1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice.
From mathcomp Require Import fintype finfun bigop finset fingroup perm.
From mathcomp Require Import div prime binomial ssralg finalg zmodp countalg.
(******************************************************************************)
(* Basic concrete linear algebra : definition of type for matrices, and all *)
(* basic matrix operations including determinant, trace and support for block *)
(* decomposition. Matrices are represented by a row-major list of their *)
(* coefficients but this implementation is hidden by three levels of wrappers *)
(* (Matrix/Finfun/Tuple) so the matrix type should be treated as abstract and *)
(* handled using only the operations described below: *)
(* 'M[R]_(m, n) == the type of m rows by n columns matrices with *)
(* 'M_(m, n) coefficients in R; the [R] is optional and is usually *)
(* omitted. *)
(* 'M[R]_n, 'M_n == the type of n x n square matrices. *)
(* 'rV[R]_n, 'rV_n == the type of 1 x n row vectors. *)
(* 'cV[R]_n, 'cV_n == the type of n x 1 column vectors. *)
(* \matrix_(i < m, j < n) Expr(i, j) == *)
(* the m x n matrix with general coefficient Expr(i, j), *)
(* with i : 'I_m and j : 'I_n. the < m bound can be omitted *)
(* if it is equal to n, though usually both bounds are *)
(* omitted as they can be inferred from the context. *)
(* \row_(j < n) Expr(j), \col_(i < m) Expr(i) *)
(* the row / column vectors with general term Expr; the *)
(* parentheses can be omitted along with the bound. *)
(* \matrix_(i < m) RowExpr(i) == *)
(* the m x n matrix with row i given by RowExpr(i) : 'rV_n. *)
(* A i j == the coefficient of matrix A : 'M_(m, n) in column j of *)
(* row i, where i : 'I_m, and j : 'I_n (via the coercion *)
(* fun_of_matrix : matrix >-> Funclass). *)
(* const_mx a == the constant matrix whose entries are all a (dimensions *)
(* should be determined by context). *)
(* map_mx f A == the pointwise image of A by f, i.e., the matrix Af *)
(* congruent to A with Af i j = f (A i j) for all i and j. *)
(* A^T == the matrix transpose of A. *)
(* row i A == the i'th row of A (this is a row vector). *)
(* col j A == the j'th column of A (a column vector). *)
(* row' i A == A with the i'th row spliced out. *)
(* col' i A == A with the j'th column spliced out. *)
(* xrow i1 i2 A == A with rows i1 and i2 interchanged. *)
(* xcol j1 j2 A == A with columns j1 and j2 interchanged. *)
(* row_perm s A == A : 'M_(m, n) with rows permuted by s : 'S_m. *)
(* col_perm s A == A : 'M_(m, n) with columns permuted by s : 'S_n. *)
(* row_mx Al Ar == the row block matrix <Al Ar> obtained by contatenating *)
(* two matrices Al and Ar of the same height. *)
(* col_mx Au Ad == the column block matrix / Au \ (Au and Ad must have the *)
(* same width). \ Ad / *)
(* block_mx Aul Aur Adl Adr == the block matrix / Aul Aur \ *)
(* \ Adl Adr / *)
(* [l|r]submx A == the left/right submatrices of a row block matrix A. *)
(* Note that the type of A, 'M_(m, n1 + n2) indicates how A *)
(* should be decomposed. *)
(* [u|d]submx A == the up/down submatrices of a column block matrix A. *)
(* [u|d][l|r]submx A == the upper left, etc submatrices of a block matrix A. *)
(* mxsub f g A == generic reordered submatrix, given by functions f and g *)
(* which specify which subset of rows and columns to take *)
(* and how to reorder them, e.g. picking f and g to be *)
(* increasing yields traditional submatrices. *)
(* := \matrix_(i, j) A (f i) (g i) *)
(* rowsub f A := mxsub f id A *)
(* colsub g A := mxsub id g A *)
(* castmx eq_mn A == A : 'M_(m, n) cast to 'M_(m', n') using the equation *)
(* pair eq_mn : (m = m') * (n = n'). This is the usual *)
(* workaround for the syntactic limitations of dependent *)
