1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq.
From mathcomp
Require Import bigop ssralg poly polydiv.
(******************************************************************************)
(* A proof that algebraically closed field enjoy quantifier elimination, *)
(* as described in *)
(* ``A formal quantifier elimination for algebraically closed fields'', *)
(* proceedings of Calculemus 2010, by Cyril Cohen and Assia Mahboubi *)
(* *)
(* This file constructs an instance of quantifier elimination mixin, *)
(* (see the ssralg library) from the theory of polynomials with coefficients *)
(* is an algebraically closed field (see the polydiv library). *)
(* *)
(* This file hence deals with the transformation of formulae part, which we *)
(* address by implementing one CPS style formula transformer per effective *)
(* operation involved in the proof of quantifier elimination. See the paper *)
(* for more details. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.
Local Open Scope ring_scope.
Import Pdiv.Ring.
Import PreClosedField.
Section ClosedFieldQE.
Variable F : Field.type.
Variable axiom : ClosedField.axiom F.
Notation fF := (formula F).
Notation qf f := (qf_form f && rformula f).
Definition polyF := seq (term F).
Fixpoint eval_poly (e : seq F) pf :=
if pf is c::q then (eval_poly e q)*'X + (eval e c)%:P else 0.
Definition rpoly (p : polyF) := all (@rterm F) p.
Fixpoint sizeT (k : nat -> fF) (p : polyF) :=
if p is c::q then
sizeT (fun n =>
if n is m.+1 then k m.+2 else
GRing.If (c == 0) (k 0%N) (k 1%N)) q
else k O%N.
Lemma sizeTP (k : nat -> formula F) (pf : polyF) (e : seq F) :
qf_eval e (sizeT k pf) = qf_eval e (k (size (eval_poly e pf))).
Proof.
elim: pf e k; first by move=> *; rewrite size_poly0.
move=> c qf Pqf e k; rewrite Pqf.
rewrite size_MXaddC -(size_poly_eq0 (eval_poly _ _)).
by case: (size (eval_poly e qf))=> //=; case: eqP; rewrite // orbF.
Qed.
Lemma sizeT_qf (k : nat -> formula F) (p : polyF) :
(forall n, qf (k n)) -> rpoly p -> qf (sizeT k p).
Proof.
elim: p k => /= [|c q ihp] k kP rp; first exact: kP.
case/andP: rp=> rc rq.
apply: ihp; rewrite ?rq //; case=> [|n]; last exact: kP.
have [/andP[qf0 rf0] /andP[qf1 rf1]] := (kP 0, kP 1)%N.
by rewrite If_form_qf ?If_form_rf //= andbT.
Qed.
Definition isnull (k : bool -> fF) (p : polyF) :=
sizeT (fun n => k (n == 0%N)) p.
Lemma isnullP (k : bool -> formula F) (p : polyF) (e : seq F) :
qf_eval e (isnull k p) = qf_eval e (k (eval_poly e p == 0)).
Proof. by rewrite sizeTP size_poly_eq0. Qed.
Lemma isnull_qf (k : bool -> formula F) (p : polyF) :
(forall b, qf (k b)) -> rpoly p -> qf (isnull k p).
Proof. by move=> *; apply: sizeT_qf. Qed.
Definition lt_sizeT (k : bool -> fF) (p q : polyF) : fF :=
sizeT (fun n => sizeT (fun m => k (n<m)) q) p.
Definition lift (p : {poly F}) := let: q := p in map Const q.
Lemma eval_lift (e : seq F) (p : {poly F}) : eval_poly e (lift p) = p.
Proof.
elim/poly_ind: p => [|p c]; first by rewrite /lift polyseq0.
rewrite -cons_poly_def /lift polyseq_cons /nilp.
case pn0: (_ == _) => /=; last by move->; rewrite -cons_poly_def.
move=> _; rewrite polyseqC.
case c0: (_==_)=> /=.
move: pn0; rewrite (eqP c0) size_poly_eq0; move/eqP->.
by apply: val_inj=> /=; rewrite polyseq_cons // polyseq0.
by rewrite mul0r add0r; apply: val_inj=> /=; rewrite polyseq_cons // /nilp pn0.
Qed.
Fixpoint lead_coefT (k : term F -> fF) p :=
if p is c::q then
lead_coefT (fun l => GRing.If (l == 0) (k c) (k l)) q
else k (Const 0).
