +%R (pairK (repr x) (repr y))).
pose Kopp (x : K) := EtoK _ (- tagged (repr x)).
pose Kmul (x y : K) := EtoK _ (prod_curry *%R (pairK (repr x) (repr y))).
pose Kinv (x : K) := EtoK _ (tagged (repr x))^-1.
have EtoK_D i: {morph EtoK i : x y / x + y >-> Kadd x y}.
  move=> x y; apply: eqEtoK; set j := maxn (tag _) _; rewrite !rmorphD.
  by rewrite -!toEtrans ?le_max  // => lexm leym; rewrite !toErepr.
have EtoK_N i: {morph EtoK i : x / - x >-> Kopp x}.
  by move=> x; apply: eqEtoK; set j := tag _; rewrite !rmorphN toErepr.
have EtoK_M i: {morph EtoK i : x y / x * y >-> Kmul x y}.
  move=> x y; apply: eqEtoK; set j := maxn (tag _) _; rewrite !rmorphM.
  by rewrite -!toEtrans ?le_max  // => lexm leym; rewrite !toErepr.
have EtoK_V i: {morph EtoK i : x / x^-1 >-> Kinv x}.
  by move=> x; apply: eqEtoK; set j := tag _; rewrite !fmorphV toErepr.
case: {toErepr}I in (Kadd) (Kopp) (Kmul) (Kinv) EtoK_D EtoK_N EtoK_M EtoK_V.
pose inEi i z := {x : E i | z = EtoK i x}; have KtoE z: {i : nat & inEi i z}.
  by elim/quotW: z => [[i x] /=]; exists i, x; rewrite piEtoK.
have inEle i j z: i <= j -> inEi i z -> inEi j z.
  by move=> leij [x ->]; exists (toE i j leij x); rewrite toEtoK.
have KtoE2 z1 z2: {i : nat & inEi i z1 & inEi i z2}.
  have [[i1 Ez1] [i2 Ez2]] := (KtoE z1, KtoE z2).
  by exists (maxn i1 i2); [apply: inEle Ez1 | apply: inEle Ez2].
have KtoE3 z1 z2 z3: {i : nat & inEi i z1 & inEi i z2 * inEi i z3}%type.
  have [[i1 Ez1] [i2 Ez2 Ez3]] := (KtoE z1, KtoE2 z2 z3).
  by exists (maxn i1 i2); [apply: inEle Ez1 | split; apply: inEle (leMr _ _) _].
have KaddC: commutative Kadd.
  by move=> u v; have [i [x ->] [y ->]] := KtoE2 u v; rewrite -!EtoK_D addrC.
have KaddA: associative Kadd.
  move=> u v w; have [i [x ->] [[y ->] [z ->]]] := KtoE3 u v w.
  by rewrite -!EtoK_D addrA.
have Kadd0: left_id (FtoK 0) Kadd.
  by move=> u; have [i [x ->]] := KtoE u; rewrite -(EtoK_0 i) -EtoK_D add0r.
have KaddN: left_inverse (FtoK 0) Kopp Kadd.
  by move=> u; have [i [x ->]] := KtoE u; rewrite -EtoK_N -EtoK_D addNr EtoK_0.
pose Kzmod := ZmodType K (ZmodMixin KaddA KaddC Kadd0 KaddN).
have KmulC: commutative Kmul.
  by move=> u v; have [i [x ->] [y ->]] := KtoE2 u v; rewrite -!EtoK_M mulrC.
have KmulA: @associative Kzmod Kmul.
  move=> u v w; have [i [x ->] [[y ->] [z ->]]] := KtoE3 u v w.
  by rewrite -!EtoK_M mulrA.
have Kmul1: left_id (FtoK 1) Kmul.
  by move=> u; have [i [x ->]] := KtoE u; rewrite -(EtoK_1 i) -EtoK_M mul1r.
have KmulD: left_distributive Kmul Kadd.
  move=> u v w; have [i [x ->] [[y ->] [z ->]]] := KtoE3 u v w.
  by rewrite -!(EtoK_M, EtoK_D) mulrDl.
have Kone_nz: FtoK 1 != FtoK 0 by rewrite EtoKeq0 oner_neq0.
pose KringMixin := ComRingMixin KmulA KmulC Kmul1 KmulD Kone_nz.
pose Kring := ComRingType (RingType Kzmod KringMixin) KmulC.
have KmulV: @GRing.Field.axiom Kring Kinv.
  move=> u; have [i [x ->]] := KtoE u; rewrite EtoKeq0 => nz_x.
  by rewrite -EtoK_V -[_ * _]EtoK_M mulVf ?EtoK_1.