(* types in Coq, and can be used to introduce a block *)
(* decomposition. It simplifies to A when eq_mn is the *)
(* pair (erefl m, erefl n) (using rewrite /castmx /=). *)
(* conform_mx B A == A if A and B have the same dimensions, else B. *)
(* mxvec A == a row vector of width m * n holding all the entries of *)
(* the m x n matrix A. *)
(* mxvec_index i j == the index of A i j in mxvec A. *)
(* vec_mx v == the inverse of mxvec, reshaping a vector of width m * n *)
(* back into into an m x n rectangular matrix. *)
(* In 'M[R]_(m, n), R can be any type, but 'M[R]_(m, n) inherits the eqType, *)
(* choiceType, countType, finType, zmodType structures of R; 'M[R]_(m, n) *)
(* also has a natural lmodType R structure when R has a ringType structure. *)
(* Because the type of matrices specifies their dimension, only non-trivial *)
(* square matrices (of type 'M[R]_n.+1) can inherit the ring structure of R; *)
(* indeed they then have an algebra structure (lalgType R, or algType R if R *)
(* is a comRingType, or even unitAlgType if R is a comUnitRingType). *)
(* We thus provide separate syntax for the general matrix multiplication, *)
(* and other operations for matrices over a ringType R: *)
(* A *m B == the matrix product of A and B; the width of A must be *)
(* equal to the height of B. *)
(* a%:M == the scalar matrix with a's on the main diagonal; in *)
(* particular 1%:M denotes the identity matrix, and is is *)
(* equal to 1%R when n is of the form n'.+1 (e.g., n >= 1). *)
(* is_scalar_mx A <=> A is a scalar matrix (A = a%:M for some A). *)
(* diag_mx d == the diagonal matrix whose main diagonal is d : 'rV_n. *)
(* is_diag_mx A <=> A is a diagonal matrix: forall i j, i != j -> A i j = 0 *)
(* is_trig_mx A <=> A is a triangular matrix: forall i j, i < j -> A i j = 0 *)
(* delta_mx i j == the matrix with a 1 in row i, column j and 0 elsewhere. *)
(* pid_mx r == the partial identity matrix with 1s only on the r first *)
(* coefficients of the main diagonal; the dimensions of *)
(* pid_mx r are determined by the context, and pid_mx r can *)
(* be rectangular. *)
(* copid_mx r == the complement to 1%:M of pid_mx r: a square diagonal *)
(* matrix with 1s on all but the first r coefficients on *)
(* its main diagonal. *)
(* perm_mx s == the n x n permutation matrix for s : 'S_n. *)
(* tperm_mx i1 i2 == the permutation matrix that exchanges i1 i2 : 'I_n. *)
(* is_perm_mx A == A is a permutation matrix. *)
(* lift0_mx A == the 1 + n square matrix block_mx 1 0 0 A when A : 'M_n. *)
(* \tr A == the trace of a square matrix A. *)
(* \det A == the determinant of A, using the Leibnitz formula. *)
(* cofactor i j A == the i, j cofactor of A (the signed i, j minor of A), *)
(* \adj A == the adjugate matrix of A (\adj A i j = cofactor j i A). *)
(* A \in unitmx == A is invertible (R must be a comUnitRingType). *)
(* invmx A == the inverse matrix of A if A \in unitmx A, otherwise A. *)
(* A \is a mxOver S == the matrix A has its coefficients in S. *)
(* comm_mx A B := A *m B = B *m A *)
(* comm_mxb A B := A *m B == B *m A *)
(* all_comm_mx As := allrel comm_mxb *)
(* The following operations provide a correspondence between linear functions *)
(* and matrices: *)
(* lin1_mx f == the m x n matrix that emulates via right product *)
(* a (linear) function f : 'rV_m -> 'rV_n on ROW VECTORS *)
(* lin_mx f == the (m1 * n1) x (m2 * n2) matrix that emulates, via the *)
(* right multiplication on the mxvec encodings, a linear *)
(* function f : 'M_(m1, n1) -> 'M_(m2, n2) *)
(* lin_mul_row u := lin1_mx (mulmx u \o vec_mx) (applies a row-encoded *)
(* function to the row-vector u). *)
(* mulmx A == partially applied matrix multiplication (mulmx A B is *)
(* displayed as A *m B), with, for A : 'M_(m, n), a *)
