1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import div fintype path bigop order finset fingroup.
From mathcomp Require Import ssralg poly.
(******************************************************************************)
(* This file defines some classes to manipulate number structures, i.e *)
(* structures with an order and a norm. To use this file, insert *)
(* "Import Num.Theory." before your scripts. You can also "Import Num.Def." *)
(* to enjoy shorter notations (e.g., minr instead of Num.min, lerif instead *)
(* of Num.leif, etc.). *)
(* *)
(* * NumDomain (Integral domain with an order and a norm) *)
(* numDomainType == interface for a num integral domain. *)
(* NumDomainType T m *)
(* == packs the num mixin into a numDomainType. The carrier *)
(* T must have an integral domain and a partial order *)
(* structures. *)
(* [numDomainType of T for S] *)
(* == T-clone of the numDomainType structure S. *)
(* [numDomainType of T] *)
(* == clone of a canonical numDomainType structure on T. *)
(* *)
(* * NormedZmodule (Zmodule with a norm) *)
(* normedZmodType R *)
(* == interface for a normed Zmodule structure indexed by *)
(* numDomainType R. *)
(* NormedZmodType R T m *)
(* == pack the normed Zmodule mixin into a normedZmodType. *)
(* The carrier T must have an integral domain structure. *)
(* [normedZmodType R of T for S] *)
(* == T-clone of the normedZmodType R structure S. *)
(* [normedZmodType R of T] *)
(* == clone of a canonical normedZmodType R structure on T. *)
(* *)
(* * NumField (Field with an order and a norm) *)
(* numFieldType == interface for a num field. *)
(* [numFieldType of T] *)
(* == clone of a canonical numFieldType structure on T. *)
(* *)
(* * NumClosedField (Partially ordered Closed Field with conjugation) *)
(* numClosedFieldType *)
(* == interface for a closed field with conj. *)
(* NumClosedFieldType T r *)
(* == packs the real closed axiom r into a *)
(* numClosedFieldType. The carrier T must have a closed *)
(* field type structure. *)
(* [numClosedFieldType of T] *)
(* == clone of a canonical numClosedFieldType structure on T.*)
(* [numClosedFieldType of T for S] *)
(* == T-clone of the numClosedFieldType structure S. *)
(* *)
(* * RealDomain (Num domain where all elements are positive or negative) *)
(* realDomainType == interface for a real integral domain. *)
(* [realDomainType of T] *)
(* == clone of a canonical realDomainType structure on T. *)
(* *)
(* * RealField (Num Field where all elements are positive or negative) *)
(* realFieldType == interface for a real field. *)
(* [realFieldType of T] *)
(* == clone of a canonical realFieldType structure on T. *)
(* *)
(* * ArchiField (A Real Field with the archimedean axiom) *)
(* archiFieldType == interface for an archimedean field. *)
(* ArchiFieldType T r *)
(* == packs the archimedean axiom r into an archiFieldType. *)
(* The carrier T must have a real field type structure. *)
(* [archiFieldType of T for S] *)
(* == T-clone of the archiFieldType structure S. *)
(* [archiFieldType of T] *)
(* == clone of a canonical archiFieldType structure on T. *)
(* *)
(* * RealClosedField (Real Field with the real closed axiom) *)
(* rcfType == interface for a real closed field. *)
(* RcfType T r == packs the real closed axiom r into a rcfType. *)
(* The carrier T must have a real field type structure. *)
(* [rcfType of T] == clone of a canonical realClosedFieldType structure on *)
(* T. *)
(* [rcfType of T for S] *)
(* == T-clone of the realClosedFieldType structure S. *)
(* *)
(* The ordering symbols and notations (<, <=, >, >=, _ <= _ ?= iff _, >=<, *)
(* and ><) and lattice operations (meet and join) defined in order.v are *)
(* redefined for the ring_display in the ring_scope (%R). 0-ary ordering *)
(* symbols for the ring_display have the suffix "%R", e.g., <%R. All the *)
(* other ordering notations are the same as order.v. The meet and join *)
(* operators for the ring_display are Num.min and Num.max. *)
(* *)
(* Over these structures, we have the following operations *)
(* `|x| == norm of x. *)
(* Num.sg x == sign of x: equal to 0 iff x = 0, to 1 iff x > 0, and *)
(* to -1 in all other cases (including x < 0). *)
(* x \is a Num.pos <=> x is positive (:= x > 0). *)
(* x \is a Num.neg <=> x is negative (:= x < 0). *)
(* x \is a Num.nneg <=> x is positive or 0 (:= x >= 0). *)
(* x \is a Num.real <=> x is real (:= x >= 0 or x < 0). *)
(* Num.bound x == in archimedean fields, and upper bound for x, i.e., *)
(* and n such that `|x| < n%:R. *)
(* Num.sqrt x == in a real-closed field, a positive square root of x if *)
(* x >= 0, or 0 otherwise. *)
(* For numeric algebraically closed fields we provide the generic definitions *)
(* 'i == the imaginary number (:= sqrtC (-1)). *)
(* 'Re z == the real component of z. *)
(* 'Im z == the imaginary component of z. *)
(* z^* == the complex conjugate of z (:= conjC z). *)
(* sqrtC z == a nonnegative square root of z, i.e., 0 <= sqrt x if 0 <= x. *)
(* n.-root z == more generally, for n > 0, an nth root of z, chosen with a *)
(* minimal non-negative argument for n > 1 (i.e., with a *)
(* maximal real part subject to a nonnegative imaginary part). *)
(* Note that n.-root (-1) is a primitive 2nth root of unity, *)
(* an thus not equal to -1 for n odd > 1 (this will be shown in *)
(* file cyclotomic.v). *)
(* *)
(* - list of prefixes : *)
(* p : positive *)
(* n : negative *)
(* sp : strictly positive *)
(* sn : strictly negative *)
(* i : interior = in [0, 1] or ]0, 1[ *)
(* e : exterior = in [1, +oo[ or ]1; +oo[ *)
(* w : non strict (weak) monotony *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope order_scope.
Local Open Scope ring_scope.
Import Order.TTheory GRing.Theory.
Reserved Notation "<= y" (at level 35).
Reserved Notation ">= y" (at level 35).
Reserved Notation "< y" (at level 35).
Reserved Notation "> y" (at level 35).
Reserved Notation "<= y :> T" (at level 35, y at next level).
Reserved Notation ">= y :> T" (at level 35, y at next level).
Reserved Notation "< y :> T" (at level 35, y at next level).
Reserved Notation "> y :> T" (at level 35, y at next level).
Fact ring_display : unit. Proof. exact: tt. Qed.
Module Num.
Record normed_mixin_of (R T : zmodType) (Rorder : lePOrderMixin R)
(le_op := Order.POrder.le Rorder)
:= NormedMixin {
norm_op : T -> R;
_ : forall x y, le_op (norm_op (x + y)) (norm_op x + norm_op y);
_ : forall x, norm_op x = 0 -> x = 0;
_ : forall x n, norm_op (x *+ n) = norm_op x *+ n;
_ : forall x, norm_op (- x) = norm_op x;
}.
Record mixin_of (R : ringType) (Rorder : lePOrderMixin R)
(le_op := Order.POrder.le Rorder) (lt_op := Order.POrder.lt Rorder)
(normed : @normed_mixin_of R R Rorder) (norm_op := norm_op normed)
:= Mixin {
_ : forall x y, lt_op 0 x -> lt_op 0 y -> lt_op 0 (x + y);
_ : forall x y, le_op 0 x -> le_op 0 y -> le_op x y || le_op y x;
_ : {morph norm_op : x y / x * y};
_ : forall x y, (le_op x y) = (norm_op (y - x) == y - x);
}.
Local Notation ring_for T b := (@GRing.Ring.Pack T b).
Module NumDomain.
Section ClassDef.
Record class_of T := Class {
base : GRing.IntegralDomain.class_of T;
order_mixin : lePOrderMixin (ring_for T base);
normed_mixin : normed_mixin_of (ring_for T base) order_mixin;
mixin : mixin_of normed_mixin;
}.
Local Coercion base : class_of >-> GRing.IntegralDomain.class_of.
Local Coercion order_base T (class_of_T : class_of T) :=
@Order.POrder.Class _ class_of_T (order_mixin class_of_T).
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition clone c of phant_id class c := @Pack T c.
Definition pack (b0 : GRing.IntegralDomain.class_of _) om0
(nm0 : @normed_mixin_of (ring_for T b0) (ring_for T b0) om0)
(m0 : @mixin_of (ring_for T b0) om0 nm0) :=
fun bT (b : GRing.IntegralDomain.class_of T)
& phant_id (@GRing.IntegralDomain.class bT) b =>
fun om & phant_id om0 om =>
fun nm & phant_id nm0 nm =>
fun m & phant_id m0 m =>
@Pack T (@Class T b om nm m).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition comRingType := @GRing.ComRing.Pack cT xclass.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
Definition porderType := @Order.POrder.Pack ring_display cT xclass.
Definition porder_zmodType := @GRing.Zmodule.Pack porderType xclass.
Definition porder_ringType := @GRing.Ring.Pack porderType xclass.
Definition porder_comRingType := @GRing.ComRing.Pack porderType xclass.
Definition porder_unitRingType := @GRing.UnitRing.Pack porderType xclass.
Definition porder_comUnitRingType := @GRing.ComUnitRing.Pack porderType xclass.
Definition porder_idomainType := @GRing.IntegralDomain.Pack porderType xclass.
End ClassDef.
Module Exports.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion base : class_of >-> GRing.IntegralDomain.class_of.
Coercion order_base : class_of >-> Order.POrder.class_of.
Coercion normed_mixin : class_of >-> normed_mixin_of.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion porderType : type >-> Order.POrder.type.
Canonical porderType.
Canonical porder_zmodType.
Canonical porder_ringType.
Canonical porder_comRingType.
Canonical porder_unitRingType.
Canonical porder_comUnitRingType.
Canonical porder_idomainType.
Notation numDomainType := type.
Notation NumDomainType T m := (@pack T _ _ _ m _ _ id _ id _ id _ id).
Notation "[ 'numDomainType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
(at level 0, format "[ 'numDomainType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'numDomainType' 'of' T ]" := (@clone T _ _ id)
(at level 0, format "[ 'numDomainType' 'of' T ]") : form_scope.
End Exports.
End NumDomain.
Import NumDomain.Exports.
Local Notation num_for T b := (@NumDomain.Pack T b).
Module NormedZmodule.
Section ClassDef.
Variable R : numDomainType.
Record class_of (T : Type) := Class {
base : GRing.Zmodule.class_of T;
mixin : @normed_mixin_of R (@GRing.Zmodule.Pack T base) (NumDomain.class R);
}.
Local Coercion base : class_of >-> GRing.Zmodule.class_of.
Local Coercion mixin : class_of >-> normed_mixin_of.
Structure type (phR : phant R) :=
Pack { sort; _ : class_of sort }.
Local Coercion sort : type >-> Sortclass.
Variables (phR : phant R) (T : Type) (cT : type phR).
Definition class := let: Pack _ c := cT return class_of cT in c.
Definition clone c of phant_id class c := @Pack phR T c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition pack b0 (m0 : @normed_mixin_of R (@GRing.Zmodule.Pack T b0)
(NumDomain.class R)) :=
Pack phR (@Class T b0 m0).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
End ClassDef.
(* TODO: Ideally,`numDomain_normedZmodType` should be located in *)
(* `NumDomain_joins`. Currently, it's located here to make `hierarchy.ml` can *)
(* recognize that `numDomainType` inherits `normedZmodType`. *)
Definition numDomain_normedZmodType (R : numDomainType) : type (Phant R) :=
@Pack R (Phant R) R (Class (NumDomain.normed_mixin (NumDomain.class R))).
Module Exports.
Coercion base : class_of >-> GRing.Zmodule.class_of.
Coercion mixin : class_of >-> normed_mixin_of.
Coercion sort : type >-> Sortclass.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion numDomain_normedZmodType : NumDomain.type >-> type.
Canonical numDomain_normedZmodType.
Notation normedZmodType R := (type (Phant R)).
Notation NormedZmodType R T m := (@pack _ (Phant R) T _ m).
Notation NormedZmodMixin := Mixin.
Notation "[ 'normedZmodType' R 'of' T 'for' cT ]" :=
(@clone _ (Phant R) T cT _ idfun)
(at level 0, format "[ 'normedZmodType' R 'of' T 'for' cT ]") :
form_scope.
Notation "[ 'normedZmodType' R 'of' T ]" := (@clone _ (Phant R) T _ _ id)
(at level 0, format "[ 'normedZmodType' R 'of' T ]") : form_scope.
End Exports.
End NormedZmodule.
Import NormedZmodule.Exports.
Module NumDomain_joins.
Import NumDomain.
Section NumDomain_joins.
Variables (T : Type) (cT : type).
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class cT : class_of xT).
(* Definition normedZmodType : normedZmodType cT := *)
(* @NormedZmodule.Pack *)
(* cT (Phant cT) cT *)
(* (NormedZmodule.Class (NumDomain.normed_mixin xclass)). *)
Notation normedZmodType := (NormedZmodule.numDomain_normedZmodType cT).
Definition normedZmod_ringType :=
@GRing.Ring.Pack normedZmodType xclass.
Definition normedZmod_comRingType :=
@GRing.ComRing.Pack normedZmodType xclass.
Definition normedZmod_unitRingType :=
@GRing.UnitRing.Pack normedZmodType xclass.
Definition normedZmod_comUnitRingType :=
@GRing.ComUnitRing.Pack normedZmodType xclass.
Definition normedZmod_idomainType :=
@GRing.IntegralDomain.Pack normedZmodType xclass.
Definition normedZmod_porderType :=
@Order.POrder.Pack ring_display normedZmodType xclass.
End NumDomain_joins.
Module Exports.
(* Coercion normedZmodType : type >-> NormedZmodule.type. *)
(* Canonical normedZmodType. *)
Canonical normedZmod_ringType.
Canonical normedZmod_comRingType.
Canonical normedZmod_unitRingType.
Canonical normedZmod_comUnitRingType.
Canonical normedZmod_idomainType.
Canonical normedZmod_porderType.
End Exports.
End NumDomain_joins.
Export NumDomain_joins.Exports.
Module Import Def.
Definition normr (R : numDomainType) (T : normedZmodType R) : T -> R :=
nosimpl (norm_op (NormedZmodule.class T)).
Arguments normr {R T} x.
Notation ler := (@Order.le ring_display _) (only parsing).
Notation "@ 'ler' R" := (@Order.le ring_display R)
(at level 10, R at level 8, only parsing) : fun_scope.
Notation ltr := (@Order.lt ring_display _) (only parsing).
Notation "@ 'ltr' R" := (@Order.lt ring_display R)
(at level 10, R at level 8, only parsing) : fun_scope.
Notation ger := (@Order.ge ring_display _) (only parsing).
Notation "@ 'ger' R" := (@Order.ge ring_display R)
(at level 10, R at level 8, only parsing) : fun_scope.
Notation gtr := (@Order.gt ring_display _) (only parsing).
Notation "@ 'gtr' R" := (@Order.gt ring_display R)
(at level 10, R at level 8, only parsing) : fun_scope.
Notation lerif := (@Order.leif ring_display _) (only parsing).
Notation "@ 'lerif' R" := (@Order.leif ring_display R)
(at level 10, R at level 8, only parsing) : fun_scope.
Notation comparabler := (@Order.comparable ring_display _) (only parsing).
Notation "@ 'comparabler' R" := (@Order.comparable ring_display R)
(at level 10, R at level 8, only parsing) : fun_scope.
Notation maxr := (@Order.join ring_display _).
Notation "@ 'maxr' R" := (@Order.join ring_display R)
(at level 10, R at level 8, only parsing) : fun_scope.
Notation minr := (@Order.meet ring_display _).
Notation "@ 'minr' R" := (@Order.meet ring_display R)
(at level 10, R at level 8, only parsing) : fun_scope.
Section Def.
Context {R : numDomainType}.
Implicit Types (x : R).
Definition sgr x : R := if x == 0 then 0 else if x < 0 then -1 else 1.
Definition Rpos : qualifier 0 R := [qualify x : R | 0 < x].
Definition Rneg : qualifier 0 R := [qualify x : R | x < 0].
Definition Rnneg : qualifier 0 R := [qualify x : R | 0 <= x].
Definition Rreal : qualifier 0 R := [qualify x : R | (0 <= x) || (x <= 0)].
End Def. End Def.
(* Shorter qualified names, when Num.Def is not imported. *)
Notation norm := normr (only parsing).
Notation le := ler (only parsing).
Notation lt := ltr (only parsing).
Notation ge := ger (only parsing).
Notation gt := gtr (only parsing).
Notation leif := lerif (only parsing).
Notation comparable := comparabler (only parsing).
Notation sg := sgr.
Notation max := maxr.
Notation min := minr.
Notation pos := Rpos.
Notation neg := Rneg.
Notation nneg := Rnneg.
Notation real := Rreal.
Module Keys. Section Keys.
Variable R : numDomainType.
Fact Rpos_key : pred_key (@pos R). Proof. by []. Qed.
Definition Rpos_keyed := KeyedQualifier Rpos_key.
Fact Rneg_key : pred_key (@real R). Proof. by []. Qed.
Definition Rneg_keyed := KeyedQualifier Rneg_key.
Fact Rnneg_key : pred_key (@nneg R). Proof. by []. Qed.
Definition Rnneg_keyed := KeyedQualifier Rnneg_key.
Fact Rreal_key : pred_key (@real R). Proof. by []. Qed.
Definition Rreal_keyed := KeyedQualifier Rreal_key.
End Keys. End Keys.
(* (Exported) symbolic syntax. *)
Module Import Syntax.
Import Def Keys.
Notation "`| x |" := (norm x) : ring_scope.
Notation "<=%R" := le : fun_scope.
Notation ">=%R" := ge : fun_scope.
Notation "<%R" := lt : fun_scope.
Notation ">%R" := gt : fun_scope.
Notation "<?=%R" := leif : fun_scope.
Notation ">=<%R" := comparable : fun_scope.
Notation "><%R" := (fun x y => ~~ (comparable x y)) : fun_scope.
Notation "<= y" := (ge y) : ring_scope.
Notation "<= y :> T" := (<= (y : T)) (only parsing) : ring_scope.
Notation ">= y" := (le y) : ring_scope.
Notation ">= y :> T" := (>= (y : T)) (only parsing) : ring_scope.
Notation "< y" := (gt y) : ring_scope.
Notation "< y :> T" := (< (y : T)) (only parsing) : ring_scope.
Notation "> y" := (lt y) : ring_scope.
Notation "> y :> T" := (> (y : T)) (only parsing) : ring_scope.
Notation ">=< y" := (comparable y) : ring_scope.
Notation ">=< y :> T" := (>=< (y : T)) (only parsing) : ring_scope.
Notation "x <= y" := (le x y) : ring_scope.
Notation "x <= y :> T" := ((x : T) <= (y : T)) (only parsing) : ring_scope.
Notation "x >= y" := (y <= x) (only parsing) : ring_scope.
Notation "x >= y :> T" := ((x : T) >= (y : T)) (only parsing) : ring_scope.
Notation "x < y" := (lt x y) : ring_scope.
Notation "x < y :> T" := ((x : T) < (y : T)) (only parsing) : ring_scope.
Notation "x > y" := (y < x) (only parsing) : ring_scope.
Notation "x > y :> T" := ((x : T) > (y : T)) (only parsing) : ring_scope.
Notation "x <= y <= z" := ((x <= y) && (y <= z)) : ring_scope.
Notation "x < y <= z" := ((x < y) && (y <= z)) : ring_scope.
Notation "x <= y < z" := ((x <= y) && (y < z)) : ring_scope.
Notation "x < y < z" := ((x < y) && (y < z)) : ring_scope.
Notation "x <= y ?= 'iff' C" := (lerif x y C) : ring_scope.
Notation "x <= y ?= 'iff' C :> R" := ((x : R) <= (y : R) ?= iff C)
(only parsing) : ring_scope.
Notation ">=< x" := (comparable x) : ring_scope.
Notation ">=< x :> T" := (>=< (x : T)) (only parsing) : ring_scope.
Notation "x >=< y" := (comparable x y) : ring_scope.
Notation ">< x" := (fun y => ~~ (comparable x y)) : ring_scope.
Notation ">< x :> T" := (>< (x : T)) (only parsing) : ring_scope.
Notation "x >< y" := (~~ (comparable x y)) : ring_scope.
Canonical Rpos_keyed.
Canonical Rneg_keyed.
Canonical Rnneg_keyed.
Canonical Rreal_keyed.
Export Order.POCoercions.
End Syntax.
Section ExtensionAxioms.
Variable R : numDomainType.
Definition real_axiom : Prop := forall x : R, x \is real.
Definition archimedean_axiom : Prop := forall x : R, exists ub, `|x| < ub%:R.
Definition real_closed_axiom : Prop :=
forall (p : {poly R}) (a b : R),
a <= b -> p.[a] <= 0 <= p.[b] -> exists2 x, a <= x <= b & root p x.
End ExtensionAxioms.
(* The rest of the numbers interface hierarchy. *)
Module NumField.
Section ClassDef.
Record class_of R := Class {
base : NumDomain.class_of R;
mixin : GRing.Field.mixin_of (num_for R base);
}.
Local Coercion base : class_of >-> NumDomain.class_of.
Local Coercion base2 R (c : class_of R) : GRing.Field.class_of _ :=
GRing.Field.Class (@mixin _ c).
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition pack :=
fun bT b & phant_id (NumDomain.class bT) (b : NumDomain.class_of T) =>
fun mT m & phant_id (GRing.Field.mixin (GRing.Field.class mT)) m =>
Pack (@Class T b m).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition comRingType := @GRing.ComRing.Pack cT xclass.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
Definition porderType := @Order.POrder.Pack ring_display cT xclass.
Definition numDomainType := @NumDomain.Pack cT xclass.
Definition fieldType := @GRing.Field.Pack cT xclass.
Definition normedZmodType := NormedZmodType numDomainType cT xclass.
Definition porder_fieldType := @GRing.Field.Pack porderType xclass.
Definition normedZmod_fieldType :=
@GRing.Field.Pack normedZmodType xclass.
Definition numDomain_fieldType := @GRing.Field.Pack numDomainType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> NumDomain.class_of.
Coercion base2 : class_of >-> GRing.Field.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion porderType : type >-> Order.POrder.type.
Canonical porderType.
Coercion numDomainType : type >-> NumDomain.type.
Canonical numDomainType.
Coercion fieldType : type >-> GRing.Field.type.
Canonical fieldType.
Coercion normedZmodType : type >-> NormedZmodule.type.
Canonical normedZmodType.
Canonical porder_fieldType.
Canonical normedZmod_fieldType.
Canonical numDomain_fieldType.
Notation numFieldType := type.
Notation "[ 'numFieldType' 'of' T ]" := (@pack T _ _ id _ _ id)
(at level 0, format "[ 'numFieldType' 'of' T ]") : form_scope.
End Exports.
End NumField.
Import NumField.Exports.
Module ClosedField.
Section ClassDef.
Record imaginary_mixin_of (R : numDomainType) := ImaginaryMixin {
imaginary : R;
conj_op : {rmorphism R -> R};
_ : imaginary ^+ 2 = - 1;
_ : forall x, x * conj_op x = `|x| ^+ 2;
}.
Record class_of R := Class {
base : NumField.class_of R;
decField_mixin : GRing.DecidableField.mixin_of (num_for R base);
closedField_axiom : GRing.ClosedField.axiom (num_for R base);
conj_mixin : imaginary_mixin_of (num_for R base);
}.
Local Coercion base : class_of >-> NumField.class_of.
Local Coercion base2 R (c : class_of R) : GRing.ClosedField.class_of R :=
@GRing.ClosedField.Class
R (@GRing.DecidableField.Class R (base c) (@decField_mixin _ c))
(@closedField_axiom _ c).
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition clone := fun b & phant_id class (b : class_of T) => Pack b.
Definition pack :=
fun bT b & phant_id (NumField.class bT) (b : NumField.class_of T) =>
fun mT dec closed
& phant_id (GRing.ClosedField.class mT)
(@GRing.ClosedField.Class
_ (@GRing.DecidableField.Class _ b dec) closed) =>
fun mc => Pack (@Class T b dec closed mc).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition comRingType := @GRing.ComRing.Pack cT xclass.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
Definition porderType := @Order.POrder.Pack ring_display cT xclass.
Definition numDomainType := @NumDomain.Pack cT xclass.
Definition fieldType := @GRing.Field.Pack cT xclass.
Definition numFieldType := @NumField.Pack cT xclass.
Definition decFieldType := @GRing.DecidableField.Pack cT xclass.
Definition closedFieldType := @GRing.ClosedField.Pack cT xclass.
Definition normedZmodType := NormedZmodType numDomainType cT xclass.
Definition porder_decFieldType := @GRing.DecidableField.Pack porderType xclass.
Definition normedZmod_decFieldType :=
@GRing.DecidableField.Pack normedZmodType xclass.
Definition numDomain_decFieldType :=
@GRing.DecidableField.Pack numDomainType xclass.
Definition numField_decFieldType :=
@GRing.DecidableField.Pack numFieldType xclass.
Definition porder_closedFieldType := @GRing.ClosedField.Pack porderType xclass.
Definition normedZmod_closedFieldType :=
@GRing.ClosedField.Pack normedZmodType xclass.
Definition numDomain_closedFieldType :=
@GRing.ClosedField.Pack numDomainType xclass.
Definition numField_closedFieldType :=
@GRing.ClosedField.Pack numFieldType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> NumField.class_of.
Coercion base2 : class_of >-> GRing.ClosedField.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion porderType : type >-> Order.POrder.type.
Canonical porderType.
Coercion numDomainType : type >-> NumDomain.type.
Canonical numDomainType.
Coercion fieldType : type >-> GRing.Field.type.
Canonical fieldType.
Coercion decFieldType : type >-> GRing.DecidableField.type.
Canonical decFieldType.
Coercion numFieldType : type >-> NumField.type.
Canonical numFieldType.
Coercion closedFieldType : type >-> GRing.ClosedField.type.
Canonical closedFieldType.
Coercion normedZmodType : type >-> NormedZmodule.type.
Canonical normedZmodType.
Canonical porder_decFieldType.
Canonical normedZmod_decFieldType.
Canonical numDomain_decFieldType.
Canonical numField_decFieldType.
Canonical porder_closedFieldType.
Canonical normedZmod_closedFieldType.
Canonical numDomain_closedFieldType.
Canonical numField_closedFieldType.
Notation numClosedFieldType := type.
Notation NumClosedFieldType T m := (@pack T _ _ id _ _ _ id m).
Notation "[ 'numClosedFieldType' 'of' T 'for' cT ]" := (@clone T cT _ id)
(at level 0, format "[ 'numClosedFieldType' 'of' T 'for' cT ]") :
form_scope.
Notation "[ 'numClosedFieldType' 'of' T ]" := (@clone T _ _ id)
(at level 0, format "[ 'numClosedFieldType' 'of' T ]") : form_scope.
End Exports.
End ClosedField.
Import ClosedField.Exports.
Module RealDomain.
Section ClassDef.
Record class_of R := Class {
base : NumDomain.class_of R;
lmixin_disp : unit;
lmixin : Order.DistrLattice.mixin_of (Order.POrder.Pack lmixin_disp base);
tmixin_disp : unit;
tmixin : Order.Total.mixin_of
(Order.DistrLattice.Pack
tmixin_disp (Order.DistrLattice.Class lmixin));
}.
Local Coercion base : class_of >-> NumDomain.class_of.
Local Coercion base2 T (c : class_of T) : Order.Total.class_of T :=
@Order.Total.Class _ (Order.DistrLattice.Class (@lmixin _ c)) _ (@tmixin _ c).
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition pack :=
fun bT b & phant_id (NumDomain.class bT) (b : NumDomain.class_of T) =>
fun mT ldisp l mdisp m &
phant_id (@Order.Total.class ring_display mT)
(@Order.Total.Class
T (@Order.DistrLattice.Class T b ldisp l) mdisp m) =>
Pack (@Class T b ldisp l mdisp m).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition comRingType := @GRing.ComRing.Pack cT xclass.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
Definition porderType := @Order.POrder.Pack ring_display cT xclass.
Definition distrLatticeType := @Order.DistrLattice.Pack ring_display cT xclass.
Definition orderType := @Order.Total.Pack ring_display cT xclass.
Definition numDomainType := @NumDomain.Pack cT xclass.
Definition normedZmodType := NormedZmodType numDomainType cT xclass.
Definition zmod_distrLatticeType :=
@Order.DistrLattice.Pack ring_display zmodType xclass.
Definition ring_distrLatticeType :=
@Order.DistrLattice.Pack ring_display ringType xclass.
Definition comRing_distrLatticeType :=
@Order.DistrLattice.Pack ring_display comRingType xclass.
Definition unitRing_distrLatticeType :=
@Order.DistrLattice.Pack ring_display unitRingType xclass.
Definition comUnitRing_distrLatticeType :=
@Order.DistrLattice.Pack ring_display comUnitRingType xclass.
Definition idomain_distrLatticeType :=
@Order.DistrLattice.Pack ring_display idomainType xclass.
Definition normedZmod_distrLatticeType :=
@Order.DistrLattice.Pack ring_display normedZmodType xclass.
Definition numDomain_distrLatticeType :=
@Order.DistrLattice.Pack ring_display numDomainType xclass.
Definition zmod_orderType := @Order.Total.Pack ring_display zmodType xclass.
Definition ring_orderType := @Order.Total.Pack ring_display ringType xclass.
Definition comRing_orderType :=
@Order.Total.Pack ring_display comRingType xclass.
Definition unitRing_orderType :=
@Order.Total.Pack ring_display unitRingType xclass.
Definition comUnitRing_orderType :=
@Order.Total.Pack ring_display comUnitRingType xclass.
Definition idomain_orderType :=
@Order.Total.Pack ring_display idomainType xclass.
Definition normedZmod_orderType :=
@Order.Total.Pack ring_display normedZmodType xclass.
Definition numDomain_orderType :=
@Order.Total.Pack ring_display numDomainType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> NumDomain.class_of.
Coercion base2 : class_of >-> Order.Total.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion porderType : type >-> Order.POrder.type.
Canonical porderType.
Coercion numDomainType : type >-> NumDomain.type.
Canonical numDomainType.
Coercion distrLatticeType : type >-> Order.DistrLattice.type.
Canonical distrLatticeType.
Coercion orderType : type >-> Order.Total.type.
Canonical orderType.
Coercion normedZmodType : type >-> NormedZmodule.type.
Canonical normedZmodType.
Canonical zmod_distrLatticeType.
Canonical ring_distrLatticeType.
Canonical comRing_distrLatticeType.
Canonical unitRing_distrLatticeType.
Canonical comUnitRing_distrLatticeType.
Canonical idomain_distrLatticeType.
Canonical normedZmod_distrLatticeType.
Canonical numDomain_distrLatticeType.
Canonical zmod_orderType.
Canonical ring_orderType.
Canonical comRing_orderType.
Canonical unitRing_orderType.
Canonical comUnitRing_orderType.
Canonical idomain_orderType.
Canonical normedZmod_orderType.
Canonical numDomain_orderType.
Notation realDomainType := type.
Notation "[ 'realDomainType' 'of' T ]" := (@pack T _ _ id _ _ _ _ _ id)
(at level 0, format "[ 'realDomainType' 'of' T ]") : form_scope.
End Exports.
End RealDomain.
Import RealDomain.Exports.
Module RealField.
Section ClassDef.
Record class_of R := Class {
base : NumField.class_of R;
lmixin_disp : unit;
lmixin : Order.DistrLattice.mixin_of (@Order.POrder.Pack lmixin_disp R base);
tmixin_disp : unit;
tmixin : Order.Total.mixin_of
(Order.DistrLattice.Pack
tmixin_disp (Order.DistrLattice.Class lmixin));
}.
Local Coercion base : class_of >-> NumField.class_of.
Local Coercion base2 R (c : class_of R) : RealDomain.class_of R :=
RealDomain.Class (@tmixin R c).
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition pack :=
fun bT (b : NumField.class_of T) & phant_id (NumField.class bT) b =>
fun mT ldisp l tdisp t & phant_id (RealDomain.class mT)
(@RealDomain.Class T b ldisp l tdisp t) =>
Pack (@Class T b ldisp l tdisp t).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition comRingType := @GRing.ComRing.Pack cT xclass.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
Definition porderType := @Order.POrder.Pack ring_display cT xclass.
Definition numDomainType := @NumDomain.Pack cT xclass.
Definition distrLatticeType := @Order.DistrLattice.Pack ring_display cT xclass.
Definition orderType := @Order.Total.Pack ring_display cT xclass.
Definition realDomainType := @RealDomain.Pack cT xclass.
Definition fieldType := @GRing.Field.Pack cT xclass.
Definition numFieldType := @NumField.Pack cT xclass.
Definition normedZmodType := NormedZmodType numDomainType cT xclass.
Definition field_distrLatticeType :=
@Order.DistrLattice.Pack ring_display fieldType xclass.
Definition field_orderType := @Order.Total.Pack ring_display fieldType xclass.
Definition field_realDomainType := @RealDomain.Pack fieldType xclass.
Definition numField_distrLatticeType :=
@Order.DistrLattice.Pack ring_display numFieldType xclass.
Definition numField_orderType :=
@Order.Total.Pack ring_display numFieldType xclass.
Definition numField_realDomainType := @RealDomain.Pack numFieldType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> NumField.class_of.
Coercion base2 : class_of >-> RealDomain.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion porderType : type >-> Order.POrder.type.
Canonical porderType.
Coercion numDomainType : type >-> NumDomain.type.
Canonical numDomainType.
Coercion distrLatticeType : type >-> Order.DistrLattice.type.
Canonical distrLatticeType.
Coercion orderType : type >-> Order.Total.type.
Canonical orderType.
Coercion realDomainType : type >-> RealDomain.type.
Canonical realDomainType.
Coercion fieldType : type >-> GRing.Field.type.
Canonical fieldType.
Coercion numFieldType : type >-> NumField.type.
Canonical numFieldType.
Coercion normedZmodType : type >-> NormedZmodule.type.
Canonical normedZmodType.
Canonical field_distrLatticeType.
Canonical field_orderType.
Canonical field_realDomainType.
Canonical numField_distrLatticeType.
Canonical numField_orderType.
Canonical numField_realDomainType.
Notation realFieldType := type.
Notation "[ 'realFieldType' 'of' T ]" := (@pack T _ _ id _ _ _ _ _ id)
(at level 0, format "[ 'realFieldType' 'of' T ]") : form_scope.
End Exports.
End RealField.
Import RealField.Exports.
Module ArchimedeanField.
Section ClassDef.
Record class_of R :=
Class { base : RealField.class_of R; _ : archimedean_axiom (num_for R base) }.
Local Coercion base : class_of >-> RealField.class_of.
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition clone c of phant_id class c := @Pack T c.
Definition pack b0 (m0 : archimedean_axiom (num_for T b0)) :=
fun bT b & phant_id (RealField.class bT) b =>
fun m & phant_id m0 m => Pack (@Class T b m).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition comRingType := @GRing.ComRing.Pack cT xclass.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
Definition porderType := @Order.POrder.Pack ring_display cT xclass.