Lemma lead_coefTP (k : term F -> formula F) :
(forall x e, qf_eval e (k x) = qf_eval e (k (Const (eval e x)))) ->
forall (p : polyF) (e : seq F),
qf_eval e (lead_coefT k p) = qf_eval e (k (Const (lead_coef (eval_poly e p)))).
Proof.
move=> Pk p e; elim: p k Pk => /= [*|a p' Pp' k Pk]; first by rewrite lead_coef0.
rewrite Pp'; last by move=> *; rewrite //= -Pk.
rewrite GRing.eval_If /= lead_coef_eq0.
case p'0: (_ == _); first by rewrite (eqP p'0) mul0r add0r lead_coefC -Pk.
rewrite lead_coefDl ?lead_coefMX // polyseqC size_mul ?p'0 //; last first.
by rewrite -size_poly_eq0 size_polyX.
rewrite size_polyX addnC /=; case: (_ == _)=> //=.
by rewrite ltnS lt0n size_poly_eq0 p'0.
Qed.
Lemma lead_coefT_qf (k : term F -> formula F) (p : polyF) :
(forall c, rterm c -> qf (k c)) -> rpoly p -> qf (lead_coefT k p).
Proof.
elim: p k => /= [|c q ihp] k kP rp; first exact: kP.
move: rp; case/andP=> rc rq; apply: ihp; rewrite ?rq // => l rl.
have [/andP[qfc rfc] /andP[qfl rfl]] := (kP c rc, kP l rl).
by rewrite If_form_qf ?If_form_rf //= andbT.
Qed.
Fixpoint amulXnT (a : term F) (n : nat) : polyF :=
if n is n'.+1 then (Const 0) :: (amulXnT a n') else [::a].
Lemma eval_amulXnT (a : term F) (n : nat) (e : seq F) :
eval_poly e (amulXnT a n) = (eval e a)%:P * 'X^n.
Proof.
elim: n=> [|n] /=; first by rewrite expr0 mulr1 mul0r add0r.
by move->; rewrite addr0 -mulrA -exprSr.
Qed.
Lemma ramulXnT: forall a n, rterm a -> rpoly (amulXnT a n).
Proof. by move=> a n; elim: n a=> [a /= -> //|n ihn a ra]; apply: ihn. Qed.
Fixpoint sumpT (p q : polyF) :=
if p is a::p' then
if q is b::q' then (Add a b)::(sumpT p' q')
else p
else q.
Lemma eval_sumpT (p q : polyF) (e : seq F) :
eval_poly e (sumpT p q) = (eval_poly e p) + (eval_poly e q).
Proof.
elim: p q => [|a p Hp] q /=; first by rewrite add0r.
case: q => [|b q] /=; first by rewrite addr0.
rewrite Hp mulrDl -!addrA; congr (_ + _); rewrite polyC_add addrC -addrA.
by congr (_ + _); rewrite addrC.
Qed.
Lemma rsumpT (p q : polyF) : rpoly p -> rpoly q -> rpoly (sumpT p q).
Proof.
elim: p q=> [|a p ihp] q rp rq //; move: rp; case/andP=> ra rp.
case: q rq => [|b q]; rewrite /= ?ra ?rp //=.
by case/andP=> -> rq //=; apply: ihp.
Qed.
Fixpoint mulpT (p q : polyF) :=
if p is a :: p' then sumpT (map (Mul a) q) (Const 0::(mulpT p' q)) else [::].
Lemma eval_mulpT (p q : polyF) (e : seq F) :
eval_poly e (mulpT p q) = (eval_poly e p) * (eval_poly e q).
Proof.
elim: p q=> [|a p Hp] q /=; first by rewrite mul0r.
rewrite eval_sumpT /= Hp addr0 mulrDl addrC mulrAC; congr (_ + _).
elim: q=> [|b q Hq] /=; first by rewrite mulr0.
by rewrite Hq polyC_mul mulrDr mulrA.
Qed.
Lemma rpoly_map_mul (t : term F) (p : polyF) (rt : rterm t) :
rpoly (map (Mul t) p) = rpoly p.
Proof.
by rewrite /rpoly all_map /= (@eq_all _ _ (@rterm _)) // => x; rewrite /= rt.
Qed.
Lemma rmulpT (p q : polyF) : rpoly p -> rpoly q -> rpoly (mulpT p q).
