aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/character/inertia.v
blob: e7f80dc70305d4fa4c9d786f6f3ddfb7547d5a23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path.
From mathcomp Require Import choice fintype div tuple finfun bigop prime order.
From mathcomp Require Import ssralg ssrnum finset fingroup morphism perm.
From mathcomp Require Import automorphism quotient action zmodp cyclic center.
From mathcomp Require Import gproduct commutator gseries nilpotent pgroup.
From mathcomp Require Import sylow maximal frobenius matrix mxalgebra.
From mathcomp Require Import mxrepresentation vector algC classfun character.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import Order.TTheory GroupScope GRing.Theory Num.Theory.
Local Open Scope ring_scope.

(******************************************************************************)
(* This file contains the definitions and properties of inertia groups:       *)
(*   (phi ^ y)%CF == the y-conjugate of phi : 'CF(G), i.e., the class         *)
(*                   function mapping x ^ y to phi x provided y normalises G. *)
(*                   We take (phi ^ y)%CF = phi when y \notin 'N(G).          *)
(*  (phi ^: G)%CF == the sequence of all distinct conjugates of phi : 'CF(H)  *)
(*                   by all y in G.                                           *)
(*        'I[phi] == the inertia group of phi : CF(H), i.e., the set of y     *)
(*                   such that (phi ^ y)%CF = phi AND H :^ y = y.             *)
(*      'I_G[phi] == the inertia group of phi in G, i.e., G :&: 'I[phi].      *)
(* conjg_Iirr i y == the index j : Iirr G such that ('chi_i ^ y)%CF = 'chi_j. *)
(* cfclass_Iirr G i == the image of G under conjg_Iirr i, i.e., the set of j  *)
(*                   such that 'chi_j \in ('chi_i ^: G)%CF.                   *)
(*   mul_Iirr i j == the index k such that 'chi_j * 'chi_i = 'chi[G]_k,       *)
(*                   or 0 if 'chi_j * 'chi_i is reducible.                    *)
(* mul_mod_Iirr i j := mul_Iirr i (mod_Iirr j), for j : Iirr (G / H).         *)
(******************************************************************************)

Reserved Notation "''I[' phi ]"
  (at level 8, format "''I[' phi ]").
Reserved Notation "''I_' G [ phi ]"
  (at level 8, G at level 2, format "''I_' G [ phi ]").

Section ConjDef.

Variables (gT : finGroupType) (B : {set gT}) (y : gT) (phi : 'CF(B)).
Local Notation G := <<B>>.

Fact cfConjg_subproof :
  is_class_fun G [ffun x => phi (if y \in 'N(G) then x ^ y^-1 else x)].
Proof.
apply: intro_class_fun => [x z _ Gz | x notGx].
  have [nGy | _] := ifP; last by rewrite cfunJgen.
  by rewrite -conjgM conjgC conjgM cfunJgen // memJ_norm ?groupV.
by rewrite cfun0gen //; case: ifP => // nGy; rewrite memJ_norm ?groupV.
Qed.
Definition cfConjg := Cfun 1 cfConjg_subproof.

End ConjDef.

Prenex Implicits cfConjg.
Notation "f ^ y" := (cfConjg y f) : cfun_scope.

Section Conj.

Variables (gT : finGroupType) (G : {group gT}).
Implicit Type phi : 'CF(G).

Lemma cfConjgE phi y x : y \in 'N(G) -> (phi ^ y)%CF x = phi (x ^ y^-1)%g.
Proof. by rewrite cfunElock genGid => ->. Qed.

Lemma cfConjgEJ phi y x : y \in 'N(G) -> (phi ^ y)%CF (x ^ y) = phi x.
Proof. by move/cfConjgE->; rewrite conjgK. Qed.

Lemma cfConjgEout phi y : y \notin 'N(G) -> (phi ^ y = phi)%CF.
Proof.
by move/negbTE=> notNy; apply/cfunP=> x; rewrite !cfunElock genGid notNy.
Qed.

Lemma cfConjgEin phi y (nGy : y \in 'N(G)) :
  (phi ^ y)%CF = cfIsom (norm_conj_isom nGy) phi.
Proof.
apply/cfun_inP=> x Gx.
by rewrite cfConjgE // -{2}[x](conjgKV y) cfIsomE ?memJ_norm ?groupV.
Qed.

Lemma cfConjgMnorm phi :
  {in 'N(G) &, forall y z, phi ^ (y * z) = (phi ^ y) ^ z}%CF.
Proof.
move=> y z nGy nGz.
by apply/cfunP=> x; rewrite !cfConjgE ?groupM // invMg conjgM.
Qed.

Lemma cfConjg_id phi y : y \in G -> (phi ^ y)%CF = phi.
Proof.
move=> Gy; apply/cfunP=> x; have nGy := subsetP (normG G) y Gy.
by rewrite -(cfunJ _ _ Gy) cfConjgEJ.
Qed.

(* Isaacs' 6.1.b *)
Lemma cfConjgM L phi :
  G <| L -> {in L &, forall y z, phi ^ (y * z) = (phi ^ y) ^ z}%CF.
Proof. by case/andP=> _ /subsetP nGL; apply: sub_in2 (cfConjgMnorm phi). Qed.

Lemma cfConjgJ1 phi : (phi ^ 1)%CF = phi.
Proof. by apply/cfunP=> x; rewrite cfConjgE ?group1 // invg1 conjg1. Qed.

Lemma cfConjgK y : cancel (cfConjg y) (cfConjg y^-1 : 'CF(G) -> 'CF(G)).
Proof.
move=> phi; apply/cfunP=> x; rewrite !cfunElock groupV /=.
by case: ifP => -> //; rewrite conjgKV.
Qed.

Lemma cfConjgKV y : cancel (cfConjg y^-1) (cfConjg y : 'CF(G) -> 'CF(G)).
Proof. by move=> phi /=; rewrite -{1}[y]invgK cfConjgK. Qed.

Lemma cfConjg1 phi y : (phi ^ y)%CF 1%g = phi 1%g.
Proof. by rewrite cfunElock conj1g if_same. Qed.

Fact cfConjg_is_linear y : linear (cfConjg y : 'CF(G) -> 'CF(G)).
Proof. by move=> a phi psi; apply/cfunP=> x; rewrite !cfunElock. Qed.
Canonical cfConjg_additive y := Additive (cfConjg_is_linear y).
Canonical cfConjg_linear y := AddLinear (cfConjg_is_linear y).

Lemma cfConjg_cfuniJ A y : y \in 'N(G) -> ('1_A ^ y)%CF = '1_(A :^ y) :> 'CF(G).
Proof.
move=> nGy; apply/cfunP=> x; rewrite !cfunElock genGid nGy -sub_conjgV.
by rewrite -class_lcoset -class_rcoset norm_rlcoset ?memJ_norm ?groupV.
Qed.

Lemma cfConjg_cfuni A y : y \in 'N(A) -> ('1_A ^ y)%CF = '1_A :> 'CF(G).
Proof.
by have [/cfConjg_cfuniJ-> /normP-> | /cfConjgEout] := boolP (y \in 'N(G)).
Qed.

Lemma cfConjg_cfun1 y : (1 ^ y)%CF = 1 :> 'CF(G).
Proof.
by rewrite -cfuniG; have [/cfConjg_cfuni|/cfConjgEout] := boolP (y \in 'N(G)).
Qed.

Fact cfConjg_is_multiplicative y : multiplicative (cfConjg y : _ -> 'CF(G)).
Proof.
split=> [phi psi|]; last exact: cfConjg_cfun1.
by apply/cfunP=> x; rewrite !cfunElock.
Qed.
Canonical cfConjg_rmorphism y := AddRMorphism (cfConjg_is_multiplicative y).
Canonical cfConjg_lrmorphism y := [lrmorphism of cfConjg y].

Lemma cfConjg_eq1 phi y : ((phi ^ y)%CF == 1) = (phi == 1).
Proof. by apply: rmorph_eq1; apply: can_inj (cfConjgK y). Qed.

Lemma cfAutConjg phi u y : cfAut u (phi ^ y) = (cfAut u phi ^ y)%CF.
Proof. by apply/cfunP=> x; rewrite !cfunElock. Qed.

Lemma conj_cfConjg phi y : (phi ^ y)^*%CF = (phi^* ^ y)%CF.
Proof. exact: cfAutConjg. Qed.

Lemma cfker_conjg phi y : y \in 'N(G) -> cfker (phi ^ y) = cfker phi :^ y.
Proof.
move=> nGy; rewrite cfConjgEin // cfker_isom.
by rewrite morphim_conj (setIidPr (cfker_sub _)).
Qed.

Lemma cfDetConjg phi y : cfDet (phi ^ y) = (cfDet phi ^ y)%CF.
Proof.
have [nGy | not_nGy] := boolP (y \in 'N(G)); last by rewrite !cfConjgEout.
by rewrite !cfConjgEin cfDetIsom.
Qed.

End Conj.

Section Inertia.

Variable gT : finGroupType.

Definition inertia (B : {set gT}) (phi : 'CF(B)) :=  
  [set y in 'N(B) | (phi ^ y)%CF == phi].

Local Notation "''I[' phi ]" := (inertia phi) : group_scope.
Local Notation "''I_' G [ phi ]" := (G%g :&: 'I[phi]) : group_scope.

Fact group_set_inertia (H : {group gT}) phi : group_set 'I[phi : 'CF(H)].
Proof.
apply/group_setP; split; first by rewrite inE group1 /= cfConjgJ1.
move=> y z /setIdP[nHy /eqP n_phi_y] /setIdP[nHz n_phi_z].
by rewrite inE groupM //= cfConjgMnorm ?n_phi_y.
Qed.
Canonical inertia_group H phi := Group (@group_set_inertia H phi).

Local Notation "''I[' phi ]" := (inertia_group phi) : Group_scope.
Local Notation "''I_' G [ phi ]" := (G :&: 'I[phi])%G : Group_scope.

Variables G H : {group gT}.
Implicit Type phi : 'CF(H).

Lemma inertiaJ phi y : y \in 'I[phi] -> (phi ^ y)%CF = phi.
Proof. by case/setIdP=> _ /eqP->. Qed.

Lemma inertia_valJ phi x y : y \in 'I[phi] -> phi (x ^ y)%g = phi x.
Proof. by case/setIdP=> nHy /eqP {1}<-; rewrite cfConjgEJ. Qed.

(* To disambiguate basic inclucion lemma names we capitalize Inertia for      *)
(* lemmas concerning the localized inertia group 'I_G[phi].                   *)
Lemma Inertia_sub phi : 'I_G[phi] \subset G.
Proof. exact: subsetIl. Qed.

Lemma norm_inertia phi : 'I[phi] \subset 'N(H).
Proof. by rewrite ['I[_]]setIdE subsetIl. Qed.

Lemma sub_inertia phi : H \subset 'I[phi].
Proof.
by apply/subsetP=> y Hy; rewrite inE cfConjg_id ?(subsetP (normG H)) /=.
Qed.

Lemma normal_inertia phi : H <| 'I[phi].
Proof. by rewrite /normal sub_inertia norm_inertia. Qed.

Lemma sub_Inertia phi : H \subset G -> H \subset 'I_G[phi].
Proof. by rewrite subsetI sub_inertia andbT. Qed.

Lemma norm_Inertia phi : 'I_G[phi] \subset 'N(H).
Proof. by rewrite setIC subIset ?norm_inertia. Qed.

Lemma normal_Inertia phi : H \subset G -> H <| 'I_G[phi].
Proof. by rewrite /normal norm_Inertia andbT; apply: sub_Inertia. Qed.

Lemma cfConjg_eqE phi :
    H <| G ->
  {in G &, forall y z, (phi ^ y == phi ^ z)%CF = (z \in 'I_G[phi] :* y)}.
Proof.
case/andP=> _ nHG y z Gy; rewrite -{1 2}[z](mulgKV y) groupMr // mem_rcoset.
move: {z}(z * _)%g => z Gz; rewrite 2!inE Gz cfConjgMnorm ?(subsetP nHG) //=.
by rewrite eq_sym (can_eq (cfConjgK y)).
Qed.

Lemma cent_sub_inertia phi : 'C(H) \subset 'I[phi].
Proof.
apply/subsetP=> y cHy; have nHy := subsetP (cent_sub H) y cHy.
rewrite inE nHy; apply/eqP/cfun_inP=> x Hx; rewrite cfConjgE //.
by rewrite /conjg invgK mulgA (centP cHy) ?mulgK.
Qed.

Lemma cent_sub_Inertia phi : 'C_G(H) \subset 'I_G[phi].
Proof. exact: setIS (cent_sub_inertia phi). Qed.

Lemma center_sub_Inertia phi : H \subset G -> 'Z(G) \subset 'I_G[phi].
Proof.
by move/centS=> sHG; rewrite setIS // (subset_trans sHG) // cent_sub_inertia.
Qed.

Lemma conjg_inertia phi y : y \in 'N(H) -> 'I[phi] :^ y = 'I[phi ^ y].
Proof.
move=> nHy; apply/setP=> z; rewrite !['I[_]]setIdE conjIg conjGid // !in_setI.
apply/andb_id2l=> nHz; rewrite mem_conjg !inE.
by rewrite !cfConjgMnorm ?in_group ?(can2_eq (cfConjgKV y) (cfConjgK y)) ?invgK.
Qed.