have Kinv0: Kinv (FtoK 0) = FtoK 0 by rewrite -EtoK_V invr0.
pose Kuring := [comUnitRingType of UnitRingType _ (FieldUnitMixin KmulV Kinv0)].
pose KfieldMixin := @FieldMixin _ _ KmulV Kinv0.
pose Kidomain := IdomainType Kuring (FieldIdomainMixin KfieldMixin).
pose Kfield := FieldType Kidomain KfieldMixin.
have EtoKrmorphism i: rmorphism (EtoK i : E i -> Kfield).
  by do 2?split=> [x y|]; rewrite ?EtoK_D ?EtoK_N ?EtoK_M ?EtoK_1.
pose EtoKM := RMorphism (EtoKrmorphism _); have EtoK_E: EtoK _ = EtoKM _ by [].
have toEtoKp := @eq_map_poly _ Kring _ _(toEtoK _ _ _).
have Kclosed: GRing.ClosedField.axiom Kfield.
  move=> n pK n_gt0; pose m0 := \max_(i < n) tag (KtoE (pK i)); pose m := m0.+1.
  have /fin_all_exists[pE DpE] (i : 'I_n): exists y, EtoK m y = pK i.
    pose u := KtoE (pK i); have leum0: tag u <= m0 by rewrite (bigmax_sup i).
    by have [y ->] := tagged u; exists (toE _ _ (leqW leum0) y); rewrite toEtoK.
  pose p := 'X^n - rVpoly (\row_i pE i); pose j := code [:: m0; pickle p].
  pose pj := tagged (E_ j) j; pose w : E j.+1 := ext1w (E j) pj.
  have lemj: m <= j by rewrite (allP (ltn_code _)) ?mem_head.
  exists (EtoKM j.+1 w); apply/eqP; rewrite -subr_eq0; apply/eqP.
  transitivity (EtoKM j.+1 (map_poly (toE m j.+1 (leqW lemj)) p).[w]).
    rewrite -horner_map -map_poly_comp toEtoKp EtoK_E; move/EtoKM: w => w.
    rewrite rmorphB [_ 'X^n]map_polyXn !hornerE hornerXn; congr (_ - _ : Kring).
    rewrite (@horner_coef_wide _ n) ?size_map_poly ?size_poly //.
    by apply: eq_bigr => i _; rewrite coef_map coef_rVpoly valK mxE /= DpE.
  suffices Dpj: map_poly (toE m j lemj) p = pj.
    apply/eqP; rewrite EtoKeq0 (eq_map_poly (toEleS _ _ _ _)) map_poly_comp Dpj.
    rewrite -rootE -[pj]minXpE ?ext1root // -Dpj size_map_poly.
    by rewrite size_addl ?size_polyXn ltnS ?size_opp ?size_poly.
  rewrite {w}/pj; elim: {-9}j lemj => // k IHk lemSk.
  move: lemSk (lemSk); rewrite {1}leq_eqVlt ltnS => /predU1P[<- | lemk] lemSk.
    rewrite {k IHk lemSk}(eq_map_poly (toEeq m _)) map_poly_id //= /incEp.
    by rewrite codeK eqxx pickleK.
  rewrite (eq_map_poly (toEleS _ _ _ _)) map_poly_comp {}IHk //= /incEp codeK.
  by rewrite -if_neg neq_ltn lemk.
suffices{Kclosed} algF_K: {FtoK : {rmorphism F -> Kfield} | integralRange FtoK}.
  pose Kdec := DecFieldType Kfield (closed_field_QEMixin Kclosed).
  pose KclosedField := ClosedFieldType Kdec Kclosed.
  by exists [countClosedFieldType of CountType KclosedField cntK].
exists (EtoKM 0%N) => /= z; have [i [{z}z ->]] := KtoE z.
suffices{z} /(_ z)[p mon_p]: integralRange (toE 0%N i isT).
  by rewrite -(fmorph_root (EtoKM i)) -map_poly_comp toEtoKp; exists p.
rewrite /toE /E; clear - minXp_gt1 ext1root ext1gen.
move: (i - 0)%N (subnK _) => n; case: i /.
elim: n => [|n IHn] /= z; first exact: integral_id.
have{z} [q ->] := ext1gen _ _ z; set pn := tagged (E_ _) _.
apply: integral_horner.
  by apply/integral_poly=> i; rewrite coef_map; apply: integral_rmorph.
apply: integral_root (ext1root _ _) _.
  by rewrite map_poly_eq0 -size_poly_gt0 ltnW.
by apply/integral_poly=> i; rewrite coef_map; apply: integral_rmorph.
Qed.