Proof.
elim: p q=> [|a p ihp] q rp rq //=; move: rp; case/andP=> ra rp /=.
apply: rsumpT; last exact: ihp.
by rewrite rpoly_map_mul.
Qed.
Definition opppT := map (Mul (@Const F (-1))).
Lemma eval_opppT (p : polyF) (e : seq F) :
eval_poly e (opppT p) = - eval_poly e p.
Proof.
by elim: p; rewrite /= ?oppr0 // => ? ? ->; rewrite !mulNr opprD polyC_opp mul1r.
Qed.
Definition natmulpT n := map (Mul (@NatConst F n)).
Lemma eval_natmulpT (p : polyF) (n : nat) (e : seq F) :
eval_poly e (natmulpT n p) = (eval_poly e p) *+ n.
Proof.
elim: p; rewrite //= ?mul0rn // => c p ->.
rewrite mulrnDl mulr_natl polyC_muln; congr (_ + _).
by rewrite -mulr_natl mulrAC -mulrA mulr_natl mulrC.
Qed.
Fixpoint redivp_rec_loopT (q : polyF) sq cq (k : nat * polyF * polyF -> fF)
(c : nat) (qq r : polyF) (n : nat) {struct n}:=
sizeT (fun sr =>
if sr < sq then k (c, qq, r) else
lead_coefT (fun lr =>
let m := amulXnT lr (sr - sq) in
let qq1 := sumpT (mulpT qq [::cq]) m in
let r1 := sumpT (mulpT r ([::cq])) (opppT (mulpT m q)) in
if n is n1.+1 then redivp_rec_loopT q sq cq k c.+1 qq1 r1 n1
else k (c.+1, qq1, r1)
) r
) r.
Fixpoint redivp_rec_loop (q : {poly F}) sq cq
(k : nat) (qq r : {poly F})(n : nat) {struct n} :=
if size r < sq then (k, qq, r) else
let m := (lead_coef r) *: 'X^(size r - sq) in
let qq1 := qq * cq%:P + m in
let r1 := r * cq%:P - m * q in
if n is n1.+1 then redivp_rec_loop q sq cq k.+1 qq1 r1 n1 else
(k.+1, qq1, r1).
Lemma redivp_rec_loopTP (k : nat * polyF * polyF -> formula F) :
(forall c qq r e, qf_eval e (k (c,qq,r))
= qf_eval e (k (c, lift (eval_poly e qq), lift (eval_poly e r))))
-> forall q sq cq c qq r n e
(d := redivp_rec_loop (eval_poly e q) sq (eval e cq)
c (eval_poly e qq) (eval_poly e r) n),
qf_eval e (redivp_rec_loopT q sq cq k c qq r n)
= qf_eval e (k (d.1.1, lift d.1.2, lift d.2)).
Proof.
move=> Pk q sq cq c qq r n e /=.
elim: n c qq r k Pk e => [|n Pn] c qq r k Pk e; rewrite sizeTP.
case ltrq : (_ < _); first by rewrite /= ltrq /= -Pk.
rewrite lead_coefTP => [|a p]; rewrite Pk.
rewrite ?(eval_mulpT,eval_amulXnT,eval_sumpT,eval_opppT) //=.
by rewrite ltrq //= mul_polyC ?(mul0r,add0r).
by symmetry; rewrite Pk ?(eval_mulpT,eval_amulXnT,eval_sumpT, eval_opppT).
case ltrq : (_<_); first by rewrite /= ltrq Pk.
rewrite lead_coefTP.
rewrite Pn ?(eval_mulpT,eval_amulXnT,eval_sumpT,eval_opppT) //=.
by rewrite ltrq //= mul_polyC ?(mul0r,add0r).
rewrite -/redivp_rec_loopT => x e'.
rewrite Pn; last by move=> *; rewrite Pk.
symmetry; rewrite Pn; last by move=> *; rewrite Pk.
rewrite Pk ?(eval_lift,eval_mulpT,eval_amulXnT,eval_sumpT,eval_opppT).
by rewrite mul_polyC ?(mul0r,add0r).
Qed.
Lemma redivp_rec_loopT_qf (q : polyF) (sq : nat) (cq : term F)
(k : nat * polyF * polyF -> formula F) (c : nat) (qq r : polyF) (n : nat) :
(forall r, [&& rpoly r.1.2 & rpoly r.2] -> qf (k r)) ->
rpoly q -> rterm cq -> rpoly qq -> rpoly r ->
qf (redivp_rec_loopT q sq cq k c qq r n).