Lemma inertia0 : 'I[0 : 'CF(H)] = 'N(H).
Proof. by apply/setP=> x; rewrite !inE linear0 eqxx andbT. Qed.

Lemma inertia_add phi psi : 'I[phi] :&: 'I[psi] \subset 'I[phi + psi].
Proof.
rewrite !['I[_]]setIdE -setIIr setIS //.
by apply/subsetP=> x; rewrite !inE linearD /= => /andP[/eqP-> /eqP->].
Qed.

Lemma inertia_sum I r (P : pred I) (Phi : I -> 'CF(H)) :
  'N(H) :&: \bigcap_(i <- r | P i) 'I[Phi i]
     \subset 'I[\sum_(i <- r | P i) Phi i].
Proof.
elim/big_rec2: _ => [|i K psi Pi sK_Ipsi]; first by rewrite setIT inertia0.
by rewrite setICA; apply: subset_trans (setIS _ sK_Ipsi) (inertia_add _ _).
Qed.

Lemma inertia_scale a phi : 'I[phi] \subset 'I[a *: phi].
Proof.
apply/subsetP=> x /setIdP[nHx /eqP Iphi_x].
by rewrite inE nHx linearZ /= Iphi_x.
Qed.

Lemma inertia_scale_nz a phi : a != 0 -> 'I[a *: phi] = 'I[phi].
Proof.
move=> nz_a; apply/eqP.
by rewrite eqEsubset -{2}(scalerK nz_a phi) !inertia_scale.
Qed.

Lemma inertia_opp phi : 'I[- phi] = 'I[phi].
Proof. by rewrite -scaleN1r inertia_scale_nz // oppr_eq0 oner_eq0. Qed.

Lemma inertia1 : 'I[1 : 'CF(H)] = 'N(H).
Proof. by apply/setP=> x; rewrite inE rmorph1 eqxx andbT. Qed.

Lemma Inertia1 : H <| G -> 'I_G[1 : 'CF(H)] = G.
Proof. by rewrite inertia1 => /normal_norm/setIidPl. Qed.

Lemma inertia_mul phi psi : 'I[phi] :&: 'I[psi] \subset 'I[phi * psi].
Proof.
rewrite !['I[_]]setIdE -setIIr setIS //.
by apply/subsetP=> x; rewrite !inE rmorphM /= => /andP[/eqP-> /eqP->].
Qed.

Lemma inertia_prod I r (P : pred I) (Phi : I -> 'CF(H)) :
  'N(H) :&: \bigcap_(i <- r | P i) 'I[Phi i]
     \subset 'I[\prod_(i <- r | P i) Phi i].
Proof.
elim/big_rec2: _ => [|i K psi Pi sK_psi]; first by rewrite inertia1 setIT.
by rewrite setICA; apply: subset_trans (setIS _ sK_psi) (inertia_mul _ _).
Qed.

Lemma inertia_injective (chi : 'CF(H)) :
  {in H &, injective chi} -> 'I[chi] = 'C(H).
Proof.
move=> inj_chi; apply/eqP; rewrite eqEsubset cent_sub_inertia andbT.
apply/subsetP=> y Ichi_y; have /setIdP[nHy _] := Ichi_y.
apply/centP=> x Hx; apply/esym/commgP/conjg_fixP.
by apply/inj_chi; rewrite ?memJ_norm ?(inertia_valJ _ Ichi_y).
Qed.

Lemma inertia_irr_prime p i :
  #|H| = p -> prime p -> i != 0 -> 'I['chi[H]_i] = 'C(H).
Proof. by move=> <- pr_H /(irr_prime_injP pr_H); apply: inertia_injective. Qed.

Lemma inertia_irr0 : 'I['chi[H]_0] = 'N(H).
Proof. by rewrite irr0 inertia1. Qed.

(* Isaacs' 6.1.c *)
Lemma cfConjg_iso y : isometry (cfConjg y : 'CF(H) -> 'CF(H)).
Proof.
move=> phi psi; congr (_ * _).
have [nHy | not_nHy] := boolP (y \in 'N(H)); last by rewrite !cfConjgEout.
rewrite (reindex_astabs 'J y) ?astabsJ //=.
by apply: eq_bigr=> x _; rewrite !cfConjgEJ.
Qed.
 
(* Isaacs' 6.1.d *)
Lemma cfdot_Res_conjg psi phi y :
  y \in G -> '['Res[H, G] psi, phi ^ y] = '['Res[H] psi, phi].
Proof.
move=> Gy; rewrite -(cfConjg_iso y _ phi); congr '[_, _]; apply/cfunP=> x.
rewrite !cfunElock !genGid; case nHy: (y \in 'N(H)) => //.
by rewrite !(fun_if psi) cfunJ ?memJ_norm ?groupV.
Qed.

(* Isaac's 6.1.e *)
Lemma cfConjg_char (chi : 'CF(H)) y :
  chi \is a character -> (chi ^ y)%CF \is a character.
Proof.
have [nHy Nchi | /cfConjgEout-> //] := boolP (y \in 'N(H)).
by rewrite cfConjgEin cfIsom_char.
Qed.

Lemma cfConjg_lin_char (chi : 'CF(H)) y :
  chi \is a linear_char -> (chi ^ y)%CF \is a linear_char.
Proof. by case/andP=> Nchi chi1; rewrite qualifE cfConjg1 cfConjg_char. Qed.

Lemma cfConjg_irr y chi : chi \in irr H -> (chi ^ y)%CF \in irr H.
Proof. by rewrite !irrEchar cfConjg_iso => /andP[/cfConjg_char->]. Qed.
 
Definition conjg_Iirr i y := cfIirr ('chi[H]_i ^ y)%CF.

Lemma conjg_IirrE i y : 'chi_(conjg_Iirr i y) = ('chi_i ^ y)%CF.
Proof. by rewrite cfIirrE ?cfConjg_irr ?mem_irr. Qed.

Lemma conjg_IirrK y : cancel (conjg_Iirr^~ y) (conjg_Iirr^~ y^-1%g).
Proof. by move=> i; apply/irr_inj; rewrite !conjg_IirrE cfConjgK. Qed.

Lemma conjg_IirrKV y : cancel (conjg_Iirr^~ y^-1%g) (conjg_Iirr^~ y).
Proof. by rewrite -{2}[y]invgK; apply: conjg_IirrK. Qed.

Lemma conjg_Iirr_inj y : injective (conjg_Iirr^~ y).
Proof. exact: can_inj (conjg_IirrK y). Qed.

Lemma conjg_Iirr_eq0 i y : (conjg_Iirr i y == 0) = (i == 0).
Proof. by rewrite -!irr_eq1 conjg_IirrE cfConjg_eq1. Qed.

Lemma conjg_Iirr0 x : conjg_Iirr 0 x = 0.
Proof. by apply/eqP; rewrite conjg_Iirr_eq0. Qed.

Lemma cfdot_irr_conjg i y :
  H <| G -> y \in G -> '['chi_i, 'chi_i ^ y]_H = (y \in 'I_G['chi_i])%:R.
Proof.
move=> nsHG Gy; rewrite -conjg_IirrE cfdot_irr -(inj_eq irr_inj) conjg_IirrE.
by rewrite -{1}['chi_i]cfConjgJ1 cfConjg_eqE ?mulg1.
Qed.

Definition cfclass (A : {set gT}) (phi : 'CF(A)) (B : {set gT}) := 
  [seq (phi ^ repr Tx)%CF | Tx in rcosets 'I_B[phi] B].

Local Notation "phi ^: G" := (cfclass phi G) : cfun_scope.

Lemma size_cfclass i : size ('chi[H]_i ^: G)%CF = #|G : 'I_G['chi_i]|.
Proof. by rewrite size_map -cardE. Qed.

Lemma cfclassP (A : {group gT}) phi psi :
  reflect (exists2 y, y \in A & psi = phi ^ y)%CF (psi \in phi ^: A)%CF.
Proof.
apply: (iffP imageP) => [[_ /rcosetsP[y Ay ->] ->] | [y Ay ->]].
  by case: repr_rcosetP => z /setIdP[Az _]; exists (z * y)%g; rewrite ?groupM.
without loss nHy: y Ay / y \in 'N(H).
  have [nHy | /cfConjgEout->] := boolP (y \in 'N(H)); first exact.
  by move/(_ 1%g); rewrite !group1 !cfConjgJ1; apply.
exists ('I_A[phi] :* y); first by rewrite -rcosetE imset_f.
case: repr_rcosetP => z /setIP[_ /setIdP[nHz /eqP Tz]].
by rewrite cfConjgMnorm ?Tz.
Qed.

Lemma cfclassInorm phi : (phi ^: 'N_G(H) =i phi ^: G)%CF.
Proof.
move=> xi; apply/cfclassP/cfclassP=> [[x /setIP[Gx _] ->] | [x Gx ->]].
  by exists x.
have [Nx | /cfConjgEout-> //] := boolP (x \in 'N(H)).
  by exists x; first apply/setIP.
by exists 1%g; rewrite ?group1 ?cfConjgJ1.
Qed.

Lemma cfclass_refl phi : phi \in (phi ^: G)%CF.
Proof. by apply/cfclassP; exists 1%g => //; rewrite cfConjgJ1. Qed.

Lemma cfclass_transr phi psi :
  (psi \in phi ^: G)%CF -> (phi ^: G =i psi ^: G)%CF.
Proof.
rewrite -cfclassInorm; case/cfclassP=> x Gx -> xi; rewrite -!cfclassInorm.
have nHN: {subset 'N_G(H) <= 'N(H)} by apply/subsetP; apply: subsetIr.
apply/cfclassP/cfclassP=> [[y Gy ->] | [y Gy ->]].
  by exists (x^-1 * y)%g; rewrite -?cfConjgMnorm ?groupM ?groupV ?nHN // mulKVg.
by exists (x * y)%g; rewrite -?cfConjgMnorm ?groupM ?nHN.
Qed.

Lemma cfclass_sym phi psi : (psi \in phi ^: G)%CF = (phi \in psi ^: G)%CF.
Proof. by apply/idP/idP=> /cfclass_transr <-; apply: cfclass_refl. Qed.

Lemma cfclass_uniq phi : H <| G -> uniq (phi ^: G)%CF.
Proof.
move=> nsHG; rewrite map_inj_in_uniq ?enum_uniq // => Ty Tz; rewrite !mem_enum.
move=> {Ty}/rcosetsP[y Gy ->] {Tz}/rcosetsP[z Gz ->] /eqP.
case: repr_rcosetP => u Iphi_u; case: repr_rcosetP => v Iphi_v.
have [[Gu _] [Gv _]] := (setIdP Iphi_u, setIdP Iphi_v).
rewrite cfConjg_eqE ?groupM // => /rcoset_eqP.
by rewrite !rcosetM (rcoset_id Iphi_v) (rcoset_id Iphi_u).
Qed.

Lemma cfclass_invariant phi : G \subset 'I[phi] -> (phi ^: G)%CF = phi.
Proof.
move/setIidPl=> IGphi; rewrite /cfclass IGphi // rcosets_id.
by rewrite /(image _ _) enum_set1 /= repr_group cfConjgJ1.
Qed.

Lemma cfclass1 : H <| G -> (1 ^: G)%CF = [:: 1 : 'CF(H)].
Proof. by move/normal_norm=> nHG; rewrite cfclass_invariant ?inertia1.  Qed.

Definition cfclass_Iirr (A : {set gT}) i := conjg_Iirr i @: A.

Lemma cfclass_IirrE i j :
  (j \in cfclass_Iirr G i) = ('chi_j \in 'chi_i ^: G)%CF.
Proof.
apply/imsetP/cfclassP=> [[y Gy ->] | [y]]; exists y; rewrite ?conjg_IirrE //.
by apply: irr_inj; rewrite conjg_IirrE.
Qed.

Lemma eq_cfclass_IirrE i j :
  (cfclass_Iirr G j == cfclass_Iirr G i) = (j \in cfclass_Iirr G i).
Proof.
apply/eqP/idP=> [<- | iGj]; first by rewrite cfclass_IirrE cfclass_refl.
by apply/setP=> k; rewrite !cfclass_IirrE in iGj *; apply/esym/cfclass_transr.
Qed.

Lemma im_cfclass_Iirr i :
  H <| G -> perm_eq [seq 'chi_j | j in cfclass_Iirr G i] ('chi_i ^: G)%CF.
Proof.
move=> nsHG; have UchiG := cfclass_uniq 'chi_i nsHG.
apply: uniq_perm; rewrite ?(map_inj_uniq irr_inj) ?enum_uniq // => phi.
apply/imageP/idP=> [[j iGj ->] | /cfclassP[y]]; first by rewrite -cfclass_IirrE.
by exists (conjg_Iirr i y); rewrite ?imset_f ?conjg_IirrE.
Qed.

Lemma card_cfclass_Iirr i : H <| G -> #|cfclass_Iirr G i| = #|G : 'I_G['chi_i]|.
Proof.
move=> nsHG; rewrite -size_cfclass -(perm_size (im_cfclass_Iirr i nsHG)).
by rewrite size_map -cardE.
Qed.