(* canonical {linear 'M_(n, p) -> 'M(m, p}} structure. *)
(* mulmxr A == self-simplifying right-hand matrix multiplication, i.e., *)
(* mulmxr A B simplifies to B *m A, with, for A : 'M_(n, p), *)
(* a canonical {linear 'M_(m, n) -> 'M(m, p}} structure. *)
(* lin_mulmx A := lin_mx (mulmx A). *)
(* lin_mulmxr A := lin_mx (mulmxr A). *)
(* We also extend any finType structure of R to 'M[R]_(m, n), and define: *)
(* {'GL_n[R]} == the finGroupType of units of 'M[R]_n.-1.+1. *)
(* 'GL_n[R] == the general linear group of all matrices in {'GL_n(R)}. *)
(* 'GL_n(p) == 'GL_n['F_p], the general linear group of a prime field. *)
(* GLval u == the coercion of u : {'GL_n(R)} to a matrix. *)
(* In addition to the lemmas relevant to these definitions, this file also *)
(* proves several classic results, including : *)
(* - The determinant is a multilinear alternate form. *)
(* - The Laplace determinant expansion formulas: expand_det_[row|col]. *)
(* - The Cramer rule : mul_mx_adj & mul_adj_mx. *)
(* Finally, as an example of the use of block products, we program and prove *)
(* the correctness of a classical linear algebra algorithm: *)
(* cormen_lup A == the triangular decomposition (L, U, P) of a nontrivial *)
(* square matrix A into a lower triagular matrix L with 1s *)
(* on the main diagonal, an upper matrix U, and a *)
(* permutation matrix P, such that P * A = L * U. *)
(* This is example only; we use a different, more precise algorithm to *)
(* develop the theory of matrix ranks and row spaces in mxalgebra.v *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GroupScope.
Import GRing.Theory.
Local Open Scope ring_scope.
Reserved Notation "''M_' n" (at level 8, n at level 2, format "''M_' n").
Reserved Notation "''rV_' n" (at level 8, n at level 2, format "''rV_' n").
Reserved Notation "''cV_' n" (at level 8, n at level 2, format "''cV_' n").
Reserved Notation "''M_' ( n )" (at level 8). (* only parsing *)
Reserved Notation "''M_' ( m , n )" (at level 8, format "''M_' ( m , n )").
Reserved Notation "''M[' R ]_ n" (at level 8, n at level 2). (* only parsing *)
Reserved Notation "''rV[' R ]_ n" (at level 8, n at level 2). (* only parsing *)
Reserved Notation "''cV[' R ]_ n" (at level 8, n at level 2). (* only parsing *)
Reserved Notation "''M[' R ]_ ( n )" (at level 8). (* only parsing *)
Reserved Notation "''M[' R ]_ ( m , n )" (at level 8). (* only parsing *)
Reserved Notation "\matrix_ i E"
(at level 36, E at level 36, i at level 2,
format "\matrix_ i E").
Reserved Notation "\matrix_ ( i < n ) E"
(at level 36, E at level 36, i, n at level 50). (* only parsing *)
Reserved Notation "\matrix_ ( i , j ) E"
(at level 36, E at level 36, i, j at level 50,
format "\matrix_ ( i , j ) E").
Reserved Notation "\matrix[ k ]_ ( i , j ) E"
(at level 36, E at level 36, i, j at level 50,
format "\matrix[ k ]_ ( i , j ) E").
Reserved Notation "\matrix_ ( i < m , j < n ) E"
(at level 36, E at level 36, i, m, j, n at level 50). (* only parsing *)
Reserved Notation "\matrix_ ( i , j < n ) E"
(at level 36, E at level 36, i, j, n at level 50). (* only parsing *)
Reserved Notation "\row_ j E"
(at level 36, E at level 36, j at level 2,
format "\row_ j E").
Reserved Notation "\row_ ( j < n ) E"
(at level 36, E at level 36, j, n at level 50). (* only parsing *)
Reserved Notation "\col_ j E"
(at level 36, E at level 36, j at level 2,
format "\col_ j E").
Reserved Notation "\col_ ( j < n ) E"
(at level 36, E at level 36, j, n at level 50). (* only parsing *)
Reserved Notation "x %:M" (at level 8, format "x %:M").
Reserved Notation "A *m B" (at level 40, left associativity, format "A *m B").
Reserved Notation "A ^T" (at level 8, format "A ^T").
Reserved Notation "\tr A" (at level 10, A at level 8, format "\tr A").