Proof.
elim: n q sq cq k c qq r => [|n ihn] q sq cq k c qq r kP rq rcq rqq rr.
apply: sizeT_qf=> // n; case: (_ < _); first by apply: kP; rewrite // rqq rr.
apply: lead_coefT_qf=> // l rl; apply: kP.
by rewrite /= ?(rsumpT,rmulpT,ramulXnT,rpoly_map_mul) //= rcq.
apply: sizeT_qf=> // m; case: (_ < _); first by apply: kP => //=; rewrite rqq rr.
apply: lead_coefT_qf=> // l rl; apply: ihn; rewrite //= ?rcq //.
by rewrite ?(rsumpT,rmulpT,ramulXnT,rpoly_map_mul) //= rcq.
by rewrite ?(rsumpT,rmulpT,ramulXnT,rpoly_map_mul) //= rcq.
Qed.
Definition redivpT (p : polyF) (k : nat * polyF * polyF -> fF)
(q : polyF) : fF :=
isnull (fun b =>
if b then k (0%N, [::Const 0], p) else
sizeT (fun sq =>
sizeT (fun sp =>
lead_coefT (fun lq =>
redivp_rec_loopT q sq lq k 0 [::Const 0] p sp
) q
) p
) q
) q.
Lemma redivp_rec_loopP (q : {poly F}) (c : nat) (qq r : {poly F}) (n : nat) :
redivp_rec q c qq r n = redivp_rec_loop q (size q) (lead_coef q) c qq r n.
Proof. by elim: n c qq r => [| n Pn] c qq r //=; rewrite Pn. Qed.
Lemma redivpTP (k : nat * polyF * polyF -> formula F) :
(forall c qq r e,
qf_eval e (k (c,qq,r)) =
qf_eval e (k (c, lift (eval_poly e qq), lift (eval_poly e r)))) ->
forall p q e (d := redivp (eval_poly e p) (eval_poly e q)),
qf_eval e (redivpT p k q) = qf_eval e (k (d.1.1, lift d.1.2, lift d.2)).
Proof.
move=> Pk p q e /=; rewrite isnullP unlock.
case q0 : (_ == _); first by rewrite Pk /= mul0r add0r polyC0.
rewrite !sizeTP lead_coefTP /=; last by move=> *; rewrite !redivp_rec_loopTP.
rewrite redivp_rec_loopTP /=; last by move=> *; rewrite Pk.
by rewrite mul0r add0r polyC0 redivp_rec_loopP.
Qed.
Lemma redivpT_qf (p : polyF) (k : nat * polyF * polyF -> formula F) (q : polyF) :
(forall r, [&& rpoly r.1.2 & rpoly r.2] -> qf (k r)) ->
rpoly p -> rpoly q -> qf (redivpT p k q).
Proof.
move=> kP rp rq; rewrite /redivpT; apply: isnull_qf=> // [[]]; first exact: kP.
apply: sizeT_qf => // sq; apply: sizeT_qf=> // sp.
by apply: lead_coefT_qf=> // lq rlq; apply: redivp_rec_loopT_qf.
Qed.
Definition rmodpT (p : polyF) (k : polyF -> fF) (q : polyF) : fF :=
redivpT p (fun d => k d.2) q.
Definition rdivpT (p : polyF) (k:polyF -> fF) (q : polyF) : fF :=
redivpT p (fun d => k d.1.2) q.
Definition rscalpT (p : polyF) (k: nat -> fF) (q : polyF) : fF :=
redivpT p (fun d => k d.1.1) q.
Definition rdvdpT (p : polyF) (k:bool -> fF) (q : polyF) : fF :=
rmodpT p (isnull k) q.
Fixpoint rgcdp_loop n (pp qq : {poly F}) {struct n} :=
if rmodp pp qq == 0 then qq
else if n is n1.+1 then rgcdp_loop n1 qq (rmodp pp qq)
else rmodp pp qq.
Fixpoint rgcdp_loopT (pp : polyF) (k : polyF -> formula F) n (qq : polyF) :=
rmodpT pp (isnull
(fun b => if b then (k qq)
else (if n is n1.+1
then rmodpT pp (rgcdp_loopT qq k n1) qq
else rmodpT pp k qq)
)
) qq.