Lemma reindex_cfclass R idx (op : Monoid.com_law idx) (F : 'CF(H) -> R) i :
     H <| G ->
  \big[op/idx]_(chi <- ('chi_i ^: G)%CF) F chi
     = \big[op/idx]_(j | 'chi_j \in ('chi_i ^: G)%CF) F 'chi_j.
Proof.
move/im_cfclass_Iirr/(perm_big _) <-; rewrite big_image /=.
by apply: eq_bigl => j; rewrite cfclass_IirrE.
Qed.

Lemma cfResInd j:
    H <| G ->
  'Res[H] ('Ind[G] 'chi_j) = #|H|%:R^-1 *: (\sum_(y in G) 'chi_j ^ y)%CF.
Proof.
case/andP=> [sHG /subsetP nHG].
rewrite (reindex_inj invg_inj); apply/cfun_inP=> x Hx.
rewrite cfResE // cfIndE // ?cfunE ?sum_cfunE; congr (_ * _).
by apply: eq_big => [y | y Gy]; rewrite ?cfConjgE ?groupV ?invgK ?nHG.
Qed.

(* This is Isaacs, Theorem (6.2) *)
Lemma Clifford_Res_sum_cfclass i j :
     H <| G -> j \in irr_constt ('Res[H, G] 'chi_i) ->
  'Res[H] 'chi_i = 
     '['Res[H] 'chi_i, 'chi_j] *: (\sum_(chi <- ('chi_j ^: G)%CF) chi).
Proof.
move=> nsHG chiHj; have [sHG /subsetP nHG] := andP nsHG.
rewrite reindex_cfclass //= big_mkcond.
rewrite {1}['Res _]cfun_sum_cfdot linear_sum /=; apply: eq_bigr => k _.
have [[y Gy ->] | ] := altP (cfclassP _ _ _); first by rewrite cfdot_Res_conjg.
apply: contraNeq; rewrite scaler0 scaler_eq0 orbC => /norP[_ chiHk].
have{chiHk chiHj}: '['Res[H] ('Ind[G] 'chi_j), 'chi_k] != 0.
  rewrite !inE !cfdot_Res_l in chiHj chiHk *.
  apply: contraNneq chiHk; rewrite cfdot_sum_irr => /psumr_eq0P/(_ i isT)/eqP.
  rewrite -cfdotC cfdotC mulf_eq0 conjC_eq0 (negbTE chiHj) /= => -> // i1.
  by rewrite -cfdotC Cnat_ge0 // rpredM ?Cnat_cfdot_char ?cfInd_char ?irr_char.
rewrite cfResInd // cfdotZl mulf_eq0 cfdot_suml => /norP[_].
apply: contraR => chiGk'j; rewrite big1 // => x Gx; apply: contraNeq chiGk'j.
rewrite -conjg_IirrE cfdot_irr pnatr_eq0; case: (_ =P k) => // <- _.
by rewrite conjg_IirrE; apply/cfclassP; exists x.
Qed.

Lemma cfRes_Ind_invariant psi :
  H <| G -> G \subset 'I[psi] -> 'Res ('Ind[G, H] psi) = #|G : H|%:R *: psi.
Proof.
case/andP=> sHG _ /subsetP IGpsi; apply/cfun_inP=> x Hx.
rewrite cfResE ?cfIndE ?natf_indexg // cfunE -mulrA mulrCA; congr (_ * _).
by rewrite mulr_natl -sumr_const; apply: eq_bigr => y /IGpsi/inertia_valJ->.
Qed.

(* This is Isaacs, Corollary (6.7). *)
Corollary constt0_Res_cfker i : 
  H <| G -> 0 \in irr_constt ('Res[H] 'chi[G]_i) -> H \subset cfker 'chi[G]_i.
Proof.
move=> nsHG /(Clifford_Res_sum_cfclass nsHG); have [sHG nHG] := andP nsHG.
rewrite irr0 cfdot_Res_l cfclass1 // big_seq1 cfInd_cfun1 //.
rewrite cfdotZr conjC_nat => def_chiH.
apply/subsetP=> x Hx; rewrite cfkerEirr inE -!(cfResE _ sHG) //.
by rewrite def_chiH !cfunE cfun11 cfun1E Hx.
Qed.

(* This is Isaacs, Lemma (6.8). *)
Lemma dvdn_constt_Res1_irr1 i j : 
    H <| G -> j \in irr_constt ('Res[H, G] 'chi_i) ->
  exists n, 'chi_i 1%g = n%:R * 'chi_j 1%g.
Proof.
move=> nsHG chiHj; have [sHG nHG] := andP nsHG; rewrite -(cfResE _ sHG) //.
rewrite {1}(Clifford_Res_sum_cfclass nsHG chiHj) cfunE sum_cfunE.
have /CnatP[n ->]: '['Res[H] 'chi_i, 'chi_j] \in Cnat.
  by rewrite Cnat_cfdot_char ?cfRes_char ?irr_char.
exists (n * size ('chi_j ^: G)%CF)%N; rewrite natrM -mulrA; congr (_ * _).
rewrite mulr_natl -[size _]card_ord big_tnth -sumr_const; apply: eq_bigr => k _.
by have /cfclassP[y Gy ->]:=  mem_tnth k (in_tuple _); rewrite cfConjg1.
Qed.

Lemma cfclass_Ind phi psi :
  H <| G -> psi \in (phi ^: G)%CF -> 'Ind[G] phi = 'Ind[G] psi.
Proof.
move=> nsHG /cfclassP[y Gy ->]; have [sHG /subsetP nHG] := andP nsHG.
apply/cfun_inP=> x Hx; rewrite !cfIndE //; congr (_ * _).
rewrite (reindex_acts 'R _ (groupVr Gy)) ?astabsR //=.
by apply: eq_bigr => z Gz; rewrite conjgM cfConjgE ?nHG.
Qed.

End Inertia.

Arguments inertia {gT B%g} phi%CF.
Arguments cfclass {gT A%g} phi%CF B%g.
Arguments conjg_Iirr_inj {gT H} y [i1 i2] : rename.

Notation "''I[' phi ] " := (inertia phi) : group_scope.
Notation "''I[' phi ] " := (inertia_group phi) : Group_scope.
Notation "''I_' G [ phi ] " := (G%g :&: 'I[phi]) : group_scope.
Notation "''I_' G [ phi ] " := (G :&: 'I[phi])%G : Group_scope.
Notation "phi ^: G" := (cfclass phi G) : cfun_scope.

Section ConjRestrict.

Variables (gT : finGroupType) (G H K : {group gT}).

Lemma cfConjgRes_norm phi y :
  y \in 'N(K) -> y \in 'N(H) -> ('Res[K, H] phi ^ y)%CF = 'Res (phi ^ y)%CF.
Proof.
move=> nKy nHy; have [sKH | not_sKH] := boolP (K \subset H); last first.
  by rewrite !cfResEout // linearZ rmorph1 cfConjg1.
by apply/cfun_inP=> x Kx; rewrite !(cfConjgE, cfResE) ?memJ_norm ?groupV.
Qed.

Lemma cfConjgRes phi y :
  H <| G -> K <| G -> y \in G -> ('Res[K, H] phi ^ y)%CF = 'Res (phi ^ y)%CF.
Proof.
move=> /andP[_ nHG] /andP[_ nKG] Gy.
by rewrite cfConjgRes_norm ?(subsetP nHG) ?(subsetP nKG).
Qed.

Lemma sub_inertia_Res phi :
  G \subset 'N(K) -> 'I_G[phi] \subset 'I_G['Res[K, H] phi].
Proof.
move=> nKG; apply/subsetP=> y /setIP[Gy /setIdP[nHy /eqP Iphi_y]].
by rewrite 2!inE Gy cfConjgRes_norm ?(subsetP nKG) ?Iphi_y /=.
Qed.

Lemma cfConjgInd_norm phi y :
  y \in 'N(K) -> y \in 'N(H) -> ('Ind[H, K] phi ^ y)%CF = 'Ind (phi ^ y)%CF.
Proof.
move=> nKy nHy; have [sKH | not_sKH] := boolP (K \subset H).
  by rewrite !cfConjgEin (cfIndIsom (norm_conj_isom nHy)).
rewrite !cfIndEout // linearZ -(cfConjg_iso y) rmorph1 /=; congr (_ *: _).
by rewrite cfConjg_cfuni ?norm1 ?inE.
Qed.

Lemma cfConjgInd phi y :
  H <| G -> K <| G -> y \in G -> ('Ind[H, K] phi ^ y)%CF = 'Ind (phi ^ y)%CF.
Proof.
move=> /andP[_ nHG] /andP[_ nKG] Gy.
by rewrite cfConjgInd_norm ?(subsetP nHG) ?(subsetP nKG).
Qed.

Lemma sub_inertia_Ind phi :
  G \subset 'N(H) -> 'I_G[phi] \subset 'I_G['Ind[H, K] phi].
Proof.
move=> nHG; apply/subsetP=> y /setIP[Gy /setIdP[nKy /eqP Iphi_y]].
by rewrite 2!inE Gy cfConjgInd_norm ?(subsetP nHG) ?Iphi_y /=.
Qed.

End ConjRestrict.

Section MoreInertia.

Variables (gT : finGroupType) (G H : {group gT}) (i : Iirr H).
Let T := 'I_G['chi_i].

Lemma inertia_id : 'I_T['chi_i] = T. Proof. by rewrite -setIA setIid. Qed.

Lemma cfclass_inertia : ('chi[H]_i ^: T)%CF = [:: 'chi_i].
Proof.
rewrite /cfclass inertia_id rcosets_id /(image _ _) enum_set1 /=.
by rewrite repr_group cfConjgJ1.
Qed.

End MoreInertia.

Section ConjMorph.

Variables (aT rT : finGroupType) (D G H : {group aT}) (f : {morphism D >-> rT}).

Lemma cfConjgMorph (phi : 'CF(f @* H)) y :
  y \in D -> y \in 'N(H) -> (cfMorph phi ^ y)%CF = cfMorph (phi ^ f y).
Proof.
move=> Dy nHy; have [sHD | not_sHD] := boolP (H \subset D); last first.
  by rewrite !cfMorphEout // linearZ rmorph1 cfConjg1.
apply/cfun_inP=> x Gx; rewrite !(cfConjgE, cfMorphE) ?memJ_norm ?groupV //.
  by rewrite morphJ ?morphV ?groupV // (subsetP sHD).
by rewrite (subsetP (morphim_norm _ _)) ?mem_morphim.
Qed.

Lemma inertia_morph_pre (phi : 'CF(f @* H)) :
  H <| G -> G \subset D -> 'I_G[cfMorph phi] = G :&: f @*^-1 'I_(f @* G)[phi].
Proof.
case/andP=> sHG nHG sGD; have sHD := subset_trans sHG sGD.
apply/setP=> y; rewrite !in_setI; apply: andb_id2l => Gy.
have [Dy nHy] := (subsetP sGD y Gy, subsetP nHG y Gy).
rewrite Dy inE nHy 4!inE mem_morphim // -morphimJ ?(normP nHy) // subxx /=.
rewrite cfConjgMorph //; apply/eqP/eqP=> [Iphi_y | -> //].
by apply/cfun_inP=> _ /morphimP[x Dx Hx ->]; rewrite -!cfMorphE ?Iphi_y.
Qed.

Lemma inertia_morph_im (phi : 'CF(f @* H)) :
  H <| G -> G \subset D -> f @* 'I_G[cfMorph phi] = 'I_(f @* G)[phi].
Proof.
move=> nsHG sGD; rewrite inertia_morph_pre // morphim_setIpre.
by rewrite (setIidPr _) ?Inertia_sub.
Qed.

Variables (R S : {group rT}).
Variables (g : {morphism G >-> rT}) (h : {morphism H >-> rT}).
Hypotheses (isoG : isom G R g) (isoH : isom H S h).
Hypotheses (eq_hg : {in H, h =1 g}) (sHG : H \subset G).

(* This does not depend on the (isoG : isom G R g) assumption. *)
Lemma cfConjgIsom phi y :
  y \in G -> y \in 'N(H) -> (cfIsom isoH phi ^ g y)%CF = cfIsom isoH (phi ^ y).
Proof.
move=> Gy nHy; have [_ defS] := isomP isoH.
rewrite morphimEdom (eq_in_imset eq_hg) -morphimEsub // in defS.
apply/cfun_inP=> gx; rewrite -{1}defS => /morphimP[x Gx Hx ->] {gx}.
rewrite cfConjgE; last by rewrite -defS inE -morphimJ ?(normP nHy).
by rewrite -morphV -?morphJ -?eq_hg ?cfIsomE ?cfConjgE ?memJ_norm ?groupV.
Qed.

Lemma inertia_isom phi : 'I_R[cfIsom isoH phi] = g @* 'I_G[phi].
Proof.
have [[_ defS] [injg <-]] := (isomP isoH, isomP isoG).
rewrite morphimEdom (eq_in_imset eq_hg) -morphimEsub // in defS.
rewrite /inertia !setIdE morphimIdom setIA -{1}defS -injm_norm ?injmI //.
apply/setP=> gy; rewrite !inE; apply: andb_id2l => /morphimP[y Gy nHy ->] {gy}.
rewrite cfConjgIsom // -sub1set -morphim_set1 // injmSK ?sub1set //= inE.
apply/eqP/eqP=> [Iphi_y | -> //].
by apply/cfun_inP=> x Hx; rewrite -!(cfIsomE isoH) ?Iphi_y.
Qed.