Definition numDomainType := @NumDomain.Pack cT xclass.
Definition distrLatticeType := @Order.DistrLattice.Pack ring_display cT xclass.
Definition orderType := @Order.Total.Pack ring_display cT xclass.
Definition realDomainType := @RealDomain.Pack cT xclass.
Definition fieldType := @GRing.Field.Pack cT xclass.
Definition numFieldType := @NumField.Pack cT xclass.
Definition realFieldType := @RealField.Pack cT xclass.
Definition normedZmodType := NormedZmodType numDomainType cT xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> RealField.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion porderType : type >-> Order.POrder.type.
Canonical porderType.
Coercion numDomainType : type >-> NumDomain.type.
Canonical numDomainType.
Coercion distrLatticeType : type >-> Order.DistrLattice.type.
Canonical distrLatticeType.
Coercion orderType : type >-> Order.Total.type.
Canonical orderType.
Coercion realDomainType : type >-> RealDomain.type.
Canonical realDomainType.
Coercion fieldType : type >-> GRing.Field.type.
Canonical fieldType.
Coercion numFieldType : type >-> NumField.type.
Canonical numFieldType.
Coercion realFieldType : type >-> RealField.type.
Canonical realFieldType.
Coercion normedZmodType : type >-> NormedZmodule.type.
Canonical normedZmodType.
Notation archiFieldType := type.
Notation ArchiFieldType T m := (@pack T _ m _ _ id _ id).
Notation "[ 'archiFieldType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
(at level 0, format "[ 'archiFieldType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'archiFieldType' 'of' T ]" := (@clone T _ _ id)
(at level 0, format "[ 'archiFieldType' 'of' T ]") : form_scope.
End Exports.
End ArchimedeanField.
Import ArchimedeanField.Exports.
Module RealClosedField.
Section ClassDef.
Record class_of R :=
Class { base : RealField.class_of R; _ : real_closed_axiom (num_for R base) }.
Local Coercion base : class_of >-> RealField.class_of.
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition clone c of phant_id class c := @Pack T c.
Definition pack b0 (m0 : real_closed_axiom (num_for T b0)) :=
fun bT b & phant_id (RealField.class bT) b =>
fun m & phant_id m0 m => Pack (@Class T b m).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition comRingType := @GRing.ComRing.Pack cT xclass.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
Definition porderType := @Order.POrder.Pack ring_display cT xclass.
Definition numDomainType := @NumDomain.Pack cT xclass.
Definition distrLatticeType := @Order.DistrLattice.Pack ring_display cT xclass.
Definition orderType := @Order.Total.Pack ring_display cT xclass.
Definition realDomainType := @RealDomain.Pack cT xclass.
Definition fieldType := @GRing.Field.Pack cT xclass.
Definition numFieldType := @NumField.Pack cT xclass.
Definition realFieldType := @RealField.Pack cT xclass.
Definition normedZmodType := NormedZmodType numDomainType cT xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> RealField.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion porderType : type >-> Order.POrder.type.
Canonical porderType.
Coercion numDomainType : type >-> NumDomain.type.
Canonical numDomainType.
Coercion realDomainType : type >-> RealDomain.type.
Canonical realDomainType.
Coercion distrLatticeType : type >-> Order.DistrLattice.type.
Canonical distrLatticeType.
Coercion orderType : type >-> Order.Total.type.
Canonical orderType.
Coercion fieldType : type >-> GRing.Field.type.
Canonical fieldType.
Coercion numFieldType : type >-> NumField.type.
Canonical numFieldType.
Coercion realFieldType : type >-> RealField.type.
Canonical realFieldType.
Coercion normedZmodType : type >-> NormedZmodule.type.
Canonical normedZmodType.
Notation rcfType := Num.RealClosedField.type.
Notation RcfType T m := (@pack T _ m _ _ id _ id).
Notation "[ 'rcfType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
(at level 0, format "[ 'rcfType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'rcfType' 'of' T ]" := (@clone T _ _ id)
(at level 0, format "[ 'rcfType' 'of' T ]") : form_scope.
End Exports.
End RealClosedField.
Import RealClosedField.Exports.
(* The elementary theory needed to support the definition of the derived *)
(* operations for the extensions described above. *)
Module Import Internals.
Section NormedZmodule.
Variables (R : numDomainType) (V : normedZmodType R).
Implicit Types (l : R) (x y : V).
Lemma ler_norm_add x y : `|x + y| <= `|x| + `|y|.
Proof. by case: V x y => ? [? []]. Qed.
Lemma normr0_eq0 x : `|x| = 0 -> x = 0.
Proof. by case: V x => ? [? []]. Qed.
Lemma normrMn x n : `|x *+ n| = `|x| *+ n.
Proof. by case: V x => ? [? []]. Qed.
Lemma normrN x : `|- x| = `|x|.
Proof. by case: V x => ? [? []]. Qed.
End NormedZmodule.
Section NumDomain.
Variable R : numDomainType.
Implicit Types x y : R.
(* Lemmas from the signature *)
Lemma addr_gt0 x y : 0 < x -> 0 < y -> 0 < x + y.
Proof. by case: R x y => ? [? ? ? []]. Qed.
Lemma ger_leVge x y : 0 <= x -> 0 <= y -> (x <= y) || (y <= x).
Proof. by case: R x y => ? [? ? ? []]. Qed.
Lemma normrM : {morph norm : x y / (x : R) * y}.
Proof. by case: R => ? [? ? ? []]. Qed.
Lemma ler_def x y : (x <= y) = (`|y - x| == y - x).
Proof. by case: R x y => ? [? ? ? []]. Qed.
(* Basic consequences (just enough to get predicate closure properties). *)
Lemma ger0_def x : (0 <= x) = (`|x| == x).
Proof. by rewrite ler_def subr0. Qed.
Lemma subr_ge0 x y : (0 <= x - y) = (y <= x).
Proof. by rewrite ger0_def -ler_def. Qed.
Lemma oppr_ge0 x : (0 <= - x) = (x <= 0).
Proof. by rewrite -sub0r subr_ge0. Qed.
Lemma ler01 : 0 <= 1 :> R.
Proof.
have n1_nz: `|1 : R| != 0 by apply: contraNneq (@oner_neq0 R) => /normr0_eq0->.
by rewrite ger0_def -(inj_eq (mulfI n1_nz)) -normrM !mulr1.
Qed.
Lemma ltr01 : 0 < 1 :> R. Proof. by rewrite lt_def oner_neq0 ler01. Qed.
Lemma le0r x : (0 <= x) = (x == 0) || (0 < x).
Proof. by rewrite lt_def; case: eqP => // ->; rewrite lexx. Qed.
Lemma addr_ge0 x y : 0 <= x -> 0 <= y -> 0 <= x + y.
Proof.
rewrite le0r; case/predU1P=> [-> | x_pos]; rewrite ?add0r // le0r.
by case/predU1P=> [-> | y_pos]; rewrite ltW ?addr0 ?addr_gt0.
Qed.
Lemma pmulr_rgt0 x y : 0 < x -> (0 < x * y) = (0 < y).
Proof.
rewrite !lt_def !ger0_def normrM mulf_eq0 negb_or => /andP[x_neq0 /eqP->].
by rewrite x_neq0 (inj_eq (mulfI x_neq0)).
Qed.
(* Closure properties of the real predicates. *)
Lemma posrE x : (x \is pos) = (0 < x). Proof. by []. Qed.
Lemma nnegrE x : (x \is nneg) = (0 <= x). Proof. by []. Qed.
Lemma realE x : (x \is real) = (0 <= x) || (x <= 0). Proof. by []. Qed.
Fact pos_divr_closed : divr_closed (@pos R).
Proof.
split=> [|x y x_gt0 y_gt0]; rewrite posrE ?ltr01 //.
have [Uy|/invr_out->] := boolP (y \is a GRing.unit); last by rewrite pmulr_rgt0.
by rewrite -(pmulr_rgt0 _ y_gt0) mulrC divrK.
Qed.
Canonical pos_mulrPred := MulrPred pos_divr_closed.
Canonical pos_divrPred := DivrPred pos_divr_closed.
Fact nneg_divr_closed : divr_closed (@nneg R).
Proof.
split=> [|x y]; rewrite !nnegrE ?ler01 ?le0r // -!posrE.
case/predU1P=> [-> _ | x_gt0]; first by rewrite mul0r eqxx.
by case/predU1P=> [-> | y_gt0]; rewrite ?invr0 ?mulr0 ?eqxx // orbC rpred_div.
Qed.
Canonical nneg_mulrPred := MulrPred nneg_divr_closed.
Canonical nneg_divrPred := DivrPred nneg_divr_closed.
Fact nneg_addr_closed : addr_closed (@nneg R).
Proof. by split; [apply: lexx | apply: addr_ge0]. Qed.
Canonical nneg_addrPred := AddrPred nneg_addr_closed.
Canonical nneg_semiringPred := SemiringPred nneg_divr_closed.
Fact real_oppr_closed : oppr_closed (@real R).
Proof. by move=> x; rewrite /= !realE oppr_ge0 orbC -!oppr_ge0 opprK. Qed.
Canonical real_opprPred := OpprPred real_oppr_closed.
Fact real_addr_closed : addr_closed (@real R).
Proof.
split=> [|x y Rx Ry]; first by rewrite realE lexx.
without loss{Rx} x_ge0: x y Ry / 0 <= x.
case/orP: Rx => [? | x_le0]; first exact.
by rewrite -rpredN opprD; apply; rewrite ?rpredN ?oppr_ge0.
case/orP: Ry => [y_ge0 | y_le0]; first by rewrite realE -nnegrE rpredD.
by rewrite realE -[y]opprK orbC -oppr_ge0 opprB !subr_ge0 ger_leVge ?oppr_ge0.
Qed.
Canonical real_addrPred := AddrPred real_addr_closed.
Canonical real_zmodPred := ZmodPred real_oppr_closed.
Fact real_divr_closed : divr_closed (@real R).
Proof.
split=> [|x y Rx Ry]; first by rewrite realE ler01.
without loss{Rx} x_ge0: x / 0 <= x.
case/orP: Rx => [? | x_le0]; first exact.
by rewrite -rpredN -mulNr; apply; rewrite ?oppr_ge0.
without loss{Ry} y_ge0: y / 0 <= y; last by rewrite realE -nnegrE rpred_div.
case/orP: Ry => [? | y_le0]; first exact.
by rewrite -rpredN -mulrN -invrN; apply; rewrite ?oppr_ge0.
Qed.
Canonical real_mulrPred := MulrPred real_divr_closed.
Canonical real_smulrPred := SmulrPred real_divr_closed.
Canonical real_divrPred := DivrPred real_divr_closed.
Canonical real_sdivrPred := SdivrPred real_divr_closed.
Canonical real_semiringPred := SemiringPred real_divr_closed.
Canonical real_subringPred := SubringPred real_divr_closed.
Canonical real_divringPred := DivringPred real_divr_closed.
End NumDomain.
Lemma num_real (R : realDomainType) (x : R) : x \is real.
Proof. exact: le_total. Qed.
Fact archi_bound_subproof (R : archiFieldType) : archimedean_axiom R.
Proof. by case: R => ? []. Qed.
Section RealClosed.
Variable R : rcfType.
Lemma poly_ivt : real_closed_axiom R. Proof. by case: R => ? []. Qed.
Fact sqrtr_subproof (x : R) :
exists2 y, 0 <= y & (if 0 <= x then y ^+ 2 == x else y == 0) : bool.
Proof.
case x_ge0: (0 <= x); last by exists 0; rewrite ?lerr.
have le0x1: 0 <= x + 1 by rewrite -nnegrE rpredD ?rpred1.
have [|y /andP[y_ge0 _]] := @poly_ivt ('X^2 - x%:P) _ _ le0x1.
rewrite !hornerE -subr_ge0 add0r opprK x_ge0 -expr2 sqrrD mulr1.
by rewrite addrAC !addrA addrK -nnegrE !rpredD ?rpredX ?rpred1.
by rewrite rootE !hornerE subr_eq0; exists y.
Qed.
End RealClosed.
End Internals.
Module PredInstances.
Canonical pos_mulrPred.
Canonical pos_divrPred.
Canonical nneg_addrPred.
Canonical nneg_mulrPred.
Canonical nneg_divrPred.
Canonical nneg_semiringPred.
Canonical real_addrPred.
Canonical real_opprPred.
Canonical real_zmodPred.
Canonical real_mulrPred.
Canonical real_smulrPred.
Canonical real_divrPred.
Canonical real_sdivrPred.
Canonical real_semiringPred.
Canonical real_subringPred.
Canonical real_divringPred.
End PredInstances.
Module Import ExtraDef.
Definition archi_bound {R} x := sval (sigW (@archi_bound_subproof R x)).
Definition sqrtr {R} x := s2val (sig2W (@sqrtr_subproof R x)).
End ExtraDef.
Notation bound := archi_bound.
Notation sqrt := sqrtr.
Module Import Theory.
Section NumIntegralDomainTheory.
Variable R : numDomainType.
Implicit Types (V : normedZmodType R) (x y z t : R).
(* Lemmas from the signature (reexported from internals). *)
Definition ler_norm_add V (x y : V) : `|x + y| <= `|x| + `|y| :=
ler_norm_add x y.
Definition addr_gt0 x y : 0 < x -> 0 < y -> 0 < x + y := @addr_gt0 R x y.
Definition normr0_eq0 V (x : V) : `|x| = 0 -> x = 0 := @normr0_eq0 R V x.
Definition ger_leVge x y : 0 <= x -> 0 <= y -> (x <= y) || (y <= x) :=
@ger_leVge R x y.
Definition normrM : {morph norm : x y / (x : R) * y} := @normrM R.
Definition ler_def x y : (x <= y) = (`|y - x| == y - x) := ler_def x y.
Definition normrMn V (x : V) n : `|x *+ n| = `|x| *+ n := normrMn x n.
Definition normrN V (x : V) : `|- x| = `|x| := normrN x.
(* Predicate definitions. *)
Lemma posrE x : (x \is pos) = (0 < x). Proof. by []. Qed.
Lemma negrE x : (x \is neg) = (x < 0). Proof. by []. Qed.
Lemma nnegrE x : (x \is nneg) = (0 <= x). Proof. by []. Qed.
Lemma realE x : (x \is real) = (0 <= x) || (x <= 0). Proof. by []. Qed.
(* General properties of <= and < *)
Lemma lt0r x : (0 < x) = (x != 0) && (0 <= x). Proof. by rewrite lt_def. Qed.
Lemma le0r x : (0 <= x) = (x == 0) || (0 < x). Proof. exact: le0r. Qed.
Lemma lt0r_neq0 (x : R) : 0 < x -> x != 0.
Proof. by rewrite lt0r; case/andP. Qed.
Lemma ltr0_neq0 (x : R) : x < 0 -> x != 0.
Proof. by rewrite lt_neqAle; case/andP. Qed.
Lemma pmulr_rgt0 x y : 0 < x -> (0 < x * y) = (0 < y).
Proof. exact: pmulr_rgt0. Qed.
Lemma pmulr_rge0 x y : 0 < x -> (0 <= x * y) = (0 <= y).
Proof.
by rewrite !le0r mulf_eq0; case: eqP => // [-> /negPf[] | _ /pmulr_rgt0->].
Qed.
(* Integer comparisons and characteristic 0. *)
Lemma ler01 : 0 <= 1 :> R. Proof. exact: ler01. Qed.
Lemma ltr01 : 0 < 1 :> R. Proof. exact: ltr01. Qed.
Lemma ler0n n : 0 <= n%:R :> R. Proof. by rewrite -nnegrE rpred_nat. Qed.
Hint Resolve ler01 ltr01 ler0n : core.
Lemma ltr0Sn n : 0 < n.+1%:R :> R.
Proof. by elim: n => // n; apply: addr_gt0. Qed.
Lemma ltr0n n : (0 < n%:R :> R) = (0 < n)%N.
Proof. by case: n => //= n; apply: ltr0Sn. Qed.
Hint Resolve ltr0Sn : core.
Lemma pnatr_eq0 n : (n%:R == 0 :> R) = (n == 0)%N.
Proof. by case: n => [|n]; rewrite ?mulr0n ?eqxx // gt_eqF. Qed.
Lemma char_num : [char R] =i pred0.
Proof. by case=> // p /=; rewrite !inE pnatr_eq0 andbF. Qed.
(* Properties of the norm. *)
Lemma ger0_def x : (0 <= x) = (`|x| == x). Proof. exact: ger0_def. Qed.
Lemma normr_idP {x} : reflect (`|x| = x) (0 <= x).
Proof. by rewrite ger0_def; apply: eqP. Qed.
Lemma ger0_norm x : 0 <= x -> `|x| = x. Proof. exact: normr_idP. Qed.
Lemma normr1 : `|1 : R| = 1. Proof. exact: ger0_norm. Qed.
Lemma normr_nat n : `|n%:R : R| = n%:R. Proof. exact: ger0_norm. Qed.
Lemma normr_prod I r (P : pred I) (F : I -> R) :
`|\prod_(i <- r | P i) F i| = \prod_(i <- r | P i) `|F i|.
Proof. exact: (big_morph norm normrM normr1). Qed.
Lemma normrX n x : `|x ^+ n| = `|x| ^+ n.
Proof. by rewrite -(card_ord n) -!prodr_const normr_prod. Qed.
Lemma normr_unit : {homo (@norm R R) : x / x \is a GRing.unit}.
Proof.
move=> x /= /unitrP [y [yx xy]]; apply/unitrP; exists `|y|.
by rewrite -!normrM xy yx normr1.
Qed.
Lemma normrV : {in GRing.unit, {morph (@norm R R) : x / x ^-1}}.
Proof.
move=> x ux; apply: (mulrI (normr_unit ux)).
by rewrite -normrM !divrr ?normr1 ?normr_unit.
Qed.
Lemma normrN1 : `|-1 : R| = 1.
Proof.
have: `|-1 : R| ^+ 2 == 1 by rewrite -normrX -signr_odd normr1.
rewrite sqrf_eq1 => /orP[/eqP //|]; rewrite -ger0_def le0r oppr_eq0 oner_eq0.
by move/(addr_gt0 ltr01); rewrite subrr ltxx.
Qed.
Section NormedZmoduleTheory.
Variable V : normedZmodType R.
Implicit Types (v w : V).
Lemma normr0 : `|0 : V| = 0.
Proof. by rewrite -(mulr0n 0) normrMn mulr0n. Qed.
Lemma normr0P v : reflect (`|v| = 0) (v == 0).
Proof. by apply: (iffP eqP)=> [->|/normr0_eq0 //]; apply: normr0. Qed.
Definition normr_eq0 v := sameP (`|v| =P 0) (normr0P v).
Lemma distrC v w : `|v - w| = `|w - v|.
Proof. by rewrite -opprB normrN. Qed.
Lemma normr_id v : `| `|v| | = `|v|.
Proof.
have nz2: 2%:R != 0 :> R by rewrite pnatr_eq0.
apply: (mulfI nz2); rewrite -{1}normr_nat -normrM mulr_natl mulr2n ger0_norm //.
by rewrite -{2}normrN -normr0 -(subrr v) ler_norm_add.
Qed.
Lemma normr_ge0 v : 0 <= `|v|. Proof. by rewrite ger0_def normr_id. Qed.
Lemma normr_le0 v : `|v| <= 0 = (v == 0).
Proof. by rewrite -normr_eq0 eq_le normr_ge0 andbT. Qed.
Lemma normr_lt0 v : `|v| < 0 = false.
Proof. by rewrite lt_neqAle normr_le0 normr_eq0 andNb. Qed.
Lemma normr_gt0 v : `|v| > 0 = (v != 0).
Proof. by rewrite lt_def normr_eq0 normr_ge0 andbT. Qed.
Definition normrE := (normr_id, normr0, normr1, normrN1, normr_ge0, normr_eq0,
normr_lt0, normr_le0, normr_gt0, normrN).
End NormedZmoduleTheory.
Lemma ler0_def x : (x <= 0) = (`|x| == - x).
Proof. by rewrite ler_def sub0r normrN. Qed.
Lemma ler0_norm x : x <= 0 -> `|x| = - x.
Proof. by move=> x_le0; rewrite -[r in _ = r]ger0_norm ?normrN ?oppr_ge0. Qed.
Definition gtr0_norm x (hx : 0 < x) := ger0_norm (ltW hx).
Definition ltr0_norm x (hx : x < 0) := ler0_norm (ltW hx).
(* Comparision to 0 of a difference *)
Lemma subr_ge0 x y : (0 <= y - x) = (x <= y). Proof. exact: subr_ge0. Qed.
Lemma subr_gt0 x y : (0 < y - x) = (x < y).
Proof. by rewrite !lt_def subr_eq0 subr_ge0. Qed.
Lemma subr_le0 x y : (y - x <= 0) = (y <= x).
Proof. by rewrite -subr_ge0 opprB add0r subr_ge0. Qed.
Lemma subr_lt0 x y : (y - x < 0) = (y < x).
Proof. by rewrite -subr_gt0 opprB add0r subr_gt0. Qed.
Definition subr_lte0 := (subr_le0, subr_lt0).
Definition subr_gte0 := (subr_ge0, subr_gt0).
Definition subr_cp0 := (subr_lte0, subr_gte0).
(* Comparability in a numDomain *)
Lemma comparabler0 x : (x >=< 0)%R = (x \is Num.real).
Proof. by rewrite comparable_sym. Qed.
Lemma subr_comparable0 x y : (x - y >=< 0)%R = (x >=< y)%R.
Proof. by rewrite /comparable subr_ge0 subr_le0. Qed.
Lemma comparablerE x y : (x >=< y)%R = (x - y \is Num.real).
Proof. by rewrite -comparabler0 subr_comparable0. Qed.
Lemma comparabler_trans : transitive (comparable : rel R).
Proof.
move=> y x z; rewrite !comparablerE => xBy_real yBz_real.
by have := rpredD xBy_real yBz_real; rewrite addrA addrNK.
Qed.
(* Ordered ring properties. *)
Definition lter01 := (ler01, ltr01).
Lemma addr_ge0 x y : 0 <= x -> 0 <= y -> 0 <= x + y.
Proof. exact: addr_ge0. Qed.
End NumIntegralDomainTheory.
Arguments ler01 {R}.
Arguments ltr01 {R}.
Arguments normr_idP {R x}.
Arguments normr0P {R V v}.
Hint Resolve @ler01 @ltr01 ltr0Sn ler0n : core.
Hint Extern 0 (is_true (0 <= norm _)) => exact: normr_ge0 : core.
Section NumDomainOperationTheory.
Variable R : numDomainType.
Implicit Types x y z t : R.
(* Comparision and opposite. *)
Lemma ler_opp2 : {mono -%R : x y /~ x <= y :> R}.
Proof. by move=> x y /=; rewrite -subr_ge0 opprK addrC subr_ge0. Qed.
Hint Resolve ler_opp2 : core.
Lemma ltr_opp2 : {mono -%R : x y /~ x < y :> R}.
Proof. by move=> x y /=; rewrite leW_nmono. Qed.
Hint Resolve ltr_opp2 : core.
Definition lter_opp2 := (ler_opp2, ltr_opp2).
Lemma ler_oppr x y : (x <= - y) = (y <= - x).
Proof. by rewrite (monoRL opprK ler_opp2). Qed.
Lemma ltr_oppr x y : (x < - y) = (y < - x).
Proof. by rewrite (monoRL opprK (leW_nmono _)). Qed.
Definition lter_oppr := (ler_oppr, ltr_oppr).
Lemma ler_oppl x y : (- x <= y) = (- y <= x).
Proof. by rewrite (monoLR opprK ler_opp2). Qed.
Lemma ltr_oppl x y : (- x < y) = (- y < x).
Proof. by rewrite (monoLR opprK (leW_nmono _)). Qed.
Definition lter_oppl := (ler_oppl, ltr_oppl).
Lemma oppr_ge0 x : (0 <= - x) = (x <= 0).
Proof. by rewrite lter_oppr oppr0. Qed.
Lemma oppr_gt0 x : (0 < - x) = (x < 0).
Proof. by rewrite lter_oppr oppr0. Qed.
Definition oppr_gte0 := (oppr_ge0, oppr_gt0).
Lemma oppr_le0 x : (- x <= 0) = (0 <= x).
Proof. by rewrite lter_oppl oppr0. Qed.
Lemma oppr_lt0 x : (- x < 0) = (0 < x).
Proof. by rewrite lter_oppl oppr0. Qed.
Definition oppr_lte0 := (oppr_le0, oppr_lt0).
Definition oppr_cp0 := (oppr_gte0, oppr_lte0).
Definition lter_oppE := (oppr_cp0, lter_opp2).
Lemma ge0_cp x : 0 <= x -> (- x <= 0) * (- x <= x).
Proof. by move=> hx; rewrite oppr_cp0 hx (@le_trans _ _ 0) ?oppr_cp0. Qed.
Lemma gt0_cp x : 0 < x ->
(0 <= x) * (- x <= 0) * (- x <= x) * (- x < 0) * (- x < x).
Proof.
move=> hx; move: (ltW hx) => hx'; rewrite !ge0_cp hx' //.
by rewrite oppr_cp0 hx // (@lt_trans _ _ 0) ?oppr_cp0.
Qed.
Lemma le0_cp x : x <= 0 -> (0 <= - x) * (x <= - x).
Proof. by move=> hx; rewrite oppr_cp0 hx (@le_trans _ _ 0) ?oppr_cp0. Qed.
Lemma lt0_cp x :
x < 0 -> (x <= 0) * (0 <= - x) * (x <= - x) * (0 < - x) * (x < - x).
Proof.
move=> hx; move: (ltW hx) => hx'; rewrite !le0_cp // hx'.
by rewrite oppr_cp0 hx // (@lt_trans _ _ 0) ?oppr_cp0.
Qed.
(* Properties of the real subset. *)
Lemma ger0_real x : 0 <= x -> x \is real.
Proof. by rewrite realE => ->. Qed.
Lemma ler0_real x : x <= 0 -> x \is real.
Proof. by rewrite realE orbC => ->. Qed.
Lemma gtr0_real x : 0 < x -> x \is real.
Proof. by move=> /ltW/ger0_real. Qed.
Lemma ltr0_real x : x < 0 -> x \is real.
Proof. by move=> /ltW/ler0_real. Qed.
Lemma real0 : 0 \is @real R. Proof. by rewrite ger0_real. Qed.
Hint Resolve real0 : core.
Lemma real1 : 1 \is @real R. Proof. by rewrite ger0_real. Qed.
Hint Resolve real1 : core.
Lemma realn n : n%:R \is @real R. Proof. by rewrite ger0_real. Qed.
Lemma ler_leVge x y : x <= 0 -> y <= 0 -> (x <= y) || (y <= x).
Proof. by rewrite -!oppr_ge0 => /(ger_leVge _) h /h; rewrite !ler_opp2. Qed.
Lemma real_leVge x y : x \is real -> y \is real -> (x <= y) || (y <= x).
Proof.
rewrite !realE; have [x_ge0 _|x_nge0 /= x_le0] := boolP (_ <= _); last first.
by have [/(le_trans x_le0)->|_ /(ler_leVge x_le0) //] := boolP (0 <= _).
by have [/(ger_leVge x_ge0)|_ /le_trans->] := boolP (0 <= _); rewrite ?orbT.
Qed.
Lemma real_comparable x y : x \is real -> y \is real -> x >=< y.
Proof. exact: real_leVge. Qed.
Lemma realB : {in real &, forall x y, x - y \is real}.
Proof. exact: rpredB. Qed.
Lemma realN : {mono (@GRing.opp R) : x / x \is real}.
Proof. exact: rpredN. Qed.
Lemma realBC x y : (x - y \is real) = (y - x \is real).
Proof. exact: rpredBC. Qed.
Lemma realD : {in real &, forall x y, x + y \is real}.
Proof. exact: rpredD. Qed.
(* dichotomy and trichotomy *)
Variant ler_xor_gt (x y : R) : R -> R -> bool -> bool -> Set :=
| LerNotGt of x <= y : ler_xor_gt x y (y - x) (y - x) true false
| GtrNotLe of y < x : ler_xor_gt x y (x - y) (x - y) false true.
Variant ltr_xor_ge (x y : R) : R -> R -> bool -> bool -> Set :=
| LtrNotGe of x < y : ltr_xor_ge x y (y - x) (y - x) false true
| GerNotLt of y <= x : ltr_xor_ge x y (x - y) (x - y) true false.
Variant comparer x y : R -> R ->
bool -> bool -> bool -> bool -> bool -> bool -> Set :=
| ComparerLt of x < y : comparer x y (y - x) (y - x)
false false false true false true
| ComparerGt of x > y : comparer x y (x - y) (x - y)
false false true false true false
| ComparerEq of x = y : comparer x y 0 0
true true true true false false.
Lemma real_leP x y :
x \is real -> y \is real ->
ler_xor_gt x y `|x - y| `|y - x| (x <= y) (y < x).
Proof.
move=> xR yR; case: (comparable_leP (real_leVge xR yR)) => xy.
- by rewrite [`|x - y|]distrC !ger0_norm ?subr_cp0 //; constructor.
- by rewrite [`|y - x|]distrC !gtr0_norm ?subr_cp0 //; constructor.
Qed.
Lemma real_ltP x y :
x \is real -> y \is real ->
ltr_xor_ge x y `|x - y| `|y - x| (y <= x) (x < y).
Proof. by move=> xR yR; case: real_leP=> //; constructor. Qed.
Lemma real_ltNge : {in real &, forall x y, (x < y) = ~~ (y <= x)}.
Proof. by move=> x y xR yR /=; case: real_leP. Qed.
Lemma real_leNgt : {in real &, forall x y, (x <= y) = ~~ (y < x)}.
Proof. by move=> x y xR yR /=; case: real_leP. Qed.
Lemma real_ltgtP x y : x \is real -> y \is real ->
comparer x y `|x - y| `|y - x|
(y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y).
Proof.
move=> xR yR; case: (comparable_ltgtP (real_leVge xR yR)) => [?|?|->].
- by rewrite [`|x - y|]distrC !gtr0_norm ?subr_gt0//; constructor.
- by rewrite [`|y - x|]distrC !gtr0_norm ?subr_gt0//; constructor.
- by rewrite subrr normr0; constructor.
Qed.
Variant ger0_xor_lt0 (x : R) : R -> bool -> bool -> Set :=
| Ger0NotLt0 of 0 <= x : ger0_xor_lt0 x x false true
| Ltr0NotGe0 of x < 0 : ger0_xor_lt0 x (- x) true false.
Variant ler0_xor_gt0 (x : R) : R -> bool -> bool -> Set :=
| Ler0NotLe0 of x <= 0 : ler0_xor_gt0 x (- x) false true
| Gtr0NotGt0 of 0 < x : ler0_xor_gt0 x x true false.
Variant comparer0 x :
R -> bool -> bool -> bool -> bool -> bool -> bool -> Set :=
| ComparerGt0 of 0 < x : comparer0 x x false false false true false true
| ComparerLt0 of x < 0 : comparer0 x (- x) false false true false true false
| ComparerEq0 of x = 0 : comparer0 x 0 true true true true false false.
Lemma real_ge0P x : x \is real -> ger0_xor_lt0 x `|x| (x < 0) (0 <= x).
Proof.
move=> hx; rewrite -{2}[x]subr0; case: real_ltP;
by rewrite ?subr0 ?sub0r //; constructor.
Qed.
Lemma real_le0P x : x \is real -> ler0_xor_gt0 x `|x| (0 < x) (x <= 0).
Proof.
move=> hx; rewrite -{2}[x]subr0; case: real_ltP;
by rewrite ?subr0 ?sub0r //; constructor.
Qed.
Lemma real_ltgt0P x :
x \is real ->
comparer0 x `|x| (0 == x) (x == 0) (x <= 0) (0 <= x) (x < 0) (x > 0).
Proof.
move=> hx; rewrite -{2}[x]subr0; case: real_ltgtP;
by rewrite ?subr0 ?sub0r //; constructor.
Qed.
Lemma real_neqr_lt : {in real &, forall x y, (x != y) = (x < y) || (y < x)}.
Proof. by move=> * /=; case: real_ltgtP. Qed.
Lemma ler_sub_real x y : x <= y -> y - x \is real.
Proof. by move=> le_xy; rewrite ger0_real // subr_ge0. Qed.
Lemma ger_sub_real x y : x <= y -> x - y \is real.
Proof. by move=> le_xy; rewrite ler0_real // subr_le0. Qed.
Lemma ler_real y x : x <= y -> (x \is real) = (y \is real).
Proof. by move=> le_xy; rewrite -(addrNK x y) rpredDl ?ler_sub_real. Qed.
Lemma ger_real x y : y <= x -> (x \is real) = (y \is real).
Proof. by move=> le_yx; rewrite -(ler_real le_yx). Qed.
Lemma ger1_real x : 1 <= x -> x \is real. Proof. by move=> /ger_real->. Qed.
Lemma ler1_real x : x <= 1 -> x \is real. Proof. by move=> /ler_real->. Qed.
Lemma Nreal_leF x y : y \is real -> x \notin real -> (x <= y) = false.
Proof. by move=> yR; apply: contraNF=> /ler_real->. Qed.
Lemma Nreal_geF x y : y \is real -> x \notin real -> (y <= x) = false.
Proof. by move=> yR; apply: contraNF=> /ger_real->. Qed.
Lemma Nreal_ltF x y : y \is real -> x \notin real -> (x < y) = false.
Proof. by move=> yR xNR; rewrite lt_def Nreal_leF ?andbF. Qed.
Lemma Nreal_gtF x y : y \is real -> x \notin real -> (y < x) = false.
Proof. by move=> yR xNR; rewrite lt_def Nreal_geF ?andbF. Qed.
(* real wlog *)
Lemma real_wlog_ler P :
(forall a b, P b a -> P a b) -> (forall a b, a <= b -> P a b) ->
forall a b : R, a \is real -> b \is real -> P a b.
Proof.
move=> sP hP a b ha hb; wlog: a b ha hb / a <= b => [hwlog|]; last exact: hP.
by case: (real_leP ha hb)=> [/hP //|/ltW hba]; apply/sP/hP.
Qed.
Lemma real_wlog_ltr P :
(forall a, P a a) -> (forall a b, (P b a -> P a b)) ->
(forall a b, a < b -> P a b) ->
forall a b : R, a \is real -> b \is real -> P a b.
Proof.
move=> rP sP hP; apply: real_wlog_ler=> // a b.
rewrite le_eqVlt; case: eqVneq => [->|] //= _ lab; exact: hP.
Qed.
(* Monotony of addition *)
Lemma ler_add2l x : {mono +%R x : y z / y <= z}.
Proof.
by move=> y z /=; rewrite -subr_ge0 opprD addrAC addNKr addrC subr_ge0.
Qed.
Lemma ler_add2r x : {mono +%R^~ x : y z / y <= z}.
Proof. by move=> y z /=; rewrite ![_ + x]addrC ler_add2l. Qed.
Lemma ltr_add2l x : {mono +%R x : y z / y < z}.
Proof. by move=> y z /=; rewrite (leW_mono (ler_add2l _)). Qed.
Lemma ltr_add2r x : {mono +%R^~ x : y z / y < z}.
Proof. by move=> y z /=; rewrite (leW_mono (ler_add2r _)). Qed.
Definition ler_add2 := (ler_add2l, ler_add2r).