Reserved Notation "\det A" (at level 10, A at level 8, format "\det A").
Reserved Notation "\adj A" (at level 10, A at level 8, format "\adj A").
Local Notation simp := (Monoid.Theory.simpm, oppr0).
(*****************************************************************************)
(****************************Type Definition**********************************)
(*****************************************************************************)
Section MatrixDef.
Variable R : Type.
Variables m n : nat.
(* Basic linear algebra (matrices). *)
(* We use dependent types (ordinals) for the indices so that ranges are *)
(* mostly inferred automatically *)
Variant matrix : predArgType := Matrix of {ffun 'I_m * 'I_n -> R}.
Definition mx_val A := let: Matrix g := A in g.
Canonical matrix_subType := Eval hnf in [newType for mx_val].
Fact matrix_key : unit. Proof. by []. Qed.
Definition matrix_of_fun_def F := Matrix [ffun ij => F ij.1 ij.2].
Definition matrix_of_fun k := locked_with k matrix_of_fun_def.
Canonical matrix_unlockable k := [unlockable fun matrix_of_fun k].
Definition fun_of_matrix A (i : 'I_m) (j : 'I_n) := mx_val A (i, j).
Coercion fun_of_matrix : matrix >-> Funclass.
Lemma mxE k F : matrix_of_fun k F =2 F.
Proof. by move=> i j; rewrite unlock /fun_of_matrix /= ffunE. Qed.
Lemma matrixP (A B : matrix) : A =2 B <-> A = B.
Proof.
rewrite /fun_of_matrix; split=> [/= eqAB | -> //].
by apply/val_inj/ffunP=> [[i j]]; apply: eqAB.
Qed.
Lemma eq_mx k F1 F2 : (F1 =2 F2) -> matrix_of_fun k F1 = matrix_of_fun k F2.
Proof. by move=> eq_F; apply/matrixP => i j; rewrite !mxE eq_F. Qed.
End MatrixDef.
Arguments eq_mx {R m n k} [F1] F2 eq_F12.
Bind Scope ring_scope with matrix.
Notation "''M[' R ]_ ( m , n )" := (matrix R m n) (only parsing): type_scope.
Notation "''rV[' R ]_ n" := 'M[R]_(1, n) (only parsing) : type_scope.
Notation "''cV[' R ]_ n" := 'M[R]_(n, 1) (only parsing) : type_scope.
Notation "''M[' R ]_ n" := 'M[R]_(n, n) (only parsing) : type_scope.
Notation "''M[' R ]_ ( n )" := 'M[R]_n (only parsing) : type_scope.
Notation "''M_' ( m , n )" := 'M[_]_(m, n) : type_scope.
Notation "''rV_' n" := 'M_(1, n) : type_scope.
Notation "''cV_' n" := 'M_(n, 1) : type_scope.
Notation "''M_' n" := 'M_(n, n) : type_scope.
Notation "''M_' ( n )" := 'M_n (only parsing) : type_scope.
Notation "\matrix[ k ]_ ( i , j ) E" := (matrix_of_fun k (fun i j => E)) :
ring_scope.
Notation "\matrix_ ( i < m , j < n ) E" :=
(@matrix_of_fun _ m n matrix_key (fun i j => E)) (only parsing) : ring_scope.
Notation "\matrix_ ( i , j < n ) E" :=
(\matrix_(i < n, j < n) E) (only parsing) : ring_scope.
Notation "\matrix_ ( i , j ) E" := (\matrix_(i < _, j < _) E) : ring_scope.
Notation "\matrix_ ( i < m ) E" :=
(\matrix_(i < m, j < _) @fun_of_matrix _ 1 _ E 0 j)
(only parsing) : ring_scope.
Notation "\matrix_ i E" := (\matrix_(i < _) E) : ring_scope.
Notation "\col_ ( i < n ) E" := (@matrix_of_fun _ n 1 matrix_key (fun i _ => E))
(only parsing) : ring_scope.
Notation "\col_ i E" := (\col_(i < _) E) : ring_scope.
Notation "\row_ ( j < n ) E" := (@matrix_of_fun _ 1 n matrix_key (fun _ j => E))
(only parsing) : ring_scope.
Notation "\row_ j E" := (\row_(j < _) E) : ring_scope.
Definition matrix_eqMixin (R : eqType) m n :=
Eval hnf in [eqMixin of 'M[R]_(m, n) by <:].