Lemma rgcdp_loopP (k : polyF -> formula F) :
(forall p e, qf_eval e (k p) = qf_eval e (k (lift (eval_poly e p)))) ->
forall n p q e,
qf_eval e (rgcdp_loopT p k n q) =
qf_eval e (k (lift (rgcdp_loop n (eval_poly e p) (eval_poly e q)))).
Proof.
move=> Pk n p q e.
elim: n p q e => /= [| m Pm] p q e.
rewrite redivpTP; last by move=> *; rewrite !isnullP eval_lift.
rewrite isnullP eval_lift; case: (_ == 0); first by rewrite Pk.
by rewrite redivpTP; last by move=> *; rewrite Pk.
rewrite redivpTP; last by move=> *; rewrite !isnullP eval_lift.
rewrite isnullP eval_lift; case: (_ == 0); first by rewrite Pk.
by rewrite redivpTP => *; rewrite ?Pm !eval_lift.
Qed.
Lemma rgcdp_loopT_qf (p : polyF) (k : polyF -> formula F) (q : polyF) (n : nat) :
(forall r, rpoly r -> qf (k r)) ->
rpoly p -> rpoly q -> qf (rgcdp_loopT p k n q).
elim: n p k q => [|n ihn] p k q kP rp rq.
apply: redivpT_qf=> // r; case/andP=> _ rr.
apply: isnull_qf=> // [[]]; first exact: kP.
by apply: redivpT_qf=> // r'; case/andP=> _ rr'; apply: kP.
apply: redivpT_qf=> // r; case/andP=> _ rr.
apply: isnull_qf=> // [[]]; first exact: kP.
by apply: redivpT_qf=> // r'; case/andP=> _ rr'; apply: ihn.
Qed.
Definition rgcdpT (p : polyF) k (q : polyF) : fF :=
let aux p1 k q1 := isnull
(fun b => if b
then (k q1)
else (sizeT (fun n => (rgcdp_loopT p1 k n q1)) p1)) p1
in (lt_sizeT (fun b => if b then (aux q k p) else (aux p k q)) p q).
Lemma rgcdpTP (k : seq (term F) -> formula F) :
(forall p e, qf_eval e (k p) = qf_eval e (k (lift (eval_poly e p)))) ->
forall p q e, qf_eval e (rgcdpT p k q) =
qf_eval e (k (lift (rgcdp (eval_poly e p) (eval_poly e q)))).
Proof.
move=> Pk p q e; rewrite /rgcdpT !sizeTP; case lqp: (_ < _).
rewrite isnullP; case q0: (_ == _); first by rewrite Pk (eqP q0) rgcdp0.
rewrite sizeTP rgcdp_loopP => [|e' p']; last by rewrite Pk.
by rewrite /rgcdp lqp q0.
rewrite isnullP; case p0: (_ == _); first by rewrite Pk (eqP p0) rgcd0p.
rewrite sizeTP rgcdp_loopP => [|e' p']; last by rewrite Pk.
by rewrite /rgcdp lqp p0.
Qed.
Lemma rgcdpT_qf (p : polyF) (k : polyF -> formula F) (q : polyF) :
(forall r, rpoly r -> qf (k r)) -> rpoly p -> rpoly q -> qf (rgcdpT p k q).
Proof.
move=> kP rp rq; apply: sizeT_qf=> // n; apply: sizeT_qf=> // m.
by case: (_ < _);
apply: isnull_qf=> //; case; do ?apply: kP=> //;
apply: sizeT_qf=> // n'; apply: rgcdp_loopT_qf.
Qed.
Fixpoint rgcdpTs k (ps : seq polyF) : fF :=
if ps is p::pr then rgcdpTs (rgcdpT p k) pr else k [::Const 0].
Lemma rgcdpTsP (k : polyF -> formula F) :
(forall p e, qf_eval e (k p) = qf_eval e (k (lift (eval_poly e p)))) ->
forall ps e,
qf_eval e (rgcdpTs k ps) =
qf_eval e (k (lift (\big[@rgcdp _/0%:P]_(i <- ps)(eval_poly e i)))).
Proof.
move=> Pk ps e.
elim: ps k Pk; first by move=> p Pk; rewrite /= big_nil Pk /= mul0r add0r.
move=> p ps Pps /= k Pk /=; rewrite big_cons Pps => [|p' e'].
by rewrite rgcdpTP // eval_lift.
by rewrite !rgcdpTP // Pk !eval_lift .