Definition ltr_add2 := (ltr_add2l, ltr_add2r).
Definition lter_add2 := (ler_add2, ltr_add2).
(* Addition, subtraction and transitivity *)
Lemma ler_add x y z t : x <= y -> z <= t -> x + z <= y + t.
Proof. by move=> lxy lzt; rewrite (@le_trans _ _ (y + z)) ?lter_add2. Qed.
Lemma ler_lt_add x y z t : x <= y -> z < t -> x + z < y + t.
Proof. by move=> lxy lzt; rewrite (@le_lt_trans _ _ (y + z)) ?lter_add2. Qed.
Lemma ltr_le_add x y z t : x < y -> z <= t -> x + z < y + t.
Proof. by move=> lxy lzt; rewrite (@lt_le_trans _ _ (y + z)) ?lter_add2. Qed.
Lemma ltr_add x y z t : x < y -> z < t -> x + z < y + t.
Proof. by move=> lxy lzt; rewrite ltr_le_add // ltW. Qed.
Lemma ler_sub x y z t : x <= y -> t <= z -> x - z <= y - t.
Proof. by move=> lxy ltz; rewrite ler_add // lter_opp2. Qed.
Lemma ler_lt_sub x y z t : x <= y -> t < z -> x - z < y - t.
Proof. by move=> lxy lzt; rewrite ler_lt_add // lter_opp2. Qed.
Lemma ltr_le_sub x y z t : x < y -> t <= z -> x - z < y - t.
Proof. by move=> lxy lzt; rewrite ltr_le_add // lter_opp2. Qed.
Lemma ltr_sub x y z t : x < y -> t < z -> x - z < y - t.
Proof. by move=> lxy lzt; rewrite ltr_add // lter_opp2. Qed.
Lemma ler_subl_addr x y z : (x - y <= z) = (x <= z + y).
Proof. by rewrite (monoLR (addrK _) (ler_add2r _)). Qed.
Lemma ltr_subl_addr x y z : (x - y < z) = (x < z + y).
Proof. by rewrite (monoLR (addrK _) (ltr_add2r _)). Qed.
Lemma ler_subr_addr x y z : (x <= y - z) = (x + z <= y).
Proof. by rewrite (monoLR (addrNK _) (ler_add2r _)). Qed.
Lemma ltr_subr_addr x y z : (x < y - z) = (x + z < y).
Proof. by rewrite (monoLR (addrNK _) (ltr_add2r _)). Qed.
Definition ler_sub_addr := (ler_subl_addr, ler_subr_addr).
Definition ltr_sub_addr := (ltr_subl_addr, ltr_subr_addr).
Definition lter_sub_addr := (ler_sub_addr, ltr_sub_addr).
Lemma ler_subl_addl x y z : (x - y <= z) = (x <= y + z).
Proof. by rewrite lter_sub_addr addrC. Qed.
Lemma ltr_subl_addl x y z : (x - y < z) = (x < y + z).
Proof. by rewrite lter_sub_addr addrC. Qed.
Lemma ler_subr_addl x y z : (x <= y - z) = (z + x <= y).
Proof. by rewrite lter_sub_addr addrC. Qed.
Lemma ltr_subr_addl x y z : (x < y - z) = (z + x < y).
Proof. by rewrite lter_sub_addr addrC. Qed.
Definition ler_sub_addl := (ler_subl_addl, ler_subr_addl).
Definition ltr_sub_addl := (ltr_subl_addl, ltr_subr_addl).
Definition lter_sub_addl := (ler_sub_addl, ltr_sub_addl).
Lemma ler_addl x y : (x <= x + y) = (0 <= y).
Proof. by rewrite -{1}[x]addr0 lter_add2. Qed.
Lemma ltr_addl x y : (x < x + y) = (0 < y).
Proof. by rewrite -{1}[x]addr0 lter_add2. Qed.
Lemma ler_addr x y : (x <= y + x) = (0 <= y).
Proof. by rewrite -{1}[x]add0r lter_add2. Qed.
Lemma ltr_addr x y : (x < y + x) = (0 < y).
Proof. by rewrite -{1}[x]add0r lter_add2. Qed.
Lemma ger_addl x y : (x + y <= x) = (y <= 0).
Proof. by rewrite -{2}[x]addr0 lter_add2. Qed.
Lemma gtr_addl x y : (x + y < x) = (y < 0).
Proof. by rewrite -{2}[x]addr0 lter_add2. Qed.
Lemma ger_addr x y : (y + x <= x) = (y <= 0).
Proof. by rewrite -{2}[x]add0r lter_add2. Qed.
Lemma gtr_addr x y : (y + x < x) = (y < 0).
Proof. by rewrite -{2}[x]add0r lter_add2. Qed.
Definition cpr_add := (ler_addl, ler_addr, ger_addl, ger_addl,
ltr_addl, ltr_addr, gtr_addl, gtr_addl).
(* Addition with left member knwon to be positive/negative *)
Lemma ler_paddl y x z : 0 <= x -> y <= z -> y <= x + z.
Proof. by move=> *; rewrite -[y]add0r ler_add. Qed.
Lemma ltr_paddl y x z : 0 <= x -> y < z -> y < x + z.
Proof. by move=> *; rewrite -[y]add0r ler_lt_add. Qed.
Lemma ltr_spaddl y x z : 0 < x -> y <= z -> y < x + z.
Proof. by move=> *; rewrite -[y]add0r ltr_le_add. Qed.
Lemma ltr_spsaddl y x z : 0 < x -> y < z -> y < x + z.
Proof. by move=> *; rewrite -[y]add0r ltr_add. Qed.
Lemma ler_naddl y x z : x <= 0 -> y <= z -> x + y <= z.
Proof. by move=> *; rewrite -[z]add0r ler_add. Qed.
Lemma ltr_naddl y x z : x <= 0 -> y < z -> x + y < z.
Proof. by move=> *; rewrite -[z]add0r ler_lt_add. Qed.
Lemma ltr_snaddl y x z : x < 0 -> y <= z -> x + y < z.
Proof. by move=> *; rewrite -[z]add0r ltr_le_add. Qed.
Lemma ltr_snsaddl y x z : x < 0 -> y < z -> x + y < z.
Proof. by move=> *; rewrite -[z]add0r ltr_add. Qed.
(* Addition with right member we know positive/negative *)
Lemma ler_paddr y x z : 0 <= x -> y <= z -> y <= z + x.
Proof. by move=> *; rewrite [_ + x]addrC ler_paddl. Qed.
Lemma ltr_paddr y x z : 0 <= x -> y < z -> y < z + x.
Proof. by move=> *; rewrite [_ + x]addrC ltr_paddl. Qed.
Lemma ltr_spaddr y x z : 0 < x -> y <= z -> y < z + x.
Proof. by move=> *; rewrite [_ + x]addrC ltr_spaddl. Qed.
Lemma ltr_spsaddr y x z : 0 < x -> y < z -> y < z + x.
Proof. by move=> *; rewrite [_ + x]addrC ltr_spsaddl. Qed.
Lemma ler_naddr y x z : x <= 0 -> y <= z -> y + x <= z.
Proof. by move=> *; rewrite [_ + x]addrC ler_naddl. Qed.
Lemma ltr_naddr y x z : x <= 0 -> y < z -> y + x < z.
Proof. by move=> *; rewrite [_ + x]addrC ltr_naddl. Qed.
Lemma ltr_snaddr y x z : x < 0 -> y <= z -> y + x < z.
Proof. by move=> *; rewrite [_ + x]addrC ltr_snaddl. Qed.
Lemma ltr_snsaddr y x z : x < 0 -> y < z -> y + x < z.
Proof. by move=> *; rewrite [_ + x]addrC ltr_snsaddl. Qed.
(* x and y have the same sign and their sum is null *)
Lemma paddr_eq0 (x y : R) :
0 <= x -> 0 <= y -> (x + y == 0) = (x == 0) && (y == 0).
Proof.
rewrite le0r; case/orP=> [/eqP->|hx]; first by rewrite add0r eqxx.
by rewrite (gt_eqF hx) /= => hy; rewrite gt_eqF // ltr_spaddl.
Qed.
Lemma naddr_eq0 (x y : R) :
x <= 0 -> y <= 0 -> (x + y == 0) = (x == 0) && (y == 0).
Proof.
by move=> lex0 ley0; rewrite -oppr_eq0 opprD paddr_eq0 ?oppr_cp0 // !oppr_eq0.
Qed.
Lemma addr_ss_eq0 (x y : R) :
(0 <= x) && (0 <= y) || (x <= 0) && (y <= 0) ->
(x + y == 0) = (x == 0) && (y == 0).
Proof. by case/orP=> /andP []; [apply: paddr_eq0 | apply: naddr_eq0]. Qed.
(* big sum and ler *)
Lemma sumr_ge0 I (r : seq I) (P : pred I) (F : I -> R) :
(forall i, P i -> (0 <= F i)) -> 0 <= \sum_(i <- r | P i) (F i).
Proof. exact: (big_ind _ _ (@ler_paddl 0)). Qed.
Lemma ler_sum I (r : seq I) (P : pred I) (F G : I -> R) :
(forall i, P i -> F i <= G i) ->
\sum_(i <- r | P i) F i <= \sum_(i <- r | P i) G i.
Proof. exact: (big_ind2 _ (lexx _) ler_add). Qed.
Lemma psumr_eq0 (I : eqType) (r : seq I) (P : pred I) (F : I -> R) :
(forall i, P i -> 0 <= F i) ->
(\sum_(i <- r | P i) (F i) == 0) = (all (fun i => (P i) ==> (F i == 0)) r).
Proof.
elim: r=> [|a r ihr hr] /=; rewrite (big_nil, big_cons); first by rewrite eqxx.
by case: ifP=> pa /=; rewrite ?paddr_eq0 ?ihr ?hr // sumr_ge0.
Qed.
(* :TODO: Cyril : See which form to keep *)
Lemma psumr_eq0P (I : finType) (P : pred I) (F : I -> R) :
(forall i, P i -> 0 <= F i) -> \sum_(i | P i) F i = 0 ->
(forall i, P i -> F i = 0).
Proof.
move=> F_ge0 /eqP; rewrite psumr_eq0 // -big_all big_andE => /forallP hF i Pi.
by move: (hF i); rewrite implyTb Pi /= => /eqP.
Qed.
(* mulr and ler/ltr *)
Lemma ler_pmul2l x : 0 < x -> {mono *%R x : x y / x <= y}.
Proof.
by move=> x_gt0 y z /=; rewrite -subr_ge0 -mulrBr pmulr_rge0 // subr_ge0.
Qed.
Lemma ltr_pmul2l x : 0 < x -> {mono *%R x : x y / x < y}.
Proof. by move=> x_gt0; apply: leW_mono (ler_pmul2l _). Qed.
Definition lter_pmul2l := (ler_pmul2l, ltr_pmul2l).
Lemma ler_pmul2r x : 0 < x -> {mono *%R^~ x : x y / x <= y}.
Proof. by move=> x_gt0 y z /=; rewrite ![_ * x]mulrC ler_pmul2l. Qed.
Lemma ltr_pmul2r x : 0 < x -> {mono *%R^~ x : x y / x < y}.
Proof. by move=> x_gt0; apply: leW_mono (ler_pmul2r _). Qed.
Definition lter_pmul2r := (ler_pmul2r, ltr_pmul2r).
Lemma ler_nmul2l x : x < 0 -> {mono *%R x : x y /~ x <= y}.
Proof.
by move=> x_lt0 y z /=; rewrite -ler_opp2 -!mulNr ler_pmul2l ?oppr_gt0.
Qed.
Lemma ltr_nmul2l x : x < 0 -> {mono *%R x : x y /~ x < y}.
Proof. by move=> x_lt0; apply: leW_nmono (ler_nmul2l _). Qed.
Definition lter_nmul2l := (ler_nmul2l, ltr_nmul2l).
Lemma ler_nmul2r x : x < 0 -> {mono *%R^~ x : x y /~ x <= y}.
Proof. by move=> x_lt0 y z /=; rewrite ![_ * x]mulrC ler_nmul2l. Qed.
Lemma ltr_nmul2r x : x < 0 -> {mono *%R^~ x : x y /~ x < y}.
Proof. by move=> x_lt0; apply: leW_nmono (ler_nmul2r _). Qed.
Definition lter_nmul2r := (ler_nmul2r, ltr_nmul2r).
Lemma ler_wpmul2l x : 0 <= x -> {homo *%R x : y z / y <= z}.
Proof.
by rewrite le0r => /orP[/eqP-> y z | /ler_pmul2l/mono2W//]; rewrite !mul0r.
Qed.
Lemma ler_wpmul2r x : 0 <= x -> {homo *%R^~ x : y z / y <= z}.
Proof. by move=> x_ge0 y z leyz; rewrite ![_ * x]mulrC ler_wpmul2l. Qed.
Lemma ler_wnmul2l x : x <= 0 -> {homo *%R x : y z /~ y <= z}.
Proof.
by move=> x_le0 y z leyz; rewrite -![x * _]mulrNN ler_wpmul2l ?lter_oppE.
Qed.
Lemma ler_wnmul2r x : x <= 0 -> {homo *%R^~ x : y z /~ y <= z}.
Proof.
by move=> x_le0 y z leyz; rewrite -![_ * x]mulrNN ler_wpmul2r ?lter_oppE.
Qed.
(* Binary forms, for backchaining. *)
Lemma ler_pmul x1 y1 x2 y2 :
0 <= x1 -> 0 <= x2 -> x1 <= y1 -> x2 <= y2 -> x1 * x2 <= y1 * y2.
Proof.
move=> x1ge0 x2ge0 le_xy1 le_xy2; have y1ge0 := le_trans x1ge0 le_xy1.
exact: le_trans (ler_wpmul2r x2ge0 le_xy1) (ler_wpmul2l y1ge0 le_xy2).
Qed.
Lemma ltr_pmul x1 y1 x2 y2 :
0 <= x1 -> 0 <= x2 -> x1 < y1 -> x2 < y2 -> x1 * x2 < y1 * y2.
Proof.
move=> x1ge0 x2ge0 lt_xy1 lt_xy2; have y1gt0 := le_lt_trans x1ge0 lt_xy1.
by rewrite (le_lt_trans (ler_wpmul2r x2ge0 (ltW lt_xy1))) ?ltr_pmul2l.
Qed.
(* complement for x *+ n and <= or < *)
Lemma ler_pmuln2r n : (0 < n)%N -> {mono (@GRing.natmul R)^~ n : x y / x <= y}.
Proof.
by case: n => // n _ x y /=; rewrite -mulr_natl -[y *+ _]mulr_natl ler_pmul2l.
Qed.
Lemma ltr_pmuln2r n : (0 < n)%N -> {mono (@GRing.natmul R)^~ n : x y / x < y}.
Proof. by move/ler_pmuln2r/leW_mono. Qed.
Lemma pmulrnI n : (0 < n)%N -> injective ((@GRing.natmul R)^~ n).
Proof. by move/ler_pmuln2r/inc_inj. Qed.
Lemma eqr_pmuln2r n : (0 < n)%N -> {mono (@GRing.natmul R)^~ n : x y / x == y}.
Proof. by move/pmulrnI/inj_eq. Qed.
Lemma pmulrn_lgt0 x n : (0 < n)%N -> (0 < x *+ n) = (0 < x).
Proof. by move=> n_gt0; rewrite -(mul0rn _ n) ltr_pmuln2r // mul0rn. Qed.
Lemma pmulrn_llt0 x n : (0 < n)%N -> (x *+ n < 0) = (x < 0).
Proof. by move=> n_gt0; rewrite -(mul0rn _ n) ltr_pmuln2r // mul0rn. Qed.
Lemma pmulrn_lge0 x n : (0 < n)%N -> (0 <= x *+ n) = (0 <= x).
Proof. by move=> n_gt0; rewrite -(mul0rn _ n) ler_pmuln2r // mul0rn. Qed.
Lemma pmulrn_lle0 x n : (0 < n)%N -> (x *+ n <= 0) = (x <= 0).
Proof. by move=> n_gt0; rewrite -(mul0rn _ n) ler_pmuln2r // mul0rn. Qed.
Lemma ltr_wmuln2r x y n : x < y -> (x *+ n < y *+ n) = (0 < n)%N.
Proof. by move=> ltxy; case: n=> // n; rewrite ltr_pmuln2r. Qed.
Lemma ltr_wpmuln2r n : (0 < n)%N -> {homo (@GRing.natmul R)^~ n : x y / x < y}.
Proof. by move=> n_gt0 x y /= / ltr_wmuln2r ->. Qed.
Lemma ler_wmuln2r n : {homo (@GRing.natmul R)^~ n : x y / x <= y}.
Proof. by move=> x y hxy /=; case: n=> // n; rewrite ler_pmuln2r. Qed.
Lemma mulrn_wge0 x n : 0 <= x -> 0 <= x *+ n.
Proof. by move=> /(ler_wmuln2r n); rewrite mul0rn. Qed.
Lemma mulrn_wle0 x n : x <= 0 -> x *+ n <= 0.
Proof. by move=> /(ler_wmuln2r n); rewrite mul0rn. Qed.
Lemma ler_muln2r n x y : (x *+ n <= y *+ n) = ((n == 0%N) || (x <= y)).
Proof. by case: n => [|n]; rewrite ?lexx ?eqxx // ler_pmuln2r. Qed.
Lemma ltr_muln2r n x y : (x *+ n < y *+ n) = ((0 < n)%N && (x < y)).
Proof. by case: n => [|n]; rewrite ?lexx ?eqxx // ltr_pmuln2r. Qed.
Lemma eqr_muln2r n x y : (x *+ n == y *+ n) = (n == 0)%N || (x == y).
Proof. by rewrite !(@eq_le _ R) !ler_muln2r -orb_andr. Qed.
(* More characteristic zero properties. *)
Lemma mulrn_eq0 x n : (x *+ n == 0) = ((n == 0)%N || (x == 0)).
Proof. by rewrite -mulr_natl mulf_eq0 pnatr_eq0. Qed.
Lemma mulrIn x : x != 0 -> injective (GRing.natmul x).
Proof.
move=> x_neq0 m n; without loss /subnK <-: m n / (n <= m)%N.
by move=> IH eq_xmn; case/orP: (leq_total m n) => /IH->.
by move/eqP; rewrite mulrnDr -subr_eq0 addrK mulrn_eq0 => /predU1P[-> | /idPn].
Qed.
Lemma ler_wpmuln2l x :
0 <= x -> {homo (@GRing.natmul R x) : m n / (m <= n)%N >-> m <= n}.
Proof. by move=> xge0 m n /subnK <-; rewrite mulrnDr ler_paddl ?mulrn_wge0. Qed.
Lemma ler_wnmuln2l x :
x <= 0 -> {homo (@GRing.natmul R x) : m n / (n <= m)%N >-> m <= n}.
Proof.
by move=> xle0 m n hmn /=; rewrite -ler_opp2 -!mulNrn ler_wpmuln2l // oppr_cp0.
Qed.
Lemma mulrn_wgt0 x n : 0 < x -> 0 < x *+ n = (0 < n)%N.
Proof. by case: n => // n hx; rewrite pmulrn_lgt0. Qed.
Lemma mulrn_wlt0 x n : x < 0 -> x *+ n < 0 = (0 < n)%N.
Proof. by case: n => // n hx; rewrite pmulrn_llt0. Qed.
Lemma ler_pmuln2l x :
0 < x -> {mono (@GRing.natmul R x) : m n / (m <= n)%N >-> m <= n}.
Proof.
move=> x_gt0 m n /=; case: leqP => hmn; first by rewrite ler_wpmuln2l // ltW.
rewrite -(subnK (ltnW hmn)) mulrnDr ger_addr lt_geF //.
by rewrite mulrn_wgt0 // subn_gt0.
Qed.
Lemma ltr_pmuln2l x :
0 < x -> {mono (@GRing.natmul R x) : m n / (m < n)%N >-> m < n}.
Proof. by move=> x_gt0; apply: leW_mono (ler_pmuln2l _). Qed.
Lemma ler_nmuln2l x :
x < 0 -> {mono (@GRing.natmul R x) : m n / (n <= m)%N >-> m <= n}.
Proof.
by move=> x_lt0 m n /=; rewrite -ler_opp2 -!mulNrn ler_pmuln2l // oppr_gt0.
Qed.
Lemma ltr_nmuln2l x :
x < 0 -> {mono (@GRing.natmul R x) : m n / (n < m)%N >-> m < n}.
Proof. by move=> x_lt0; apply: leW_nmono (ler_nmuln2l _). Qed.
Lemma ler_nat m n : (m%:R <= n%:R :> R) = (m <= n)%N.
Proof. by rewrite ler_pmuln2l. Qed.
Lemma ltr_nat m n : (m%:R < n%:R :> R) = (m < n)%N.
Proof. by rewrite ltr_pmuln2l. Qed.
Lemma eqr_nat m n : (m%:R == n%:R :> R) = (m == n)%N.
Proof. by rewrite (inj_eq (mulrIn _)) ?oner_eq0. Qed.
Lemma pnatr_eq1 n : (n%:R == 1 :> R) = (n == 1)%N.
Proof. exact: eqr_nat 1%N. Qed.
Lemma lern0 n : (n%:R <= 0 :> R) = (n == 0%N).
Proof. by rewrite -[0]/0%:R ler_nat leqn0. Qed.
Lemma ltrn0 n : (n%:R < 0 :> R) = false.
Proof. by rewrite -[0]/0%:R ltr_nat ltn0. Qed.
Lemma ler1n n : 1 <= n%:R :> R = (1 <= n)%N. Proof. by rewrite -ler_nat. Qed.
Lemma ltr1n n : 1 < n%:R :> R = (1 < n)%N. Proof. by rewrite -ltr_nat. Qed.
Lemma lern1 n : n%:R <= 1 :> R = (n <= 1)%N. Proof. by rewrite -ler_nat. Qed.
Lemma ltrn1 n : n%:R < 1 :> R = (n < 1)%N. Proof. by rewrite -ltr_nat. Qed.
Lemma ltrN10 : -1 < 0 :> R. Proof. by rewrite oppr_lt0. Qed.
Lemma lerN10 : -1 <= 0 :> R. Proof. by rewrite oppr_le0. Qed.
Lemma ltr10 : 1 < 0 :> R = false. Proof. by rewrite le_gtF. Qed.
Lemma ler10 : 1 <= 0 :> R = false. Proof. by rewrite lt_geF. Qed.
Lemma ltr0N1 : 0 < -1 :> R = false. Proof. by rewrite le_gtF // lerN10. Qed.
Lemma ler0N1 : 0 <= -1 :> R = false. Proof. by rewrite lt_geF // ltrN10. Qed.
Lemma pmulrn_rgt0 x n : 0 < x -> 0 < x *+ n = (0 < n)%N.
Proof. by move=> x_gt0; rewrite -(mulr0n x) ltr_pmuln2l. Qed.
Lemma pmulrn_rlt0 x n : 0 < x -> x *+ n < 0 = false.
Proof. by move=> x_gt0; rewrite -(mulr0n x) ltr_pmuln2l. Qed.
Lemma pmulrn_rge0 x n : 0 < x -> 0 <= x *+ n.
Proof. by move=> x_gt0; rewrite -(mulr0n x) ler_pmuln2l. Qed.
Lemma pmulrn_rle0 x n : 0 < x -> x *+ n <= 0 = (n == 0)%N.
Proof. by move=> x_gt0; rewrite -(mulr0n x) ler_pmuln2l ?leqn0. Qed.
Lemma nmulrn_rgt0 x n : x < 0 -> 0 < x *+ n = false.
Proof. by move=> x_lt0; rewrite -(mulr0n x) ltr_nmuln2l. Qed.
Lemma nmulrn_rge0 x n : x < 0 -> 0 <= x *+ n = (n == 0)%N.
Proof. by move=> x_lt0; rewrite -(mulr0n x) ler_nmuln2l ?leqn0. Qed.
Lemma nmulrn_rle0 x n : x < 0 -> x *+ n <= 0.
Proof. by move=> x_lt0; rewrite -(mulr0n x) ler_nmuln2l. Qed.
(* (x * y) compared to 0 *)
(* Remark : pmulr_rgt0 and pmulr_rge0 are defined above *)
(* x positive and y right *)
Lemma pmulr_rlt0 x y : 0 < x -> (x * y < 0) = (y < 0).
Proof. by move=> x_gt0; rewrite -oppr_gt0 -mulrN pmulr_rgt0 // oppr_gt0. Qed.
Lemma pmulr_rle0 x y : 0 < x -> (x * y <= 0) = (y <= 0).
Proof. by move=> x_gt0; rewrite -oppr_ge0 -mulrN pmulr_rge0 // oppr_ge0. Qed.
(* x positive and y left *)
Lemma pmulr_lgt0 x y : 0 < x -> (0 < y * x) = (0 < y).
Proof. by move=> x_gt0; rewrite mulrC pmulr_rgt0. Qed.
Lemma pmulr_lge0 x y : 0 < x -> (0 <= y * x) = (0 <= y).
Proof. by move=> x_gt0; rewrite mulrC pmulr_rge0. Qed.
Lemma pmulr_llt0 x y : 0 < x -> (y * x < 0) = (y < 0).
Proof. by move=> x_gt0; rewrite mulrC pmulr_rlt0. Qed.
Lemma pmulr_lle0 x y : 0 < x -> (y * x <= 0) = (y <= 0).
Proof. by move=> x_gt0; rewrite mulrC pmulr_rle0. Qed.
(* x negative and y right *)
Lemma nmulr_rgt0 x y : x < 0 -> (0 < x * y) = (y < 0).
Proof. by move=> x_lt0; rewrite -mulrNN pmulr_rgt0 lter_oppE. Qed.
Lemma nmulr_rge0 x y : x < 0 -> (0 <= x * y) = (y <= 0).
Proof. by move=> x_lt0; rewrite -mulrNN pmulr_rge0 lter_oppE. Qed.
Lemma nmulr_rlt0 x y : x < 0 -> (x * y < 0) = (0 < y).
Proof. by move=> x_lt0; rewrite -mulrNN pmulr_rlt0 lter_oppE. Qed.
Lemma nmulr_rle0 x y : x < 0 -> (x * y <= 0) = (0 <= y).
Proof. by move=> x_lt0; rewrite -mulrNN pmulr_rle0 lter_oppE. Qed.
(* x negative and y left *)
Lemma nmulr_lgt0 x y : x < 0 -> (0 < y * x) = (y < 0).
Proof. by move=> x_lt0; rewrite mulrC nmulr_rgt0. Qed.
Lemma nmulr_lge0 x y : x < 0 -> (0 <= y * x) = (y <= 0).
Proof. by move=> x_lt0; rewrite mulrC nmulr_rge0. Qed.
Lemma nmulr_llt0 x y : x < 0 -> (y * x < 0) = (0 < y).
Proof. by move=> x_lt0; rewrite mulrC nmulr_rlt0. Qed.
Lemma nmulr_lle0 x y : x < 0 -> (y * x <= 0) = (0 <= y).
Proof. by move=> x_lt0; rewrite mulrC nmulr_rle0. Qed.
(* weak and symmetric lemmas *)
Lemma mulr_ge0 x y : 0 <= x -> 0 <= y -> 0 <= x * y.
Proof. by move=> x_ge0 y_ge0; rewrite -(mulr0 x) ler_wpmul2l. Qed.
Lemma mulr_le0 x y : x <= 0 -> y <= 0 -> 0 <= x * y.
Proof. by move=> x_le0 y_le0; rewrite -(mulr0 x) ler_wnmul2l. Qed.
Lemma mulr_ge0_le0 x y : 0 <= x -> y <= 0 -> x * y <= 0.
Proof. by move=> x_le0 y_le0; rewrite -(mulr0 x) ler_wpmul2l. Qed.
Lemma mulr_le0_ge0 x y : x <= 0 -> 0 <= y -> x * y <= 0.
Proof. by move=> x_le0 y_le0; rewrite -(mulr0 x) ler_wnmul2l. Qed.
(* mulr_gt0 with only one case *)
Lemma mulr_gt0 x y : 0 < x -> 0 < y -> 0 < x * y.
Proof. by move=> x_gt0 y_gt0; rewrite pmulr_rgt0. Qed.
(* Iterated products *)
Lemma prodr_ge0 I r (P : pred I) (E : I -> R) :
(forall i, P i -> 0 <= E i) -> 0 <= \prod_(i <- r | P i) E i.
Proof. by move=> Ege0; rewrite -nnegrE rpred_prod. Qed.
Lemma prodr_gt0 I r (P : pred I) (E : I -> R) :
(forall i, P i -> 0 < E i) -> 0 < \prod_(i <- r | P i) E i.
Proof. by move=> Ege0; rewrite -posrE rpred_prod. Qed.
Lemma ler_prod I r (P : pred I) (E1 E2 : I -> R) :
(forall i, P i -> 0 <= E1 i <= E2 i) ->
\prod_(i <- r | P i) E1 i <= \prod_(i <- r | P i) E2 i.
Proof.
move=> leE12; elim/(big_load (fun x => 0 <= x)): _.
elim/big_rec2: _ => // i x2 x1 /leE12/andP[le0Ei leEi12] [x1ge0 le_x12].
by rewrite mulr_ge0 // ler_pmul.
Qed.
Lemma ltr_prod I r (P : pred I) (E1 E2 : I -> R) :
has P r -> (forall i, P i -> 0 <= E1 i < E2 i) ->
\prod_(i <- r | P i) E1 i < \prod_(i <- r | P i) E2 i.
Proof.
elim: r => //= i r IHr; rewrite !big_cons; case: ifP => {IHr}// Pi _ ltE12.
have /andP[le0E1i ltE12i] := ltE12 i Pi; set E2r := \prod_(j <- r | P j) E2 j.
apply: le_lt_trans (_ : E1 i * E2r < E2 i * E2r).
by rewrite ler_wpmul2l ?ler_prod // => j /ltE12/andP[-> /ltW].
by rewrite ltr_pmul2r ?prodr_gt0 // => j /ltE12/andP[le0E1j /le_lt_trans->].
Qed.
Lemma ltr_prod_nat (E1 E2 : nat -> R) (n m : nat) :
(m < n)%N -> (forall i, (m <= i < n)%N -> 0 <= E1 i < E2 i) ->
\prod_(m <= i < n) E1 i < \prod_(m <= i < n) E2 i.
Proof.
move=> lt_mn ltE12; rewrite !big_nat ltr_prod {ltE12}//.
by apply/hasP; exists m; rewrite ?mem_index_iota leqnn.
Qed.
(* real of mul *)
Lemma realMr x y : x != 0 -> x \is real -> (x * y \is real) = (y \is real).
Proof.
move=> x_neq0 xR; case: real_ltgtP x_neq0 => // hx _; rewrite !realE.
by rewrite nmulr_rge0 // nmulr_rle0 // orbC.
by rewrite pmulr_rge0 // pmulr_rle0 // orbC.
Qed.
Lemma realrM x y : y != 0 -> y \is real -> (x * y \is real) = (x \is real).
Proof. by move=> y_neq0 yR; rewrite mulrC realMr. Qed.
Lemma realM : {in real &, forall x y, x * y \is real}.
Proof. exact: rpredM. Qed.
Lemma realrMn x n : (n != 0)%N -> (x *+ n \is real) = (x \is real).
Proof. by move=> n_neq0; rewrite -mulr_natl realMr ?realn ?pnatr_eq0. Qed.
(* ler/ltr and multiplication between a positive/negative *)
Lemma ger_pmull x y : 0 < y -> (x * y <= y) = (x <= 1).
Proof. by move=> hy; rewrite -{2}[y]mul1r ler_pmul2r. Qed.
Lemma gtr_pmull x y : 0 < y -> (x * y < y) = (x < 1).
Proof. by move=> hy; rewrite -{2}[y]mul1r ltr_pmul2r. Qed.
Lemma ger_pmulr x y : 0 < y -> (y * x <= y) = (x <= 1).
Proof. by move=> hy; rewrite -{2}[y]mulr1 ler_pmul2l. Qed.
Lemma gtr_pmulr x y : 0 < y -> (y * x < y) = (x < 1).
Proof. by move=> hy; rewrite -{2}[y]mulr1 ltr_pmul2l. Qed.
Lemma ler_pmull x y : 0 < y -> (y <= x * y) = (1 <= x).
Proof. by move=> hy; rewrite -{1}[y]mul1r ler_pmul2r. Qed.
Lemma ltr_pmull x y : 0 < y -> (y < x * y) = (1 < x).
Proof. by move=> hy; rewrite -{1}[y]mul1r ltr_pmul2r. Qed.
Lemma ler_pmulr x y : 0 < y -> (y <= y * x) = (1 <= x).
Proof. by move=> hy; rewrite -{1}[y]mulr1 ler_pmul2l. Qed.
Lemma ltr_pmulr x y : 0 < y -> (y < y * x) = (1 < x).
Proof. by move=> hy; rewrite -{1}[y]mulr1 ltr_pmul2l. Qed.
Lemma ger_nmull x y : y < 0 -> (x * y <= y) = (1 <= x).
Proof. by move=> hy; rewrite -{2}[y]mul1r ler_nmul2r. Qed.
Lemma gtr_nmull x y : y < 0 -> (x * y < y) = (1 < x).
Proof. by move=> hy; rewrite -{2}[y]mul1r ltr_nmul2r. Qed.
Lemma ger_nmulr x y : y < 0 -> (y * x <= y) = (1 <= x).
Proof. by move=> hy; rewrite -{2}[y]mulr1 ler_nmul2l. Qed.
Lemma gtr_nmulr x y : y < 0 -> (y * x < y) = (1 < x).
Proof. by move=> hy; rewrite -{2}[y]mulr1 ltr_nmul2l. Qed.
Lemma ler_nmull x y : y < 0 -> (y <= x * y) = (x <= 1).
Proof. by move=> hy; rewrite -{1}[y]mul1r ler_nmul2r. Qed.
Lemma ltr_nmull x y : y < 0 -> (y < x * y) = (x < 1).
Proof. by move=> hy; rewrite -{1}[y]mul1r ltr_nmul2r. Qed.
Lemma ler_nmulr x y : y < 0 -> (y <= y * x) = (x <= 1).
Proof. by move=> hy; rewrite -{1}[y]mulr1 ler_nmul2l. Qed.
Lemma ltr_nmulr x y : y < 0 -> (y < y * x) = (x < 1).
Proof. by move=> hy; rewrite -{1}[y]mulr1 ltr_nmul2l. Qed.
(* ler/ltr and multiplication between a positive/negative
and a exterior (1 <= _) or interior (0 <= _ <= 1) *)
Lemma ler_pemull x y : 0 <= y -> 1 <= x -> y <= x * y.
Proof. by move=> hy hx; rewrite -{1}[y]mul1r ler_wpmul2r. Qed.
Lemma ler_nemull x y : y <= 0 -> 1 <= x -> x * y <= y.
Proof. by move=> hy hx; rewrite -{2}[y]mul1r ler_wnmul2r. Qed.
Lemma ler_pemulr x y : 0 <= y -> 1 <= x -> y <= y * x.
Proof. by move=> hy hx; rewrite -{1}[y]mulr1 ler_wpmul2l. Qed.
Lemma ler_nemulr x y : y <= 0 -> 1 <= x -> y * x <= y.
Proof. by move=> hy hx; rewrite -{2}[y]mulr1 ler_wnmul2l. Qed.