End ConjMorph.

Section ConjQuotient.

Variables gT : finGroupType.
Implicit Types G H K : {group gT}.

Lemma cfConjgMod_norm H K (phi : 'CF(H / K)) y :
  y \in 'N(K) -> y \in 'N(H) -> ((phi %% K) ^ y)%CF = (phi ^ coset K y %% K)%CF.
Proof. exact: cfConjgMorph. Qed.

Lemma cfConjgMod G H K (phi : 'CF(H / K)) y :
    H <| G -> K <| G -> y \in G ->
  ((phi %% K) ^ y)%CF = (phi ^ coset K y %% K)%CF.
Proof.
move=> /andP[_ nHG] /andP[_ nKG] Gy.
by rewrite cfConjgMod_norm ?(subsetP nHG) ?(subsetP nKG).
Qed.

Lemma cfConjgQuo_norm H K (phi : 'CF(H)) y :
  y \in 'N(K) -> y \in 'N(H) -> ((phi / K) ^ coset K y)%CF = (phi ^ y / K)%CF.
Proof.
move=> nKy nHy; have keryK: (K \subset cfker (phi ^ y)) = (K \subset cfker phi).
  by rewrite cfker_conjg // -{1}(normP nKy) conjSg.
have [kerK | not_kerK] := boolP (K \subset cfker phi); last first.
  by rewrite !cfQuoEout ?linearZ ?rmorph1 ?cfConjg1 ?keryK.
apply/cfun_inP=> _ /morphimP[x nKx Hx ->].
have nHyb: coset K y \in 'N(H / K) by rewrite inE -morphimJ ?(normP nHy).
rewrite !(cfConjgE, cfQuoEnorm) ?keryK // ?in_setI ?Hx //.
rewrite -morphV -?morphJ ?groupV // cfQuoEnorm //.
by rewrite inE memJ_norm ?Hx ?groupJ ?groupV.
Qed.

Lemma cfConjgQuo G H K (phi : 'CF(H)) y :
    H <| G -> K <| G -> y \in G ->
  ((phi / K) ^ coset K y)%CF = (phi ^ y / K)%CF.
Proof.
move=> /andP[_ nHG] /andP[_ nKG] Gy.
by rewrite cfConjgQuo_norm ?(subsetP nHG) ?(subsetP nKG).
Qed.

Lemma inertia_mod_pre G H K (phi : 'CF(H / K)) :
  H <| G -> K <| G -> 'I_G[phi %% K] = G :&: coset K @*^-1 'I_(G / K)[phi].
Proof. by move=> nsHG /andP[_]; apply: inertia_morph_pre. Qed.

Lemma inertia_mod_quo G H K (phi : 'CF(H / K)) :
  H <| G -> K <| G -> ('I_G[phi %% K] / K)%g = 'I_(G / K)[phi].
Proof. by move=> nsHG /andP[_]; apply: inertia_morph_im. Qed.

Lemma inertia_quo G H K (phi : 'CF(H)) :
    H <| G -> K <| G -> K \subset cfker phi ->
  'I_(G / K)[phi / K] = ('I_G[phi] / K)%g.
Proof.
move=> nsHG nsKG kerK; rewrite -inertia_mod_quo ?cfQuoK //.
by rewrite (normalS _ (normal_sub nsHG)) // (subset_trans _ (cfker_sub phi)).
Qed.

End ConjQuotient.

Section InertiaSdprod.

Variables (gT : finGroupType) (K H G : {group gT}).

Hypothesis defG : K ><| H = G.

Lemma cfConjgSdprod phi y :
    y \in 'N(K) -> y \in 'N(H) ->
  (cfSdprod defG phi ^ y = cfSdprod defG (phi ^ y))%CF.
Proof.
move=> nKy nHy.
have nGy: y \in 'N(G) by rewrite -sub1set -(sdprodW defG) normsM ?sub1set.
rewrite -{2}[phi](cfSdprodK defG) cfConjgRes_norm // cfRes_sdprodK //.
by rewrite cfker_conjg // -{1}(normP nKy) conjSg cfker_sdprod.
Qed.

Lemma inertia_sdprod (L : {group gT}) phi :
  L \subset 'N(K) -> L \subset 'N(H) -> 'I_L[cfSdprod defG phi] = 'I_L[phi].
Proof.
move=> nKL nHL; have nGL: L \subset 'N(G) by rewrite -(sdprodW defG) normsM.
apply/setP=> z; rewrite !in_setI ![z \in 'I[_]]inE; apply: andb_id2l => Lz.
rewrite cfConjgSdprod ?(subsetP nKL) ?(subsetP nHL) ?(subsetP nGL) //=.
by rewrite (can_eq (cfSdprodK defG)).
Qed.

End InertiaSdprod.

Section InertiaDprod.

Variables (gT : finGroupType) (G K H : {group gT}).
Implicit Type L : {group gT}.
Hypothesis KxH : K \x H = G.

Lemma cfConjgDprodl phi y :
    y \in 'N(K) -> y \in 'N(H) ->
  (cfDprodl KxH phi ^ y = cfDprodl KxH (phi ^ y))%CF.
Proof. by move=> nKy nHy; apply: cfConjgSdprod. Qed.

Lemma cfConjgDprodr psi y :
    y \in 'N(K) -> y \in 'N(H) ->
  (cfDprodr KxH psi ^ y = cfDprodr KxH (psi ^ y))%CF.
Proof. by move=> nKy nHy; apply: cfConjgSdprod. Qed.

Lemma cfConjgDprod phi psi y :
    y \in 'N(K) -> y \in 'N(H) ->
  (cfDprod KxH phi psi ^ y = cfDprod KxH (phi ^ y) (psi ^ y))%CF.
Proof. by move=> nKy nHy; rewrite rmorphM /= cfConjgDprodl ?cfConjgDprodr. Qed.

Lemma inertia_dprodl L phi :
  L \subset 'N(K) -> L \subset 'N(H) -> 'I_L[cfDprodl KxH phi] = 'I_L[phi].
Proof. by move=> nKL nHL; apply: inertia_sdprod. Qed.

Lemma inertia_dprodr L psi :
  L \subset 'N(K) -> L \subset 'N(H) -> 'I_L[cfDprodr KxH psi] = 'I_L[psi].
Proof. by move=> nKL nHL; apply: inertia_sdprod. Qed.

Lemma inertia_dprod L (phi : 'CF(K)) (psi : 'CF(H)) :
    L \subset 'N(K) -> L \subset 'N(H) -> phi 1%g != 0 -> psi 1%g != 0 -> 
  'I_L[cfDprod KxH phi psi] = 'I_L[phi] :&: 'I_L[psi].
Proof.
move=> nKL nHL nz_phi nz_psi; apply/eqP; rewrite eqEsubset subsetI.
rewrite -{1}(inertia_scale_nz psi nz_phi) -{1}(inertia_scale_nz phi nz_psi).
rewrite -(cfDprod_Resl KxH) -(cfDprod_Resr KxH) !sub_inertia_Res //=.
by rewrite -inertia_dprodl -?inertia_dprodr // -setIIr setIS ?inertia_mul.
Qed.

Lemma inertia_dprod_irr L i j :
    L \subset 'N(K) -> L \subset 'N(H) ->
  'I_L[cfDprod KxH 'chi_i 'chi_j] = 'I_L['chi_i] :&: 'I_L['chi_j].
Proof. by move=> nKL nHL; rewrite inertia_dprod ?irr1_neq0. Qed.

End InertiaDprod.

Section InertiaBigdprod.

Variables (gT : finGroupType) (I : finType) (P : pred I).
Variables (A : I -> {group gT}) (G : {group gT}).
Implicit Type L : {group gT}.
Hypothesis defG : \big[dprod/1%g]_(i | P i) A i = G.

Section ConjBig.

Variable y : gT.
Hypothesis nAy: forall i, P i -> y \in 'N(A i).

Lemma cfConjgBigdprodi i (phi : 'CF(A i)) :
   (cfBigdprodi defG phi ^ y = cfBigdprodi defG (phi ^ y))%CF.
Proof.
rewrite cfConjgDprodl; try by case: ifP => [/nAy// | _]; rewrite norm1 inE.
  congr (cfDprodl _ _); case: ifP => [Pi | _].
    by rewrite cfConjgRes_norm ?nAy.
  by apply/cfun_inP=> _ /set1P->; rewrite !(cfRes1, cfConjg1).
rewrite -sub1set norms_gen ?norms_bigcup // sub1set.
by apply/bigcapP=> j /andP[/nAy].
Qed.

Lemma cfConjgBigdprod phi :
  (cfBigdprod defG phi ^ y = cfBigdprod defG (fun i => phi i ^ y))%CF.
Proof.
by rewrite rmorph_prod /=; apply: eq_bigr => i _; apply: cfConjgBigdprodi.
Qed.

End ConjBig.

Section InertiaBig.

Variable L : {group gT}.
Hypothesis nAL : forall i, P i -> L \subset 'N(A i).

Lemma inertia_bigdprodi i (phi : 'CF(A i)) :
  P i -> 'I_L[cfBigdprodi defG phi] = 'I_L[phi].
Proof.
move=> Pi; rewrite inertia_dprodl ?Pi ?cfRes_id ?nAL //.
by apply/norms_gen/norms_bigcup/bigcapsP=> j /andP[/nAL].
Qed.

Lemma inertia_bigdprod phi (Phi := cfBigdprod defG phi) :
  Phi 1%g != 0 -> 'I_L[Phi] = L :&: \bigcap_(i | P i) 'I_L[phi i].
Proof.
move=> nz_Phi; apply/eqP; rewrite eqEsubset; apply/andP; split.
  rewrite subsetI Inertia_sub; apply/bigcapsP=> i Pi.
  have [] := cfBigdprodK nz_Phi Pi; move: (_ / _) => a nz_a <-.
  by rewrite inertia_scale_nz ?sub_inertia_Res //= ?nAL.
rewrite subsetI subsetIl; apply: subset_trans (inertia_prod _ _ _).
apply: setISS.
  by rewrite -(bigdprodWY defG) norms_gen ?norms_bigcup //; apply/bigcapsP.
apply/bigcapsP=> i Pi; rewrite (bigcap_min i) //.
by rewrite -inertia_bigdprodi ?subsetIr.
Qed.

Lemma inertia_bigdprod_irr Iphi (phi := fun i => 'chi_(Iphi i)) :
  'I_L[cfBigdprod defG phi] = L :&: \bigcap_(i | P i) 'I_L[phi i].
Proof.
rewrite inertia_bigdprod // -[cfBigdprod _ _]cfIirrE ?irr1_neq0 //.
by apply: cfBigdprod_irr => i _; apply: mem_irr.
Qed.

End InertiaBig.

End InertiaBigdprod.

Section ConsttInertiaBijection.

Variables (gT : finGroupType) (H G : {group gT}) (t : Iirr H).
Hypothesis nsHG : H <| G.

Local Notation theta := 'chi_t.
Local Notation T := 'I_G[theta]%G.
Local Notation "` 'T'" := 'I_(gval G)[theta]
  (at level 0, format "` 'T'") : group_scope.

Let calA := irr_constt ('Ind[T] theta).
Let calB := irr_constt ('Ind[G] theta).
Local Notation AtoB := (Ind_Iirr G).