Qed.
Definition rseq_poly ps := all rpoly ps.
Lemma rgcdpTs_qf (k : polyF -> formula F) (ps : seq polyF) :
(forall r, rpoly r -> qf (k r)) -> rseq_poly ps -> qf (rgcdpTs k ps).
Proof.
elim: ps k=> [|c p ihp] k kP rps=> /=; first exact: kP.
by move: rps; case/andP=> rc rp; apply: ihp=> // r rr; apply: rgcdpT_qf.
Qed.
Fixpoint rgdcop_recT (q : polyF) k (p : polyF) n :=
if n is m.+1 then
rgcdpT p (sizeT (fun sd =>
if sd == 1%N then k p
else rgcdpT p (rdivpT p (fun r => rgdcop_recT q k r m)) q
)) q
else isnull (fun b => k [::Const b%:R]) q.
Lemma rgdcop_recTP (k : polyF -> formula F) :
(forall p e, qf_eval e (k p) = qf_eval e (k (lift (eval_poly e p))))
-> forall p q n e, qf_eval e (rgdcop_recT p k q n)
= qf_eval e (k (lift (rgdcop_rec (eval_poly e p) (eval_poly e q) n))).
Proof.
move=> Pk p q n e.
elim: n k Pk p q e => [|n Pn] k Pk p q e /=.
rewrite isnullP /=.
by case: (_ == _); rewrite Pk /= mul0r add0r ?(polyC0, polyC1).
rewrite rgcdpTP ?sizeTP ?eval_lift //.
rewrite /rcoprimep; case se : (_==_); rewrite Pk //.
do ?[rewrite (rgcdpTP,Pn,eval_lift,redivpTP) | move=> * //=].
by do ?[rewrite (sizeTP,eval_lift) | move=> * //=].
Qed.
Lemma rgdcop_recT_qf (p : polyF) (k : polyF -> formula F) (q : polyF) (n : nat) :
(forall r, rpoly r -> qf (k r)) ->
rpoly p -> rpoly q -> qf (rgdcop_recT p k q n).
Proof.
elim: n p k q => [|n ihn] p k q kP rp rq /=.
apply: isnull_qf=> //; first by case; rewrite kP.
apply: rgcdpT_qf=> // g rg; apply: sizeT_qf=> // n'.
case: (_ == _); first exact: kP.
apply: rgcdpT_qf=> // g' rg'; apply: redivpT_qf=> // r; case/andP=> rr _.
exact: ihn.
Qed.
Definition rgdcopT q k p := sizeT (rgdcop_recT q k p) p.
Lemma rgdcopTP (k : polyF -> formula F) :
(forall p e, qf_eval e (k p) = qf_eval e (k (lift (eval_poly e p)))) ->
forall p q e, qf_eval e (rgdcopT p k q) =
qf_eval e (k (lift (rgdcop (eval_poly e p) (eval_poly e q)))).
Proof. by move=> *; rewrite sizeTP rgdcop_recTP 1?Pk. Qed.
Lemma rgdcopT_qf (p : polyF) (k : polyF -> formula F) (q : polyF) :
(forall r, rpoly r -> qf (k r)) -> rpoly p -> rpoly q -> qf (rgdcopT p k q).
Proof.
by move=> kP rp rq; apply: sizeT_qf => // n; apply: rgdcop_recT_qf.
Qed.
Definition ex_elim_seq (ps : seq polyF) (q : polyF) :=
(rgcdpTs (rgdcopT q (sizeT (fun n => Bool (n != 1%N)))) ps).
Lemma ex_elim_seqP (ps : seq polyF) (q : polyF) (e : seq F) :
let gp := (\big[@rgcdp _/0%:P]_(p <- ps)(eval_poly e p)) in
qf_eval e (ex_elim_seq ps q) = (size (rgdcop (eval_poly e q) gp) != 1%N).
Proof.
by do ![rewrite (rgcdpTsP,rgdcopTP,sizeTP,eval_lift) //= | move=> * //=].
Qed.
Lemma ex_elim_seq_qf (ps : seq polyF) (q : polyF) :
rseq_poly ps -> rpoly q -> qf (ex_elim_seq ps q).
Proof.
move=> rps rq; apply: rgcdpTs_qf=> // g rg; apply: rgdcopT_qf=> // d rd.
exact : sizeT_qf.