Lemma ler_pimull x y : 0 <= y -> x <= 1 -> x * y <= y.
Proof. by move=> hy hx; rewrite -{2}[y]mul1r ler_wpmul2r. Qed.
Lemma ler_nimull x y : y <= 0 -> x <= 1 -> y <= x * y.
Proof. by move=> hy hx; rewrite -{1}[y]mul1r ler_wnmul2r. Qed.
Lemma ler_pimulr x y : 0 <= y -> x <= 1 -> y * x <= y.
Proof. by move=> hy hx; rewrite -{2}[y]mulr1 ler_wpmul2l. Qed.
Lemma ler_nimulr x y : y <= 0 -> x <= 1 -> y <= y * x.
Proof. by move=> hx hy; rewrite -{1}[y]mulr1 ler_wnmul2l. Qed.
Lemma mulr_ile1 x y : 0 <= x -> 0 <= y -> x <= 1 -> y <= 1 -> x * y <= 1.
Proof. by move=> *; rewrite (@le_trans _ _ y) ?ler_pimull. Qed.
Lemma mulr_ilt1 x y : 0 <= x -> 0 <= y -> x < 1 -> y < 1 -> x * y < 1.
Proof. by move=> *; rewrite (@le_lt_trans _ _ y) ?ler_pimull // ltW. Qed.
Definition mulr_ilte1 := (mulr_ile1, mulr_ilt1).
Lemma mulr_ege1 x y : 1 <= x -> 1 <= y -> 1 <= x * y.
Proof.
by move=> le1x le1y; rewrite (@le_trans _ _ y) ?ler_pemull // (le_trans ler01).
Qed.
Lemma mulr_egt1 x y : 1 < x -> 1 < y -> 1 < x * y.
Proof.
by move=> le1x lt1y; rewrite (@lt_trans _ _ y) // ltr_pmull // (lt_trans ltr01).
Qed.
Definition mulr_egte1 := (mulr_ege1, mulr_egt1).
Definition mulr_cp1 := (mulr_ilte1, mulr_egte1).
(* ler and ^-1 *)
Lemma invr_gt0 x : (0 < x^-1) = (0 < x).
Proof.
have [ux | nux] := boolP (x \is a GRing.unit); last by rewrite invr_out.
by apply/idP/idP=> /ltr_pmul2r<-; rewrite mul0r (mulrV, mulVr) ?ltr01.
Qed.
Lemma invr_ge0 x : (0 <= x^-1) = (0 <= x).
Proof. by rewrite !le0r invr_gt0 invr_eq0. Qed.
Lemma invr_lt0 x : (x^-1 < 0) = (x < 0).
Proof. by rewrite -oppr_cp0 -invrN invr_gt0 oppr_cp0. Qed.
Lemma invr_le0 x : (x^-1 <= 0) = (x <= 0).
Proof. by rewrite -oppr_cp0 -invrN invr_ge0 oppr_cp0. Qed.
Definition invr_gte0 := (invr_ge0, invr_gt0).
Definition invr_lte0 := (invr_le0, invr_lt0).
Lemma divr_ge0 x y : 0 <= x -> 0 <= y -> 0 <= x / y.
Proof. by move=> x_ge0 y_ge0; rewrite mulr_ge0 ?invr_ge0. Qed.
Lemma divr_gt0 x y : 0 < x -> 0 < y -> 0 < x / y.
Proof. by move=> x_gt0 y_gt0; rewrite pmulr_rgt0 ?invr_gt0. Qed.
Lemma realV : {mono (@GRing.inv R) : x / x \is real}.
Proof. exact: rpredV. Qed.
(* ler and exprn *)
Lemma exprn_ge0 n x : 0 <= x -> 0 <= x ^+ n.
Proof. by move=> xge0; rewrite -nnegrE rpredX. Qed.
Lemma realX n : {in real, forall x, x ^+ n \is real}.
Proof. exact: rpredX. Qed.
Lemma exprn_gt0 n x : 0 < x -> 0 < x ^+ n.
Proof.
by rewrite !lt0r expf_eq0 => /andP[/negPf-> /exprn_ge0->]; rewrite andbF.
Qed.
Definition exprn_gte0 := (exprn_ge0, exprn_gt0).
Lemma exprn_ile1 n x : 0 <= x -> x <= 1 -> x ^+ n <= 1.
Proof.
move=> xge0 xle1; elim: n=> [|*]; rewrite ?expr0 // exprS.
by rewrite mulr_ile1 ?exprn_ge0.
Qed.
Lemma exprn_ilt1 n x : 0 <= x -> x < 1 -> x ^+ n < 1 = (n != 0%N).
Proof.
move=> xge0 xlt1.
case: n; [by rewrite eqxx ltxx | elim=> [|n ihn]; first by rewrite expr1].
by rewrite exprS mulr_ilt1 // exprn_ge0.
Qed.
Definition exprn_ilte1 := (exprn_ile1, exprn_ilt1).
Lemma exprn_ege1 n x : 1 <= x -> 1 <= x ^+ n.
Proof.
by move=> x_ge1; elim: n=> [|n ihn]; rewrite ?expr0 // exprS mulr_ege1.
Qed.
Lemma exprn_egt1 n x : 1 < x -> 1 < x ^+ n = (n != 0%N).
Proof.
move=> xgt1; case: n; first by rewrite eqxx ltxx.
elim=> [|n ihn]; first by rewrite expr1.
by rewrite exprS mulr_egt1 // exprn_ge0.
Qed.
Definition exprn_egte1 := (exprn_ege1, exprn_egt1).
Definition exprn_cp1 := (exprn_ilte1, exprn_egte1).
Lemma ler_iexpr x n : (0 < n)%N -> 0 <= x -> x <= 1 -> x ^+ n <= x.
Proof. by case: n => n // *; rewrite exprS ler_pimulr // exprn_ile1. Qed.
Lemma ltr_iexpr x n : 0 < x -> x < 1 -> (x ^+ n < x) = (1 < n)%N.
Proof.
case: n=> [|[|n]] //; first by rewrite expr0 => _ /lt_gtF ->.
by move=> x0 x1; rewrite exprS gtr_pmulr // ?exprn_ilt1 // ltW.
Qed.
Definition lter_iexpr := (ler_iexpr, ltr_iexpr).
Lemma ler_eexpr x n : (0 < n)%N -> 1 <= x -> x <= x ^+ n.
Proof.
case: n => // n _ x_ge1.
by rewrite exprS ler_pemulr ?(le_trans _ x_ge1) // exprn_ege1.
Qed.
Lemma ltr_eexpr x n : 1 < x -> (x < x ^+ n) = (1 < n)%N.
Proof.
move=> x_ge1; case: n=> [|[|n]] //; first by rewrite expr0 lt_gtF.
by rewrite exprS ltr_pmulr ?(lt_trans _ x_ge1) ?exprn_egt1.
Qed.
Definition lter_eexpr := (ler_eexpr, ltr_eexpr).
Definition lter_expr := (lter_iexpr, lter_eexpr).
Lemma ler_wiexpn2l x :
0 <= x -> x <= 1 -> {homo (GRing.exp x) : m n / (n <= m)%N >-> m <= n}.
Proof.
move=> xge0 xle1 m n /= hmn.
by rewrite -(subnK hmn) exprD ler_pimull ?(exprn_ge0, exprn_ile1).
Qed.
Lemma ler_weexpn2l x :
1 <= x -> {homo (GRing.exp x) : m n / (m <= n)%N >-> m <= n}.
Proof.
move=> xge1 m n /= hmn; rewrite -(subnK hmn) exprD.
by rewrite ler_pemull ?(exprn_ge0, exprn_ege1) // (le_trans _ xge1) ?ler01.
Qed.
Lemma ieexprn_weq1 x n : 0 <= x -> (x ^+ n == 1) = ((n == 0%N) || (x == 1)).
Proof.
move=> xle0; case: n => [|n]; first by rewrite expr0 eqxx.
case: (@real_ltgtP x 1); do ?by rewrite ?ger0_real.
+ by move=> x_lt1; rewrite 1?lt_eqF // exprn_ilt1.
+ by move=> x_lt1; rewrite 1?gt_eqF // exprn_egt1.
by move->; rewrite expr1n eqxx.
Qed.
Lemma ieexprIn x : 0 < x -> x != 1 -> injective (GRing.exp x).
Proof.
move=> x_gt0 x_neq1 m n; without loss /subnK <-: m n / (n <= m)%N.
by move=> IH eq_xmn; case/orP: (leq_total m n) => /IH->.
case: {m}(m - n)%N => // m /eqP/idPn[]; rewrite -[x ^+ n]mul1r exprD.
by rewrite (inj_eq (mulIf _)) ?ieexprn_weq1 ?ltW // expf_neq0 ?gt_eqF.
Qed.
Lemma ler_iexpn2l x :
0 < x -> x < 1 -> {mono (GRing.exp x) : m n / (n <= m)%N >-> m <= n}.
Proof.
move=> xgt0 xlt1; apply: (le_nmono (inj_nhomo_lt _ _)); last first.
by apply: ler_wiexpn2l; rewrite ltW.
by apply: ieexprIn; rewrite ?lt_eqF ?ltr_cpable.
Qed.
Lemma ltr_iexpn2l x :
0 < x -> x < 1 -> {mono (GRing.exp x) : m n / (n < m)%N >-> m < n}.
Proof. by move=> xgt0 xlt1; apply: (leW_nmono (ler_iexpn2l _ _)). Qed.
Definition lter_iexpn2l := (ler_iexpn2l, ltr_iexpn2l).
Lemma ler_eexpn2l x :
1 < x -> {mono (GRing.exp x) : m n / (m <= n)%N >-> m <= n}.
Proof.
move=> xgt1; apply: (le_mono (inj_homo_lt _ _)); last first.
by apply: ler_weexpn2l; rewrite ltW.
by apply: ieexprIn; rewrite ?gt_eqF ?gtr_cpable //; apply: lt_trans xgt1.
Qed.
Lemma ltr_eexpn2l x :
1 < x -> {mono (GRing.exp x) : m n / (m < n)%N >-> m < n}.
Proof. by move=> xgt1; apply: (leW_mono (ler_eexpn2l _)). Qed.
Definition lter_eexpn2l := (ler_eexpn2l, ltr_eexpn2l).
Lemma ltr_expn2r n x y : 0 <= x -> x < y -> x ^+ n < y ^+ n = (n != 0%N).
Proof.
move=> xge0 xlty; case: n; first by rewrite ltxx.
elim=> [|n IHn]; rewrite ?[_ ^+ _.+2]exprS //.
rewrite (@le_lt_trans _ _ (x * y ^+ n.+1)) ?ler_wpmul2l ?ltr_pmul2r ?IHn //.
by rewrite ltW // ihn.
by rewrite exprn_gt0 // (le_lt_trans xge0).
Qed.
Lemma ler_expn2r n : {in nneg & , {homo ((@GRing.exp R)^~ n) : x y / x <= y}}.
Proof.
move=> x y /= x0 y0 xy; elim: n => [|n IHn]; rewrite !(expr0, exprS) //.
by rewrite (@le_trans _ _ (x * y ^+ n)) ?ler_wpmul2l ?ler_wpmul2r ?exprn_ge0.
Qed.
Definition lter_expn2r := (ler_expn2r, ltr_expn2r).
Lemma ltr_wpexpn2r n :
(0 < n)%N -> {in nneg & , {homo ((@GRing.exp R)^~ n) : x y / x < y}}.
Proof. by move=> ngt0 x y /= x0 y0 hxy; rewrite ltr_expn2r // -lt0n. Qed.
Lemma ler_pexpn2r n :
(0 < n)%N -> {in nneg & , {mono ((@GRing.exp R)^~ n) : x y / x <= y}}.
Proof.
case: n => // n _ x y; rewrite !qualifE /= => x_ge0 y_ge0.
have [-> | nzx] := eqVneq x 0; first by rewrite exprS mul0r exprn_ge0.
rewrite -subr_ge0 subrXX pmulr_lge0 ?subr_ge0 //= big_ord_recr /=.
rewrite subnn expr0 mul1r /= ltr_spaddr // ?exprn_gt0 ?lt0r ?nzx //.
by rewrite sumr_ge0 // => i _; rewrite mulr_ge0 ?exprn_ge0.
Qed.
Lemma ltr_pexpn2r n :
(0 < n)%N -> {in nneg & , {mono ((@GRing.exp R)^~ n) : x y / x < y}}.
Proof.
by move=> n_gt0 x y x_ge0 y_ge0; rewrite !lt_neqAle !eq_le !ler_pexpn2r.
Qed.
Definition lter_pexpn2r := (ler_pexpn2r, ltr_pexpn2r).
Lemma pexpIrn n : (0 < n)%N -> {in nneg &, injective ((@GRing.exp R)^~ n)}.
Proof. by move=> n_gt0; apply: inc_inj_in (ler_pexpn2r _). Qed.
(* expr and ler/ltr *)
Lemma expr_le1 n x : (0 < n)%N -> 0 <= x -> (x ^+ n <= 1) = (x <= 1).
Proof.
by move=> ngt0 xge0; rewrite -{1}[1](expr1n _ n) ler_pexpn2r // [_ \in _]ler01.
Qed.
Lemma expr_lt1 n x : (0 < n)%N -> 0 <= x -> (x ^+ n < 1) = (x < 1).
Proof.
by move=> ngt0 xge0; rewrite -{1}[1](expr1n _ n) ltr_pexpn2r // [_ \in _]ler01.
Qed.
Definition expr_lte1 := (expr_le1, expr_lt1).
Lemma expr_ge1 n x : (0 < n)%N -> 0 <= x -> (1 <= x ^+ n) = (1 <= x).
Proof.
by move=> ngt0 xge0; rewrite -{1}[1](expr1n _ n) ler_pexpn2r // [_ \in _]ler01.
Qed.
Lemma expr_gt1 n x : (0 < n)%N -> 0 <= x -> (1 < x ^+ n) = (1 < x).
Proof.
by move=> ngt0 xge0; rewrite -{1}[1](expr1n _ n) ltr_pexpn2r // [_ \in _]ler01.
Qed.
Definition expr_gte1 := (expr_ge1, expr_gt1).
Lemma pexpr_eq1 x n : (0 < n)%N -> 0 <= x -> (x ^+ n == 1) = (x == 1).
Proof. by move=> ngt0 xge0; rewrite !eq_le expr_le1 // expr_ge1. Qed.
Lemma pexprn_eq1 x n : 0 <= x -> (x ^+ n == 1) = (n == 0%N) || (x == 1).
Proof. by case: n => [|n] xge0; rewrite ?eqxx // pexpr_eq1 ?gtn_eqF. Qed.
Lemma eqr_expn2 n x y :
(0 < n)%N -> 0 <= x -> 0 <= y -> (x ^+ n == y ^+ n) = (x == y).
Proof. by move=> ngt0 xge0 yge0; rewrite (inj_in_eq (pexpIrn _)). Qed.
Lemma sqrp_eq1 x : 0 <= x -> (x ^+ 2 == 1) = (x == 1).
Proof. by move/pexpr_eq1->. Qed.
Lemma sqrn_eq1 x : x <= 0 -> (x ^+ 2 == 1) = (x == -1).
Proof. by rewrite -sqrrN -oppr_ge0 -eqr_oppLR => /sqrp_eq1. Qed.
Lemma ler_sqr : {in nneg &, {mono (fun x => x ^+ 2) : x y / x <= y}}.
Proof. exact: ler_pexpn2r. Qed.
Lemma ltr_sqr : {in nneg &, {mono (fun x => x ^+ 2) : x y / x < y}}.
Proof. exact: ltr_pexpn2r. Qed.
Lemma ler_pinv :
{in [pred x in GRing.unit | 0 < x] &, {mono (@GRing.inv R) : x y /~ x <= y}}.
Proof.
move=> x y /andP [ux hx] /andP [uy hy] /=.
rewrite -(ler_pmul2l hx) -(ler_pmul2r hy).
by rewrite !(divrr, mulrVK) ?unitf_gt0 // mul1r.
Qed.
Lemma ler_ninv :
{in [pred x in GRing.unit | x < 0] &, {mono (@GRing.inv R) : x y /~ x <= y}}.
Proof.
move=> x y /andP [ux hx] /andP [uy hy] /=.
rewrite -(ler_nmul2l hx) -(ler_nmul2r hy).
by rewrite !(divrr, mulrVK) ?unitf_lt0 // mul1r.
Qed.
Lemma ltr_pinv :
{in [pred x in GRing.unit | 0 < x] &, {mono (@GRing.inv R) : x y /~ x < y}}.
Proof. exact: leW_nmono_in ler_pinv. Qed.
Lemma ltr_ninv :
{in [pred x in GRing.unit | x < 0] &, {mono (@GRing.inv R) : x y /~ x < y}}.
Proof. exact: leW_nmono_in ler_ninv. Qed.
Lemma invr_gt1 x : x \is a GRing.unit -> 0 < x -> (1 < x^-1) = (x < 1).
Proof.
by move=> Ux xgt0; rewrite -{1}[1]invr1 ltr_pinv ?inE ?unitr1 ?ltr01 ?Ux.
Qed.
Lemma invr_ge1 x : x \is a GRing.unit -> 0 < x -> (1 <= x^-1) = (x <= 1).
Proof.
by move=> Ux xgt0; rewrite -{1}[1]invr1 ler_pinv ?inE ?unitr1 ?ltr01 // Ux.
Qed.
Definition invr_gte1 := (invr_ge1, invr_gt1).
Lemma invr_le1 x (ux : x \is a GRing.unit) (hx : 0 < x) :
(x^-1 <= 1) = (1 <= x).
Proof. by rewrite -invr_ge1 ?invr_gt0 ?unitrV // invrK. Qed.
Lemma invr_lt1 x (ux : x \is a GRing.unit) (hx : 0 < x) : (x^-1 < 1) = (1 < x).
Proof. by rewrite -invr_gt1 ?invr_gt0 ?unitrV // invrK. Qed.
Definition invr_lte1 := (invr_le1, invr_lt1).
Definition invr_cp1 := (invr_gte1, invr_lte1).
(* norm *)
Lemma real_ler_norm x : x \is real -> x <= `|x|.
Proof.
by case/real_ge0P=> hx //; rewrite (le_trans (ltW hx)) // oppr_ge0 ltW.
Qed.
(* norm + add *)
Section NormedZmoduleTheory.
Variable V : normedZmodType R.
Implicit Types (u v w : V).
Lemma normr_real v : `|v| \is real. Proof. by apply/ger0_real. Qed.
Hint Resolve normr_real : core.
Lemma ler_norm_sum I r (G : I -> V) (P : pred I):
`|\sum_(i <- r | P i) G i| <= \sum_(i <- r | P i) `|G i|.
Proof.
elim/big_rec2: _ => [|i y x _]; first by rewrite normr0.
by rewrite -(ler_add2l `|G i|); apply: le_trans; apply: ler_norm_add.
Qed.
Lemma ler_norm_sub v w : `|v - w| <= `|v| + `|w|.
Proof. by rewrite (le_trans (ler_norm_add _ _)) ?normrN. Qed.
Lemma ler_dist_add u v w : `|v - w| <= `|v - u| + `|u - w|.
Proof. by rewrite (le_trans _ (ler_norm_add _ _)) // addrA addrNK. Qed.
Lemma ler_sub_norm_add v w : `|v| - `|w| <= `|v + w|.
Proof.
rewrite -{1}[v](addrK w) lter_sub_addl.
by rewrite (le_trans (ler_norm_add _ _)) // addrC normrN.
Qed.
Lemma ler_sub_dist v w : `|v| - `|w| <= `|v - w|.
Proof. by rewrite -[`|w|]normrN ler_sub_norm_add. Qed.
Lemma ler_dist_dist v w : `| `|v| - `|w| | <= `|v - w|.
Proof.
have [||_|_] // := @real_leP `|v| `|w|; last by rewrite ler_sub_dist.
by rewrite distrC ler_sub_dist.
Qed.
Lemma ler_dist_norm_add v w : `| `|v| - `|w| | <= `|v + w|.
Proof. by rewrite -[w]opprK normrN ler_dist_dist. Qed.
Lemma ler_nnorml v x : x < 0 -> `|v| <= x = false.
Proof. by move=> h; rewrite lt_geF //; apply/(lt_le_trans h). Qed.
Lemma ltr_nnorml v x : x <= 0 -> `|v| < x = false.
Proof. by move=> h; rewrite le_gtF //; apply/(le_trans h). Qed.
Definition lter_nnormr := (ler_nnorml, ltr_nnorml).
End NormedZmoduleTheory.
Hint Extern 0 (is_true (norm _ \is real)) => exact: normr_real : core.
Lemma real_ler_norml x y : x \is real -> (`|x| <= y) = (- y <= x <= y).
Proof.
move=> xR; wlog x_ge0 : x xR / 0 <= x => [hwlog|].
move: (xR) => /(@real_leVge 0) /orP [|/hwlog->|hx] //.
by rewrite -[x]opprK normrN ler_opp2 andbC ler_oppl hwlog ?realN ?oppr_ge0.
rewrite ger0_norm //; have [le_xy|] := boolP (x <= y); last by rewrite andbF.
by rewrite (le_trans _ x_ge0) // oppr_le0 (le_trans x_ge0).
Qed.
Lemma real_ler_normlP x y :
x \is real -> reflect ((-x <= y) * (x <= y)) (`|x| <= y).
Proof.
by move=> Rx; rewrite real_ler_norml // ler_oppl; apply: (iffP andP) => [] [].
Qed.
Arguments real_ler_normlP {x y}.
Lemma real_eqr_norml x y :
x \is real -> (`|x| == y) = ((x == y) || (x == -y)) && (0 <= y).
Proof.
move=> Rx.
apply/idP/idP=> [|/andP[/pred2P[]-> /ger0_norm/eqP]]; rewrite ?normrE //.
case: real_le0P => // hx; rewrite 1?eqr_oppLR => /eqP exy.
by move: hx; rewrite exy ?oppr_le0 eqxx orbT //.
by move: hx=> /ltW; rewrite exy eqxx.
Qed.
Lemma real_eqr_norm2 x y :
x \is real -> y \is real -> (`|x| == `|y|) = (x == y) || (x == -y).
Proof.
move=> Rx Ry; rewrite real_eqr_norml // normrE andbT.
by case: real_le0P; rewrite // opprK orbC.
Qed.
Lemma real_ltr_norml x y : x \is real -> (`|x| < y) = (- y < x < y).
Proof.
move=> Rx; wlog x_ge0 : x Rx / 0 <= x => [hwlog|].
move: (Rx) => /(@real_leVge 0) /orP [|/hwlog->|hx] //.
by rewrite -[x]opprK normrN ltr_opp2 andbC ltr_oppl hwlog ?realN ?oppr_ge0.
rewrite ger0_norm //; have [le_xy|] := boolP (x < y); last by rewrite andbF.
by rewrite (lt_le_trans _ x_ge0) // oppr_lt0 (le_lt_trans x_ge0).
Qed.
Definition real_lter_norml := (real_ler_norml, real_ltr_norml).
Lemma real_ltr_normlP x y :
x \is real -> reflect ((-x < y) * (x < y)) (`|x| < y).
Proof.
move=> Rx; rewrite real_ltr_norml // ltr_oppl.
by apply: (iffP (@andP _ _)); case.
Qed.
Arguments real_ltr_normlP {x y}.
Lemma real_ler_normr x y : y \is real -> (x <= `|y|) = (x <= y) || (x <= - y).
Proof.
move=> Ry.
have [xR|xNR] := boolP (x \is real); last by rewrite ?Nreal_leF ?realN.
rewrite real_leNgt ?real_ltr_norml // negb_and -?real_leNgt ?realN //.
by rewrite orbC ler_oppr.
Qed.
Lemma real_ltr_normr x y : y \is real -> (x < `|y|) = (x < y) || (x < - y).
Proof.
move=> Ry.
have [xR|xNR] := boolP (x \is real); last by rewrite ?Nreal_ltF ?realN.
rewrite real_ltNge ?real_ler_norml // negb_and -?real_ltNge ?realN //.
by rewrite orbC ltr_oppr.
Qed.
Definition real_lter_normr := (real_ler_normr, real_ltr_normr).
Lemma real_ler_distl x y e :
x - y \is real -> (`|x - y| <= e) = (y - e <= x <= y + e).
Proof. by move=> Rxy; rewrite real_lter_norml // !lter_sub_addl. Qed.
Lemma real_ltr_distl x y e :
x - y \is real -> (`|x - y| < e) = (y - e < x < y + e).
Proof. by move=> Rxy; rewrite real_lter_norml // !lter_sub_addl. Qed.
Definition real_lter_distl := (real_ler_distl, real_ltr_distl).
(* GG: pointless duplication }-( *)
Lemma eqr_norm_id x : (`|x| == x) = (0 <= x). Proof. by rewrite ger0_def. Qed.
Lemma eqr_normN x : (`|x| == - x) = (x <= 0). Proof. by rewrite ler0_def. Qed.
Definition eqr_norm_idVN := =^~ (ger0_def, ler0_def).
Lemma real_exprn_even_ge0 n x : x \is real -> ~~ odd n -> 0 <= x ^+ n.
Proof.
move=> xR even_n; have [/exprn_ge0 -> //|x_lt0] := real_ge0P xR.
rewrite -[x]opprK -mulN1r exprMn -signr_odd (negPf even_n) expr0 mul1r.
by rewrite exprn_ge0 ?oppr_ge0 ?ltW.
Qed.
Lemma real_exprn_even_gt0 n x :
x \is real -> ~~ odd n -> (0 < x ^+ n) = (n == 0)%N || (x != 0).
Proof.
move=> xR n_even; rewrite lt0r real_exprn_even_ge0 ?expf_eq0 //.
by rewrite andbT negb_and lt0n negbK.
Qed.
Lemma real_exprn_even_le0 n x :
x \is real -> ~~ odd n -> (x ^+ n <= 0) = (n != 0%N) && (x == 0).
Proof.
move=> xR n_even; rewrite !real_leNgt ?rpred0 ?rpredX //.
by rewrite real_exprn_even_gt0 // negb_or negbK.
Qed.
Lemma real_exprn_even_lt0 n x :
x \is real -> ~~ odd n -> (x ^+ n < 0) = false.
Proof. by move=> xR n_even; rewrite le_gtF // real_exprn_even_ge0. Qed.
Lemma real_exprn_odd_ge0 n x :
x \is real -> odd n -> (0 <= x ^+ n) = (0 <= x).
Proof.
case/real_ge0P => [x_ge0|x_lt0] n_odd; first by rewrite exprn_ge0.
apply: negbTE; rewrite lt_geF //.
case: n n_odd => // n /= n_even; rewrite exprS pmulr_llt0 //.
by rewrite real_exprn_even_gt0 ?ler0_real ?ltW // (lt_eqF x_lt0) ?orbT.
Qed.
Lemma real_exprn_odd_gt0 n x : x \is real -> odd n -> (0 < x ^+ n) = (0 < x).
Proof.
by move=> xR n_odd; rewrite !lt0r expf_eq0 real_exprn_odd_ge0; case: n n_odd.
Qed.
Lemma real_exprn_odd_le0 n x : x \is real -> odd n -> (x ^+ n <= 0) = (x <= 0).
Proof.
by move=> xR n_odd; rewrite !real_leNgt ?rpred0 ?rpredX // real_exprn_odd_gt0.
Qed.
Lemma real_exprn_odd_lt0 n x : x \is real -> odd n -> (x ^+ n < 0) = (x < 0).
Proof.
by move=> xR n_odd; rewrite !real_ltNge ?rpred0 ?rpredX // real_exprn_odd_ge0.
Qed.
(* GG: Could this be a better definition of "real" ? *)
Lemma realEsqr x : (x \is real) = (0 <= x ^+ 2).
Proof. by rewrite ger0_def normrX eqf_sqr -ger0_def -ler0_def. Qed.
Lemma real_normK x : x \is real -> `|x| ^+ 2 = x ^+ 2.
Proof. by move=> Rx; rewrite -normrX ger0_norm -?realEsqr. Qed.
(* Binary sign ((-1) ^+ s). *)
Lemma normr_sign s : `|(-1) ^+ s : R| = 1.
Proof. by rewrite normrX normrN1 expr1n. Qed.
Lemma normrMsign s x : `|(-1) ^+ s * x| = `|x|.
Proof. by rewrite normrM normr_sign mul1r. Qed.
Lemma signr_gt0 (b : bool) : (0 < (-1) ^+ b :> R) = ~~ b.
Proof. by case: b; rewrite (ltr01, ltr0N1). Qed.
Lemma signr_lt0 (b : bool) : ((-1) ^+ b < 0 :> R) = b.
Proof. by case: b; rewrite // ?(ltrN10, ltr10). Qed.
Lemma signr_ge0 (b : bool) : (0 <= (-1) ^+ b :> R) = ~~ b.
Proof. by rewrite le0r signr_eq0 signr_gt0. Qed.
Lemma signr_le0 (b : bool) : ((-1) ^+ b <= 0 :> R) = b.
Proof. by rewrite le_eqVlt signr_eq0 signr_lt0. Qed.
(* This actually holds for char R != 2. *)
Lemma signr_inj : injective (fun b : bool => (-1) ^+ b : R).
Proof. exact: can_inj (fun x => 0 >= x) signr_le0. Qed.
(* Ternary sign (sg). *)
Lemma sgr_def x : sg x = (-1) ^+ (x < 0)%R *+ (x != 0).
Proof. by rewrite /sg; do 2!case: ifP => //. Qed.
Lemma neqr0_sign x : x != 0 -> (-1) ^+ (x < 0)%R = sgr x.
Proof. by rewrite sgr_def => ->. Qed.
Lemma gtr0_sg x : 0 < x -> sg x = 1.
Proof. by move=> x_gt0; rewrite /sg gt_eqF // lt_gtF. Qed.
Lemma ltr0_sg x : x < 0 -> sg x = -1.
Proof. by move=> x_lt0; rewrite /sg x_lt0 lt_eqF. Qed.
Lemma sgr0 : sg 0 = 0 :> R. Proof. by rewrite /sgr eqxx. Qed.
Lemma sgr1 : sg 1 = 1 :> R. Proof. by rewrite gtr0_sg // ltr01. Qed.
Lemma sgrN1 : sg (-1) = -1 :> R. Proof. by rewrite ltr0_sg // ltrN10. Qed.
Definition sgrE := (sgr0, sgr1, sgrN1).
Lemma sqr_sg x : sg x ^+ 2 = (x != 0)%:R.
Proof. by rewrite sgr_def exprMn_n sqrr_sign -mulnn mulnb andbb. Qed.
Lemma mulr_sg_eq1 x y : (sg x * y == 1) = (x != 0) && (sg x == y).
Proof.
rewrite /sg eq_sym; case: ifP => _; first by rewrite mul0r oner_eq0.
by case: ifP => _; rewrite ?mul1r // mulN1r eqr_oppLR.
Qed.
Lemma mulr_sg_eqN1 x y : (sg x * sg y == -1) = (x != 0) && (sg x == - sg y).
Proof.
move/sg: y => y; rewrite /sg eq_sym eqr_oppLR.
case: ifP => _; first by rewrite mul0r oppr0 oner_eq0.
by case: ifP => _; rewrite ?mul1r // mulN1r eqr_oppLR.
Qed.
Lemma sgr_eq0 x : (sg x == 0) = (x == 0).
Proof. by rewrite -sqrf_eq0 sqr_sg pnatr_eq0; case: (x == 0). Qed.
Lemma sgr_odd n x : x != 0 -> (sg x) ^+ n = (sg x) ^+ (odd n).
Proof. by rewrite /sg; do 2!case: ifP => // _; rewrite ?expr1n ?signr_odd. Qed.
Lemma sgrMn x n : sg (x *+ n) = (n != 0%N)%:R * sg x.
Proof.
case: n => [|n]; first by rewrite mulr0n sgr0 mul0r.
by rewrite !sgr_def mulrn_eq0 mul1r pmulrn_llt0.
Qed.
Lemma sgr_nat n : sg n%:R = (n != 0%N)%:R :> R.
Proof. by rewrite sgrMn sgr1 mulr1. Qed.
Lemma sgr_id x : sg (sg x) = sg x.
Proof. by rewrite !(fun_if sg) !sgrE. Qed.
Lemma sgr_lt0 x : (sg x < 0) = (x < 0).
Proof.
rewrite /sg; case: eqP => [-> // | _].
by case: ifP => _; rewrite ?ltrN10 // lt_gtF.
Qed.
Lemma sgr_le0 x : (sgr x <= 0) = (x <= 0).
Proof. by rewrite !le_eqVlt sgr_eq0 sgr_lt0. Qed.
(* sign and norm *)
Lemma realEsign x : x \is real -> x = (-1) ^+ (x < 0)%R * `|x|.
Proof. by case/real_ge0P; rewrite (mul1r, mulN1r) ?opprK. Qed.
Lemma realNEsign x : x \is real -> - x = (-1) ^+ (0 < x)%R * `|x|.
Proof. by move=> Rx; rewrite -normrN -oppr_lt0 -realEsign ?rpredN. Qed.
Lemma real_normrEsign (x : R) (xR : x \is real) : `|x| = (-1) ^+ (x < 0)%R * x.
Proof. by rewrite {3}[x]realEsign // signrMK. Qed.
(* GG: pointless duplication... *)
Lemma real_mulr_sign_norm x : x \is real -> (-1) ^+ (x < 0)%R * `|x| = x.
Proof. by move/realEsign. Qed.
Lemma real_mulr_Nsign_norm x : x \is real -> (-1) ^+ (0 < x)%R * `|x| = - x.
Proof. by move/realNEsign. Qed.
Lemma realEsg x : x \is real -> x = sgr x * `|x|.
Proof.
move=> xR; have [-> | ] := eqVneq x 0; first by rewrite normr0 mulr0.
by move=> /neqr0_sign <-; rewrite -realEsign.
Qed.
Lemma normr_sg x : `|sg x| = (x != 0)%:R.
Proof. by rewrite sgr_def -mulr_natr normrMsign normr_nat. Qed.
Lemma sgr_norm x : sg `|x| = (x != 0)%:R.
Proof. by rewrite /sg le_gtF // normr_eq0 mulrb if_neg. Qed.
(* leif *)
Lemma leif_nat_r m n C : (m%:R <= n%:R ?= iff C :> R) = (m <= n ?= iff C)%N.
Proof. by rewrite /leif !ler_nat eqr_nat. Qed.
Lemma leif_subLR x y z C : (x - y <= z ?= iff C) = (x <= z + y ?= iff C).
Proof. by rewrite /leif !eq_le ler_subr_addr ler_subl_addr. Qed.
Lemma leif_subRL x y z C : (x <= y - z ?= iff C) = (x + z <= y ?= iff C).
Proof. by rewrite -leif_subLR opprK. Qed.
Lemma leif_add x1 y1 C1 x2 y2 C2 :
x1 <= y1 ?= iff C1 -> x2 <= y2 ?= iff C2 ->
x1 + x2 <= y1 + y2 ?= iff C1 && C2.
Proof.
rewrite -(mono_leif (ler_add2r x2)) -(mono_leif (C := C2) (ler_add2l y1)).
exact: leif_trans.
Qed.