(* This is Isaacs, Theorem (6.11). *)
Theorem constt_Inertia_bijection :
 [/\ (*a*) {in calA, forall s, 'Ind[G] 'chi_s \in irr G},
     (*b*) {in calA &, injective (Ind_Iirr G)},
           Ind_Iirr G @: calA =i calB,
     (*c*) {in calA, forall s (psi := 'chi_s) (chi := 'Ind[G] psi),
             [predI irr_constt ('Res chi) & calA] =i pred1 s}
   & (*d*) {in calA, forall s (psi := 'chi_s) (chi := 'Ind[G] psi),
             '['Res psi, theta] = '['Res chi, theta]}].
Proof.
have [sHG sTG]: H \subset G /\ T \subset G by rewrite subsetIl normal_sub.
have nsHT : H <| T := normal_Inertia theta sHG; have sHT := normal_sub nsHT.
have AtoB_P s (psi := 'chi_s) (chi := 'Ind[G] psi): s \in calA ->
  [/\ chi \in irr G, AtoB s \in calB & '['Res psi, theta] = '['Res chi, theta]].
- rewrite !constt_Ind_Res => sHt; have [r sGr] := constt_cfInd_irr s sTG.
  have rTs: s \in irr_constt ('Res[T] 'chi_r) by rewrite -constt_Ind_Res.
  have NrT: 'Res[T] 'chi_r \is a character by rewrite cfRes_char ?irr_char.
  have rHt: t \in irr_constt ('Res[H] 'chi_r).
    by have:= constt_Res_trans NrT rTs sHt; rewrite cfResRes.
  pose e := '['Res[H] 'chi_r, theta]; set f := '['Res[H] psi, theta].
  have DrH: 'Res[H] 'chi_r = e *: \sum_(xi <- (theta ^: G)%CF) xi.
    exact: Clifford_Res_sum_cfclass.
  have DpsiH: 'Res[H] psi = f *: theta.
    rewrite (Clifford_Res_sum_cfclass nsHT sHt).
    by rewrite cfclass_invariant ?subsetIr ?big_seq1.
  have ub_chi_r: 'chi_r 1%g <= chi 1%g ?= iff ('chi_r == chi).
    have Nchi: chi \is a character by rewrite cfInd_char ?irr_char.
    have [chi1 Nchi1->] := constt_charP _ Nchi sGr.
    rewrite addrC cfunE -leif_subLR subrr eq_sym -subr_eq0 addrK.
    by split; rewrite ?char1_ge0 // eq_sym char1_eq0.
  have lb_chi_r: chi 1%g <= 'chi_r 1%g ?= iff (f == e).
    rewrite cfInd1 // -(cfRes1 H) DpsiH -(cfRes1 H 'chi_r) DrH !cfunE sum_cfunE.
    rewrite (eq_big_seq (fun _ => theta 1%g)) => [|i]; last first.
      by case/cfclassP=> y _ ->; rewrite cfConjg1.
    rewrite reindex_cfclass //= sumr_const -(eq_card (cfclass_IirrE _ _)).
    rewrite mulr_natl mulrnAr card_cfclass_Iirr //.
    rewrite (mono_leif (ler_pmuln2r (indexg_gt0 G T))).
    rewrite (mono_leif (ler_pmul2r (irr1_gt0 t))); apply: leif_eq.
    by rewrite /e -(cfResRes _ sHT) ?cfdot_Res_ge_constt.
  have [_ /esym] := leif_trans ub_chi_r lb_chi_r; rewrite eqxx.
  by case/andP=> /eqP Dchi /eqP->; rewrite cfIirrE -/chi -?Dchi ?mem_irr.
have part_c: {in calA, forall s (chi := 'Ind[G] 'chi_s),
  [predI irr_constt ('Res[T] chi) & calA] =i pred1 s}.
- move=> s As chi s1; have [irr_chi _ /eqP Dchi_theta] := AtoB_P s As.
  have chiTs: s \in irr_constt ('Res[T] chi).
    by rewrite irr_consttE cfdot_Res_l irrWnorm ?oner_eq0.
  apply/andP/eqP=> [[/= chiTs1 As1] | -> //].
  apply: contraTeq Dchi_theta => s's1; rewrite lt_eqF // -/chi.
  have [|phi Nphi DchiT] := constt_charP _ _ chiTs.
    by rewrite cfRes_char ?cfInd_char ?irr_char.
  have [|phi1 Nphi1 Dphi] := constt_charP s1 Nphi _.
    rewrite irr_consttE -(canLR (addKr _) DchiT) addrC cfdotBl cfdot_irr.
    by rewrite mulrb ifN_eqC ?subr0.
  rewrite -(cfResRes chi sHT sTG) DchiT Dphi !rmorphD !cfdotDl /=.
  rewrite -ltr_subl_addl subrr ltr_paddr ?lt_def //;
    rewrite Cnat_ge0 ?Cnat_cfdot_char ?cfRes_char ?irr_char //.
  by rewrite andbT -irr_consttE -constt_Ind_Res.
do [split=> //; try by move=> s /AtoB_P[]] => [s1 s2 As1 As2 | r].
  have [[irr_s1G _ _] [irr_s2G _ _]] := (AtoB_P _ As1, AtoB_P _ As2).
  move/(congr1 (tnth (irr G))); rewrite !cfIirrE // => eq_s12_G.
  apply/eqP; rewrite -[_ == _]part_c // inE /= As1 -eq_s12_G.
  by rewrite -As1 [_ && _]part_c // inE /=.
apply/imsetP/idP=> [[s /AtoB_P[_ BsG _] -> //] | Br].
have /exists_inP[s rTs As]: [exists s in irr_constt ('Res 'chi_r), s \in calA].
  rewrite -negb_forall_in; apply: contra Br => /eqfun_inP => o_tT_rT.
  rewrite -(cfIndInd _ sTG sHT) -cfdot_Res_r ['Res _]cfun_sum_constt.
  by rewrite cfdot_sumr big1 // => i rTi; rewrite cfdotZr o_tT_rT ?mulr0.
exists s => //; have [/irrP[r1 DsG] _ _] := AtoB_P s As.
by apply/eqP; rewrite /AtoB -constt_Ind_Res DsG irrK constt_irr in rTs *.
Qed.

End ConsttInertiaBijection.

Section ExtendInvariantIrr.

Variable gT : finGroupType.
Implicit Types G H K L M N : {group gT}.

Section ConsttIndExtendible.

Variables (G N : {group gT}) (t : Iirr N) (c : Iirr G).
Let theta := 'chi_t.
Let chi := 'chi_c.

Definition mul_Iirr b := cfIirr ('chi_b * chi).
Definition mul_mod_Iirr (b : Iirr (G / N)) := mul_Iirr (mod_Iirr b).

Hypotheses (nsNG : N <| G) (cNt : 'Res[N] chi = theta).
Let sNG : N \subset G. Proof. exact: normal_sub. Qed.
Let nNG : G \subset 'N(N). Proof. exact: normal_norm. Qed.

Lemma extendible_irr_invariant : G \subset 'I[theta].
Proof.
apply/subsetP=> y Gy; have nNy := subsetP nNG y Gy.
rewrite inE nNy; apply/eqP/cfun_inP=> x Nx; rewrite cfConjgE // -cNt.
by rewrite !cfResE ?memJ_norm ?cfunJ ?groupV.
Qed.
Let IGtheta := extendible_irr_invariant.

(* This is Isaacs, Theorem (6.16) *)
Theorem constt_Ind_mul_ext f (phi := 'chi_f) (psi := phi * theta) :
  G \subset 'I[phi] -> psi \in irr N ->
  let calS := irr_constt ('Ind phi) in
  [/\ {in calS, forall b, 'chi_b * chi \in irr G},
      {in calS &, injective mul_Iirr},
      irr_constt ('Ind psi) =i [seq mul_Iirr b | b in calS]
    & 'Ind psi = \sum_(b in calS) '['Ind phi, 'chi_b] *: 'chi_(mul_Iirr b)].
Proof.
move=> IGphi irr_psi calS.
have IGpsi: G \subset 'I[psi].
  by rewrite (subset_trans _ (inertia_mul _ _)) // subsetI IGphi.
pose e b := '['Ind[G] phi, 'chi_b]; pose d b g := '['chi_b * chi, 'chi_g * chi].
have Ne b: e b \in Cnat by rewrite Cnat_cfdot_char ?cfInd_char ?irr_char.
have egt0 b: b \in calS -> e b > 0 by rewrite Cnat_gt0.
have DphiG: 'Ind phi = \sum_(b in calS) e b *: 'chi_b := cfun_sum_constt _.
have DpsiG: 'Ind psi = \sum_(b in calS) e b *: 'chi_b * chi.
  by rewrite /psi -cNt cfIndM // DphiG mulr_suml.
pose d_delta := [forall b in calS, forall g in calS, d b g == (b == g)%:R].
have charMchi b: 'chi_b * chi \is a character by rewrite rpredM ?irr_char.
have [_]: '['Ind[G] phi] <= '['Ind[G] psi] ?= iff d_delta.
  pose sum_delta := \sum_(b in calS) e b * \sum_(g in calS) e g * (b == g)%:R.
  pose sum_d := \sum_(b in calS) e b * \sum_(g in calS) e g * d b g.
  have ->: '['Ind[G] phi] = sum_delta.
    rewrite DphiG cfdot_suml; apply: eq_bigr => b _; rewrite cfdotZl cfdot_sumr.
    by congr (_ * _); apply: eq_bigr => g; rewrite cfdotZr cfdot_irr conj_Cnat.
  have ->: '['Ind[G] psi] = sum_d.
    rewrite DpsiG cfdot_suml; apply: eq_bigr => b _.
    rewrite -scalerAl cfdotZl cfdot_sumr; congr (_ * _).
    by apply: eq_bigr => g _; rewrite -scalerAl cfdotZr conj_Cnat.
  have eMmono := mono_leif (ler_pmul2l (egt0 _ _)).
  apply: leif_sum => b /eMmono->; apply: leif_sum => g /eMmono->.
  split; last exact: eq_sym.
  have /CnatP[n Dd]: d b g \in Cnat by rewrite Cnat_cfdot_char.
  have [Db | _] := eqP; rewrite Dd leC_nat // -ltC_nat -Dd Db cfnorm_gt0.
  by rewrite -char1_eq0 // cfunE mulf_neq0 ?irr1_neq0.
rewrite -!cfdot_Res_l ?cfRes_Ind_invariant // !cfdotZl cfnorm_irr irrWnorm //.
rewrite eqxx => /esym/forall_inP/(_ _ _)/eqfun_inP; rewrite /d /= => Dd.
have irrMchi: {in calS, forall b, 'chi_b * chi \in irr G}.
  by move=> b Sb; rewrite /= irrEchar charMchi Dd ?eqxx.
have injMchi: {in calS &, injective mul_Iirr}.
  move=> b g Sb Sg /(congr1 (fun s => '['chi_s, 'chi_(mul_Iirr g)]))/eqP.
  by rewrite cfnorm_irr !cfIirrE ?irrMchi ?Dd // pnatr_eq1; case: (b =P g).
have{DpsiG} ->: 'Ind psi = \sum_(b in calS) e b *: 'chi_(mul_Iirr b).
  by rewrite DpsiG; apply: eq_bigr => b Sb; rewrite -scalerAl cfIirrE ?irrMchi.
split=> // i; rewrite irr_consttE cfdot_suml;
apply/idP/idP=> [|/imageP[b Sb ->]].
  apply: contraR => N'i; rewrite big1 // => b Sb.
  rewrite cfdotZl cfdot_irr mulrb ifN_eqC ?mulr0 //.
  by apply: contraNneq N'i => ->; apply: image_f.
rewrite gt_eqF // (bigD1 b) //= cfdotZl cfnorm_irr mulr1 ltr_paddr ?egt0 //.
apply: sumr_ge0 => g /andP[Sg _]; rewrite cfdotZl cfdot_irr.
by rewrite mulr_ge0 ?ler0n ?Cnat_ge0.
Qed.
  
(* This is Isaacs, Corollary (6.17) (due to Gallagher). *)
Corollary constt_Ind_ext :
  [/\ forall b : Iirr (G / N), 'chi_(mod_Iirr b) * chi \in irr G,
      injective mul_mod_Iirr,
      irr_constt ('Ind theta) =i codom mul_mod_Iirr
    & 'Ind theta = \sum_b 'chi_b 1%g *: 'chi_(mul_mod_Iirr b)].
Proof.
have IHchi0: G \subset 'I['chi[N]_0] by rewrite inertia_irr0.
have [] := constt_Ind_mul_ext IHchi0; rewrite irr0 ?mul1r ?mem_irr //.
set psiG := 'Ind 1 => irrMchi injMchi constt_theta {2}->.
have dot_psiG b: '[psiG, 'chi_(mod_Iirr b)] = 'chi[G / N]_b 1%g.
  rewrite mod_IirrE // -cfdot_Res_r cfRes_sub_ker ?cfker_mod //.
  by rewrite cfdotZr cfnorm1 mulr1 conj_Cnat ?cfMod1 ?Cnat_irr1.
have mem_psiG (b : Iirr (G / N)): mod_Iirr b \in irr_constt psiG.
  by rewrite irr_consttE dot_psiG irr1_neq0.
have constt_psiG b: (b \in irr_constt psiG) = (N \subset cfker 'chi_b).
  apply/idP/idP=> [psiGb | /quo_IirrK <- //].
  by rewrite constt0_Res_cfker // -constt_Ind_Res irr0.
split=> [b | b g /injMchi/(can_inj (mod_IirrK nsNG))-> // | b0 | ].
- exact: irrMchi.
- rewrite constt_theta.
  apply/imageP/imageP=> [][b psiGb ->]; last by exists (mod_Iirr b).
  by exists (quo_Iirr N b) => //; rewrite /mul_mod_Iirr quo_IirrK -?constt_psiG.
rewrite (reindex_onto _ _ (in1W (mod_IirrK nsNG))) /=.
apply/esym/eq_big => b; first by rewrite constt_psiG quo_IirrKeq.
by rewrite -dot_psiG /mul_mod_Iirr => /eqP->.
Qed.

End ConsttIndExtendible.