Qed.
Fixpoint abstrX (i : nat) (t : term F) :=
match t with
| (Var n) => if n == i then [::Const 0; Const 1] else [::t]
| (Opp x) => opppT (abstrX i x)
| (Add x y) => sumpT (abstrX i x) (abstrX i y)
| (Mul x y) => mulpT (abstrX i x) (abstrX i y)
| (NatMul x n) => natmulpT n (abstrX i x)
| (Exp x n) => let ax := (abstrX i x) in
iter n (mulpT ax) [::Const 1]
| _ => [::t]
end.
Lemma abstrXP (i : nat) (t : term F) (e : seq F) (x : F) :
rterm t -> (eval_poly e (abstrX i t)).[x] = eval (set_nth 0 e i x) t.
Proof.
elim: t => [n | r | n | t tP s sP | t tP | t tP n | t tP s sP | t tP | t tP n] h.
- move=> /=; case ni: (_ == _);
rewrite //= ?(mul0r,add0r,addr0,polyC1,mul1r,hornerX,hornerC);
by rewrite // nth_set_nth /= ni.
- by rewrite /= mul0r add0r hornerC.
- by rewrite /= mul0r add0r hornerC.
- by case/andP: h => *; rewrite /= eval_sumpT hornerD tP ?sP.
- by rewrite /= eval_opppT hornerN tP.
- by rewrite /= eval_natmulpT hornerMn tP.
- by case/andP: h => *; rewrite /= eval_mulpT hornerM tP ?sP.
- by [].
- elim: n h => [|n ihn] rt; first by rewrite /= expr0 mul0r add0r hornerC.
by rewrite /= eval_mulpT exprSr hornerM ihn // mulrC tP.
Qed.
Lemma rabstrX (i : nat) (t : term F) : rterm t -> rpoly (abstrX i t).
Proof.
elim: t; do ?[ by move=> * //=; do ?case: (_ == _)].
- move=> t irt s irs /=; case/andP=> rt rs.
by apply: rsumpT; rewrite ?irt ?irs //.
- by move=> t irt /= rt; rewrite rpoly_map_mul ?irt //.
- by move=> t irt /= n rt; rewrite rpoly_map_mul ?irt //.
- move=> t irt s irs /=; case/andP=> rt rs.
by apply: rmulpT; rewrite ?irt ?irs //.
- move=> t irt /= n rt; move: (irt rt)=> {rt} rt; elim: n => [|n ihn] //=.
exact: rmulpT.
Qed.
Implicit Types tx ty : term F.
Lemma abstrX_mulM (i : nat) : {morph abstrX i : x y / Mul x y >-> mulpT x y}.
Proof. done. Qed.
Lemma abstrX1 (i : nat) : abstrX i (Const 1) = [::Const 1].
Proof. done. Qed.
Lemma eval_poly_mulM e : {morph eval_poly e : x y / mulpT x y >-> mul x y}.
Proof. by move=> x y; rewrite eval_mulpT. Qed.
Lemma eval_poly1 e : eval_poly e [::Const 1] = 1.
Proof. by rewrite /= mul0r add0r. Qed.
Notation abstrX_bigmul := (big_morph _ (abstrX_mulM _) (abstrX1 _)).
Notation eval_bigmul := (big_morph _ (eval_poly_mulM _) (eval_poly1 _)).
Notation bigmap_id := (big_map _ (fun _ => true) id).
Lemma rseq_poly_map (x : nat) (ts : seq (term F)) :
all (@rterm _) ts -> rseq_poly (map (abstrX x) ts).
Proof.
by elim: ts => //= t ts iht; case/andP=> rt rts; rewrite rabstrX // iht.
Qed.
Definition ex_elim (x : nat) (pqs : seq (term F) * seq (term F)) :=
ex_elim_seq (map (abstrX x) pqs.1)
(abstrX x (\big[Mul/Const 1]_(q <- pqs.2) q)).
Lemma ex_elim_qf (x : nat) (pqs : seq (term F) * seq (term F)) :
dnf_rterm pqs -> qf (ex_elim x pqs).
case: pqs => ps qs; case/andP=> /= rps rqs.
apply: ex_elim_seq_qf; first exact: rseq_poly_map.
apply: rabstrX=> /=.
elim: qs rqs=> [|t ts iht] //=; first by rewrite big_nil.
by case/andP=> rt rts; rewrite big_cons /= rt /= iht.