Lemma leif_sum (I : finType) (P C : pred I) (E1 E2 : I -> R) :
(forall i, P i -> E1 i <= E2 i ?= iff C i) ->
\sum_(i | P i) E1 i <= \sum_(i | P i) E2 i ?= iff [forall (i | P i), C i].
Proof.
move=> leE12; rewrite -big_andE.
elim/big_rec3: _ => [|i Ci m2 m1 /leE12]; first by rewrite /leif lexx eqxx.
exact: leif_add.
Qed.
Lemma leif_0_sum (I : finType) (P C : pred I) (E : I -> R) :
(forall i, P i -> 0 <= E i ?= iff C i) ->
0 <= \sum_(i | P i) E i ?= iff [forall (i | P i), C i].
Proof. by move/leif_sum; rewrite big1_eq. Qed.
Lemma real_leif_norm x : x \is real -> x <= `|x| ?= iff (0 <= x).
Proof.
by move=> xR; rewrite ger0_def eq_sym; apply: leif_eq; rewrite real_ler_norm.
Qed.
Lemma leif_pmul x1 x2 y1 y2 C1 C2 :
0 <= x1 -> 0 <= x2 -> x1 <= y1 ?= iff C1 -> x2 <= y2 ?= iff C2 ->
x1 * x2 <= y1 * y2 ?= iff (y1 * y2 == 0) || C1 && C2.
Proof.
move=> x1_ge0 x2_ge0 le_xy1 le_xy2; have [y_0 | ] := eqVneq _ 0.
apply/leifP; rewrite y_0 /= mulf_eq0 !eq_le x1_ge0 x2_ge0 !andbT.
move/eqP: y_0; rewrite mulf_eq0.
by case/pred2P=> <-; rewrite (le_xy1, le_xy2) ?orbT.
rewrite /= mulf_eq0 => /norP[y1nz y2nz].
have y1_gt0: 0 < y1 by rewrite lt_def y1nz (le_trans _ le_xy1).
have [x2_0 | x2nz] := eqVneq x2 0.
apply/leifP; rewrite -le_xy2 x2_0 eq_sym (negPf y2nz) andbF mulr0.
by rewrite mulr_gt0 // lt_def y2nz -x2_0 le_xy2.
have:= le_xy2; rewrite -(mono_leif (ler_pmul2l y1_gt0)).
by apply: leif_trans; rewrite (mono_leif (ler_pmul2r _)) // lt_def x2nz.
Qed.
Lemma leif_nmul x1 x2 y1 y2 C1 C2 :
y1 <= 0 -> y2 <= 0 -> x1 <= y1 ?= iff C1 -> x2 <= y2 ?= iff C2 ->
y1 * y2 <= x1 * x2 ?= iff (x1 * x2 == 0) || C1 && C2.
Proof.
rewrite -!oppr_ge0 -mulrNN -[x1 * x2]mulrNN => y1le0 y2le0 le_xy1 le_xy2.
by apply: leif_pmul => //; rewrite (nmono_leif ler_opp2).
Qed.
Lemma leif_pprod (I : finType) (P C : pred I) (E1 E2 : I -> R) :
(forall i, P i -> 0 <= E1 i) ->
(forall i, P i -> E1 i <= E2 i ?= iff C i) ->
let pi E := \prod_(i | P i) E i in
pi E1 <= pi E2 ?= iff (pi E2 == 0) || [forall (i | P i), C i].
Proof.
move=> E1_ge0 leE12 /=; rewrite -big_andE; elim/(big_load (fun x => 0 <= x)): _.
elim/big_rec3: _ => [|i Ci m2 m1 Pi [m1ge0 le_m12]].
by split=> //; apply/leifP; rewrite orbT.
have Ei_ge0 := E1_ge0 i Pi; split; first by rewrite mulr_ge0.
congr (leif _ _ _): (leif_pmul Ei_ge0 m1ge0 (leE12 i Pi) le_m12).
by rewrite mulf_eq0 -!orbA; congr (_ || _); rewrite !orb_andr orbA orbb.
Qed.
(* Mean inequalities. *)
Lemma real_leif_mean_square_scaled x y :
x \is real -> y \is real -> x * y *+ 2 <= x ^+ 2 + y ^+ 2 ?= iff (x == y).
Proof.
move=> Rx Ry; rewrite -[_ *+ 2]add0r -leif_subRL addrAC -sqrrB -subr_eq0.
by rewrite -sqrf_eq0 eq_sym; apply: leif_eq; rewrite -realEsqr rpredB.
Qed.
Lemma real_leif_AGM2_scaled x y :
x \is real -> y \is real -> x * y *+ 4 <= (x + y) ^+ 2 ?= iff (x == y).
Proof.
move=> Rx Ry; rewrite sqrrD addrAC (mulrnDr _ 2) -leif_subLR addrK.
exact: real_leif_mean_square_scaled.
Qed.
Lemma leif_AGM_scaled (I : finType) (A : {pred I}) (E : I -> R) (n := #|A|) :
{in A, forall i, 0 <= E i *+ n} ->
\prod_(i in A) (E i *+ n) <= (\sum_(i in A) E i) ^+ n
?= iff [forall i in A, forall j in A, E i == E j].
Proof.
have [m leAm] := ubnP #|A|; elim: m => // m IHm in A leAm E n * => Ege0.
apply/leifP; case: ifPn => [/forall_inP-Econstant | Enonconstant].
have [i /= Ai | A0] := pickP (mem A); last by rewrite [n]eq_card0 ?big_pred0.
have /eqfun_inP-E_i := Econstant i Ai; rewrite -(eq_bigr _ E_i) sumr_const.
by rewrite exprMn_n prodrMn -(eq_bigr _ E_i) prodr_const.
set mu := \sum_(i in A) E i; pose En i := E i *+ n.
pose cmp_mu s := [pred i | s * mu < s * En i].
have{Enonconstant} has_cmp_mu e (s := (-1) ^+ e): {i | i \in A & cmp_mu s i}.
apply/sig2W/exists_inP; apply: contraR Enonconstant => /exists_inPn-mu_s_A.
have n_gt0 i: i \in A -> (0 < n)%N by rewrite [n](cardD1 i) => ->.
have{mu_s_A} mu_s_A i: i \in A -> s * En i <= s * mu.
move=> Ai; rewrite real_leNgt ?mu_s_A ?rpredMsign ?ger0_real ?Ege0 //.
by rewrite -(pmulrn_lge0 _ (n_gt0 i Ai)) -sumrMnl sumr_ge0.
have [_ /esym/eqfun_inP] := leif_sum (fun i Ai => leif_eq (mu_s_A i Ai)).
rewrite sumr_const -/n -mulr_sumr sumrMnl -/mu mulrnAr eqxx => A_mu.
apply/forall_inP=> i Ai; apply/eqfun_inP=> j Aj.
by apply: (pmulrnI (n_gt0 i Ai)); apply: (can_inj (signrMK e)); rewrite !A_mu.
have [[i Ai Ei_lt_mu] [j Aj Ej_gt_mu]] := (has_cmp_mu 1, has_cmp_mu 0)%N.
rewrite {cmp_mu has_cmp_mu}/= !mul1r !mulN1r ltr_opp2 in Ei_lt_mu Ej_gt_mu.
pose A' := [predD1 A & i]; pose n' := #|A'|.
have [Dn n_gt0]: n = n'.+1 /\ (n > 0)%N by rewrite [n](cardD1 i) Ai.
have i'j: j != i by apply: contraTneq Ej_gt_mu => ->; rewrite lt_gtF.
have{i'j} A'j: j \in A' by rewrite !inE Aj i'j.
have mu_gt0: 0 < mu := le_lt_trans (Ege0 i Ai) Ei_lt_mu.
rewrite (bigD1 i) // big_andbC (bigD1 j) //= mulrA; set pi := \prod_(k | _) _.
have [-> | nz_pi] := eqVneq pi 0; first by rewrite !mulr0 exprn_gt0.
have{nz_pi} pi_gt0: 0 < pi.
by rewrite lt_def nz_pi prodr_ge0 // => k /andP[/andP[_ /Ege0]].
rewrite -/(En i) -/(En j); pose E' := [eta En with j |-> En i + En j - mu].
have E'ge0 k: k \in A' -> E' k *+ n' >= 0.
case/andP=> /= _ Ak; apply: mulrn_wge0; case: ifP => _; last exact: Ege0.
by rewrite subr_ge0 ler_paddl ?Ege0 // ltW.
rewrite -/n Dn in leAm; have{leAm IHm E'ge0}: _ <= _ := IHm _ leAm _ E'ge0.
have ->: \sum_(k in A') E' k = mu *+ n'.
apply: (addrI mu); rewrite -mulrS -Dn -sumrMnl (bigD1 i Ai) big_andbC /=.
rewrite !(bigD1 j A'j) /= addrCA eqxx !addrA subrK; congr (_ + _).
by apply: eq_bigr => k /andP[_ /negPf->].
rewrite prodrMn exprMn_n -/n' ler_pmuln2r ?expn_gt0; last by case: (n').
have ->: \prod_(k in A') E' k = E' j * pi.
by rewrite (bigD1 j) //=; congr *%R; apply: eq_bigr => k /andP[_ /negPf->].
rewrite -(ler_pmul2l mu_gt0) -exprS -Dn mulrA; apply: lt_le_trans.
rewrite ltr_pmul2r //= eqxx -addrA mulrDr mulrC -ltr_subl_addl -mulrBl.
by rewrite mulrC ltr_pmul2r ?subr_gt0.
Qed.
(* Polynomial bound. *)
Implicit Type p : {poly R}.
Lemma poly_disk_bound p b : {ub | forall x, `|x| <= b -> `|p.[x]| <= ub}.
Proof.
exists (\sum_(j < size p) `|p`_j| * b ^+ j) => x le_x_b.
rewrite horner_coef (le_trans (ler_norm_sum _ _ _)) ?ler_sum // => j _.
rewrite normrM normrX ler_wpmul2l ?ler_expn2r ?unfold_in //.
exact: le_trans (normr_ge0 x) le_x_b.
Qed.
End NumDomainOperationTheory.
Hint Resolve ler_opp2 ltr_opp2 real0 real1 normr_real : core.
Arguments ler_sqr {R} [x y].
Arguments ltr_sqr {R} [x y].
Arguments signr_inj {R} [x1 x2].
Arguments real_ler_normlP {R x y}.
Arguments real_ltr_normlP {R x y}.
Section NumDomainMonotonyTheoryForReals.
Local Open Scope order_scope.
Variables (R R' : numDomainType) (D : pred R) (f : R -> R') (f' : R -> nat).
Implicit Types (m n p : nat) (x y z : R) (u v w : R').
Lemma real_mono :
{homo f : x y / x < y} -> {in real &, {mono f : x y / x <= y}}.
Proof.
move=> mf x y xR yR /=; have [lt_xy | le_yx] := real_leP xR yR.
by rewrite ltW_homo.
by rewrite lt_geF ?mf.
Qed.
Lemma real_nmono :
{homo f : x y /~ x < y} -> {in real &, {mono f : x y /~ x <= y}}.
Proof.
move=> mf x y xR yR /=; have [lt_xy|le_yx] := real_ltP xR yR.
by rewrite lt_geF ?mf.
by rewrite ltW_nhomo.
Qed.
Lemma real_mono_in :
{in D &, {homo f : x y / x < y}} ->
{in [pred x in D | x \is real] &, {mono f : x y / x <= y}}.
Proof.
move=> Dmf x y /andP[hx xR] /andP[hy yR] /=.
have [lt_xy|le_yx] := real_leP xR yR; first by rewrite (ltW_homo_in Dmf).
by rewrite lt_geF ?Dmf.
Qed.
Lemma real_nmono_in :
{in D &, {homo f : x y /~ x < y}} ->
{in [pred x in D | x \is real] &, {mono f : x y /~ x <= y}}.
Proof.
move=> Dmf x y /andP[hx xR] /andP[hy yR] /=.
have [lt_xy|le_yx] := real_ltP xR yR; last by rewrite (ltW_nhomo_in Dmf).
by rewrite lt_geF ?Dmf.
Qed.
Lemma realn_mono : {homo f' : x y / x < y >-> (x < y)} ->
{in real &, {mono f' : x y / x <= y >-> (x <= y)}}.
Proof.
move=> mf x y xR yR /=; have [lt_xy | le_yx] := real_leP xR yR.
by rewrite ltW_homo.
by rewrite lt_geF ?mf.
Qed.
Lemma realn_nmono : {homo f' : x y / y < x >-> (x < y)} ->
{in real &, {mono f' : x y / y <= x >-> (x <= y)}}.
Proof.
move=> mf x y xR yR /=; have [lt_xy|le_yx] := real_ltP xR yR.
by rewrite lt_geF ?mf.
by rewrite ltW_nhomo.
Qed.
Lemma realn_mono_in : {in D &, {homo f' : x y / x < y >-> (x < y)}} ->
{in [pred x in D | x \is real] &, {mono f' : x y / x <= y >-> (x <= y)}}.
Proof.
move=> Dmf x y /andP[hx xR] /andP[hy yR] /=.
have [lt_xy|le_yx] := real_leP xR yR; first by rewrite (ltW_homo_in Dmf).
by rewrite lt_geF ?Dmf.
Qed.
Lemma realn_nmono_in : {in D &, {homo f' : x y / y < x >-> (x < y)}} ->
{in [pred x in D | x \is real] &, {mono f' : x y / y <= x >-> (x <= y)}}.
Proof.
move=> Dmf x y /andP[hx xR] /andP[hy yR] /=.
have [lt_xy|le_yx] := real_ltP xR yR; last by rewrite (ltW_nhomo_in Dmf).
by rewrite lt_geF ?Dmf.
Qed.
End NumDomainMonotonyTheoryForReals.
Section FinGroup.
Import GroupScope.
Variables (R : numDomainType) (gT : finGroupType).
Implicit Types G : {group gT}.
Lemma natrG_gt0 G : #|G|%:R > 0 :> R.
Proof. by rewrite ltr0n cardG_gt0. Qed.
Lemma natrG_neq0 G : #|G|%:R != 0 :> R.
Proof. by rewrite gt_eqF // natrG_gt0. Qed.
Lemma natr_indexg_gt0 G B : #|G : B|%:R > 0 :> R.
Proof. by rewrite ltr0n indexg_gt0. Qed.
Lemma natr_indexg_neq0 G B : #|G : B|%:R != 0 :> R.
Proof. by rewrite gt_eqF // natr_indexg_gt0. Qed.
End FinGroup.
Section NumFieldTheory.
Variable F : numFieldType.
Implicit Types x y z t : F.
Lemma unitf_gt0 x : 0 < x -> x \is a GRing.unit.
Proof. by move=> hx; rewrite unitfE eq_sym lt_eqF. Qed.
Lemma unitf_lt0 x : x < 0 -> x \is a GRing.unit.
Proof. by move=> hx; rewrite unitfE lt_eqF. Qed.
Lemma lef_pinv : {in pos &, {mono (@GRing.inv F) : x y /~ x <= y}}.
Proof. by move=> x y hx hy /=; rewrite ler_pinv ?inE ?unitf_gt0. Qed.
Lemma lef_ninv : {in neg &, {mono (@GRing.inv F) : x y /~ x <= y}}.
Proof. by move=> x y hx hy /=; rewrite ler_ninv ?inE ?unitf_lt0. Qed.
Lemma ltf_pinv : {in pos &, {mono (@GRing.inv F) : x y /~ x < y}}.
Proof. exact: leW_nmono_in lef_pinv. Qed.
Lemma ltf_ninv: {in neg &, {mono (@GRing.inv F) : x y /~ x < y}}.
Proof. exact: leW_nmono_in lef_ninv. Qed.
Definition ltef_pinv := (lef_pinv, ltf_pinv).
Definition ltef_ninv := (lef_ninv, ltf_ninv).
Lemma invf_gt1 x : 0 < x -> (1 < x^-1) = (x < 1).
Proof. by move=> x_gt0; rewrite -{1}[1]invr1 ltf_pinv ?posrE ?ltr01. Qed.
Lemma invf_ge1 x : 0 < x -> (1 <= x^-1) = (x <= 1).
Proof. by move=> x_lt0; rewrite -{1}[1]invr1 lef_pinv ?posrE ?ltr01. Qed.
Definition invf_gte1 := (invf_ge1, invf_gt1).
Lemma invf_le1 x : 0 < x -> (x^-1 <= 1) = (1 <= x).
Proof. by move=> x_gt0; rewrite -invf_ge1 ?invr_gt0 // invrK. Qed.
Lemma invf_lt1 x : 0 < x -> (x^-1 < 1) = (1 < x).
Proof. by move=> x_lt0; rewrite -invf_gt1 ?invr_gt0 // invrK. Qed.
Definition invf_lte1 := (invf_le1, invf_lt1).
Definition invf_cp1 := (invf_gte1, invf_lte1).
(* These lemma are all combinations of mono(LR|RL) with ler_[pn]mul2[rl]. *)
Lemma ler_pdivl_mulr z x y : 0 < z -> (x <= y / z) = (x * z <= y).
Proof. by move=> z_gt0; rewrite -(@ler_pmul2r _ z _ x) ?mulfVK ?gt_eqF. Qed.
Lemma ltr_pdivl_mulr z x y : 0 < z -> (x < y / z) = (x * z < y).
Proof. by move=> z_gt0; rewrite -(@ltr_pmul2r _ z _ x) ?mulfVK ?gt_eqF. Qed.
Definition lter_pdivl_mulr := (ler_pdivl_mulr, ltr_pdivl_mulr).
Lemma ler_pdivr_mulr z x y : 0 < z -> (y / z <= x) = (y <= x * z).
Proof. by move=> z_gt0; rewrite -(@ler_pmul2r _ z) ?mulfVK ?gt_eqF. Qed.
Lemma ltr_pdivr_mulr z x y : 0 < z -> (y / z < x) = (y < x * z).
Proof. by move=> z_gt0; rewrite -(@ltr_pmul2r _ z) ?mulfVK ?gt_eqF. Qed.
Definition lter_pdivr_mulr := (ler_pdivr_mulr, ltr_pdivr_mulr).
Lemma ler_pdivl_mull z x y : 0 < z -> (x <= z^-1 * y) = (z * x <= y).
Proof. by move=> z_gt0; rewrite mulrC ler_pdivl_mulr ?[z * _]mulrC. Qed.
Lemma ltr_pdivl_mull z x y : 0 < z -> (x < z^-1 * y) = (z * x < y).
Proof. by move=> z_gt0; rewrite mulrC ltr_pdivl_mulr ?[z * _]mulrC. Qed.
Definition lter_pdivl_mull := (ler_pdivl_mull, ltr_pdivl_mull).
Lemma ler_pdivr_mull z x y : 0 < z -> (z^-1 * y <= x) = (y <= z * x).
Proof. by move=> z_gt0; rewrite mulrC ler_pdivr_mulr ?[z * _]mulrC. Qed.
Lemma ltr_pdivr_mull z x y : 0 < z -> (z^-1 * y < x) = (y < z * x).
Proof. by move=> z_gt0; rewrite mulrC ltr_pdivr_mulr ?[z * _]mulrC. Qed.
Definition lter_pdivr_mull := (ler_pdivr_mull, ltr_pdivr_mull).
Lemma ler_ndivl_mulr z x y : z < 0 -> (x <= y / z) = (y <= x * z).
Proof. by move=> z_lt0; rewrite -(@ler_nmul2r _ z) ?mulfVK ?lt_eqF. Qed.
Lemma ltr_ndivl_mulr z x y : z < 0 -> (x < y / z) = (y < x * z).
Proof. by move=> z_lt0; rewrite -(@ltr_nmul2r _ z) ?mulfVK ?lt_eqF. Qed.
Definition lter_ndivl_mulr := (ler_ndivl_mulr, ltr_ndivl_mulr).
Lemma ler_ndivr_mulr z x y : z < 0 -> (y / z <= x) = (x * z <= y).
Proof. by move=> z_lt0; rewrite -(@ler_nmul2r _ z) ?mulfVK ?lt_eqF. Qed.
Lemma ltr_ndivr_mulr z x y : z < 0 -> (y / z < x) = (x * z < y).
Proof. by move=> z_lt0; rewrite -(@ltr_nmul2r _ z) ?mulfVK ?lt_eqF. Qed.
Definition lter_ndivr_mulr := (ler_ndivr_mulr, ltr_ndivr_mulr).
Lemma ler_ndivl_mull z x y : z < 0 -> (x <= z^-1 * y) = (y <= z * x).
Proof. by move=> z_lt0; rewrite mulrC ler_ndivl_mulr ?[z * _]mulrC. Qed.
Lemma ltr_ndivl_mull z x y : z < 0 -> (x < z^-1 * y) = (y < z * x).
Proof. by move=> z_lt0; rewrite mulrC ltr_ndivl_mulr ?[z * _]mulrC. Qed.
Definition lter_ndivl_mull := (ler_ndivl_mull, ltr_ndivl_mull).
Lemma ler_ndivr_mull z x y : z < 0 -> (z^-1 * y <= x) = (z * x <= y).
Proof. by move=> z_lt0; rewrite mulrC ler_ndivr_mulr ?[z * _]mulrC. Qed.
Lemma ltr_ndivr_mull z x y : z < 0 -> (z^-1 * y < x) = (z * x < y).
Proof. by move=> z_lt0; rewrite mulrC ltr_ndivr_mulr ?[z * _]mulrC. Qed.
Definition lter_ndivr_mull := (ler_ndivr_mull, ltr_ndivr_mull).
Lemma natf_div m d : (d %| m)%N -> (m %/ d)%:R = m%:R / d%:R :> F.
Proof. by apply: char0_natf_div; apply: (@char_num F). Qed.
Lemma normfV : {morph (@norm F F) : x / x ^-1}.
Proof.
move=> x /=; have [/normrV //|Nux] := boolP (x \is a GRing.unit).
by rewrite !invr_out // unitfE normr_eq0 -unitfE.
Qed.
Lemma normf_div : {morph (@norm F F) : x y / x / y}.
Proof. by move=> x y /=; rewrite normrM normfV. Qed.
Lemma invr_sg x : (sg x)^-1 = sgr x.
Proof. by rewrite !(fun_if GRing.inv) !(invr0, invrN, invr1). Qed.
Lemma sgrV x : sgr x^-1 = sgr x.
Proof. by rewrite /sgr invr_eq0 invr_lt0. Qed.
(* Interval midpoint. *)
Local Notation mid x y := ((x + y) / 2%:R).
Lemma midf_le x y : x <= y -> (x <= mid x y) * (mid x y <= y).
Proof.
move=> lexy; rewrite ler_pdivl_mulr ?ler_pdivr_mulr ?ltr0Sn //.
by rewrite !mulrDr !mulr1 ler_add2r ler_add2l.
Qed.
Lemma midf_lt x y : x < y -> (x < mid x y) * (mid x y < y).
Proof.
move=> ltxy; rewrite ltr_pdivl_mulr ?ltr_pdivr_mulr ?ltr0Sn //.
by rewrite !mulrDr !mulr1 ltr_add2r ltr_add2l.
Qed.
Definition midf_lte := (midf_le, midf_lt).
(* The AGM, unscaled but without the nth root. *)
Lemma real_leif_mean_square x y :
x \is real -> y \is real -> x * y <= mid (x ^+ 2) (y ^+ 2) ?= iff (x == y).
Proof.
move=> Rx Ry; rewrite -(mono_leif (ler_pmul2r (ltr_nat F 0 2))).
by rewrite divfK ?pnatr_eq0 // mulr_natr; apply: real_leif_mean_square_scaled.
Qed.
Lemma real_leif_AGM2 x y :
x \is real -> y \is real -> x * y <= mid x y ^+ 2 ?= iff (x == y).
Proof.
move=> Rx Ry; rewrite -(mono_leif (ler_pmul2r (ltr_nat F 0 4))).
rewrite mulr_natr (natrX F 2 2) -exprMn divfK ?pnatr_eq0 //.
exact: real_leif_AGM2_scaled.
Qed.
Lemma leif_AGM (I : finType) (A : {pred I}) (E : I -> F) :
let n := #|A| in let mu := (\sum_(i in A) E i) / n%:R in
{in A, forall i, 0 <= E i} ->
\prod_(i in A) E i <= mu ^+ n
?= iff [forall i in A, forall j in A, E i == E j].
Proof.
move=> n mu Ege0; have [n0 | n_gt0] := posnP n.
by rewrite n0 -big_andE !(big_pred0 _ _ _ _ (card0_eq n0)); apply/leifP.
pose E' i := E i / n%:R.
have defE' i: E' i *+ n = E i by rewrite -mulr_natr divfK ?pnatr_eq0 -?lt0n.
have /leif_AGM_scaled (i): i \in A -> 0 <= E' i *+ n by rewrite defE' => /Ege0.
rewrite -/n -mulr_suml (eq_bigr _ (in1W defE')); congr (_ <= _ ?= iff _).
by do 2![apply: eq_forallb_in => ? _]; rewrite -(eqr_pmuln2r n_gt0) !defE'.
Qed.
Implicit Type p : {poly F}.
Lemma Cauchy_root_bound p : p != 0 -> {b | forall x, root p x -> `|x| <= b}.
Proof.
move=> nz_p; set a := lead_coef p; set n := (size p).-1.
have [q Dp]: {q | forall x, x != 0 -> p.[x] = (a - q.[x^-1] / x) * x ^+ n}.
exists (- \poly_(i < n) p`_(n - i.+1)) => x nz_x.
rewrite hornerN mulNr opprK horner_poly mulrDl !mulr_suml addrC.
rewrite horner_coef polySpred // big_ord_recr (reindex_inj rev_ord_inj) /=.
rewrite -/n -lead_coefE; congr (_ + _); apply: eq_bigr=> i _.
by rewrite exprB ?unitfE // -exprVn mulrA mulrAC exprSr mulrA.
have [b ub_q] := poly_disk_bound q 1; exists (b / `|a| + 1) => x px0.
have b_ge0: 0 <= b by rewrite (le_trans (normr_ge0 q.[1])) ?ub_q ?normr1.
have{b_ge0} ba_ge0: 0 <= b / `|a| by rewrite divr_ge0.
rewrite real_leNgt ?rpredD ?rpred1 ?ger0_real //.
apply: contraL px0 => lb_x; rewrite rootE.
have x_ge1: 1 <= `|x| by rewrite (le_trans _ (ltW lb_x)) // ler_paddl.
have nz_x: x != 0 by rewrite -normr_gt0 (lt_le_trans ltr01).
rewrite {}Dp // mulf_neq0 ?expf_neq0 // subr_eq0 eq_sym.
have: (b / `|a|) < `|x| by rewrite (lt_trans _ lb_x) // ltr_spaddr ?ltr01.
apply: contraTneq => /(canRL (divfK nz_x))Dax.
rewrite ltr_pdivr_mulr ?normr_gt0 ?lead_coef_eq0 // mulrC -normrM -{}Dax.
by rewrite le_gtF // ub_q // normfV invf_le1 ?normr_gt0.
Qed.
Import GroupScope.
Lemma natf_indexg (gT : finGroupType) (G H : {group gT}) :
H \subset G -> #|G : H|%:R = (#|G|%:R / #|H|%:R)%R :> F.
Proof. by move=> sHG; rewrite -divgS // natf_div ?cardSg. Qed.
End NumFieldTheory.
Section RealDomainTheory.
Variable R : realDomainType.
Implicit Types x y z t : R.
Lemma num_real x : x \is real. Proof. exact: num_real. Qed.
Hint Resolve num_real : core.
Lemma lerP x y : ler_xor_gt x y `|x - y| `|y - x| (x <= y) (y < x).
Proof. exact: real_leP. Qed.
Lemma ltrP x y : ltr_xor_ge x y `|x - y| `|y - x| (y <= x) (x < y).
Proof. exact: real_ltP. Qed.
Lemma ltrgtP x y :
comparer x y `|x - y| `|y - x| (y == x) (x == y)
(x >= y) (x <= y) (x > y) (x < y) .
Proof. exact: real_ltgtP. Qed.
Lemma ger0P x : ger0_xor_lt0 x `|x| (x < 0) (0 <= x).
Proof. exact: real_ge0P. Qed.
Lemma ler0P x : ler0_xor_gt0 x `|x| (0 < x) (x <= 0).
Proof. exact: real_le0P. Qed.
Lemma ltrgt0P x :
comparer0 x `|x| (0 == x) (x == 0) (x <= 0) (0 <= x) (x < 0) (x > 0).
Proof. exact: real_ltgt0P. Qed.
(* sign *)
Lemma mulr_lt0 x y :
(x * y < 0) = [&& x != 0, y != 0 & (x < 0) (+) (y < 0)].
Proof.
have [x_gt0|x_lt0|->] /= := ltrgt0P x; last by rewrite mul0r.
by rewrite pmulr_rlt0 //; case: ltrgt0P.
by rewrite nmulr_rlt0 //; case: ltrgt0P.
Qed.
Lemma neq0_mulr_lt0 x y :
x != 0 -> y != 0 -> (x * y < 0) = (x < 0) (+) (y < 0).
Proof. by move=> x_neq0 y_neq0; rewrite mulr_lt0 x_neq0 y_neq0. Qed.
Lemma mulr_sign_lt0 (b : bool) x :
((-1) ^+ b * x < 0) = (x != 0) && (b (+) (x < 0)%R).
Proof. by rewrite mulr_lt0 signr_lt0 signr_eq0. Qed.
(* sign & norm *)
Lemma mulr_sign_norm x : (-1) ^+ (x < 0)%R * `|x| = x.
Proof. by rewrite real_mulr_sign_norm. Qed.
Lemma mulr_Nsign_norm x : (-1) ^+ (0 < x)%R * `|x| = - x.
Proof. by rewrite real_mulr_Nsign_norm. Qed.
Lemma numEsign x : x = (-1) ^+ (x < 0)%R * `|x|.
Proof. by rewrite -realEsign. Qed.
Lemma numNEsign x : -x = (-1) ^+ (0 < x)%R * `|x|.
Proof. by rewrite -realNEsign. Qed.
Lemma normrEsign x : `|x| = (-1) ^+ (x < 0)%R * x.
Proof. by rewrite -real_normrEsign. Qed.
End RealDomainTheory.
Hint Resolve num_real : core.
Section RealDomainOperations.
Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" :=
(Order.arg_min (disp := ring_display) i0 (fun i => P%B) (fun i => F))
(at level 0, i, i0 at level 10,
format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : ring_scope.
Notation "[ 'arg' 'min_' ( i < i0 'in' A ) F ]" :=
[arg min_(i < i0 | i \in A) F]
(at level 0, i, i0 at level 10,
format "[ 'arg' 'min_' ( i < i0 'in' A ) F ]") : ring_scope.
Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F]
(at level 0, i, i0 at level 10,
format "[ 'arg' 'min_' ( i < i0 ) F ]") : ring_scope.
Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" :=
(Order.arg_max (disp := ring_display) i0 (fun i => P%B) (fun i => F))
(at level 0, i, i0 at level 10,
format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : ring_scope.
Notation "[ 'arg' 'max_' ( i > i0 'in' A ) F ]" :=
[arg max_(i > i0 | i \in A) F]
(at level 0, i, i0 at level 10,
format "[ 'arg' 'max_' ( i > i0 'in' A ) F ]") : ring_scope.
Notation "[ 'arg' 'max_' ( i > i0 ) F ]" := [arg max_(i > i0 | true) F]
(at level 0, i, i0 at level 10,
format "[ 'arg' 'max_' ( i > i0 ) F ]") : ring_scope.
(* sgr section *)
Variable R : realDomainType.
Implicit Types x y z t : R.
Hint Resolve (@num_real R) : core.
Lemma sgr_cp0 x :
((sg x == 1) = (0 < x)) *
((sg x == -1) = (x < 0)) *
((sg x == 0) = (x == 0)).
Proof.
rewrite -[1]/((-1) ^+ false) -signrN lt0r leNgt sgr_def.
case: (x =P 0) => [-> | _]; first by rewrite !(eq_sym 0) !signr_eq0 ltxx eqxx.
by rewrite !(inj_eq signr_inj) eqb_id eqbF_neg signr_eq0 //.
Qed.
Variant sgr_val x : R -> bool -> bool -> bool -> bool -> bool -> bool
-> bool -> bool -> bool -> bool -> bool -> bool -> R -> Set :=
| SgrNull of x = 0 : sgr_val x 0 true true true true false false
true false false true false false 0
| SgrPos of x > 0 : sgr_val x x false false true false false true
false false true false false true 1
| SgrNeg of x < 0 : sgr_val x (- x) false true false false true false
false true false false true false (-1).
Lemma sgrP x :
sgr_val x `|x| (0 == x) (x <= 0) (0 <= x) (x == 0) (x < 0) (0 < x)
(0 == sg x) (-1 == sg x) (1 == sg x)
(sg x == 0) (sg x == -1) (sg x == 1) (sg x).
Proof.
by rewrite ![_ == sg _]eq_sym !sgr_cp0 /sg; case: ltrgt0P; constructor.
Qed.
Lemma normrEsg x : `|x| = sg x * x.
Proof. by case: sgrP; rewrite ?(mul0r, mul1r, mulN1r). Qed.
Lemma numEsg x : x = sg x * `|x|.
Proof. by case: sgrP; rewrite !(mul1r, mul0r, mulrNN). Qed.
(* GG: duplicate! *)
Lemma mulr_sg_norm x : sg x * `|x| = x. Proof. by rewrite -numEsg. Qed.
Lemma sgrM x y : sg (x * y) = sg x * sg y.
Proof.
rewrite !sgr_def mulr_lt0 andbA mulrnAr mulrnAl -mulrnA mulnb -negb_or mulf_eq0.
by case: (~~ _) => //; rewrite signr_addb.
Qed.
Lemma sgrN x : sg (- x) = - sg x.
Proof. by rewrite -mulrN1 sgrM sgrN1 mulrN1. Qed.
Lemma sgrX n x : sg (x ^+ n) = (sg x) ^+ n.
Proof. by elim: n => [|n IHn]; rewrite ?sgr1 // !exprS sgrM IHn. Qed.
Lemma sgr_smul x y : sg (sg x * y) = sg x * sg y.
Proof. by rewrite sgrM sgr_id. Qed.
Lemma sgr_gt0 x : (sg x > 0) = (x > 0).
Proof. by rewrite -sgr_cp0 sgr_id sgr_cp0. Qed.
Lemma sgr_ge0 x : (sgr x >= 0) = (x >= 0).
Proof. by rewrite !leNgt sgr_lt0. Qed.
(* norm section *)
Lemma ler_norm x : (x <= `|x|).
Proof. exact: real_ler_norm. Qed.
Lemma ler_norml x y : (`|x| <= y) = (- y <= x <= y).
Proof. exact: real_ler_norml. Qed.
Lemma ler_normlP x y : reflect ((- x <= y) * (x <= y)) (`|x| <= y).
Proof. exact: real_ler_normlP. Qed.
Arguments ler_normlP {x y}.
Lemma eqr_norml x y : (`|x| == y) = ((x == y) || (x == -y)) && (0 <= y).
Proof. exact: real_eqr_norml. Qed.
Lemma eqr_norm2 x y : (`|x| == `|y|) = (x == y) || (x == -y).
Proof. exact: real_eqr_norm2. Qed.
Lemma ltr_norml x y : (`|x| < y) = (- y < x < y).
Proof. exact: real_ltr_norml. Qed.
Definition lter_norml := (ler_norml, ltr_norml).