(* This is Isaacs, Theorem (6.19). *)
Theorem invariant_chief_irr_cases G K L s (theta := 'chi[K]_s) :
    chief_factor G L K -> abelian (K / L) -> G \subset 'I[theta] ->
  let t := #|K : L| in
  [\/ 'Res[L] theta \in irr L,
      exists2 e, exists p, 'Res[L] theta = e%:R *: 'chi_p & (e ^ 2)%N = t
   |  exists2 p, injective p & 'Res[L] theta = \sum_(i < t) 'chi_(p i)].
Proof.
case/andP=> /maxgroupP[/andP[ltLK nLG] maxL] nsKG abKbar IGtheta t.
have [sKG nKG] := andP nsKG; have sLG := subset_trans (proper_sub ltLK) sKG.
have nsLG: L <| G by apply/andP.
have nsLK := normalS (proper_sub ltLK) sKG nsLG; have [sLK nLK] := andP nsLK.
have [p0 sLp0] := constt_cfRes_irr L s; rewrite -/theta in sLp0.
pose phi := 'chi_p0; pose T := 'I_G[phi].
have sTG: T \subset G := subsetIl G _.
have /eqP mulKT: (K * T)%g == G.
  rewrite eqEcard mulG_subG sKG sTG -LagrangeMr -indexgI -(Lagrange sTG) /= -/T.
  rewrite mulnC leq_mul // setIA (setIidPl sKG) -!size_cfclass // -/phi.
  rewrite uniq_leq_size ?cfclass_uniq // => _ /cfclassP[x Gx ->].
  have: conjg_Iirr p0 x \in irr_constt ('Res theta).
    have /inertiaJ <-: x \in 'I[theta] := subsetP IGtheta x Gx.
    by rewrite -(cfConjgRes _ nsKG) // irr_consttE conjg_IirrE // cfConjg_iso.
  apply: contraR; rewrite -conjg_IirrE // => not_sLp0x.
  rewrite (Clifford_Res_sum_cfclass nsLK sLp0) cfdotZl cfdot_suml.
  rewrite big1_seq ?mulr0 // => _ /cfclassP[y Ky ->]; rewrite -conjg_IirrE //.
  rewrite cfdot_irr mulrb ifN_eq ?(contraNneq _ not_sLp0x) // => <-.
  by rewrite conjg_IirrE //; apply/cfclassP; exists y.
have nsKT_G: K :&: T <| G.
  rewrite /normal subIset ?sKG // -mulKT setIA (setIidPl sKG) mulG_subG.
  rewrite normsIG // sub_der1_norm ?subsetIl //.
  exact: subset_trans (der1_min nLK abKbar) (sub_Inertia _ sLK).
have [e DthL]: exists e, 'Res theta = e%:R *: \sum_(xi <- (phi ^: K)%CF) xi.
  rewrite (Clifford_Res_sum_cfclass nsLK sLp0) -/phi; set e := '[_, _].
  by exists (truncC e); rewrite truncCK ?Cnat_cfdot_char ?cfRes_char ?irr_char.
have [defKT | ltKT_K] := eqVneq (K :&: T) K; last first.
  have defKT: K :&: T = L.
    apply: maxL; last by rewrite subsetI sLK sub_Inertia.
    by rewrite normal_norm // properEneq ltKT_K subsetIl.
  have t_cast: size (phi ^: K)%CF = t.
    by rewrite size_cfclass //= -{2}(setIidPl sKG) -setIA defKT.
  pose phiKt := Tuple (introT eqP t_cast); pose p i := cfIirr (tnth phiKt i).
  have pK i: 'chi_(p i) = (phi ^: K)%CF`_i.
    rewrite cfIirrE; first by rewrite (tnth_nth 0).
    by have /cfclassP[y _ ->] := mem_tnth i phiKt; rewrite cfConjg_irr ?mem_irr.
  constructor 3; exists p => [i j /(congr1 (tnth (irr L)))/eqP| ].
    by apply: contraTeq; rewrite !pK !nth_uniq ?t_cast ?cfclass_uniq.
  have{} DthL: 'Res theta = e%:R *: \sum_(i < t) (phi ^: K)%CF`_i.
    by rewrite DthL (big_nth 0) big_mkord t_cast.
  suffices /eqP e1: e == 1%N by rewrite DthL e1 scale1r; apply: eq_bigr.
  have Dth1: theta 1%g = e%:R * t%:R * phi 1%g.
    rewrite -[t]card_ord -mulrA -(cfRes1 L) DthL cfunE; congr (_ * _).
    rewrite mulr_natl -sumr_const sum_cfunE -t_cast; apply: eq_bigr => i _.
    by have /cfclassP[y _ ->] := mem_nth 0 (valP i); rewrite cfConjg1.
  rewrite eqn_leq lt0n (contraNneq _ (irr1_neq0 s)); last first.
    by rewrite Dth1 => ->; rewrite !mul0r.
  rewrite -leC_nat -(ler_pmul2r (gt0CiG K L)) -/t -(ler_pmul2r (irr1_gt0 p0)).
  rewrite mul1r -Dth1 -cfInd1 //.
  by rewrite char1_ge_constt ?cfInd_char ?irr_char ?constt_Ind_Res.
have IKphi: 'I_K[phi] = K by rewrite -{1}(setIidPl sKG) -setIA.
have{} DthL: 'Res[L] theta = e%:R *: phi.
  by rewrite DthL -[rhs in (_ ^: rhs)%CF]IKphi cfclass_inertia big_seq1.
pose mmLth := @mul_mod_Iirr K L s.
have linKbar := char_abelianP _ abKbar.
have LmodL i: ('chi_i %% L)%CF \is a linear_char := cfMod_lin_char (linKbar i).
have mmLthE i: 'chi_(mmLth i) = ('chi_i %% L)%CF * theta.
  by rewrite cfIirrE ?mod_IirrE // mul_lin_irr ?mem_irr.
have mmLthL i: 'Res[L] 'chi_(mmLth i) = 'Res[L] theta.
  rewrite mmLthE rmorphM /= cfRes_sub_ker ?cfker_mod ?lin_char1 //.
  by rewrite scale1r mul1r.
have [inj_Mphi | /injectivePn[i [j i'j eq_mm_ij]]] := boolP (injectiveb mmLth).
  suffices /eqP e1: e == 1%N by constructor 1; rewrite DthL e1 scale1r mem_irr.
  rewrite eqn_leq lt0n (contraNneq _ (irr1_neq0 s)); last first.
    by rewrite -(cfRes1 L) DthL cfunE => ->; rewrite !mul0r.
  rewrite -leq_sqr -leC_nat natrX -(ler_pmul2r (irr1_gt0 p0)) -mulrA mul1r.
  have ->: e%:R * 'chi_p0 1%g = 'Res[L] theta 1%g by rewrite DthL cfunE.
  rewrite cfRes1 -(ler_pmul2l (gt0CiG K L)) -cfInd1 // -/phi.
  rewrite -card_quotient // -card_Iirr_abelian // mulr_natl.
  rewrite ['Ind phi]cfun_sum_cfdot sum_cfunE (bigID (mem (codom mmLth))) /=.
  rewrite ler_paddr ?sumr_ge0 // => [i _|].
    by rewrite char1_ge0 ?rpredZ_Cnat ?Cnat_cfdot_char ?cfInd_char ?irr_char.
  rewrite -big_uniq //= big_image -sumr_const ler_sum // => i _.
  rewrite cfunE -[in rhs in _ <= rhs](cfRes1 L) -cfdot_Res_r mmLthL cfRes1.
  by rewrite DthL cfdotZr rmorph_nat cfnorm_irr mulr1.
constructor 2; exists e; first by exists p0.
pose mu := (('chi_i / 'chi_j)%R %% L)%CF; pose U := cfker mu.
have lin_mu: mu \is a linear_char by rewrite cfMod_lin_char ?rpred_div.
have Uj := lin_char_unitr (linKbar j).
have ltUK: U \proper K.
  rewrite /proper cfker_sub /U; have /irrP[k Dmu] := lin_char_irr lin_mu.
  rewrite Dmu subGcfker -irr_eq1 -Dmu cfMod_eq1 //.
  by rewrite (can2_eq (divrK Uj) (mulrK Uj)) mul1r (inj_eq irr_inj).
suffices: theta \in 'CF(K, L).
  rewrite -cfnorm_Res_leif // DthL cfnormZ !cfnorm_irr !mulr1 normr_nat.
  by rewrite -natrX eqC_nat => /eqP.
have <-: gcore U G = L.
  apply: maxL; last by rewrite sub_gcore ?cfker_mod.
  by rewrite gcore_norm (sub_proper_trans (gcore_sub _ _)).
apply/cfun_onP=> x; apply: contraNeq => nz_th_x.
apply/bigcapP=> y /(subsetP IGtheta)/setIdP[nKy /eqP th_y].
apply: contraR nz_th_x; rewrite mem_conjg -{}th_y cfConjgE {nKy}//.
move: {x y}(x ^ _) => x U'x; have [Kx | /cfun0-> //] := boolP (x \in K).
have /eqP := congr1 (fun k => (('chi_j %% L)%CF^-1 * 'chi_k) x) eq_mm_ij.
rewrite -rmorphV // !mmLthE !mulrA -!rmorphM mulVr //= rmorph1 !cfunE.
rewrite (mulrC _^-1) -/mu -subr_eq0 -mulrBl cfun1E Kx mulf_eq0 => /orP[]//.
rewrite mulrb subr_eq0 -(lin_char1 lin_mu) [_ == _](contraNF _ U'x) //.
by rewrite /U cfkerEchar ?lin_charW // inE Kx.
Qed.

(* This is Isaacs, Corollary (6.19). *)
Corollary cfRes_prime_irr_cases G N s p (chi := 'chi[G]_s) :
    N <| G -> #|G : N| = p -> prime p ->
  [\/ 'Res[N] chi \in irr N
   |  exists2 c, injective c & 'Res[N] chi = \sum_(i < p) 'chi_(c i)].
Proof.
move=> /andP[sNG nNG] iGN pr_p.
have chiefGN: chief_factor G N G.
  apply/andP; split=> //; apply/maxgroupP.
  split=> [|M /andP[/andP[sMG ltMG] _] sNM].
    by rewrite /proper sNG -indexg_gt1 iGN prime_gt1.
  apply/esym/eqP; rewrite eqEsubset sNM -indexg_eq1 /= eq_sym.
  rewrite -(eqn_pmul2l (indexg_gt0 G M)) muln1 Lagrange_index // iGN.
  by apply/eqP/prime_nt_dvdP; rewrite ?indexg_eq1 // -iGN indexgS.
have abGbar: abelian (G / N).
  by rewrite cyclic_abelian ?prime_cyclic ?card_quotient ?iGN.
have IGchi: G \subset 'I[chi] by apply: sub_inertia.
have [] := invariant_chief_irr_cases chiefGN abGbar IGchi; first by left.
  case=> e _ /(congr1 (fun m => odd (logn p m)))/eqP/idPn[].
  by rewrite lognX mul2n odd_double iGN logn_prime // eqxx.
by rewrite iGN; right.
Qed.

(* This is Isaacs, Corollary (6.20). *)
Corollary prime_invariant_irr_extendible G N s p :
    N <| G -> #|G : N| = p -> prime p -> G \subset 'I['chi_s] ->
  {t | 'Res[N, G] 'chi_t = 'chi_s}.
Proof.
move=> nsNG iGN pr_p IGchi.
have [t sGt] := constt_cfInd_irr s (normal_sub nsNG); exists t.
have [e DtN]: exists e, 'Res 'chi_t = e%:R *: 'chi_s.
  rewrite constt_Ind_Res in sGt.
  rewrite (Clifford_Res_sum_cfclass nsNG sGt); set e := '[_, _].
  rewrite cfclass_invariant // big_seq1.
  by exists (truncC e); rewrite truncCK ?Cnat_cfdot_char ?cfRes_char ?irr_char.
have [/irrWnorm/eqP | [c injc DtNc]] := cfRes_prime_irr_cases t nsNG iGN pr_p.
  rewrite DtN cfnormZ cfnorm_irr normr_nat mulr1 -natrX pnatr_eq1.
  by rewrite muln_eq1 andbb => /eqP->; rewrite scale1r.
have nz_e: e != 0%N.
  have: 'Res[N] 'chi_t != 0 by rewrite cfRes_eq0 // ?irr_char ?irr_neq0.
  by rewrite DtN; apply: contraNneq => ->; rewrite scale0r.
have [i s'ci]: exists i, c i != s.
  pose i0 := Ordinal (prime_gt0 pr_p); pose i1 := Ordinal (prime_gt1 pr_p).
  have [<- | ] := eqVneq (c i0) s; last by exists i0.
  by exists i1; rewrite (inj_eq injc).
have /esym/eqP/idPn[] := congr1 (cfdotr 'chi_(c i)) DtNc; rewrite {1}DtN /=.
rewrite cfdot_suml cfdotZl cfdot_irr mulrb ifN_eqC // mulr0.
rewrite (bigD1 i) //= cfnorm_irr big1 ?addr0 ?oner_eq0 // => j i'j.
by rewrite cfdot_irr mulrb ifN_eq ?(inj_eq injc).
Qed.