Qed.
Lemma holds_conj : forall e i x ps, all (@rterm _) ps ->
(holds (set_nth 0 e i x) (foldr (fun t : term F => And (t == 0)) True ps)
<-> all ((@root _)^~ x) (map (eval_poly e \o abstrX i) ps)).
Proof.
move=> e i x; elim=> [|p ps ihps] //=.
case/andP=> rp rps; rewrite rootE abstrXP //.
constructor; first by case=> -> hps; rewrite eqxx /=; apply/ihps.
by case/andP; move/eqP=> -> psr; split=> //; apply/ihps.
Qed.
Lemma holds_conjn (e : seq F) (i : nat) (x : F) (ps : seq (term F)) :
all (@rterm _) ps ->
(holds (set_nth 0 e i x) (foldr (fun t : term F => And (t != 0)) True ps) <->
all (fun p => ~~root p x) (map (eval_poly e \o abstrX i) ps)).
Proof.
elim: ps => [|p ps ihps] //=.
case/andP=> rp rps; rewrite rootE abstrXP //.
constructor; first by case=> /eqP-> hps /=; apply/ihps.
by case/andP=> pr psr; split; first apply/eqP=> //; apply/ihps.
Qed.
Lemma holds_ex_elim: GRing.valid_QE_proj ex_elim.
Proof.
move=> i [ps qs] /= e; case/andP=> /= rps rqs.
rewrite ex_elim_seqP big_map.
have -> : \big[@rgcdp _/0%:P]_(j <- ps) eval_poly e (abstrX i j) =
\big[@rgcdp _/0%:P]_(j <- (map (eval_poly e) (map (abstrX i) (ps)))) j.
by rewrite !big_map.
rewrite -!map_comp.
have aux I (l : seq I) (P : I -> {poly F}) :
\big[(@gcdp F)/0]_(j <- l) P j %= \big[(@rgcdp F)/0]_(j <- l) P j.
elim: l => [| u l ihl] /=; first by rewrite !big_nil eqpxx.
rewrite !big_cons; move: ihl; move/(eqp_gcdr (P u)) => h.
by apply: eqp_trans h _; rewrite eqp_sym; apply: eqp_rgcd_gcd.
case g0: (\big[(@rgcdp F)/0%:P]_(j <- map (eval_poly e \o abstrX i) ps) j == 0).
rewrite (eqP g0) rgdcop0.
case m0 : (_ == 0)=> //=; rewrite ?(size_poly1,size_poly0) //=.
rewrite abstrX_bigmul eval_bigmul -bigmap_id in m0.
constructor=> [[x] // []] //.
case=> _; move/holds_conjn=> hc; move/hc:rqs.
by rewrite -root_bigmul //= (eqP m0) root0.
constructor; move/negP:m0; move/negP=>m0.
case: (closed_nonrootP axiom _ m0) => x {m0}.
rewrite abstrX_bigmul eval_bigmul -bigmap_id root_bigmul=> m0.
exists x; do 2?constructor=> //; last by apply/holds_conjn.
apply/holds_conj; rewrite //= -root_biggcd.
by rewrite (eqp_root (aux _ _ _ )) (eqP g0) root0.
apply: (iffP (closed_rootP axiom _)); case=> x Px; exists x; move: Px => //=.
rewrite (eqp_root (eqp_rgdco_gdco _ _)) root_gdco ?g0 //.
rewrite -(eqp_root (aux _ _ _ )) root_biggcd abstrX_bigmul eval_bigmul.
rewrite -bigmap_id root_bigmul; case/andP=> psr qsr.
do 2?constructor; first by apply/holds_conj.
by apply/holds_conjn.
rewrite (eqp_root (eqp_rgdco_gdco _ _)) root_gdco ?g0 // -(eqp_root (aux _ _ _)).
rewrite root_biggcd abstrX_bigmul eval_bigmul -bigmap_id.
rewrite root_bigmul=> [[] // [hps hqs]]; apply/andP.
constructor; first by apply/holds_conj.
by apply/holds_conjn.
Qed.
Lemma wf_ex_elim : GRing.wf_QE_proj ex_elim.
Proof. by move=> i bc /= rbc; apply: ex_elim_qf. Qed.
Definition closed_fields_QEMixin :=
QEdecFieldMixin wf_ex_elim holds_ex_elim.
End ClosedFieldQE.
|