Lemma ltr_normlP x y : reflect ((-x < y) * (x < y)) (`|x| < y).
Proof. exact: real_ltr_normlP. Qed.
Arguments ltr_normlP {x y}.
Lemma ler_normr x y : (x <= `|y|) = (x <= y) || (x <= - y).
Proof. by rewrite leNgt ltr_norml negb_and -!leNgt orbC ler_oppr. Qed.
Lemma ltr_normr x y : (x < `|y|) = (x < y) || (x < - y).
Proof. by rewrite ltNge ler_norml negb_and -!ltNge orbC ltr_oppr. Qed.
Definition lter_normr := (ler_normr, ltr_normr).
Lemma ler_distl x y e : (`|x - y| <= e) = (y - e <= x <= y + e).
Proof. by rewrite lter_norml !lter_sub_addl. Qed.
Lemma ltr_distl x y e : (`|x - y| < e) = (y - e < x < y + e).
Proof. by rewrite lter_norml !lter_sub_addl. Qed.
Definition lter_distl := (ler_distl, ltr_distl).
Lemma exprn_even_ge0 n x : ~~ odd n -> 0 <= x ^+ n.
Proof. by move=> even_n; rewrite real_exprn_even_ge0 ?num_real. Qed.
Lemma exprn_even_gt0 n x : ~~ odd n -> (0 < x ^+ n) = (n == 0)%N || (x != 0).
Proof. by move=> even_n; rewrite real_exprn_even_gt0 ?num_real. Qed.
Lemma exprn_even_le0 n x : ~~ odd n -> (x ^+ n <= 0) = (n != 0%N) && (x == 0).
Proof. by move=> even_n; rewrite real_exprn_even_le0 ?num_real. Qed.
Lemma exprn_even_lt0 n x : ~~ odd n -> (x ^+ n < 0) = false.
Proof. by move=> even_n; rewrite real_exprn_even_lt0 ?num_real. Qed.
Lemma exprn_odd_ge0 n x : odd n -> (0 <= x ^+ n) = (0 <= x).
Proof. by move=> even_n; rewrite real_exprn_odd_ge0 ?num_real. Qed.
Lemma exprn_odd_gt0 n x : odd n -> (0 < x ^+ n) = (0 < x).
Proof. by move=> even_n; rewrite real_exprn_odd_gt0 ?num_real. Qed.
Lemma exprn_odd_le0 n x : odd n -> (x ^+ n <= 0) = (x <= 0).
Proof. by move=> even_n; rewrite real_exprn_odd_le0 ?num_real. Qed.
Lemma exprn_odd_lt0 n x : odd n -> (x ^+ n < 0) = (x < 0).
Proof. by move=> even_n; rewrite real_exprn_odd_lt0 ?num_real. Qed.
(* Special lemmas for squares. *)
Lemma sqr_ge0 x : 0 <= x ^+ 2. Proof. by rewrite exprn_even_ge0. Qed.
Lemma sqr_norm_eq1 x : (x ^+ 2 == 1) = (`|x| == 1).
Proof. by rewrite sqrf_eq1 eqr_norml ler01 andbT. Qed.
Lemma leif_mean_square_scaled x y :
x * y *+ 2 <= x ^+ 2 + y ^+ 2 ?= iff (x == y).
Proof. exact: real_leif_mean_square_scaled. Qed.
Lemma leif_AGM2_scaled x y : x * y *+ 4 <= (x + y) ^+ 2 ?= iff (x == y).
Proof. exact: real_leif_AGM2_scaled. Qed.
Section MinMax.
(* GG: Many of the first lemmas hold unconditionally, and others hold for *)
(* the real subset of a general domain. *)
Lemma addr_min_max x y : min x y + max x y = x + y.
Proof.
case: (lerP x y)=> [| /ltW] hxy;
first by rewrite (meet_idPl hxy) (join_idPl hxy).
by rewrite (meet_idPr hxy) (join_idPr hxy) addrC.
Qed.
Lemma addr_max_min x y : max x y + min x y = x + y.
Proof. by rewrite addrC addr_min_max. Qed.
Lemma minr_to_max x y : min x y = x + y - max x y.
Proof. by rewrite -[x + y]addr_min_max addrK. Qed.
Lemma maxr_to_min x y : max x y = x + y - min x y.
Proof. by rewrite -[x + y]addr_max_min addrK. Qed.
Lemma oppr_max : {morph -%R : x y / max x y >-> min x y : R}.
Proof.
by move=> x y; case: leP; rewrite -lter_opp2 => hxy;
rewrite ?(meet_idPr hxy) ?(meet_idPl (ltW hxy)).
Qed.
Lemma oppr_min : {morph -%R : x y / min x y >-> max x y : R}.
Proof. by move=> x y; rewrite -[max _ _]opprK oppr_max !opprK. Qed.
Lemma addr_minl : @left_distributive R R +%R min.
Proof.
by move=> x y z; case: leP; case: leP => //; rewrite lter_add2; case: leP.
Qed.
Lemma addr_minr : @right_distributive R R +%R min.
Proof. by move=> x y z; rewrite !(addrC x) addr_minl. Qed.
Lemma addr_maxl : @left_distributive R R +%R max.
Proof.
by move=> x y z; case: leP; case: leP => //; rewrite lter_add2; case: leP.
Qed.
Lemma addr_maxr : @right_distributive R R +%R max.
Proof. by move=> x y z; rewrite !(addrC x) addr_maxl. Qed.
Lemma minr_pmulr x y z : 0 <= x -> x * min y z = min (x * y) (x * z).
Proof.
case: sgrP=> // hx _; first by rewrite hx !mul0r meetxx.
by case: leP; case: leP => //; rewrite lter_pmul2l //; case: leP.
Qed.
Lemma minr_nmulr x y z : x <= 0 -> x * min y z = max (x * y) (x * z).
Proof.
move=> hx; rewrite -[_ * _]opprK -mulNr minr_pmulr ?oppr_cp0 //.
by rewrite oppr_min !mulNr !opprK.
Qed.
Lemma maxr_pmulr x y z : 0 <= x -> x * max y z = max (x * y) (x * z).
Proof.
move=> hx; rewrite -[_ * _]opprK -mulrN oppr_max minr_pmulr //.
by rewrite oppr_min !mulrN !opprK.
Qed.
Lemma maxr_nmulr x y z : x <= 0 -> x * max y z = min (x * y) (x * z).
Proof.
move=> hx; rewrite -[_ * _]opprK -mulrN oppr_max minr_nmulr //.
by rewrite oppr_max !mulrN !opprK.
Qed.
Lemma minr_pmull x y z : 0 <= x -> min y z * x = min (y * x) (z * x).
Proof. by move=> *; rewrite mulrC minr_pmulr // ![_ * x]mulrC. Qed.
Lemma minr_nmull x y z : x <= 0 -> min y z * x = max (y * x) (z * x).
Proof. by move=> *; rewrite mulrC minr_nmulr // ![_ * x]mulrC. Qed.
Lemma maxr_pmull x y z : 0 <= x -> max y z * x = max (y * x) (z * x).
Proof. by move=> *; rewrite mulrC maxr_pmulr // ![_ * x]mulrC. Qed.
Lemma maxr_nmull x y z : x <= 0 -> max y z * x = min (y * x) (z * x).
Proof. by move=> *; rewrite mulrC maxr_nmulr // ![_ * x]mulrC. Qed.
Lemma maxrN x : max x (- x) = `|x|.
Proof. by case: ger0P=> [/ge0_cp [] | /lt0_cp []]; case: (leP (- x) x). Qed.
Lemma maxNr x : max (- x) x = `|x|.
Proof. by rewrite joinC maxrN. Qed.
Lemma minrN x : min x (- x) = - `|x|.
Proof. by rewrite -[min _ _]opprK oppr_min opprK maxNr. Qed.
Lemma minNr x : min (- x) x = - `|x|.
Proof. by rewrite -[min _ _]opprK oppr_min opprK maxrN. Qed.
End MinMax.
Section PolyBounds.
Variable p : {poly R}.
Lemma poly_itv_bound a b : {ub | forall x, a <= x <= b -> `|p.[x]| <= ub}.
Proof.
have [ub le_p_ub] := poly_disk_bound p (Num.max `|a| `|b|).
exists ub => x /andP[le_a_x le_x_b]; rewrite le_p_ub // lexU !ler_normr.
by have [_|_] := ler0P x; rewrite ?ler_opp2 ?le_a_x ?le_x_b orbT.
Qed.
Lemma monic_Cauchy_bound : p \is monic -> {b | forall x, x >= b -> p.[x] > 0}.
Proof.
move/monicP=> mon_p; pose n := (size p - 2)%N.
have [p_le1 | p_gt1] := leqP (size p) 1.
exists 0 => x _; rewrite (size1_polyC p_le1) hornerC.
by rewrite -[p`_0]lead_coefC -size1_polyC // mon_p ltr01.
pose lb := \sum_(j < n.+1) `|p`_j|; exists (lb + 1) => x le_ub_x.
have x_ge1: 1 <= x; last have x_gt0 := lt_le_trans ltr01 x_ge1.
by rewrite -(ler_add2l lb) ler_paddl ?sumr_ge0 // => j _.
rewrite horner_coef -(subnK p_gt1) -/n addnS big_ord_recr /= addn1.
rewrite [in p`__]subnSK // subn1 -lead_coefE mon_p mul1r -ltr_subl_addl sub0r.
apply: le_lt_trans (_ : lb * x ^+ n < _); last first.
rewrite exprS ltr_pmul2r ?exprn_gt0 ?(ltr_le_trans ltr01) //.
by rewrite -(ltr_add2r 1) ltr_spaddr ?ltr01.
rewrite -sumrN mulr_suml ler_sum // => j _; apply: le_trans (ler_norm _) _.
rewrite normrN normrM ler_wpmul2l // normrX.
by rewrite ger0_norm ?(ltW x_gt0) // ler_weexpn2l ?leq_ord.
Qed.
End PolyBounds.
End RealDomainOperations.
Section RealField.
Variables (F : realFieldType) (x y : F).
Lemma leif_mean_square : x * y <= (x ^+ 2 + y ^+ 2) / 2%:R ?= iff (x == y).
Proof. by apply: real_leif_mean_square; apply: num_real. Qed.
Lemma leif_AGM2 : x * y <= ((x + y) / 2%:R)^+ 2 ?= iff (x == y).
Proof. by apply: real_leif_AGM2; apply: num_real. Qed.
End RealField.
Section ArchimedeanFieldTheory.
Variables (F : archiFieldType) (x : F).
Lemma archi_boundP : 0 <= x -> x < (bound x)%:R.
Proof. by move/ger0_norm=> {1}<-; rewrite /bound; case: (sigW _). Qed.
Lemma upper_nthrootP i : (bound x <= i)%N -> x < 2%:R ^+ i.
Proof.
rewrite /bound; case: (sigW _) => /= b le_x_b le_b_i.
apply: le_lt_trans (ler_norm x) (lt_trans le_x_b _ ).
by rewrite -natrX ltr_nat (leq_ltn_trans le_b_i) // ltn_expl.
Qed.
End ArchimedeanFieldTheory.
Section RealClosedFieldTheory.
Variable R : rcfType.
Implicit Types a x y : R.
Lemma poly_ivt : real_closed_axiom R. Proof. exact: poly_ivt. Qed.
(* Square Root theory *)
Lemma sqrtr_ge0 a : 0 <= sqrt a.
Proof. by rewrite /sqrt; case: (sig2W _). Qed.
Hint Resolve sqrtr_ge0 : core.
Lemma sqr_sqrtr a : 0 <= a -> sqrt a ^+ 2 = a.
Proof.
by rewrite /sqrt => a_ge0; case: (sig2W _) => /= x _; rewrite a_ge0 => /eqP.
Qed.
Lemma ler0_sqrtr a : a <= 0 -> sqrt a = 0.
Proof.
rewrite /sqrtr; case: (sig2W _) => x /= _.
by have [//|_ /eqP//|->] := ltrgt0P a; rewrite mulf_eq0 orbb => /eqP.
Qed.
Lemma ltr0_sqrtr a : a < 0 -> sqrt a = 0.
Proof. by move=> /ltW; apply: ler0_sqrtr. Qed.
Variant sqrtr_spec a : R -> bool -> bool -> R -> Type :=
| IsNoSqrtr of a < 0 : sqrtr_spec a a false true 0
| IsSqrtr b of 0 <= b : sqrtr_spec a (b ^+ 2) true false b.
Lemma sqrtrP a : sqrtr_spec a a (0 <= a) (a < 0) (sqrt a).
Proof.
have [a_ge0|a_lt0] := ger0P a.
by rewrite -{1 2}[a]sqr_sqrtr //; constructor.
by rewrite ltr0_sqrtr //; constructor.
Qed.
Lemma sqrtr_sqr a : sqrt (a ^+ 2) = `|a|.
Proof.
have /eqP : sqrt (a ^+ 2) ^+ 2 = `|a| ^+ 2.
by rewrite -normrX ger0_norm ?sqr_sqrtr ?sqr_ge0.
rewrite eqf_sqr => /predU1P[-> //|ha].
have := sqrtr_ge0 (a ^+ 2); rewrite (eqP ha) oppr_ge0 normr_le0 => /eqP ->.
by rewrite normr0 oppr0.
Qed.
Lemma sqrtrM a b : 0 <= a -> sqrt (a * b) = sqrt a * sqrt b.
Proof.
case: (sqrtrP a) => // {a} a a_ge0 _; case: (sqrtrP b) => [b_lt0 | {b} b b_ge0].
by rewrite mulr0 ler0_sqrtr // nmulr_lle0 ?mulr_ge0.
by rewrite mulrACA sqrtr_sqr ger0_norm ?mulr_ge0.
Qed.
Lemma sqrtr0 : sqrt 0 = 0 :> R.
Proof. by move: (sqrtr_sqr 0); rewrite exprS mul0r => ->; rewrite normr0. Qed.
Lemma sqrtr1 : sqrt 1 = 1 :> R.
Proof. by move: (sqrtr_sqr 1); rewrite expr1n => ->; rewrite normr1. Qed.
Lemma sqrtr_eq0 a : (sqrt a == 0) = (a <= 0).
Proof.
case: sqrtrP => [/ltW ->|b]; first by rewrite eqxx.
case: ltrgt0P => [b_gt0|//|->]; last by rewrite exprS mul0r lexx.
by rewrite lt_geF ?pmulr_rgt0.
Qed.
Lemma sqrtr_gt0 a : (0 < sqrt a) = (0 < a).
Proof. by rewrite lt0r sqrtr_ge0 sqrtr_eq0 -ltNge andbT. Qed.
Lemma eqr_sqrt a b : 0 <= a -> 0 <= b -> (sqrt a == sqrt b) = (a == b).
Proof.
move=> a_ge0 b_ge0; apply/eqP/eqP=> [HS|->] //.
by move: (sqr_sqrtr a_ge0); rewrite HS (sqr_sqrtr b_ge0).
Qed.
Lemma ler_wsqrtr : {homo @sqrt R : a b / a <= b}.
Proof.
move=> a b /= le_ab; case: (boolP (0 <= a))=> [pa|]; last first.
by rewrite -ltNge; move/ltW; rewrite -sqrtr_eq0; move/eqP->.
rewrite -(@ler_pexpn2r R 2) ?nnegrE ?sqrtr_ge0 //.
by rewrite !sqr_sqrtr // (le_trans pa).
Qed.
Lemma ler_psqrt : {in @pos R &, {mono sqrt : a b / a <= b}}.
Proof.
apply: le_mono_in => x y x_gt0 y_gt0.
rewrite !lt_neqAle => /andP[neq_xy le_xy].
by rewrite ler_wsqrtr // eqr_sqrt ?ltW // neq_xy.
Qed.
Lemma ler_sqrt a b : 0 < b -> (sqrt a <= sqrt b) = (a <= b).
Proof.
move=> b_gt0; have [a_le0|a_gt0] := ler0P a; last by rewrite ler_psqrt.
by rewrite ler0_sqrtr // sqrtr_ge0 (le_trans a_le0) ?ltW.
Qed.
Lemma ltr_sqrt a b : 0 < b -> (sqrt a < sqrt b) = (a < b).
Proof.
move=> b_gt0; have [a_le0|a_gt0] := ler0P a; last first.
by rewrite (leW_mono_in ler_psqrt).
by rewrite ler0_sqrtr // sqrtr_gt0 b_gt0 (le_lt_trans a_le0).
Qed.
End RealClosedFieldTheory.
Definition conjC {C : numClosedFieldType} : {rmorphism C -> C} :=
ClosedField.conj_op (ClosedField.conj_mixin (ClosedField.class C)).
Notation "z ^*" := (@conjC _ z) (at level 2, format "z ^*") : ring_scope.
Definition imaginaryC {C : numClosedFieldType} : C :=
ClosedField.imaginary (ClosedField.conj_mixin (ClosedField.class C)).
Notation "'i" := (@imaginaryC _) (at level 0) : ring_scope.
Section ClosedFieldTheory.
Variable C : numClosedFieldType.
Implicit Types a x y z : C.
Definition normCK x : `|x| ^+ 2 = x * x^*.
Proof. by case: C x => ? [? ? ? []]. Qed.
Lemma sqrCi : 'i ^+ 2 = -1 :> C.
Proof. by case: C => ? [? ? ? []]. Qed.
Lemma conjCK : involutive (@conjC C).
Proof.
have JE x : x^* = `|x|^+2 / x.
have [->|x_neq0] := eqVneq x 0; first by rewrite rmorph0 invr0 mulr0.
by apply: (canRL (mulfK _)) => //; rewrite mulrC -normCK.
move=> x; have [->|x_neq0] := eqVneq x 0; first by rewrite !rmorph0.
rewrite !JE normrM normfV exprMn normrX normr_id.
rewrite invfM exprVn mulrA -[X in X * _]mulrA -invfM -exprMn.
by rewrite divff ?mul1r ?invrK // !expf_eq0 normr_eq0 //.
Qed.
Let Re2 z := z + z^*.
Definition nnegIm z := (0 <= imaginaryC * (z^* - z)).
Definition argCle y z := nnegIm z ==> nnegIm y && (Re2 z <= Re2 y).
Variant rootC_spec n (x : C) : Type :=
RootCspec (y : C) of if (n > 0)%N then y ^+ n = x else y = 0
& forall z, (n > 0)%N -> z ^+ n = x -> argCle y z.
Fact rootC_subproof n x : rootC_spec n x.
Proof.
have realRe2 u : Re2 u \is Num.real by
rewrite realEsqr expr2 {2}/Re2 -{2}[u]conjCK addrC -rmorphD -normCK exprn_ge0.
have argCle_total : total argCle.
move=> u v; rewrite /total /argCle.
by do 2!case: (nnegIm _) => //; rewrite ?orbT //= real_leVge.
have argCle_trans : transitive argCle.
move=> u v w /implyP geZuv /implyP geZvw; apply/implyP.
by case/geZvw/andP=> /geZuv/andP[-> geRuv] /le_trans->.
pose p := 'X^n - (x *+ (n > 0))%:P; have [r0 Dp] := closed_field_poly_normal p.
have sz_p: size p = n.+1.
rewrite size_addl ?size_polyXn // ltnS size_opp size_polyC mulrn_eq0.
by case: posnP => //; case: negP.
pose r := sort argCle r0; have r_arg: sorted argCle r by apply: sort_sorted.
have{Dp} Dp: p = \prod_(z <- r) ('X - z%:P).
rewrite Dp lead_coefE sz_p coefB coefXn coefC -mulrb -mulrnA mulnb lt0n andNb.
by rewrite subr0 eqxx scale1r; apply/esym/perm_big; rewrite perm_sort.
have mem_rP z: (n > 0)%N -> reflect (z ^+ n = x) (z \in r).
move=> n_gt0; rewrite -root_prod_XsubC -Dp rootE !hornerE hornerXn n_gt0.
by rewrite subr_eq0; apply: eqP.
exists r`_0 => [|z n_gt0 /(mem_rP z n_gt0) r_z].
have sz_r: size r = n by apply: succn_inj; rewrite -sz_p Dp size_prod_XsubC.
case: posnP => [n0 | n_gt0]; first by rewrite nth_default // sz_r n0.
by apply/mem_rP=> //; rewrite mem_nth ?sz_r.
case: {Dp mem_rP}r r_z r_arg => // y r1; rewrite inE => /predU1P[-> _|r1z].
by apply/implyP=> ->; rewrite lexx.
by move/(order_path_min argCle_trans)/allP->.
Qed.
Definition nthroot n x := let: RootCspec y _ _ := rootC_subproof n x in y.
Notation "n .-root" := (nthroot n) (at level 2, format "n .-root") : ring_scope.
Notation "n .-root" := (nthroot n) (only parsing) : ring_scope.
Notation sqrtC := 2.-root.
Definition Re x := (x + x^*) / 2%:R.
Definition Im x := 'i * (x^* - x) / 2%:R.
Notation "'Re z" := (Re z) (at level 10, z at level 8) : ring_scope.
Notation "'Im z" := (Im z) (at level 10, z at level 8) : ring_scope.
Let nz2 : 2%:R != 0 :> C. Proof. by rewrite pnatr_eq0. Qed.
Lemma normCKC x : `|x| ^+ 2 = x^* * x. Proof. by rewrite normCK mulrC. Qed.
Lemma mul_conjC_ge0 x : 0 <= x * x^*.
Proof. by rewrite -normCK exprn_ge0. Qed.
Lemma mul_conjC_gt0 x : (0 < x * x^*) = (x != 0).
Proof.
have [->|x_neq0] := eqVneq; first by rewrite rmorph0 mulr0.
by rewrite -normCK exprn_gt0 ?normr_gt0.
Qed.
Lemma mul_conjC_eq0 x : (x * x^* == 0) = (x == 0).
Proof. by rewrite -normCK expf_eq0 normr_eq0. Qed.
Lemma conjC_ge0 x : (0 <= x^*) = (0 <= x).
Proof.
wlog suffices: x / 0 <= x -> 0 <= x^*.
by move=> IH; apply/idP/idP=> /IH; rewrite ?conjCK.
rewrite le0r => /predU1P[-> | x_gt0]; first by rewrite rmorph0.
by rewrite -(pmulr_rge0 _ x_gt0) mul_conjC_ge0.
Qed.
Lemma conjC_nat n : (n%:R)^* = n%:R :> C. Proof. exact: rmorph_nat. Qed.
Lemma conjC0 : 0^* = 0 :> C. Proof. exact: rmorph0. Qed.
Lemma conjC1 : 1^* = 1 :> C. Proof. exact: rmorph1. Qed.
Lemma conjC_eq0 x : (x^* == 0) = (x == 0). Proof. exact: fmorph_eq0. Qed.
Lemma invC_norm x : x^-1 = `|x| ^- 2 * x^*.
Proof.
have [-> | nx_x] := eqVneq x 0; first by rewrite conjC0 mulr0 invr0.
by rewrite normCK invfM divfK ?conjC_eq0.
Qed.
(* Real number subset. *)
Lemma CrealE x : (x \is real) = (x^* == x).
Proof.
rewrite realEsqr ger0_def normrX normCK.
by have [-> | /mulfI/inj_eq-> //] := eqVneq x 0; rewrite rmorph0 !eqxx.
Qed.
Lemma CrealP {x} : reflect (x^* = x) (x \is real).
Proof. by rewrite CrealE; apply: eqP. Qed.
Lemma conj_Creal x : x \is real -> x^* = x.
Proof. by move/CrealP. Qed.
Lemma conj_normC z : `|z|^* = `|z|.
Proof. by rewrite conj_Creal ?normr_real. Qed.
Lemma geC0_conj x : 0 <= x -> x^* = x.
Proof. by move=> /ger0_real/CrealP. Qed.
Lemma geC0_unit_exp x n : 0 <= x -> (x ^+ n.+1 == 1) = (x == 1).
Proof. by move=> x_ge0; rewrite pexpr_eq1. Qed.
(* Elementary properties of roots. *)
Ltac case_rootC := rewrite /nthroot; case: (rootC_subproof _ _).
Lemma root0C x : 0.-root x = 0. Proof. by case_rootC. Qed.
Lemma rootCK n : (n > 0)%N -> cancel n.-root (fun x => x ^+ n).
Proof. by case: n => //= n _ x; case_rootC. Qed.
Lemma root1C x : 1.-root x = x. Proof. exact: (@rootCK 1). Qed.
Lemma rootC0 n : n.-root 0 = 0.
Proof.
have [-> | n_gt0] := posnP n; first by rewrite root0C.
by have /eqP := rootCK n_gt0 0; rewrite expf_eq0 n_gt0 /= => /eqP.
Qed.
Lemma rootC_inj n : (n > 0)%N -> injective n.-root.
Proof. by move/rootCK/can_inj. Qed.
Lemma eqr_rootC n : (n > 0)%N -> {mono n.-root : x y / x == y}.
Proof. by move/rootC_inj/inj_eq. Qed.
Lemma rootC_eq0 n x : (n > 0)%N -> (n.-root x == 0) = (x == 0).
Proof. by move=> n_gt0; rewrite -{1}(rootC0 n) eqr_rootC. Qed.
(* Rectangular coordinates. *)
Lemma nonRealCi : ('i : C) \isn't real.
Proof. by rewrite realEsqr sqrCi oppr_ge0 lt_geF ?ltr01. Qed.
Lemma neq0Ci : 'i != 0 :> C.
Proof. by apply: contraNneq nonRealCi => ->; apply: real0. Qed.
Lemma normCi : `|'i| = 1 :> C.
Proof. by apply/eqP; rewrite -(@pexpr_eq1 _ _ 2) // -normrX sqrCi normrN1. Qed.
Lemma invCi : 'i^-1 = - 'i :> C.
Proof. by rewrite -div1r -[1]opprK -sqrCi mulNr mulfK ?neq0Ci. Qed.
Lemma conjCi : 'i^* = - 'i :> C.
Proof. by rewrite -invCi invC_norm normCi expr1n invr1 mul1r. Qed.
Lemma Crect x : x = 'Re x + 'i * 'Im x.
Proof.
rewrite 2!mulrA -expr2 sqrCi mulN1r opprB -mulrDl addrACA subrr addr0.
by rewrite -mulr2n -mulr_natr mulfK.
Qed.
Lemma Creal_Re x : 'Re x \is real.
Proof. by rewrite CrealE fmorph_div rmorph_nat rmorphD conjCK addrC. Qed.
Lemma Creal_Im x : 'Im x \is real.
Proof.
rewrite CrealE fmorph_div rmorph_nat rmorphM rmorphB conjCK.
by rewrite conjCi -opprB mulrNN.
Qed.
Hint Resolve Creal_Re Creal_Im : core.
Fact Re_is_additive : additive Re.
Proof. by move=> x y; rewrite /Re rmorphB addrACA -opprD mulrBl. Qed.
Canonical Re_additive := Additive Re_is_additive.
Fact Im_is_additive : additive Im.
Proof.
by move=> x y; rewrite /Im rmorphB opprD addrACA -opprD mulrBr mulrBl.
Qed.
Canonical Im_additive := Additive Im_is_additive.
Lemma Creal_ImP z : reflect ('Im z = 0) (z \is real).
Proof.
rewrite CrealE -subr_eq0 -(can_eq (mulKf neq0Ci)) mulr0.
by rewrite -(can_eq (divfK nz2)) mul0r; apply: eqP.
Qed.
Lemma Creal_ReP z : reflect ('Re z = z) (z \in real).
Proof.
rewrite (sameP (Creal_ImP z) eqP) -(can_eq (mulKf neq0Ci)) mulr0.
by rewrite -(inj_eq (addrI ('Re z))) addr0 -Crect eq_sym; apply: eqP.
Qed.
Lemma ReMl : {in real, forall x, {morph Re : z / x * z}}.
Proof.
by move=> x Rx z /=; rewrite /Re rmorphM (conj_Creal Rx) -mulrDr -mulrA.
Qed.
Lemma ReMr : {in real, forall x, {morph Re : z / z * x}}.
Proof. by move=> x Rx z /=; rewrite mulrC ReMl // mulrC. Qed.
Lemma ImMl : {in real, forall x, {morph Im : z / x * z}}.
Proof.
by move=> x Rx z; rewrite /Im rmorphM (conj_Creal Rx) -mulrBr mulrCA !mulrA.
Qed.
Lemma ImMr : {in real, forall x, {morph Im : z / z * x}}.
Proof. by move=> x Rx z /=; rewrite mulrC ImMl // mulrC. Qed.
Lemma Re_i : 'Re 'i = 0. Proof. by rewrite /Re conjCi subrr mul0r. Qed.
Lemma Im_i : 'Im 'i = 1.
Proof.
rewrite /Im conjCi -opprD mulrN -mulr2n mulrnAr ['i * _]sqrCi.
by rewrite mulNrn opprK divff.
Qed.
Lemma Re_conj z : 'Re z^* = 'Re z.
Proof. by rewrite /Re addrC conjCK. Qed.
Lemma Im_conj z : 'Im z^* = - 'Im z.
Proof. by rewrite /Im -mulNr -mulrN opprB conjCK. Qed.
Lemma Re_rect : {in real &, forall x y, 'Re (x + 'i * y) = x}.
Proof.
move=> x y Rx Ry; rewrite /= raddfD /= (Creal_ReP x Rx).
by rewrite ReMr // Re_i mul0r addr0.
Qed.
Lemma Im_rect : {in real &, forall x y, 'Im (x + 'i * y) = y}.
Proof.
move=> x y Rx Ry; rewrite /= raddfD /= (Creal_ImP x Rx) add0r.
by rewrite ImMr // Im_i mul1r.
Qed.
Lemma conjC_rect : {in real &, forall x y, (x + 'i * y)^* = x - 'i * y}.
Proof.
by move=> x y Rx Ry; rewrite /= rmorphD rmorphM conjCi mulNr !conj_Creal.
Qed.
Lemma addC_rect x1 y1 x2 y2 :
(x1 + 'i * y1) + (x2 + 'i * y2) = x1 + x2 + 'i * (y1 + y2).
Proof. by rewrite addrACA -mulrDr. Qed.
Lemma oppC_rect x y : - (x + 'i * y) = - x + 'i * (- y).
Proof. by rewrite mulrN -opprD. Qed.
Lemma subC_rect x1 y1 x2 y2 :
(x1 + 'i * y1) - (x2 + 'i * y2) = x1 - x2 + 'i * (y1 - y2).
Proof. by rewrite oppC_rect addC_rect. Qed.
Lemma mulC_rect x1 y1 x2 y2 :
(x1 + 'i * y1) * (x2 + 'i * y2)
= x1 * x2 - y1 * y2 + 'i * (x1 * y2 + x2 * y1).
Proof.
rewrite mulrDl !mulrDr mulrCA -!addrA mulrAC -mulrA; congr (_ + _).
by rewrite mulrACA -expr2 sqrCi mulN1r addrA addrC.
Qed.
Lemma normC2_rect :
{in real &, forall x y, `|x + 'i * y| ^+ 2 = x ^+ 2 + y ^+ 2}.
Proof.
move=> x y Rx Ry; rewrite /= normCK rmorphD rmorphM conjCi !conj_Creal //.
by rewrite mulrC mulNr -subr_sqr exprMn sqrCi mulN1r opprK.
Qed.
Lemma normC2_Re_Im z : `|z| ^+ 2 = 'Re z ^+ 2 + 'Im z ^+ 2.
Proof. by rewrite -normC2_rect -?Crect. Qed.
Lemma invC_rect :
{in real &, forall x y, (x + 'i * y)^-1 = (x - 'i * y) / (x ^+ 2 + y ^+ 2)}.
Proof.
by move=> x y Rx Ry; rewrite /= invC_norm conjC_rect // mulrC normC2_rect.
Qed.
Lemma leif_normC_Re_Creal z : `|'Re z| <= `|z| ?= iff (z \is real).
Proof.
rewrite -(mono_in_leif ler_sqr); try by rewrite qualifE.
rewrite [`|'Re _| ^+ 2]normCK conj_Creal // normC2_Re_Im -expr2.
rewrite addrC -leif_subLR subrr (sameP (Creal_ImP _) eqP) -sqrf_eq0 eq_sym.
by apply: leif_eq; rewrite -realEsqr.
Qed.
Lemma leif_Re_Creal z : 'Re z <= `|z| ?= iff (0 <= z).
Proof.
have ubRe: 'Re z <= `|'Re z| ?= iff (0 <= 'Re z).
by rewrite ger0_def eq_sym; apply/leif_eq/real_ler_norm.
congr (_ <= _ ?= iff _): (leif_trans ubRe (leif_normC_Re_Creal z)).
apply/andP/idP=> [[zRge0 /Creal_ReP <- //] | z_ge0].
by have Rz := ger0_real z_ge0; rewrite (Creal_ReP _ _).
Qed.
(* Equality from polar coordinates, for the upper plane. *)
Lemma eqC_semipolar x y :
`|x| = `|y| -> 'Re x = 'Re y -> 0 <= 'Im x * 'Im y -> x = y.
Proof.
move=> eq_norm eq_Re sign_Im.
rewrite [x]Crect [y]Crect eq_Re; congr (_ + 'i * _).
have /eqP := congr1 (fun z => z ^+ 2) eq_norm.
rewrite !normC2_Re_Im eq_Re (can_eq (addKr _)) eqf_sqr => /pred2P[] // eq_Im.
rewrite eq_Im mulNr -expr2 oppr_ge0 real_exprn_even_le0 //= in sign_Im.
by rewrite eq_Im (eqP sign_Im) oppr0.
Qed.
(* Nth roots. *)
Let argCleP y z :
reflect (0 <= 'Im z -> 0 <= 'Im y /\ 'Re z <= 'Re y) (argCle y z).
Proof.
suffices dIm x: nnegIm x = (0 <= 'Im x).
rewrite /argCle !dIm ler_pmul2r ?invr_gt0 ?ltr0n //.
by apply: (iffP implyP) => geZyz /geZyz/andP.
by rewrite /('Im x) pmulr_lge0 ?invr_gt0 ?ltr0n //; congr (0 <= _ * _).
Qed.
(* case Du: sqrCi => [u u2N1] /=. *)
(* have/eqP := u2N1; rewrite -sqrCi eqf_sqr => /pred2P[] //. *)
(* have:= conjCi; rewrite /'i; case_rootC => /= v v2n1 min_v conj_v Duv. *)
(* have{min_v} /idPn[] := min_v u isT u2N1; rewrite negb_imply /nnegIm Du /= Duv. *)
(* rewrite rmorphN conj_v opprK -opprD mulrNN mulNr -mulr2n mulrnAr -expr2 v2n1. *)
(* by rewrite mulNrn opprK ler0n oppr_ge0 (ler_nat _ 2 0). *)
Lemma rootC_Re_max n x y :
(n > 0)%N -> y ^+ n = x -> 0 <= 'Im y -> 'Re y <= 'Re (n.-root x).
Proof.
by move=> n_gt0 yn_x leI0y; case_rootC=> z /= _ /(_ y n_gt0 yn_x)/argCleP[].
Qed.
Let neg_unity_root n : (n > 1)%N -> exists2 w : C, w ^+ n = 1 & 'Re w < 0.