(* This is Isaacs, Lemma (6.24). *)
Lemma extend_to_cfdet G N s c0 u :
    let theta := 'chi_s in let lambda := cfDet theta in let mu := 'chi_u in
    N <| G -> coprime #|G : N| (truncC (theta 1%g)) ->
    'Res[N, G] 'chi_c0 = theta -> 'Res[N, G] mu = lambda ->
  exists2 c, 'Res 'chi_c = theta /\ cfDet 'chi_c = mu
          & forall c1, 'Res 'chi_c1 = theta -> cfDet 'chi_c1 = mu -> c1 = c.
Proof.
move=> theta lambda mu nsNG; set e := #|G : N|; set f := truncC _.
set eta := 'chi_c0 => co_e_f etaNth muNlam; have [sNG nNG] := andP nsNG.
have fE: f%:R = theta 1%g by rewrite truncCK ?Cnat_irr1.
pose nu := cfDet eta; have lin_nu: nu \is a linear_char := cfDet_lin_char _.
have nuNlam: 'Res nu = lambda by rewrite -cfDetRes ?irr_char ?etaNth.
have lin_lam: lambda \is a linear_char := cfDet_lin_char _.
have lin_mu: mu \is a linear_char.
  by have:= lin_lam; rewrite -muNlam; apply: cfRes_lin_lin; apply: irr_char.
have [Unu Ulam] := (lin_char_unitr lin_nu, lin_char_unitr lin_lam).
pose alpha := mu / nu.
have alphaN_1: 'Res[N] alpha = 1 by rewrite rmorph_div //= muNlam nuNlam divrr.
have lin_alpha: alpha \is a linear_char by apply: rpred_div.
have alpha_e: alpha ^+ e = 1.
  have kerNalpha: N \subset cfker alpha.
    by rewrite -subsetIidl -cfker_Res ?lin_charW // alphaN_1 cfker_cfun1.
  apply/eqP; rewrite -(cfQuoK nsNG kerNalpha) -rmorphX cfMod_eq1 //.
  rewrite -dvdn_cforder /e -card_quotient //.
  by rewrite cforder_lin_char_dvdG ?cfQuo_lin_char.
have det_alphaXeta b: cfDet (alpha ^+ b * eta) = alpha ^+ (b * f) * nu.
  by rewrite cfDet_mul_lin ?rpredX ?irr_char // -exprM -(cfRes1 N) etaNth.
have [b bf_mod_e]: exists b, b * f = 1 %[mod e].
  rewrite -(chinese_modl co_e_f 1 0) /chinese !mul0n addn0 !mul1n mulnC.
  by exists (egcdn f e).1.
have alpha_bf: alpha ^+ (b * f) = alpha.
  by rewrite -(expr_mod _ alpha_e) bf_mod_e expr_mod.
have /irrP[c Dc]: alpha ^+ b * eta \in irr G.
  by rewrite mul_lin_irr ?rpredX ?mem_irr.
have chiN: 'Res 'chi_c = theta.
  by rewrite -Dc rmorphM rmorphX /= alphaN_1 expr1n mul1r.
have det_chi: cfDet 'chi_c = mu by rewrite -Dc det_alphaXeta alpha_bf divrK.
exists c => // c2 c2Nth det_c2_mu; apply: irr_inj.
have [irrMc _ imMc _] := constt_Ind_ext nsNG chiN.
have /codomP[s2 Dc2]: c2 \in codom (@mul_mod_Iirr G N c).
  by rewrite -imMc constt_Ind_Res c2Nth constt_irr ?inE.
have{} Dc2: 'chi_c2 = ('chi_s2 %% N)%CF * 'chi_c.
  by rewrite Dc2 cfIirrE // mod_IirrE.
have s2_lin: 'chi_s2 \is a linear_char.
  rewrite qualifE irr_char; apply/eqP/(mulIf (irr1_neq0 c)).
  rewrite mul1r -[in rhs in _ = rhs](cfRes1 N) chiN -c2Nth cfRes1.
  by rewrite Dc2 cfunE cfMod1.
have s2Xf_1: 'chi_s2 ^+ f = 1.
  apply/(can_inj (cfModK nsNG))/(mulIr (lin_char_unitr lin_mu))/esym.
  rewrite rmorph1 rmorphX /= mul1r -{1}det_c2_mu Dc2 -det_chi.
  by rewrite cfDet_mul_lin ?cfMod_lin_char ?irr_char // -(cfRes1 N) chiN.
suffices /eqP s2_1: 'chi_s2 == 1 by rewrite Dc2 s2_1 rmorph1 mul1r.
rewrite -['chi_s2]expr1 -dvdn_cforder -(eqnP co_e_f) dvdn_gcd.
by rewrite /e -card_quotient ?cforder_lin_char_dvdG //= dvdn_cforder s2Xf_1.
Qed.

(* This is Isaacs, Theorem (6.25). *)
Theorem solvable_irr_extendible_from_det G N s (theta := 'chi[N]_s) :
    N <| G -> solvable (G / N) ->
    G \subset 'I[theta] -> coprime #|G : N| (truncC (theta 1%g)) -> 
  [exists c, 'Res 'chi[G]_c == theta]
    = [exists u, 'Res 'chi[G]_u == cfDet theta].
Proof.
set e := #|G : N|; set f := truncC _ => nsNG solG IGtheta co_e_f.
apply/exists_eqP/exists_eqP=> [[c cNth] | [u uNdth]].
  have /lin_char_irr/irrP[u Du] := cfDet_lin_char 'chi_c.
  by exists u; rewrite -Du -cfDetRes ?irr_char ?cNth.
move: {2}e.+1 (ltnSn e) => m.
elim: m => // m IHm in G u e nsNG solG IGtheta co_e_f uNdth *.
rewrite ltnS => le_e; have [sNG nNG] := andP nsNG.
have [<- | ltNG] := eqsVneq N G; first by exists s; rewrite cfRes_id.
have [G0 maxG0 sNG0]: {G0 | maxnormal (gval G0) G G & N \subset G0}.
  by apply: maxgroup_exists; rewrite properEneq ltNG sNG.
have [/andP[ltG0G nG0G] maxG0_P] := maxgroupP maxG0.
set mu := 'chi_u in uNdth; have lin_mu: mu \is a linear_char.
  by rewrite qualifE irr_char -(cfRes1 N) uNdth /= lin_char1 ?cfDet_lin_char.
have sG0G := proper_sub ltG0G; have nsNG0 := normalS sNG0 sG0G nsNG.
have nsG0G: G0 <| G by apply/andP.
have /lin_char_irr/irrP[u0 Du0] := cfRes_lin_char G0 lin_mu.
have u0Ndth: 'Res 'chi_u0 = cfDet theta by rewrite -Du0 cfResRes.
have IG0theta: G0 \subset 'I[theta].
  by rewrite (subset_trans sG0G) // -IGtheta subsetIr.
have coG0f: coprime #|G0 : N| f by rewrite (coprime_dvdl _ co_e_f) ?indexSg.
have{m IHm le_e} [c0 c0Ns]: exists c0, 'Res 'chi[G0]_c0 = theta.
  have solG0: solvable (G0 / N) := solvableS (quotientS N sG0G) solG.
  apply: IHm nsNG0 solG0 IG0theta coG0f u0Ndth (leq_trans _ le_e).
  by rewrite -(ltn_pmul2l (cardG_gt0 N)) !Lagrange ?proper_card.
have{c0 c0Ns} [c0 [c0Ns dc0_u0] Uc0] := extend_to_cfdet nsNG0 coG0f c0Ns u0Ndth.
have IGc0: G \subset 'I['chi_c0].
  apply/subsetP=> x Gx; rewrite inE (subsetP nG0G) //= -conjg_IirrE.
  apply/eqP; congr 'chi__; apply: Uc0; rewrite conjg_IirrE.
    by rewrite -(cfConjgRes _ nsG0G nsNG) // c0Ns inertiaJ ?(subsetP IGtheta).
  by rewrite cfDetConjg dc0_u0 -Du0 (cfConjgRes _ _ nsG0G) // cfConjg_id.
have prG0G: prime #|G : G0|.
  have [h injh im_h] := third_isom sNG0 nsNG nsG0G.
  rewrite -card_quotient // -im_h // card_injm //.
  rewrite simple_sol_prime 1?quotient_sol //.
  by rewrite /simple -(injm_minnormal injh) // im_h // maxnormal_minnormal.
have [t tG0c0] := prime_invariant_irr_extendible nsG0G (erefl _) prG0G IGc0.
by exists t; rewrite /theta -c0Ns -tG0c0 cfResRes.
Qed.

(* This is Isaacs, Theorem (6.26). *)
Theorem extend_linear_char_from_Sylow G N (lambda : 'CF(N)) :
    N <| G -> lambda \is a linear_char -> G \subset 'I[lambda] ->
    (forall p, p \in \pi('o(lambda)%CF) ->
       exists2 Hp : {group gT},
         [/\ N \subset Hp, Hp \subset G & p.-Sylow(G / N) (Hp / N)%g]
       & exists u, 'Res 'chi[Hp]_u = lambda) ->
  exists u, 'Res[N, G] 'chi_u = lambda.
Proof.
set m := 'o(lambda)%CF => nsNG lam_lin IGlam p_ext_lam.
have [sNG nNG] := andP nsNG; have linN := @cfRes_lin_lin _ _ N.
wlog [p p_lam]: lambda @m lam_lin IGlam p_ext_lam /
  exists p : nat, \pi(m) =i (p : nat_pred).
- move=> IHp; have [linG [cf [inj_cf _ lin_cf onto_cf]]] := lin_char_group N.
  case=> cf1 cfM cfX _ cf_order; have [lam cf_lam] := onto_cf _ lam_lin.
  pose mu p := cf lam.`_p; pose pi_m p := p \in \pi(m).
  have Dm: m = #[lam] by rewrite /m cfDet_order_lin // cf_lam cf_order.
  have Dlambda: lambda = \prod_(p < m.+1 | pi_m p) mu p.
    rewrite -(big_morph cf cfM cf1) big_mkcond cf_lam /pi_m Dm; congr (cf _).
    rewrite -{1}[lam]prod_constt big_mkord; apply: eq_bigr => p _.
    by case: ifPn => // p'lam; apply/constt1P; rewrite /p_elt p'natEpi.
  have lin_mu p: mu p \is a linear_char by rewrite /mu cfX -cf_lam rpredX.
  suffices /fin_all_exists [u uNlam] (p : 'I_m.+1):
    exists u, pi_m p -> 'Res[N, G] 'chi_u = mu p.
  - pose nu := \prod_(p < m.+1 | pi_m p) 'chi_(u p).
    have lin_nu: nu \is a linear_char.
      by apply: rpred_prod => p m_p; rewrite linN ?irr_char ?uNlam.
    have /irrP[u1 Dnu] := lin_char_irr lin_nu.
    by exists u1; rewrite Dlambda -Dnu rmorph_prod; apply: eq_bigr.
  have [m_p | _] := boolP (pi_m p); last by exists 0.
  have o_mu: \pi('o(mu p)%CF) =i (p : nat_pred).
    rewrite cfDet_order_lin // cf_order orderE /=.
    have [|pr_p _ [k ->]] := pgroup_pdiv (p_elt_constt p lam).
      by rewrite cycle_eq1 (sameP eqP constt1P) /p_elt p'natEpi // negbK -Dm.
    by move=> q; rewrite pi_of_exp // pi_of_prime.
  have IGmu: G \subset 'I[mu p].
    rewrite (subset_trans IGlam) // /mu cfX -cf_lam.
    elim: (chinese _ _ _ _) => [|k IHk]; first by rewrite inertia1 norm_inertia.
    by rewrite exprS (subset_trans _ (inertia_mul _ _)) // subsetIidl.
  have [q||u] := IHp _ (lin_mu p) IGmu; [ | by exists p | by exists u].
  rewrite o_mu => /eqnP-> {q}.
  have [Hp sylHp [u uNlam]] := p_ext_lam p m_p; exists Hp => //.
  rewrite /mu cfX -cf_lam -uNlam -rmorphX /=; set nu := _ ^+ _.
  have /lin_char_irr/irrP[v ->]: nu \is a linear_char; last by exists v.
  by rewrite rpredX // linN ?irr_char ?uNlam.
have pi_m_p: p \in \pi(m) by rewrite p_lam !inE.
have [pr_p mgt0]: prime p /\ (m > 0)%N.
  by have:= pi_m_p; rewrite mem_primes => /and3P[].
have p_m: p.-nat m by rewrite -(eq_pnat _ p_lam) pnat_pi.
have{p_ext_lam} [H [sNH sHG sylHbar] [v vNlam]] := p_ext_lam p pi_m_p.
have co_p_GH: coprime p #|G : H|.
  rewrite -(index_quotient_eq _ sHG nNG) ?subIset ?sNH ?orbT //.
  by rewrite (pnat_coprime (pnat_id pr_p)) //; have [] := and3P sylHbar.
have lin_v: 'chi_v \is a linear_char by rewrite linN ?irr_char ?vNlam.
pose nuG := 'Ind[G] 'chi_v.
have [c vGc co_p_f]: exists2 c, c \in irr_constt nuG & ~~ (p %| 'chi_c 1%g)%C.
  apply/exists_inP; rewrite -negb_forall_in.
  apply: contraL co_p_GH => /forall_inP p_dv_v1.
  rewrite prime_coprime // negbK -dvdC_nat -[rhs in (_ %| rhs)%C]mulr1.
  rewrite -(lin_char1 lin_v) -cfInd1 // ['Ind _]cfun_sum_constt /=.
  rewrite sum_cfunE rpred_sum // => i /p_dv_v1 p_dv_chi1i.
  rewrite cfunE dvdC_mull // rpred_Cnat //.
  by rewrite Cnat_cfdot_char ?cfInd_char ?irr_char.
pose f := truncC ('chi_c 1%g); pose b := (egcdn f m).1.
have fK: f%:R = 'chi_c 1%g by rewrite truncCK ?Cnat_irr1.
have fb_mod_m: f * b = 1 %[mod m].
  have co_m_f: coprime m f.
    by rewrite (pnat_coprime p_m) ?p'natE // -dvdC_nat CdivE fK.
  by rewrite -(chinese_modl co_m_f 1 0) /chinese !mul0n addn0 mul1n.
have /irrP[s Dlam] := lin_char_irr lam_lin.
have cHv: v \in irr_constt ('Res[H] 'chi_c) by rewrite -constt_Ind_Res.
have{cHv} cNs: s \in irr_constt ('Res[N] 'chi_c).
  rewrite -(cfResRes _ sNH) ?(constt_Res_trans _ cHv) ?cfRes_char ?irr_char //.
  by rewrite vNlam Dlam constt_irr !inE.
have DcN: 'Res[N] 'chi_c = lambda *+ f.
  have:= Clifford_Res_sum_cfclass nsNG cNs.
  rewrite cfclass_invariant -Dlam // big_seq1 Dlam => DcN.
  have:= cfRes1 N 'chi_c; rewrite DcN cfunE -Dlam lin_char1 // mulr1 => ->.
  by rewrite -scaler_nat fK.
have /lin_char_irr/irrP[d Dd]: cfDet 'chi_c ^+ b \is a linear_char.
  by rewrite rpredX // cfDet_lin_char.
exists d; rewrite -{}Dd rmorphX /= -cfDetRes ?irr_char // DcN.
rewrite cfDetMn ?lin_charW // -exprM cfDet_id //.
rewrite -(expr_mod _ (exp_cforder _)) -cfDet_order_lin // -/m.
by rewrite fb_mod_m /m cfDet_order_lin // expr_mod ?exp_cforder.
Qed.