Proof.
move=> n_gt1; have [|w /eqP pw_0] := closed_rootP (\poly_(i < n) (1 : C)) _.
by rewrite size_poly_eq ?oner_eq0 // -(subnKC n_gt1).
rewrite horner_poly (eq_bigr _ (fun _ _ => mul1r _)) in pw_0.
have wn1: w ^+ n = 1 by apply/eqP; rewrite -subr_eq0 subrX1 pw_0 mulr0.
suffices /existsP[i ltRwi0]: [exists i : 'I_n, 'Re (w ^+ i) < 0].
by exists (w ^+ i) => //; rewrite exprAC wn1 expr1n.
apply: contra_eqT (congr1 Re pw_0) => /existsPn geRw0.
rewrite raddf_sum raddf0 /= (bigD1 (Ordinal (ltnW n_gt1))) //=.
rewrite (Creal_ReP _ _) ?rpred1 // gt_eqF ?ltr_paddr ?ltr01 //=.
by apply: sumr_ge0 => i _; rewrite real_leNgt ?rpred0.
Qed.
Lemma Im_rootC_ge0 n x : (n > 1)%N -> 0 <= 'Im (n.-root x).
Proof.
set y := n.-root x => n_gt1; have n_gt0 := ltnW n_gt1.
apply: wlog_neg; rewrite -real_ltNge ?rpred0 // => ltIy0.
suffices [z zn_x leI0z]: exists2 z, z ^+ n = x & 'Im z >= 0.
by rewrite /y; case_rootC => /= y1 _ /(_ z n_gt0 zn_x)/argCleP[].
have [w wn1 ltRw0] := neg_unity_root n_gt1.
wlog leRI0yw: w wn1 ltRw0 / 0 <= 'Re y * 'Im w.
move=> IHw; have: 'Re y * 'Im w \is real by rewrite rpredM.
case/real_ge0P=> [|/ltW leRIyw0]; first exact: IHw.
apply: (IHw w^*); rewrite ?Re_conj ?Im_conj ?mulrN ?oppr_ge0 //.
by rewrite -rmorphX wn1 rmorph1.
exists (w * y); first by rewrite exprMn wn1 mul1r rootCK.
rewrite [w]Crect [y]Crect mulC_rect.
by rewrite Im_rect ?rpredD ?rpredN 1?rpredM // addr_ge0 // ltW ?nmulr_rgt0.
Qed.
Lemma rootC_lt0 n x : (1 < n)%N -> (n.-root x < 0) = false.
Proof.
set y := n.-root x => n_gt1; have n_gt0 := ltnW n_gt1.
apply: negbTE; apply: wlog_neg => /negbNE lt0y; rewrite le_gtF //.
have Rx: x \is real by rewrite -[x](rootCK n_gt0) rpredX // ltr0_real.
have Re_y: 'Re y = y by apply/Creal_ReP; rewrite ltr0_real.
have [z zn_x leR0z]: exists2 z, z ^+ n = x & 'Re z >= 0.
have [w wn1 ltRw0] := neg_unity_root n_gt1.
exists (w * y); first by rewrite exprMn wn1 mul1r rootCK.
by rewrite ReMr ?ltr0_real // ltW // nmulr_lgt0.
without loss leI0z: z zn_x leR0z / 'Im z >= 0.
move=> IHz; have: 'Im z \is real by [].
case/real_ge0P=> [|/ltW leIz0]; first exact: IHz.
apply: (IHz z^*); rewrite ?Re_conj ?Im_conj ?oppr_ge0 //.
by rewrite -rmorphX zn_x conj_Creal.
by apply: le_trans leR0z _; rewrite -Re_y ?rootC_Re_max ?ltr0_real.
Qed.
Lemma rootC_ge0 n x : (n > 0)%N -> (0 <= n.-root x) = (0 <= x).
Proof.
set y := n.-root x => n_gt0.
apply/idP/idP=> [/(exprn_ge0 n) | x_ge0]; first by rewrite rootCK.
rewrite -(ge_leif (leif_Re_Creal y)).
have Ray: `|y| \is real by apply: normr_real.
rewrite -(Creal_ReP _ Ray) rootC_Re_max ?(Creal_ImP _ Ray) //.
by rewrite -normrX rootCK // ger0_norm.
Qed.
Lemma rootC_gt0 n x : (n > 0)%N -> (n.-root x > 0) = (x > 0).
Proof. by move=> n_gt0; rewrite !lt0r rootC_ge0 ?rootC_eq0. Qed.
Lemma rootC_le0 n x : (1 < n)%N -> (n.-root x <= 0) = (x == 0).
Proof.
by move=> n_gt1; rewrite le_eqVlt rootC_lt0 // orbF rootC_eq0 1?ltnW.
Qed.
Lemma ler_rootCl n : (n > 0)%N -> {in Num.nneg, {mono n.-root : x y / x <= y}}.
Proof.
move=> n_gt0 x x_ge0 y; have [y_ge0 | not_y_ge0] := boolP (0 <= y).
by rewrite -(ler_pexpn2r n_gt0) ?qualifE ?rootC_ge0 ?rootCK.
rewrite (contraNF (@le_trans _ _ _ 0 _ _)) ?rootC_ge0 //.
by rewrite (contraNF (le_trans x_ge0)).
Qed.
Lemma ler_rootC n : (n > 0)%N -> {in Num.nneg &, {mono n.-root : x y / x <= y}}.
Proof. by move=> n_gt0 x y x_ge0 _; apply: ler_rootCl. Qed.
Lemma ltr_rootCl n : (n > 0)%N -> {in Num.nneg, {mono n.-root : x y / x < y}}.
Proof. by move=> n_gt0 x x_ge0 y; rewrite !lt_def ler_rootCl ?eqr_rootC. Qed.
Lemma ltr_rootC n : (n > 0)%N -> {in Num.nneg &, {mono n.-root : x y / x < y}}.
Proof. by move/ler_rootC/leW_mono_in. Qed.
Lemma exprCK n x : (0 < n)%N -> 0 <= x -> n.-root (x ^+ n) = x.
Proof.
move=> n_gt0 x_ge0; apply/eqP.
by rewrite -(eqr_expn2 n_gt0) ?rootC_ge0 ?exprn_ge0 ?rootCK.
Qed.
Lemma norm_rootC n x : `|n.-root x| = n.-root `|x|.
Proof.
have [-> | n_gt0] := posnP n; first by rewrite !root0C normr0.
by apply/eqP; rewrite -(eqr_expn2 n_gt0) ?rootC_ge0 // -normrX !rootCK.
Qed.
Lemma rootCX n x k : (n > 0)%N -> 0 <= x -> n.-root (x ^+ k) = n.-root x ^+ k.
Proof.
move=> n_gt0 x_ge0; apply/eqP.
by rewrite -(eqr_expn2 n_gt0) ?(exprn_ge0, rootC_ge0) // 1?exprAC !rootCK.
Qed.
Lemma rootC1 n : (n > 0)%N -> n.-root 1 = 1.
Proof. by move/(rootCX 0)/(_ ler01). Qed.
Lemma rootCpX n x k : (k > 0)%N -> 0 <= x -> n.-root (x ^+ k) = n.-root x ^+ k.
Proof.
by case: n => [|n] k_gt0; [rewrite !root0C expr0n gtn_eqF | apply: rootCX].
Qed.
Lemma rootCV n x : (n > 0)%N -> 0 <= x -> n.-root x^-1 = (n.-root x)^-1.
Proof.
move=> n_gt0 x_ge0; apply/eqP.
by rewrite -(eqr_expn2 n_gt0) ?(invr_ge0, rootC_ge0) // !exprVn !rootCK.
Qed.
Lemma rootC_eq1 n x : (n > 0)%N -> (n.-root x == 1) = (x == 1).
Proof. by move=> n_gt0; rewrite -{1}(rootC1 n_gt0) eqr_rootC. Qed.
Lemma rootC_ge1 n x : (n > 0)%N -> (n.-root x >= 1) = (x >= 1).
Proof.
by move=> n_gt0; rewrite -{1}(rootC1 n_gt0) ler_rootCl // qualifE ler01.
Qed.
Lemma rootC_gt1 n x : (n > 0)%N -> (n.-root x > 1) = (x > 1).
Proof. by move=> n_gt0; rewrite !lt_def rootC_eq1 ?rootC_ge1. Qed.
Lemma rootC_le1 n x : (n > 0)%N -> 0 <= x -> (n.-root x <= 1) = (x <= 1).
Proof. by move=> n_gt0 x_ge0; rewrite -{1}(rootC1 n_gt0) ler_rootCl. Qed.
Lemma rootC_lt1 n x : (n > 0)%N -> 0 <= x -> (n.-root x < 1) = (x < 1).
Proof. by move=> n_gt0 x_ge0; rewrite !lt_neqAle rootC_eq1 ?rootC_le1. Qed.
Lemma rootCMl n x z : 0 <= x -> n.-root (x * z) = n.-root x * n.-root z.
Proof.
rewrite le0r => /predU1P[-> | x_gt0]; first by rewrite !(mul0r, rootC0).
have [| n_gt1 | ->] := ltngtP n 1; last by rewrite !root1C.
by case: n => //; rewrite !root0C mul0r.
have [x_ge0 n_gt0] := (ltW x_gt0, ltnW n_gt1).
have nx_gt0: 0 < n.-root x by rewrite rootC_gt0.
have Rnx: n.-root x \is real by rewrite ger0_real ?ltW.
apply: eqC_semipolar; last 1 first; try apply/eqP.
- by rewrite ImMl // !(Im_rootC_ge0, mulr_ge0, rootC_ge0).
- by rewrite -(eqr_expn2 n_gt0) // -!normrX exprMn !rootCK.
rewrite eq_le; apply/andP; split; last first.
rewrite rootC_Re_max ?exprMn ?rootCK ?ImMl //.
by rewrite mulr_ge0 ?Im_rootC_ge0 ?ltW.
rewrite -[n.-root _](mulVKf (negbT (gt_eqF nx_gt0))) !(ReMl Rnx) //.
rewrite ler_pmul2l // rootC_Re_max ?exprMn ?exprVn ?rootCK ?mulKf ?gt_eqF //.
by rewrite ImMl ?rpredV // mulr_ge0 ?invr_ge0 ?Im_rootC_ge0 ?ltW.
Qed.
Lemma rootCMr n x z : 0 <= x -> n.-root (z * x) = n.-root z * n.-root x.
Proof. by move=> x_ge0; rewrite mulrC rootCMl // mulrC. Qed.
Lemma imaginaryCE : 'i = sqrtC (-1).
Proof.
have : sqrtC (-1) ^+ 2 - 'i ^+ 2 == 0 by rewrite sqrCi rootCK // subrr.
rewrite subr_sqr mulf_eq0 subr_eq0 addr_eq0; have [//|_/= /eqP sCN1E] := eqP.
by have := @Im_rootC_ge0 2 (-1) isT; rewrite sCN1E raddfN /= Im_i ler0N1.
Qed.
(* More properties of n.-root will be established in cyclotomic.v. *)
(* The proper form of the Arithmetic - Geometric Mean inequality. *)
Lemma leif_rootC_AGM (I : finType) (A : {pred I}) (n := #|A|) E :
{in A, forall i, 0 <= E i} ->
n.-root (\prod_(i in A) E i) <= (\sum_(i in A) E i) / n%:R
?= iff [forall i in A, forall j in A, E i == E j].
Proof.
move=> Ege0; have [n0 | n_gt0] := posnP n.
rewrite n0 root0C invr0 mulr0; apply/leif_refl/forall_inP=> i.
by rewrite (card0_eq n0).
rewrite -(mono_in_leif (ler_pexpn2r n_gt0)) ?rootCK //=; first 1 last.
- by rewrite qualifE rootC_ge0 // prodr_ge0.
- by rewrite rpred_div ?rpred_nat ?rpred_sum.
exact: leif_AGM.
Qed.
(* Square root. *)
Lemma sqrtC0 : sqrtC 0 = 0. Proof. exact: rootC0. Qed.
Lemma sqrtC1 : sqrtC 1 = 1. Proof. exact: rootC1. Qed.
Lemma sqrtCK x : sqrtC x ^+ 2 = x. Proof. exact: rootCK. Qed.
Lemma sqrCK x : 0 <= x -> sqrtC (x ^+ 2) = x. Proof. exact: exprCK. Qed.
Lemma sqrtC_ge0 x : (0 <= sqrtC x) = (0 <= x). Proof. exact: rootC_ge0. Qed.
Lemma sqrtC_eq0 x : (sqrtC x == 0) = (x == 0). Proof. exact: rootC_eq0. Qed.
Lemma sqrtC_gt0 x : (sqrtC x > 0) = (x > 0). Proof. exact: rootC_gt0. Qed.
Lemma sqrtC_lt0 x : (sqrtC x < 0) = false. Proof. exact: rootC_lt0. Qed.
Lemma sqrtC_le0 x : (sqrtC x <= 0) = (x == 0). Proof. exact: rootC_le0. Qed.
Lemma ler_sqrtC : {in Num.nneg &, {mono sqrtC : x y / x <= y}}.
Proof. exact: ler_rootC. Qed.
Lemma ltr_sqrtC : {in Num.nneg &, {mono sqrtC : x y / x < y}}.
Proof. exact: ltr_rootC. Qed.
Lemma eqr_sqrtC : {mono sqrtC : x y / x == y}.
Proof. exact: eqr_rootC. Qed.
Lemma sqrtC_inj : injective sqrtC.
Proof. exact: rootC_inj. Qed.
Lemma sqrtCM : {in Num.nneg &, {morph sqrtC : x y / x * y}}.
Proof. by move=> x y _; apply: rootCMr. Qed.
Lemma sqrCK_P x : reflect (sqrtC (x ^+ 2) = x) ((0 <= 'Im x) && ~~ (x < 0)).
Proof.
apply: (iffP andP) => [[leI0x not_gt0x] | <-]; last first.
by rewrite sqrtC_lt0 Im_rootC_ge0.
have /eqP := sqrtCK (x ^+ 2); rewrite eqf_sqr => /pred2P[] // defNx.
apply: sqrCK; rewrite -real_leNgt ?rpred0 // in not_gt0x;
apply/Creal_ImP/le_anti;
by rewrite leI0x -oppr_ge0 -raddfN -defNx Im_rootC_ge0.
Qed.
Lemma normC_def x : `|x| = sqrtC (x * x^*).
Proof. by rewrite -normCK sqrCK. Qed.
Lemma norm_conjC x : `|x^*| = `|x|.
Proof. by rewrite !normC_def conjCK mulrC. Qed.
Lemma normC_rect :
{in real &, forall x y, `|x + 'i * y| = sqrtC (x ^+ 2 + y ^+ 2)}.
Proof. by move=> x y Rx Ry; rewrite /= normC_def -normCK normC2_rect. Qed.
Lemma normC_Re_Im z : `|z| = sqrtC ('Re z ^+ 2 + 'Im z ^+ 2).
Proof. by rewrite normC_def -normCK normC2_Re_Im. Qed.
(* Norm sum (in)equalities. *)
Lemma normC_add_eq x y :
`|x + y| = `|x| + `|y| ->
{t : C | `|t| == 1 & (x, y) = (`|x| * t, `|y| * t)}.
Proof.
move=> lin_xy; apply: sig2_eqW; pose u z := if z == 0 then 1 else z / `|z|.
have uE z: (`|u z| = 1) * (`|z| * u z = z).
rewrite /u; have [->|nz_z] := eqVneq; first by rewrite normr0 normr1 mul0r.
by rewrite normf_div normr_id mulrCA divff ?mulr1 ?normr_eq0.
have [->|nz_x] := eqVneq x 0; first by exists (u y); rewrite uE ?normr0 ?mul0r.
exists (u x); rewrite uE // /u (negPf nz_x); congr (_ , _).
have{lin_xy} def2xy: `|x| * `|y| *+ 2 = x * y ^* + y * x ^*.
apply/(addrI (x * x^*))/(addIr (y * y^*)); rewrite -2!{1}normCK -sqrrD.
by rewrite addrA -addrA -!mulrDr -mulrDl -rmorphD -normCK lin_xy.
have def_xy: x * y^* = y * x^*.
apply/eqP; rewrite -subr_eq0 -[_ == 0](@expf_eq0 _ _ 2).
rewrite (canRL (subrK _) (subr_sqrDB _ _)) opprK -def2xy exprMn_n exprMn.
by rewrite mulrN mulrAC mulrA -mulrA mulrACA -!normCK mulNrn addNr.
have{def_xy def2xy} def_yx: `|y * x| = y * x^*.
by apply: (mulIf nz2); rewrite !mulr_natr mulrC normrM def2xy def_xy.
rewrite -{1}(divfK nz_x y) invC_norm mulrCA -{}def_yx !normrM invfM.
by rewrite mulrCA divfK ?normr_eq0 // mulrAC mulrA.
Qed.
Lemma normC_sum_eq (I : finType) (P : pred I) (F : I -> C) :
`|\sum_(i | P i) F i| = \sum_(i | P i) `|F i| ->
{t : C | `|t| == 1 & forall i, P i -> F i = `|F i| * t}.
Proof.
have [i /andP[Pi nzFi] | F0] := pickP [pred i | P i & F i != 0]; last first.
exists 1 => [|i Pi]; first by rewrite normr1.
by case/nandP: (F0 i) => [/negP[]// | /negbNE/eqP->]; rewrite normr0 mul0r.
rewrite !(bigD1 i Pi) /= => norm_sumF; pose Q j := P j && (j != i).
rewrite -normr_eq0 in nzFi; set c := F i / `|F i|; exists c => [|j Pj].
by rewrite normrM normfV normr_id divff.
have [Qj | /nandP[/negP[]// | /negbNE/eqP->]] := boolP (Q j); last first.
by rewrite mulrC divfK.
have: `|F i + F j| = `|F i| + `|F j|.
do [rewrite !(bigD1 j Qj) /=; set z := \sum_(k | _) `|_|] in norm_sumF.
apply/eqP; rewrite eq_le ler_norm_add -(ler_add2r z) -addrA -norm_sumF addrA.
by rewrite (le_trans (ler_norm_add _ _)) // ler_add2l ler_norm_sum.
by case/normC_add_eq=> k _ [/(canLR (mulKf nzFi)) <-]; rewrite -(mulrC (F i)).
Qed.
Lemma normC_sum_eq1 (I : finType) (P : pred I) (F : I -> C) :
`|\sum_(i | P i) F i| = (\sum_(i | P i) `|F i|) ->
(forall i, P i -> `|F i| = 1) ->
{t : C | `|t| == 1 & forall i, P i -> F i = t}.
Proof.
case/normC_sum_eq=> t t1 defF normF.
by exists t => // i Pi; rewrite defF // normF // mul1r.
Qed.
Lemma normC_sum_upper (I : finType) (P : pred I) (F G : I -> C) :
(forall i, P i -> `|F i| <= G i) ->
\sum_(i | P i) F i = \sum_(i | P i) G i ->
forall i, P i -> F i = G i.
Proof.
set sumF := \sum_(i | _) _; set sumG := \sum_(i | _) _ => leFG eq_sumFG.
have posG i: P i -> 0 <= G i by move/leFG; apply: le_trans.
have norm_sumG: `|sumG| = sumG by rewrite ger0_norm ?sumr_ge0.
have norm_sumF: `|sumF| = \sum_(i | P i) `|F i|.
apply/eqP; rewrite eq_le ler_norm_sum eq_sumFG norm_sumG -subr_ge0 -sumrB.
by rewrite sumr_ge0 // => i Pi; rewrite subr_ge0 ?leFG.
have [t _ defF] := normC_sum_eq norm_sumF.
have [/(psumr_eq0P posG) G0 i Pi | nz_sumG] := eqVneq sumG 0.
by apply/eqP; rewrite G0 // -normr_eq0 eq_le normr_ge0 -(G0 i Pi) leFG.
have t1: t = 1.
apply: (mulfI nz_sumG); rewrite mulr1 -{1}norm_sumG -eq_sumFG norm_sumF.
by rewrite mulr_suml -(eq_bigr _ defF).
have /psumr_eq0P eqFG i: P i -> 0 <= G i - F i.
by move=> Pi; rewrite subr_ge0 defF // t1 mulr1 leFG.
move=> i /eqFG/(canRL (subrK _))->; rewrite ?add0r //.
by rewrite sumrB -/sumF eq_sumFG subrr.
Qed.
Lemma normC_sub_eq x y :
`|x - y| = `|x| - `|y| -> {t | `|t| == 1 & (x, y) = (`|x| * t, `|y| * t)}.
Proof.
set z := x - y; rewrite -(subrK y x) -/z => /(canLR (subrK _))/esym-Dx.
have [t t_1 [Dz Dy]] := normC_add_eq Dx.
by exists t; rewrite // Dx mulrDl -Dz -Dy.
Qed.
End ClosedFieldTheory.
Notation "n .-root" := (@nthroot _ n)
(at level 2, format "n .-root") : ring_scope.
Notation sqrtC := 2.-root.
Notation "'i" := (@imaginaryC _) (at level 0) : ring_scope.
Notation "'Re z" := (Re z) (at level 10, z at level 8) : ring_scope.
Notation "'Im z" := (Im z) (at level 10, z at level 8) : ring_scope.
Arguments conjCK {C} x.
Arguments sqrCK {C} [x] le0x.
Arguments sqrCK_P {C x}.
End Theory.
(*************)
(* FACTORIES *)
(*************)
Module NumMixin.
Section NumMixin.
Variable (R : idomainType).
Record of_ := Mixin {
le : rel R;
lt : rel R;
norm : R -> R;
normD : forall x y, le (norm (x + y)) (norm x + norm y);
addr_gt0 : forall x y, lt 0 x -> lt 0 y -> lt 0 (x + y);
norm_eq0 : forall x, norm x = 0 -> x = 0;
ger_total : forall x y, le 0 x -> le 0 y -> le x y || le y x;
normM : {morph norm : x y / x * y};
le_def : forall x y, (le x y) = (norm (y - x) == y - x);
lt_def : forall x y, (lt x y) = (y != x) && (le x y)
}.
Variable (m : of_).
Local Notation "x <= y" := (le m x y) : ring_scope.
Local Notation "x < y" := (lt m x y) : ring_scope.
Local Notation "`| x |" := (norm m x) : ring_scope.
Lemma ltrr x : x < x = false. Proof. by rewrite lt_def eqxx. Qed.
Lemma ge0_def x : (0 <= x) = (`|x| == x).
Proof. by rewrite le_def subr0. Qed.
Lemma subr_ge0 x y : (0 <= x - y) = (y <= x).
Proof. by rewrite ge0_def -le_def. Qed.
Lemma subr_gt0 x y : (0 < y - x) = (x < y).
Proof. by rewrite !lt_def subr_eq0 subr_ge0. Qed.
Lemma lt_trans : transitive (lt m).
Proof.
move=> y x z le_xy le_yz.
by rewrite -subr_gt0 -(subrK y z) -addrA addr_gt0 // subr_gt0.
Qed.
Lemma le01 : 0 <= 1.
Proof.
have n1_nz: `|1| != 0 :> R by apply: contraNneq (@oner_neq0 R) => /norm_eq0->.
by rewrite ge0_def -(inj_eq (mulfI n1_nz)) -normM !mulr1.
Qed.
Lemma lt01 : 0 < 1.
Proof. by rewrite lt_def oner_neq0 le01. Qed.
Lemma ltW x y : x < y -> x <= y. Proof. by rewrite lt_def => /andP[]. Qed.
Lemma lerr x : x <= x.
Proof.
have n2: `|2%:R| == 2%:R :> R by rewrite -ge0_def ltW ?addr_gt0 ?lt01.
rewrite le_def subrr -(inj_eq (addrI `|0|)) addr0 -mulr2n -mulr_natr.
by rewrite -(eqP n2) -normM mul0r.
Qed.
Lemma le_def' x y : (x <= y) = (x == y) || (x < y).
Proof. by rewrite lt_def; case: eqVneq => //= ->; rewrite lerr. Qed.
Lemma le_trans : transitive (le m).
by move=> y x z; rewrite !le_def' => /predU1P [->|hxy] // /predU1P [<-|hyz];
rewrite ?hxy ?(lt_trans hxy hyz) orbT.
Qed.
Lemma normrMn x n : `|x *+ n| = `|x| *+ n.
Proof.
rewrite -mulr_natr -[RHS]mulr_natr normM.
congr (_ * _); apply/eqP; rewrite -ge0_def.
elim: n => [|n ih]; [exact: lerr | apply: (le_trans ih)].
by rewrite le_def -natrB // subSnn -[_%:R]subr0 -le_def mulr1n le01.
Qed.
Lemma normrN1 : `|-1| = 1 :> R.
Proof.
have: `|-1| ^+ 2 == 1 :> R
by rewrite expr2 /= -normM mulrNN mul1r -[1]subr0 -le_def le01.
rewrite sqrf_eq1 => /predU1P [] //; rewrite -[-1]subr0 -le_def.
have ->: 0 <= -1 = (-1 == 0 :> R) || (0 < -1)
by rewrite lt_def; case: eqP => // ->; rewrite lerr.
by rewrite oppr_eq0 oner_eq0 => /(addr_gt0 lt01); rewrite subrr ltrr.
Qed.
Lemma normrN x : `|- x| = `|x|.
Proof. by rewrite -mulN1r normM -[RHS]mul1r normrN1. Qed.
Definition lePOrderMixin : ltPOrderMixin R :=
LtPOrderMixin le_def' ltrr lt_trans.
Definition normedZmodMixin :
@normed_mixin_of R R lePOrderMixin :=
@Num.NormedMixin _ _ lePOrderMixin (norm m)
(normD m) (@norm_eq0 m) normrMn normrN.
Definition numDomainMixin :
@mixin_of R lePOrderMixin normedZmodMixin :=
@Num.Mixin _ lePOrderMixin normedZmodMixin (@addr_gt0 m)
(@ger_total m) (@normM m) (@le_def m).
End NumMixin.
Module Exports.
Notation numMixin := of_.
Notation NumMixin := Mixin.
Coercion lePOrderMixin : numMixin >-> ltPOrderMixin.
Coercion normedZmodMixin : numMixin >-> normed_mixin_of.
Coercion numDomainMixin : numMixin >-> mixin_of.
End Exports.
End NumMixin.
Import NumMixin.Exports.
Module RealMixin.
Section RealMixin.
Variables (R : numDomainType).
Variable (real : real_axiom R).
Lemma le_total : totalPOrderMixin R.
Proof.
move=> x y; move: (real (x - y)).
by rewrite unfold_in !ler_def subr0 add0r opprB orbC.
Qed.
Definition totalMixin :
Order.Total.mixin_of (DistrLatticeType R le_total) := le_total.
End RealMixin.
Module Exports.
Coercion le_total : real_axiom >-> totalPOrderMixin.
Coercion totalMixin : real_axiom >-> totalOrderMixin.
End Exports.
End RealMixin.
Import RealMixin.Exports.
Module RealLeMixin.
Section RealLeMixin.
Variables (R : idomainType).
Record of_ := Mixin {
le : rel R;
lt : rel R;
norm : R -> R;
le0_add : forall x y, le 0 x -> le 0 y -> le 0 (x + y);
le0_mul : forall x y, le 0 x -> le 0 y -> le 0 (x * y);
le0_anti : forall x, le 0 x -> le x 0 -> x = 0;
sub_ge0 : forall x y, le 0 (y - x) = le x y;
le0_total : forall x, le 0 x || le x 0;
normN : forall x, norm (- x) = norm x;
ge0_norm : forall x, le 0 x -> norm x = x;
lt_def : forall x y, lt x y = (y != x) && le x y;
}.
Variable (m : of_).
Local Notation "x <= y" := (le m x y) : ring_scope.
Local Notation "x < y" := (lt m x y) : ring_scope.
Local Notation "`| x |" := (norm m x) : ring_scope.
Let le0N x : (0 <= - x) = (x <= 0). Proof. by rewrite -sub0r sub_ge0. Qed.
Let leN_total x : 0 <= x \/ 0 <= - x.
Proof. by apply/orP; rewrite le0N le0_total. Qed.
Let le00 : 0 <= 0. Proof. by have:= le0_total m 0; rewrite orbb. Qed.
Fact lt0_add x y : 0 < x -> 0 < y -> 0 < x + y.
Proof.
rewrite !lt_def => /andP [x_neq0 l0x] /andP [y_neq0 l0y]; rewrite le0_add //.
rewrite andbT addr_eq0; apply: contraNneq x_neq0 => hxy.
by rewrite [x](@le0_anti m) // hxy -le0N opprK.
Qed.
Fact eq0_norm x : `|x| = 0 -> x = 0.
Proof.
case: (leN_total x) => /ge0_norm => [-> // | Dnx nx0].
by rewrite -[x]opprK -Dnx normN nx0 oppr0.
Qed.
Fact le_def x y : (x <= y) = (`|y - x| == y - x).
Proof.
wlog ->: x y / x = 0 by move/(_ 0 (y - x)); rewrite subr0 sub_ge0 => ->.
rewrite {x}subr0; apply/idP/eqP=> [/ge0_norm// | Dy].
by have [//| ny_ge0] := leN_total y; rewrite -Dy -normN ge0_norm.
Qed.
Fact normM : {morph norm m : x y / x * y}.
Proof.
move=> x y /=; wlog x_ge0 : x / 0 <= x.
by move=> IHx; case: (leN_total x) => /IHx//; rewrite mulNr !normN.
wlog y_ge0 : y / 0 <= y; last by rewrite ?ge0_norm ?le0_mul.
by move=> IHy; case: (leN_total y) => /IHy//; rewrite mulrN !normN.
Qed.
Fact le_normD x y : `|x + y| <= `|x| + `|y|.
Proof.
wlog x_ge0 : x y / 0 <= x.
by move=> IH; case: (leN_total x) => /IH// /(_ (- y)); rewrite -opprD !normN.
rewrite -sub_ge0 ge0_norm //; have [y_ge0 | ny_ge0] := leN_total y.
by rewrite !ge0_norm ?subrr ?le0_add.
rewrite -normN ge0_norm //; have [hxy|hxy] := leN_total (x + y).
by rewrite ge0_norm // opprD addrCA -addrA addKr le0_add.
by rewrite -normN ge0_norm // opprK addrCA addrNK le0_add.
Qed.
Fact le_total : total (le m).
Proof. by move=> x y; rewrite -sub_ge0 -opprB le0N orbC -sub_ge0 le0_total. Qed.
Definition numMixin : numMixin R :=
NumMixin le_normD lt0_add eq0_norm (in2W le_total) normM le_def (lt_def m).
Definition orderMixin :
totalPOrderMixin (POrderType ring_display R numMixin) :=
le_total.
End RealLeMixin.
Module Exports.
Notation realLeMixin := of_.
Notation RealLeMixin := Mixin.
Coercion numMixin : realLeMixin >-> NumMixin.of_.
Coercion orderMixin : realLeMixin >-> totalPOrderMixin.
End Exports.
End RealLeMixin.
Module RealLtMixin.
Section RealLtMixin.
Variables (R : idomainType).
Record of_ := Mixin {
lt : rel R;
le : rel R;
norm : R -> R;
lt0_add : forall x y, lt 0 x -> lt 0 y -> lt 0 (x + y);
lt0_mul : forall x y, lt 0 x -> lt 0 y -> lt 0 (x * y);
lt0_ngt0 : forall x, lt 0 x -> ~~ (lt x 0);
sub_gt0 : forall x y, lt 0 (y - x) = lt x y;
lt0_total : forall x, x != 0 -> lt 0 x || lt x 0;
normN : forall x, norm (- x) = norm x;
ge0_norm : forall x, le 0 x -> norm x = x;
le_def : forall x y, le x y = (x == y) || lt x y;
}.
Variable (m : of_).
Local Notation "x < y" := (lt m x y) : ring_scope.
Local Notation "x <= y" := (le m x y) : ring_scope.
Local Notation "`| x |" := (norm m x) : ring_scope.
Fact lt0N x : (- x < 0) = (0 < x).
Proof. by rewrite -sub_gt0 add0r opprK. Qed.
Let leN_total x : 0 <= x \/ 0 <= - x.
Proof.
rewrite !le_def [_ == - x]eq_sym oppr_eq0 -[0 < - x]lt0N opprK.
apply/orP; case: (eqVneq x) => //=; exact: lt0_total.
Qed.
Let le00 : (0 <= 0). Proof. by rewrite le_def eqxx. Qed.
Fact sub_ge0 x y : (0 <= y - x) = (x <= y).
Proof. by rewrite !le_def eq_sym subr_eq0 eq_sym sub_gt0. Qed.
Fact le0_add x y : 0 <= x -> 0 <= y -> 0 <= x + y.
Proof.
rewrite !le_def => /predU1P [<-|x_gt0]; first by rewrite add0r.
by case/predU1P=> [<-|y_gt0]; rewrite ?addr0 ?x_gt0 ?lt0_add // orbT.
Qed.
Fact le0_mul x y : 0 <= x -> 0 <= y -> 0 <= x * y.
Proof.
rewrite !le_def => /predU1P [<-|x_gt0]; first by rewrite mul0r eqxx.
by case/predU1P=> [<-|y_gt0]; rewrite ?mulr0 ?eqxx ?lt0_mul // orbT.
Qed.
Fact normM : {morph norm m : x y / x * y}.
Proof.
move=> x y /=; wlog x_ge0 : x / 0 <= x.
by move=> IHx; case: (leN_total x) => /IHx//; rewrite mulNr !normN.
wlog y_ge0 : y / 0 <= y; last by rewrite ?ge0_norm ?le0_mul.
by move=> IHy; case: (leN_total y) => /IHy//; rewrite mulrN !normN.
Qed.
Fact le_normD x y : `|x + y| <= `|x| + `|y|.
Proof.
wlog x_ge0 : x y / 0 <= x.
by move=> IH; case: (leN_total x) => /IH// /(_ (- y)); rewrite -opprD !normN.
rewrite -sub_ge0 ge0_norm //; have [y_ge0 | ny_ge0] := leN_total y.
by rewrite !ge0_norm ?subrr ?le0_add.
rewrite -normN ge0_norm //; have [hxy|hxy] := leN_total (x + y).
by rewrite ge0_norm // opprD addrCA -addrA addKr le0_add.
by rewrite -normN ge0_norm // opprK addrCA addrNK le0_add.
Qed.
Fact eq0_norm x : `|x| = 0 -> x = 0.
Proof.
case: (leN_total x) => /ge0_norm => [-> // | Dnx nx0].
by rewrite -[x]opprK -Dnx normN nx0 oppr0.
Qed.
Fact le_def' x y : (x <= y) = (`|y - x| == y - x).
Proof.
wlog ->: x y / x = 0 by move/(_ 0 (y - x)); rewrite subr0 sub_ge0 => ->.
rewrite {x}subr0; apply/idP/eqP=> [/ge0_norm// | Dy].
by have [//| ny_ge0] := leN_total y; rewrite -Dy -normN ge0_norm.
Qed.
Fact lt_def x y : (x < y) = (y != x) && (x <= y).
Proof.
rewrite le_def; case: eqVneq => //= ->; rewrite -sub_gt0 subrr.
by apply/idP=> lt00; case/negP: (lt0_ngt0 lt00).
Qed.
Fact le_total : total (le m).
Proof.
move=> x y; rewrite !le_def; case: eqVneq => [->|] //=; rewrite -subr_eq0.
by move/(lt0_total m); rewrite -(sub_gt0 _ (x - y)) sub0r opprB !sub_gt0 orbC.
Qed.
Definition numMixin : numMixin R :=
NumMixin le_normD (@lt0_add m) eq0_norm (in2W le_total) normM le_def' lt_def.
Definition orderMixin :
totalPOrderMixin (POrderType ring_display R numMixin) :=
le_total.
End RealLtMixin.
Module Exports.
Notation realLtMixin := of_.
Notation RealLtMixin := Mixin.
Coercion numMixin : realLtMixin >-> NumMixin.of_.
Coercion orderMixin : realLtMixin >-> totalPOrderMixin.
End Exports.
End RealLtMixin.
End Num.
Export Num.NumDomain.Exports Num.NormedZmodule.Exports.
Export Num.NumDomain_joins.Exports.
Export Num.NumField.Exports Num.ClosedField.Exports.
Export Num.RealDomain.Exports Num.RealField.Exports.
Export Num.ArchimedeanField.Exports Num.RealClosedField.Exports.
Export Num.Syntax Num.PredInstances.
Export Num.NumMixin.Exports Num.RealMixin.Exports.
Export Num.RealLeMixin.Exports Num.RealLtMixin.Exports.
Notation ImaginaryMixin := Num.ClosedField.ImaginaryMixin.
(* compatibility module *)
Module mc_1_10.
Module Num.
(* If you failed to process the next line in the PG or the CoqIDE, replace *)
(* all the "ssrnum.Num" with "Top.Num" in this module to process them, and *)
(* revert them in order to compile and commit. This problem will be solved *)
(* in Coq 8.10. See also: https://github.com/math-comp/math-comp/pull/270. *)
Export ssrnum.Num.
Import ssrnum.Num.Def.
Module Import Syntax.
Notation "`| x |" :=
(@norm _ (@Num.NormedZmodule.numDomain_normedZmodType _) x) : ring_scope.
End Syntax.
Module Import Theory.
Export ssrnum.Num.Theory.
Section NumIntegralDomainTheory.
Variable R : numDomainType.
Implicit Types x y z : R.
Definition ltr_def x y : (x < y) = (y != x) && (x <= y) := lt_def x y.
Definition gerE x y : ge x y = (y <= x) := geE x y.
Definition gtrE x y : gt x y = (y < x) := gtE x y.
Definition lerr x : x <= x := lexx x.
Definition ltrr x : x < x = false := ltxx x.
Definition ltrW x y : x < y -> x <= y := @ltW _ _ x y.
Definition ltr_neqAle x y : (x < y) = (x != y) && (x <= y) := lt_neqAle x y.
Definition ler_eqVlt x y : (x <= y) = (x == y) || (x < y) := le_eqVlt x y.
Definition gtr_eqF x y : y < x -> x == y = false := @gt_eqF _ _ x y.
Definition ltr_eqF x y : x < y -> x == y = false := @lt_eqF _ _ x y.
Definition ler_asym : antisymmetric (@ler R) := le_anti.
Definition eqr_le x y : (x == y) = (x <= y <= x) := eq_le x y.
Definition ltr_trans : transitive (@ltr R) := lt_trans.
Definition ler_lt_trans y x z : x <= y -> y < z -> x < z :=
@le_lt_trans _ _ y x z.
Definition ltr_le_trans y x z : x < y -> y <= z -> x < z :=
@lt_le_trans _ _ y x z.
Definition ler_trans : transitive (@ler R) := le_trans.
Definition lterr := (lerr, ltrr).
Definition lerifP x y C :
reflect (x <= y ?= iff C) (if C then x == y else x < y) := leifP.
Definition ltr_asym x y : x < y < x = false := lt_asym x y.
Definition ler_anti : antisymmetric (@ler R) := le_anti.
Definition ltr_le_asym x y : x < y <= x = false := lt_le_asym x y.
Definition ler_lt_asym x y : x <= y < x = false := le_lt_asym x y.
Definition lter_anti := (=^~ eqr_le, ltr_asym, ltr_le_asym, ler_lt_asym).
Definition ltr_geF x y : x < y -> y <= x = false := @lt_geF _ _ x y.
Definition ler_gtF x y : x <= y -> y < x = false := @le_gtF _ _ x y.
Definition ltr_gtF x y : x < y -> y < x = false := @lt_gtF _ _ x y.
Definition normr0 : `|0| = 0 :> R := normr0 _.
Definition normrMn x n : `|x *+ n| = `|x| *+ n := normrMn x n.
Definition normr0P {x} : reflect (`|x| = 0) (x == 0) := normr0P.
Definition normr_eq0 x : (`|x| == 0) = (x == 0) := normr_eq0 x.
Definition normrN x : `|- x| = `|x| := normrN x.
Definition distrC x y : `|x - y| = `|y - x| := distrC x y.
Definition normr_id x : `| `|x| | = `|x| := normr_id x.
Definition normr_ge0 x : 0 <= `|x| := normr_ge0 x.
Definition normr_le0 x : (`|x| <= 0) = (x == 0) := normr_le0 x.
Definition normr_lt0 x : `|x| < 0 = false := normr_lt0 x.
Definition normr_gt0 x : (`|x| > 0) = (x != 0) := normr_gt0 x.
Definition normrE := (normr_id, normr0, @normr1 R, @normrN1 R, normr_ge0,
normr_eq0, normr_lt0, normr_le0, normr_gt0, normrN).
End NumIntegralDomainTheory.
Section NumIntegralDomainMonotonyTheory.
Variables R R' : numDomainType.
Section AcrossTypes.
Variables (D D' : pred R) (f : R -> R').
Definition ltrW_homo : {homo f : x y / x < y} -> {homo f : x y / x <= y} :=
ltW_homo (f := f).
Definition ltrW_nhomo : {homo f : x y /~ x < y} -> {homo f : x y /~ x <= y} :=
ltW_nhomo (f := f).
Definition inj_homo_ltr :
injective f -> {homo f : x y / x <= y} -> {homo f : x y / x < y} :=
inj_homo_lt (f := f).
Definition inj_nhomo_ltr :
injective f -> {homo f : x y /~ x <= y} -> {homo f : x y /~ x < y} :=
inj_nhomo_lt (f := f).
Definition incr_inj : {mono f : x y / x <= y} -> injective f :=
inc_inj (f := f).
Definition decr_inj : {mono f : x y /~ x <= y} -> injective f :=
dec_inj (f := f).
Definition lerW_mono : {mono f : x y / x <= y} -> {mono f : x y / x < y} :=
leW_mono (f := f).
Definition lerW_nmono : {mono f : x y /~ x <= y} -> {mono f : x y /~ x < y} :=
leW_nmono (f := f).
Definition ltrW_homo_in :
{in D & D', {homo f : x y / x < y}} -> {in D & D', {homo f : x y / x <= y}} :=
ltW_homo_in (f := f).
Definition ltrW_nhomo_in :
{in D & D', {homo f : x y /~ x < y}} ->
{in D & D', {homo f : x y /~ x <= y}} :=
ltW_nhomo_in (f := f).
Definition inj_homo_ltr_in :
{in D & D', injective f} -> {in D & D', {homo f : x y / x <= y}} ->
{in D & D', {homo f : x y / x < y}} :=
inj_homo_lt_in (f := f).
Definition inj_nhomo_ltr_in :
{in D & D', injective f} -> {in D & D', {homo f : x y /~ x <= y}} ->
{in D & D', {homo f : x y /~ x < y}} :=
inj_nhomo_lt_in (f := f).
Definition incr_inj_in :
{in D &, {mono f : x y / x <= y}} -> {in D &, injective f} :=
inc_inj_in (f := f).
Definition decr_inj_in :
{in D &, {mono f : x y /~ x <= y}} -> {in D &, injective f} :=
dec_inj_in (f := f).
Definition lerW_mono_in :
{in D &, {mono f : x y / x <= y}} -> {in D &, {mono f : x y / x < y}} :=
leW_mono_in (f := f).
Definition lerW_nmono_in :
{in D &, {mono f : x y /~ x <= y}} -> {in D &, {mono f : x y /~ x < y}} :=
leW_nmono_in (f := f).
End AcrossTypes.
Section NatToR.
Variables (D D' : pred nat) (f : nat -> R).
Definition ltnrW_homo :
{homo f : m n / (m < n)%N >-> m < n} ->
{homo f : m n / (m <= n)%N >-> m <= n} :=
ltW_homo (f := f).
Definition ltnrW_nhomo :
{homo f : m n / (n < m)%N >-> m < n} ->
{homo f : m n / (n <= m)%N >-> m <= n} :=
ltW_nhomo (f := f).
Definition inj_homo_ltnr : injective f ->
{homo f : m n / (m <= n)%N >-> m <= n} ->
{homo f : m n / (m < n)%N >-> m < n} :=
inj_homo_lt (f := f).
Definition inj_nhomo_ltnr : injective f ->
{homo f : m n / (n <= m)%N >-> m <= n} ->
{homo f : m n / (n < m)%N >-> m < n} :=
inj_nhomo_lt (f := f).
Definition incnr_inj :
{mono f : m n / (m <= n)%N >-> m <= n} -> injective f :=
inc_inj (f := f).
Definition decnr_inj :
{mono f : m n / (n <= m)%N >-> m <= n} -> injective f :=
dec_inj (f := f).
Definition decnr_inj_inj := decnr_inj.
Definition lenrW_mono : {mono f : m n / (m <= n)%N >-> m <= n} ->
{mono f : m n / (m < n)%N >-> m < n} :=
leW_mono (f := f).
Definition lenrW_nmono : {mono f : m n / (n <= m)%N >-> m <= n} ->
{mono f : m n / (n < m)%N >-> m < n} :=
leW_nmono (f := f).
Definition lenr_mono : {homo f : m n / (m < n)%N >-> m < n} ->
{mono f : m n / (m <= n)%N >-> m <= n} :=
le_mono (f := f).
Definition lenr_nmono :
{homo f : m n / (n < m)%N >-> m < n} ->
{mono f : m n / (n <= m)%N >-> m <= n} :=
le_nmono (f := f).
Definition ltnrW_homo_in :
{in D & D', {homo f : m n / (m < n)%N >-> m < n}} ->
{in D & D', {homo f : m n / (m <= n)%N >-> m <= n}} :=
ltW_homo_in (f := f).
Definition ltnrW_nhomo_in :
{in D & D', {homo f : m n / (n < m)%N >-> m < n}} ->
{in D & D', {homo f : m n / (n <= m)%N >-> m <= n}} :=
ltW_nhomo_in (f := f).
Definition inj_homo_ltnr_in : {in D & D', injective f} ->
{in D & D', {homo f : m n / (m <= n)%N >-> m <= n}} ->
{in D & D', {homo f : m n / (m < n)%N >-> m < n}} :=
inj_homo_lt_in (f := f).
Definition inj_nhomo_ltnr_in : {in D & D', injective f} ->
{in D & D', {homo f : m n / (n <= m)%N >-> m <= n}} ->
{in D & D', {homo f : m n / (n < m)%N >-> m < n}} :=
inj_nhomo_lt_in (f := f).
Definition incnr_inj_in :
{in D &, {mono f : m n / (m <= n)%N >-> m <= n}} -> {in D &, injective f} :=
inc_inj_in (f := f).
Definition decnr_inj_in :
{in D &, {mono f : m n / (n <= m)%N >-> m <= n}} -> {in D &, injective f} :=
dec_inj_in (f := f).
Definition decnr_inj_inj_in := decnr_inj_in.
Definition lenrW_mono_in :
{in D &, {mono f : m n / (m <= n)%N >-> m <= n}} ->
{in D &, {mono f : m n / (m < n)%N >-> m < n}} :=
leW_mono_in (f := f).
Definition lenrW_nmono_in :
{in D &, {mono f : m n / (n <= m)%N >-> m <= n}} ->
{in D &, {mono f : m n / (n < m)%N >-> m < n}} :=
leW_nmono_in (f := f).
Definition lenr_mono_in :
{in D &, {homo f : m n / (m < n)%N >-> m < n}} ->
{in D &, {mono f : m n / (m <= n)%N >-> m <= n}} :=
le_mono_in (f := f).
Definition lenr_nmono_in :
{in D &, {homo f : m n / (n < m)%N >-> m < n}} ->
{in D &, {mono f : m n / (n <= m)%N >-> m <= n}} :=
le_nmono_in (f := f).
End NatToR.
Section RToNat.
Variables (D D' : pred R) (f : R -> nat).
Definition ltrnW_homo :
{homo f : m n / m < n >-> (m < n)%N} ->
{homo f : m n / m <= n >-> (m <= n)%N} :=
ltW_homo (f := f).
Definition ltrnW_nhomo :
{homo f : m n / n < m >-> (m < n)%N} ->
{homo f : m n / n <= m >-> (m <= n)%N} :=
ltW_nhomo (f := f).
Definition inj_homo_ltrn : injective f ->
{homo f : m n / m <= n >-> (m <= n)%N} ->
{homo f : m n / m < n >-> (m < n)%N} :=
inj_homo_lt (f := f).
Definition inj_nhomo_ltrn : injective f ->
{homo f : m n / n <= m >-> (m <= n)%N} ->
{homo f : m n / n < m >-> (m < n)%N} :=
inj_nhomo_lt (f := f).
Definition incrn_inj : {mono f : m n / m <= n >-> (m <= n)%N} -> injective f :=
inc_inj (f := f).
Definition decrn_inj : {mono f : m n / n <= m >-> (m <= n)%N} -> injective f :=
dec_inj (f := f).
Definition lernW_mono :
{mono f : m n / m <= n >-> (m <= n)%N} ->
{mono f : m n / m < n >-> (m < n)%N} :=
leW_mono (f := f).
Definition lernW_nmono :
{mono f : m n / n <= m >-> (m <= n)%N} ->
{mono f : m n / n < m >-> (m < n)%N} :=
leW_nmono (f := f).
Definition ltrnW_homo_in :
{in D & D', {homo f : m n / m < n >-> (m < n)%N}} ->
{in D & D', {homo f : m n / m <= n >-> (m <= n)%N}} :=
ltW_homo_in (f := f).
Definition ltrnW_nhomo_in :
{in D & D', {homo f : m n / n < m >-> (m < n)%N}} ->
{in D & D', {homo f : m n / n <= m >-> (m <= n)%N}} :=
ltW_nhomo_in (f := f).
Definition inj_homo_ltrn_in : {in D & D', injective f} ->
{in D & D', {homo f : m n / m <= n >-> (m <= n)%N}} ->
{in D & D', {homo f : m n / m < n >-> (m < n)%N}} :=
inj_homo_lt_in (f := f).
Definition inj_nhomo_ltrn_in : {in D & D', injective f} ->
{in D & D', {homo f : m n / n <= m >-> (m <= n)%N}} ->
{in D & D', {homo f : m n / n < m >-> (m < n)%N}} :=
inj_nhomo_lt_in (f := f).
Definition incrn_inj_in :
{in D &, {mono f : m n / m <= n >-> (m <= n)%N}} -> {in D &, injective f} :=
inc_inj_in (f := f).
Definition decrn_inj_in :
{in D &, {mono f : m n / n <= m >-> (m <= n)%N}} -> {in D &, injective f} :=
dec_inj_in (f := f).
Definition lernW_mono_in :
{in D &, {mono f : m n / m <= n >-> (m <= n)%N}} ->
{in D &, {mono f : m n / m < n >-> (m < n)%N}} :=
leW_mono_in (f := f).
Definition lernW_nmono_in :
{in D &, {mono f : m n / n <= m >-> (m <= n)%N}} ->
{in D &, {mono f : m n / n < m >-> (m < n)%N}} :=
leW_nmono_in (f := f).
End RToNat.
End NumIntegralDomainMonotonyTheory.
Section NumDomainOperationTheory.
Variable R : numDomainType.
Implicit Types x y z t : R.
Definition lerif_refl x C : reflect (x <= x ?= iff C) C := leif_refl.
Definition lerif_trans x1 x2 x3 C12 C23 :
x1 <= x2 ?= iff C12 -> x2 <= x3 ?= iff C23 -> x1 <= x3 ?= iff C12 && C23 :=
@leif_trans _ _ x1 x2 x3 C12 C23.
Definition lerif_le x y : x <= y -> x <= y ?= iff (x >= y) := @leif_le _ _ x y.
Definition lerif_eq x y : x <= y -> x <= y ?= iff (x == y) := @leif_eq _ _ x y.
Definition ger_lerif x y C : x <= y ?= iff C -> (y <= x) = C :=
@ge_leif _ _ x y C.
Definition ltr_lerif x y C : x <= y ?= iff C -> (x < y) = ~~ C :=
@lt_leif _ _ x y C.
Definition normr_real x : `|x| \is real := normr_real x.
Definition ler_norm_sum I r (G : I -> R) (P : pred I):
`|\sum_(i <- r | P i) G i| <= \sum_(i <- r | P i) `|G i| :=
ler_norm_sum r G P.
Definition ler_norm_sub x y : `|x - y| <= `|x| + `|y| := ler_norm_sub x y.
Definition ler_dist_add z x y : `|x - y| <= `|x - z| + `|z - y| :=
ler_dist_add z x y.
Definition ler_sub_norm_add x y : `|x| - `|y| <= `|x + y| :=
ler_sub_norm_add x y.
Definition ler_sub_dist x y : `|x| - `|y| <= `|x - y| := ler_sub_dist x y.
Definition ler_dist_dist x y : `| `|x| - `|y| | <= `|x - y| :=
ler_dist_dist x y.
Definition ler_dist_norm_add x y : `| `|x| - `|y| | <= `|x + y| :=
ler_dist_norm_add x y.
Definition ler_nnorml x y : y < 0 -> `|x| <= y = false := @ler_nnorml _ _ x y.
Definition ltr_nnorml x y : y <= 0 -> `|x| < y = false := @ltr_nnorml _ _ x y.
Definition lter_nnormr := (ler_nnorml, ltr_nnorml).
Definition mono_in_lerif (A : pred R) (f : R -> R) C :
{in A &, {mono f : x y / x <= y}} ->
{in A &, forall x y, (f x <= f y ?= iff C) = (x <= y ?= iff C)} :=
@mono_in_leif _ _ A f C.
Definition mono_lerif (f : R -> R) C :
{mono f : x y / x <= y} ->
forall x y, (f x <= f y ?= iff C) = (x <= y ?= iff C) :=
@mono_leif _ _ f C.
Definition nmono_in_lerif (A : pred R) (f : R -> R) C :
{in A &, {mono f : x y /~ x <= y}} ->
{in A &, forall x y, (f x <= f y ?= iff C) = (y <= x ?= iff C)} :=
@nmono_in_leif _ _ A f C.
Definition nmono_lerif (f : R -> R) C :
{mono f : x y /~ x <= y} ->
forall x y, (f x <= f y ?= iff C) = (y <= x ?= iff C) :=
@nmono_leif _ _ f C.
End NumDomainOperationTheory.
Section RealDomainTheory.
Variable R : realDomainType.
Implicit Types x y z t : R.
Definition ler_total : total (@ler R) := le_total.
Definition ltr_total x y : x != y -> (x < y) || (y < x) :=
@lt_total _ _ x y.
Definition wlog_ler P :
(forall a b, P b a -> P a b) -> (forall a b, a <= b -> P a b) ->
forall a b : R, P a b :=
@wlog_le _ _ P.
Definition wlog_ltr P :
(forall a, P a a) ->
(forall a b, (P b a -> P a b)) -> (forall a b, a < b -> P a b) ->
forall a b : R, P a b :=
@wlog_lt _ _ P.
Definition ltrNge x y : (x < y) = ~~ (y <= x) := @ltNge _ _ x y.
Definition lerNgt x y : (x <= y) = ~~ (y < x) := @leNgt _ _ x y.
Definition neqr_lt x y : (x != y) = (x < y) || (y < x) := @neq_lt _ _ x y.
Definition eqr_leLR x y z t :
(x <= y -> z <= t) -> (y < x -> t < z) -> (x <= y) = (z <= t) :=
@eq_leLR _ _ x y z t.
Definition eqr_leRL x y z t :
(x <= y -> z <= t) -> (y < x -> t < z) -> (z <= t) = (x <= y) :=
@eq_leRL _ _ x y z t.
Definition eqr_ltLR x y z t :
(x < y -> z < t) -> (y <= x -> t <= z) -> (x < y) = (z < t) :=
@eq_ltLR _ _ x y z t.
Definition eqr_ltRL x y z t :
(x < y -> z < t) -> (y <= x -> t <= z) -> (z < t) = (x < y) :=
@eq_ltRL _ _ x y z t.
End RealDomainTheory.
Section RealDomainMonotony.
Variables (R : realDomainType) (R' : numDomainType) (D : pred R).
Variables (f : R -> R') (f' : R -> nat).
Definition ler_mono : {homo f : x y / x < y} -> {mono f : x y / x <= y} :=
le_mono (f := f).
Definition homo_mono := ler_mono.
Definition ler_nmono : {homo f : x y /~ x < y} -> {mono f : x y /~ x <= y} :=
le_nmono (f := f).
Definition nhomo_mono := ler_nmono.
Definition ler_mono_in :
{in D &, {homo f : x y / x < y}} -> {in D &, {mono f : x y / x <= y}} :=
le_mono_in (f := f).
Definition homo_mono_in := ler_mono_in.
Definition ler_nmono_in :
{in D &, {homo f : x y /~ x < y}} -> {in D &, {mono f : x y /~ x <= y}} :=
le_nmono_in (f := f).
Definition nhomo_mono_in := ler_nmono_in.
Definition lern_mono :
{homo f' : m n / m < n >-> (m < n)%N} ->
{mono f' : m n / m <= n >-> (m <= n)%N} :=
le_mono (f := f').
Definition lern_nmono :
{homo f' : m n / n < m >-> (m < n)%N} ->
{mono f' : m n / n <= m >-> (m <= n)%N} :=
le_nmono (f := f').
Definition lern_mono_in :
{in D &, {homo f' : m n / m < n >-> (m < n)%N}} ->
{in D &, {mono f' : m n / m <= n >-> (m <= n)%N}} :=
le_mono_in (f := f').
Definition lern_nmono_in :
{in D &, {homo f' : m n / n < m >-> (m < n)%N}} ->
{in D &, {mono f' : m n / n <= m >-> (m <= n)%N}} :=
le_nmono_in (f := f').
End RealDomainMonotony.
Section RealDomainOperations.
Variable R : realDomainType.
Implicit Types x y z : R.
Section MinMax.
Definition minrC : @commutative R R min := @meetC _ R.
Definition minrr : @idempotent R min := @meetxx _ R.
Definition minr_l x y : x <= y -> min x y = x := @meet_l _ _ x y.
Definition minr_r x y : y <= x -> min x y = y := @meet_r _ _ x y.
Definition maxrC : @commutative R R max := @joinC _ R.
Definition maxrr : @idempotent R max := @joinxx _ R.
Definition maxr_l x y : y <= x -> max x y = x := @join_l _ _ x y.
Definition maxr_r x y : x <= y -> max x y = y := @join_r _ _ x y.
Definition minrA x y z : min x (min y z) = min (min x y) z := meetA x y z.
Definition minrCA : @left_commutative R R min := meetCA.
Definition minrAC : @right_commutative R R min := meetAC.
Definition maxrA x y z : max x (max y z) = max (max x y) z := joinA x y z.
Definition maxrCA : @left_commutative R R max := joinCA.
Definition maxrAC : @right_commutative R R max := joinAC.
Definition eqr_minl x y : (min x y == x) = (x <= y) := eq_meetl x y.
Definition eqr_minr x y : (min x y == y) = (y <= x) := eq_meetr x y.
Definition eqr_maxl x y : (max x y == x) = (y <= x) := eq_joinl x y.
Definition eqr_maxr x y : (max x y == y) = (x <= y) := eq_joinr x y.
Definition ler_minr x y z : (x <= min y z) = (x <= y) && (x <= z) := lexI x y z.
Definition ler_minl x y z : (min y z <= x) = (y <= x) || (z <= x) := leIx x y z.
Definition ler_maxr x y z : (x <= max y z) = (x <= y) || (x <= z) := lexU x y z.
Definition ler_maxl x y z : (max y z <= x) = (y <= x) && (z <= x) := leUx y z x.
Definition ltr_minr x y z : (x < min y z) = (x < y) && (x < z) := ltxI x y z.
Definition ltr_minl x y z : (min y z < x) = (y < x) || (z < x) := ltIx x y z.
Definition ltr_maxr x y z : (x < max y z) = (x < y) || (x < z) := ltxU x y z.
Definition ltr_maxl x y z : (max y z < x) = (y < x) && (z < x) := ltUx x y z.
Definition lter_minr := (ler_minr, ltr_minr).
Definition lter_minl := (ler_minl, ltr_minl).
Definition lter_maxr := (ler_maxr, ltr_maxr).
Definition lter_maxl := (ler_maxl, ltr_maxl).
Definition minrK x y : max (min x y) x = x := meetUKC y x.
Definition minKr x y : min y (max x y) = y := joinKIC x y.
Definition maxr_minl : @left_distributive R R max min := @joinIl _ R.
Definition maxr_minr : @right_distributive R R max min := @joinIr _ R.
Definition minr_maxl : @left_distributive R R min max := @meetUl _ R.
Definition minr_maxr : @right_distributive R R min max := @meetUr _ R.
Variant minr_spec x y : bool -> bool -> R -> Type :=
| Minr_r of x <= y : minr_spec x y true false x
| Minr_l of y < x : minr_spec x y false true y.
Lemma minrP x y : minr_spec x y (x <= y) (y < x) (min x y).
Proof. by case: leP; constructor. Qed.
Variant maxr_spec x y : bool -> bool -> R -> Type :=
| Maxr_r of y <= x : maxr_spec x y true false x
| Maxr_l of x < y : maxr_spec x y false true y.
Lemma maxrP x y : maxr_spec x y (y <= x) (x < y) (max x y).
Proof. by case: (leP y); constructor. Qed.
End MinMax.
End RealDomainOperations.
Arguments lerifP {R x y C}.
Arguments lerif_refl {R x C}.
Arguments mono_in_lerif [R A f C].
Arguments nmono_in_lerif [R A f C].
Arguments mono_lerif [R f C].
Arguments nmono_lerif [R f C].
Section RealDomainArgExtremum.
Context {R : realDomainType} {I : finType} (i0 : I).
Context (P : pred I) (F : I -> R) (Pi0 : P i0).
Definition arg_minr := extremum <=%R i0 P F.
Definition arg_maxr := extremum >=%R i0 P F.
Definition arg_minrP : extremum_spec <=%R P F arg_minr := arg_minP F Pi0.
Definition arg_maxrP : extremum_spec >=%R P F arg_maxr := arg_maxP F Pi0.
End RealDomainArgExtremum.
Notation "@ 'real_lerP'" :=
(deprecate real_lerP real_leP) (at level 10, only parsing) : fun_scope.
Notation real_lerP := (@real_lerP _ _ _) (only parsing).
Notation "@ 'real_ltrP'" :=
(deprecate real_ltrP real_ltP) (at level 10, only parsing) : fun_scope.
Notation real_ltrP := (@real_ltrP _ _ _) (only parsing).
Notation "@ 'real_ltrNge'" :=
(deprecate real_ltrNge real_ltNge) (at level 10, only parsing) : fun_scope.
Notation real_ltrNge := (@real_ltrNge _ _ _) (only parsing).
Notation "@ 'real_lerNgt'" :=
(deprecate real_lerNgt real_leNgt) (at level 10, only parsing) : fun_scope.
Notation real_lerNgt := (@real_lerNgt _ _ _) (only parsing).
Notation "@ 'real_ltrgtP'" :=
(deprecate real_ltrgtP real_ltgtP) (at level 10, only parsing) : fun_scope.
Notation real_ltrgtP := (@real_ltrgtP _ _ _) (only parsing).
Notation "@ 'real_ger0P'" :=
(deprecate real_ger0P real_ge0P) (at level 10, only parsing) : fun_scope.
Notation real_ger0P := (@real_ger0P _ _) (only parsing).
Notation "@ 'real_ltrgt0P'" :=
(deprecate real_ltrgt0P real_ltgt0P) (at level 10, only parsing) : fun_scope.
Notation real_ltrgt0P := (@real_ltrgt0P _ _) (only parsing).
Notation lerif_nat := (deprecate lerif_nat leif_nat_r) (only parsing).
Notation "@ 'lerif_subLR'" :=
(deprecate lerif_subLR leif_subLR) (at level 10, only parsing) : fun_scope.
Notation lerif_subLR := (@lerif_subLR _) (only parsing).
Notation "@ 'lerif_subRL'" :=
(deprecate lerif_subRL leif_subRL) (at level 10, only parsing) : fun_scope.
Notation lerif_subRL := (@lerif_subRL _) (only parsing).
Notation "@ 'lerif_add'" :=
(deprecate lerif_add leif_add) (at level 10, only parsing) : fun_scope.
Notation lerif_add := (@lerif_add _ _ _ _ _ _ _) (only parsing).
Notation "@ 'lerif_sum'" :=
(deprecate lerif_sum leif_sum) (at level 10, only parsing) : fun_scope.
Notation lerif_sum := (@lerif_sum _ _ _ _ _ _) (only parsing).
Notation "@ 'lerif_0_sum'" :=
(deprecate lerif_0_sum leif_0_sum) (at level 10, only parsing) : fun_scope.
Notation lerif_0_sum := (@lerif_0_sum _ _ _ _ _) (only parsing).
Notation "@ 'real_lerif_norm'" :=
(deprecate real_lerif_norm real_leif_norm)
(at level 10, only parsing) : fun_scope.
Notation real_lerif_norm := (@real_lerif_norm _ _) (only parsing).
Notation "@ 'lerif_pmul'" :=
(deprecate lerif_pmul leif_pmul) (at level 10, only parsing) : fun_scope.
Notation lerif_pmul := (@lerif_pmul _ _ _ _ _ _ _) (only parsing).
Notation "@ 'lerif_nmul'" :=
(deprecate lerif_nmul leif_nmul) (at level 10, only parsing) : fun_scope.
Notation lerif_nmul := (@lerif_nmul _ _ _ _ _ _ _) (only parsing).
Notation "@ 'lerif_pprod'" :=
(deprecate lerif_pprod leif_pprod) (at level 10, only parsing) : fun_scope.
Notation lerif_pprod := (@lerif_pprod _ _ _ _ _ _) (only parsing).
Notation "@ 'real_lerif_mean_square_scaled'" :=
(deprecate real_lerif_mean_square_scaled real_leif_mean_square_scaled)
(at level 10, only parsing) : fun_scope.
Notation real_lerif_mean_square_scaled :=
(@real_lerif_mean_square_scaled _ _ _ _ _ _) (only parsing).
Notation "@ 'real_lerif_AGM2_scaled'" :=
(deprecate real_lerif_AGM2_scaled real_leif_AGM2_scaled)
(at level 10, only parsing) : fun_scope.
Notation real_lerif_AGM2_scaled :=
(@real_lerif_AGM2_scaled _ _ _) (only parsing).
Notation "@ 'lerif_AGM_scaled'" :=
(deprecate lerif_AGM_scaled leif_AGM2_scaled)
(at level 10, only parsing) : fun_scope.
Notation lerif_AGM_scaled := (@lerif_AGM_scaled _ _ _ _) (only parsing).
Notation "@ 'real_lerif_mean_square'" :=
(deprecate real_lerif_mean_square real_leif_mean_square)
(at level 10, only parsing) : fun_scope.
Notation real_lerif_mean_square :=
(@real_lerif_mean_square _ _ _) (only parsing).
Notation "@ 'real_lerif_AGM2'" :=
(deprecate real_lerif_AGM2 real_leif_AGM2)
(at level 10, only parsing) : fun_scope.
Notation real_lerif_AGM2 := (@real_lerif_AGM2 _ _ _) (only parsing).
Notation "@ 'lerif_AGM'" :=
(deprecate lerif_AGM leif_AGM) (at level 10, only parsing) : fun_scope.
Notation lerif_AGM := (@lerif_AGM _ _ _ _) (only parsing).
Notation "@ 'lerif_mean_square_scaled'" :=
(deprecate lerif_mean_square_scaled leif_mean_square_scaled)
(at level 10, only parsing) : fun_scope.
Notation lerif_mean_square_scaled :=
(@lerif_mean_square_scaled _) (only parsing).
Notation "@ 'lerif_AGM2_scaled'" :=
(deprecate lerif_AGM2_scaled leif_AGM2_scaled)
(at level 10, only parsing) : fun_scope.
Notation lerif_AGM2_scaled := (@lerif_AGM2_scaled _) (only parsing).
Notation "@ 'lerif_mean_square'" :=
(deprecate lerif_mean_square leif_mean_square)
(at level 10, only parsing) : fun_scope.
Notation lerif_mean_square := (@lerif_mean_square _) (only parsing).
Notation "@ 'lerif_AGM2'" :=
(deprecate lerif_AGM2 leif_AGM2) (at level 10, only parsing) : fun_scope.
Notation lerif_AGM2 := (@lerif_AGM2 _) (only parsing).
Notation "@ 'lerif_normC_Re_Creal'" :=
(deprecate lerif_normC_Re_Creal leif_normC_Re_Creal)
(at level 10, only parsing) : fun_scope.
Notation lerif_normC_Re_Creal := (@lerif_normC_Re_Creal _) (only parsing).
Notation "@ 'lerif_Re_Creal'" :=
(deprecate lerif_Re_Creal leif_Re_Creal)
(at level 10, only parsing) : fun_scope.
Notation lerif_Re_Creal := (@lerif_Re_Creal _) (only parsing).
Notation "@ 'lerif_rootC_AGM'" :=
(deprecate lerif_rootC_AGM leif_rootC_AGM)
(at level 10, only parsing) : fun_scope.
Notation lerif_rootC_AGM := (@lerif_rootC_AGM _ _ _ _) (only parsing).
End Theory.
Notation "[ 'arg' 'minr_' ( i < i0 | P ) F ]" :=
(arg_minr i0 (fun i => P%B) (fun i => F))
(at level 0, i, i0 at level 10,
format "[ 'arg' 'minr_' ( i < i0 | P ) F ]") : form_scope.
Notation "[ 'arg' 'minr_' ( i < i0 'in' A ) F ]" :=
[arg minr_(i < i0 | i \in A) F]
(at level 0, i, i0 at level 10,
format "[ 'arg' 'minr_' ( i < i0 'in' A ) F ]") : form_scope.
Notation "[ 'arg' 'minr_' ( i < i0 ) F ]" := [arg minr_(i < i0 | true) F]
(at level 0, i, i0 at level 10,
format "[ 'arg' 'minr_' ( i < i0 ) F ]") : form_scope.
Notation "[ 'arg' 'maxr_' ( i > i0 | P ) F ]" :=
(arg_maxr i0 (fun i => P%B) (fun i => F))
(at level 0, i, i0 at level 10,
format "[ 'arg' 'maxr_' ( i > i0 | P ) F ]") : form_scope.
Notation "[ 'arg' 'maxr_' ( i > i0 'in' A ) F ]" :=
[arg maxr_(i > i0 | i \in A) F]
(at level 0, i, i0 at level 10,
format "[ 'arg' 'maxr_' ( i > i0 'in' A ) F ]") : form_scope.
Notation "[ 'arg' 'maxr_' ( i > i0 ) F ]" := [arg maxr_(i > i0 | true) F]
(at level 0, i, i0 at level 10,
format "[ 'arg' 'maxr_' ( i > i0 ) F ]") : form_scope.
End Num.
End mc_1_10.
|