(* This is Isaacs, Corollary (6.27). *)
Corollary extend_coprime_linear_char G N (lambda : 'CF(N)) :
    N <| G -> lambda \is a linear_char -> G \subset 'I[lambda] ->
    coprime #|G : N| 'o(lambda)%CF ->
  exists u, [/\ 'Res 'chi[G]_u = lambda, 'o('chi_u)%CF = 'o(lambda)%CF
              & forall v,
                  'Res 'chi_v = lambda -> coprime #|G : N| 'o('chi_v)%CF ->
                v = u].
Proof.
set e := #|G : N| => nsNG lam_lin IGlam co_e_lam; have [sNG nNG] := andP nsNG.
have [p lam_p | v vNlam] := extend_linear_char_from_Sylow nsNG lam_lin IGlam.
  exists N; last first.
    by have /irrP[u ->] := lin_char_irr lam_lin; exists u; rewrite cfRes_id.
  split=> //; rewrite trivg_quotient /pHall sub1G pgroup1 indexg1.
  rewrite card_quotient //= -/e (pi'_p'nat _ lam_p) //.
  rewrite -coprime_pi' ?indexg_gt0 1?coprime_sym //.
  by have:= lam_p; rewrite mem_primes => /and3P[].
set nu := 'chi_v in vNlam.
have lin_nu: nu \is a linear_char.
  by rewrite (@cfRes_lin_lin _ _ N) ?vNlam ?irr_char.
have [b be_mod_lam]: exists b, b * e = 1 %[mod 'o(lambda)%CF].
  rewrite -(chinese_modr co_e_lam 0 1) /chinese !mul0n !mul1n mulnC.
  by set b := _.1; exists b.
have /irrP[u Du]: nu ^+ (b * e) \in irr G by rewrite lin_char_irr ?rpredX.
exists u; set mu := 'chi_u in Du *.
have uNlam: 'Res mu = lambda.
  rewrite cfDet_order_lin // in be_mod_lam.
  rewrite -Du rmorphX /= vNlam -(expr_mod _ (exp_cforder _)) //.
  by rewrite be_mod_lam expr_mod ?exp_cforder.
have lin_mu: mu \is a linear_char by rewrite -Du rpredX.
have o_mu: ('o(mu) = 'o(lambda))%CF.
  have dv_o_lam_mu: 'o(lambda)%CF %| 'o(mu)%CF.
    by rewrite !cfDet_order_lin // -uNlam cforder_Res.
  have kerNnu_olam: N \subset cfker (nu ^+ 'o(lambda)%CF).
    rewrite -subsetIidl -cfker_Res ?rpredX ?irr_char //.
    by rewrite rmorphX /= vNlam cfDet_order_lin // exp_cforder cfker_cfun1.
  apply/eqP; rewrite eqn_dvd dv_o_lam_mu andbT cfDet_order_lin //.
  rewrite dvdn_cforder -Du exprAC -dvdn_cforder dvdn_mull //.
  rewrite -(cfQuoK nsNG kerNnu_olam) cforder_mod // /e -card_quotient //.
  by rewrite cforder_lin_char_dvdG ?cfQuo_lin_char ?rpredX.
split=> // t tNlam co_e_t.
have lin_t: 'chi_t \is a linear_char.
  by rewrite (@cfRes_lin_lin _ _ N) ?tNlam ?irr_char.
have Ut := lin_char_unitr lin_t.
have kerN_mu_t: N \subset cfker (mu / 'chi_t)%R.
  rewrite -subsetIidl -cfker_Res ?lin_charW ?rpred_div ?rmorph_div //.
  by rewrite /= uNlam tNlam divrr ?lin_char_unitr ?cfker_cfun1.
have co_e_mu_t: coprime e #[(mu / 'chi_t)%R]%CF.
  suffices dv_o_mu_t: #[(mu / 'chi_t)%R]%CF %| 'o(mu)%CF * 'o('chi_t)%CF.
    by rewrite (coprime_dvdr dv_o_mu_t) // coprimeMr o_mu co_e_lam.
  rewrite !cfDet_order_lin //; apply/dvdn_cforderP=> x Gx.
  rewrite invr_lin_char // !cfunE exprMn -rmorphX {2}mulnC.
  by rewrite !(dvdn_cforderP _) ?conjC1 ?mulr1 // dvdn_mulr.
have /eqP mu_t_1: mu / 'chi_t == 1.
  rewrite -(dvdn_cforder (_ / _)%R 1) -(eqnP co_e_mu_t) dvdn_gcd dvdnn andbT.
  rewrite -(cfQuoK nsNG kerN_mu_t) cforder_mod // /e -card_quotient //.
  by rewrite cforder_lin_char_dvdG ?cfQuo_lin_char ?rpred_div.
by apply: irr_inj; rewrite -['chi_t]mul1r -mu_t_1 divrK.
Qed.

(* This is Isaacs, Corollary (6.28). *)
Corollary extend_solvable_coprime_irr G N t (theta := 'chi[N]_t) :
    N <| G -> solvable (G / N) -> G \subset 'I[theta] ->
    coprime #|G : N| ('o(theta)%CF * truncC (theta 1%g)) ->
  exists c, [/\ 'Res 'chi[G]_c = theta, 'o('chi_c)%CF = 'o(theta)%CF
              & forall d,
                  'Res 'chi_d = theta -> coprime #|G : N| 'o('chi_d)%CF ->
                d = c].
Proof.
set e := #|G : N|; set f := truncC _ => nsNG solG IGtheta.
rewrite coprimeMr => /andP[co_e_th co_e_f].
have [sNG nNG] := andP nsNG; pose lambda := cfDet theta.
have lin_lam: lambda \is a linear_char := cfDet_lin_char theta.
have IGlam: G \subset 'I[lambda].
  apply/subsetP=> y /(subsetP IGtheta)/setIdP[nNy /eqP th_y].
  by rewrite inE nNy /= -cfDetConjg th_y.
have co_e_lam: coprime e 'o(lambda)%CF by rewrite cfDet_order_lin.
have [//|u [uNlam o_u Uu]] := extend_coprime_linear_char nsNG lin_lam IGlam.
have /exists_eqP[c cNth]: [exists c, 'Res 'chi[G]_c == theta].
  rewrite solvable_irr_extendible_from_det //.
  by apply/exists_eqP; exists u.
have{c cNth} [c [cNth det_c] Uc] := extend_to_cfdet nsNG co_e_f cNth uNlam.
have lin_u: 'chi_u \is a linear_char by rewrite -det_c cfDet_lin_char.
exists c; split=> // [|c0 c0Nth co_e_c0].
  by rewrite !cfDet_order_lin // -det_c in o_u.
have lin_u0: cfDet 'chi_c0 \is a linear_char := cfDet_lin_char 'chi_c0.
have /irrP[u0 Du0] := lin_char_irr lin_u0.
have co_e_u0: coprime e 'o('chi_u0)%CF by rewrite -Du0 cfDet_order_lin.
have eq_u0u: u0 = u by apply: Uu; rewrite // -Du0 -cfDetRes ?irr_char ?c0Nth.
by apply: Uc; rewrite // Du0 eq_u0u.
Qed.

End ExtendInvariantIrr.

Section Frobenius.

Variables (gT : finGroupType) (G K : {group gT}).

(* Because he only defines Frobenius groups in chapter 7, Isaacs does not     *)
(* state these theorems using the Frobenius property.                         *)
Hypothesis frobGK : [Frobenius G with kernel K].

(* This is Isaacs, Theorem 6.34(a1). *)
Theorem inertia_Frobenius_ker i : i != 0 -> 'I_G['chi[K]_i] = K.
Proof.
have [_ _ nsKG regK] := Frobenius_kerP frobGK; have [sKG nKG] := andP nsKG.
move=> nzi; apply/eqP; rewrite eqEsubset sub_Inertia // andbT.
apply/subsetP=> x /setIP[Gx /setIdP[nKx /eqP x_stab_i]].
have actIirrK: is_action G (@conjg_Iirr _ K).
  split=> [y j k eq_jk | j y z Gy Gz].
    by apply/irr_inj/(can_inj (cfConjgK y)); rewrite -!conjg_IirrE eq_jk.
  by apply: irr_inj; rewrite !conjg_IirrE (cfConjgM _ nsKG).
pose ito := Action actIirrK; pose cto := ('Js \ (subsetT G))%act.
have acts_Js : [acts G, on classes K | 'Js].
  apply/subsetP=> y Gy; have nKy := subsetP nKG y Gy.
  rewrite !inE; apply/subsetP=> _ /imsetP[z Gz ->]; rewrite !inE /=.
  rewrite -class_rcoset norm_rlcoset // class_lcoset.
  by apply: imset_f; rewrite memJ_norm.
have acts_cto : [acts G, on classes K | cto] by rewrite astabs_ract subsetIidl.
pose m := #|'Fix_(classes K | cto)[x]|.
have def_m: #|'Fix_ito[x]| = m.
  apply: card_afix_irr_classes => // j y _ Ky /imsetP[_ /imsetP[z Kz ->] ->].
  by rewrite conjg_IirrE cfConjgEJ // cfunJ.
have: (m != 1)%N.
  rewrite -def_m (cardD1 (0 : Iirr K)) (cardD1 i) !(inE, sub1set) /=.
  by rewrite conjg_Iirr0 nzi eqxx -(inj_eq irr_inj) conjg_IirrE x_stab_i eqxx.
apply: contraR => notKx; apply/cards1P; exists 1%g; apply/esym/eqP.
rewrite eqEsubset !(sub1set, inE) classes1 /= conjs1g eqxx /=.
apply/subsetP=> _ /setIP[/imsetP[y Ky ->] /afix1P /= cyKx].
have /imsetP[z Kz def_yx]: y ^ x \in y ^: K.
  by rewrite -cyKx; apply: imset_f; apply: class_refl.
rewrite inE classG_eq1; apply: contraR notKx => nty.
rewrite -(groupMr x (groupVr Kz)).
apply: (subsetP (regK y _)); first exact/setD1P.
rewrite !inE groupMl // groupV (subsetP sKG) //=.
by rewrite conjg_set1 conjgM def_yx conjgK.
Qed.

(* This is Isaacs, Theorem 6.34(a2) *)
Theorem irr_induced_Frobenius_ker i : i != 0 -> 'Ind[G, K] 'chi_i \in irr G.
Proof.
move/inertia_Frobenius_ker/group_inj=> defK.
have [_ _ nsKG _] := Frobenius_kerP frobGK.
have [] := constt_Inertia_bijection i nsKG; rewrite defK cfInd_id => -> //.
by rewrite constt_irr !inE.
Qed.

(* This is Isaacs, Theorem 6.34(b) *)
Theorem Frobenius_Ind_irrP j :
  reflect (exists2 i, i != 0 & 'chi_j = 'Ind[G, K] 'chi_i)
          (~~ (K \subset cfker 'chi_j)).
Proof.
have [_ _ nsKG _] := Frobenius_kerP frobGK; have [sKG nKG] := andP nsKG.
apply: (iffP idP) => [not_chijK1 | [i nzi ->]]; last first.
  by rewrite cfker_Ind_irr ?sub_gcore // subGcfker.
have /neq0_has_constt[i chijKi]: 'Res[K] 'chi_j != 0 by apply: Res_irr_neq0.
have nz_i: i != 0.
  by apply: contraNneq not_chijK1 => i0; rewrite constt0_Res_cfker // -i0.
have /irrP[k def_chik] := irr_induced_Frobenius_ker nz_i.
have: '['chi_j, 'chi_k] != 0 by rewrite -def_chik -cfdot_Res_l.
by rewrite cfdot_irr pnatr_eq0; case: (j =P k) => // ->; exists i.
Qed.

End Frobenius.