Canonical matrix_eqType (R : eqType) m n:=
Eval hnf in EqType 'M[R]_(m, n) (matrix_eqMixin R m n).
Definition matrix_choiceMixin (R : choiceType) m n :=
[choiceMixin of 'M[R]_(m, n) by <:].
Canonical matrix_choiceType (R : choiceType) m n :=
Eval hnf in ChoiceType 'M[R]_(m, n) (matrix_choiceMixin R m n).
Definition matrix_countMixin (R : countType) m n :=
[countMixin of 'M[R]_(m, n) by <:].
Canonical matrix_countType (R : countType) m n :=
Eval hnf in CountType 'M[R]_(m, n) (matrix_countMixin R m n).
Canonical matrix_subCountType (R : countType) m n :=
Eval hnf in [subCountType of 'M[R]_(m, n)].
Definition matrix_finMixin (R : finType) m n :=
[finMixin of 'M[R]_(m, n) by <:].
Canonical matrix_finType (R : finType) m n :=
Eval hnf in FinType 'M[R]_(m, n) (matrix_finMixin R m n).
Canonical matrix_subFinType (R : finType) m n :=
Eval hnf in [subFinType of 'M[R]_(m, n)].
Lemma card_matrix (F : finType) m n : (#|{: 'M[F]_(m, n)}| = #|F| ^ (m * n))%N.
Proof. by rewrite card_sub card_ffun card_prod !card_ord. Qed.
(*****************************************************************************)
(****** Matrix structural operations (transpose, permutation, blocks) ********)
(*****************************************************************************)
Section MatrixStructural.
Variable R : Type.
(* Constant matrix *)
Fact const_mx_key : unit. Proof. by []. Qed.
Definition const_mx m n a : 'M[R]_(m, n) := \matrix[const_mx_key]_(i, j) a.
Arguments const_mx {m n}.
Section FixedDim.
(* Definitions and properties for which we can work with fixed dimensions. *)
Variables m n : nat.
Implicit Type A : 'M[R]_(m, n).
(* Reshape a matrix, to accomodate the block functions for instance. *)
Definition castmx m' n' (eq_mn : (m = m') * (n = n')) A : 'M_(m', n') :=
let: erefl in _ = m' := eq_mn.1 return 'M_(m', n') in
let: erefl in _ = n' := eq_mn.2 return 'M_(m, n') in A.
Definition conform_mx m' n' B A :=
match m =P m', n =P n' with
| ReflectT eq_m, ReflectT eq_n => castmx (eq_m, eq_n) A
| _, _ => B
end.
(* Transpose a matrix *)
Fact trmx_key : unit. Proof. by []. Qed.
Definition trmx A := \matrix[trmx_key]_(i, j) A j i.
(* Permute a matrix vertically (rows) or horizontally (columns) *)
Fact row_perm_key : unit. Proof. by []. Qed.
Definition row_perm (s : 'S_m) A := \matrix[row_perm_key]_(i, j) A (s i) j.
Fact col_perm_key : unit. Proof. by []. Qed.
Definition col_perm (s : 'S_n) A := \matrix[col_perm_key]_(i, j) A i (s j).
(* Exchange two rows/columns of a matrix *)
Definition xrow i1 i2 := row_perm (tperm i1 i2).
Definition xcol j1 j2 := col_perm (tperm j1 j2).
(* Row/Column sub matrices of a matrix *)
Definition row i0 A := \row_j A i0 j.
Definition col j0 A := \col_i A i j0.
(* Removing a row/column from a matrix *)
Definition row' i0 A := \matrix_(i, j) A (lift i0 i) j.
Definition col' j0 A := \matrix_(i, j) A i (lift j0 j).
(* reindexing/subindex a matrix *)
Definition mxsub m' n' f g A := \matrix_(i < m', j < n') A (f i) (g j).
Local Notation colsub g := (mxsub id g).
Local Notation rowsub f := (mxsub f id).
Lemma castmx_const m' n' (eq_mn : (m = m') * (n = n')) a :
castmx eq_mn (const_mx a) = const_mx a.
Proof. by case: eq_mn; case: m' /; case: n' /. Qed.
Lemma trmx_const a : trmx (const_mx a) = const_mx a.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma row_perm_const s a : row_perm s (const_mx a) = const_mx a.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma col_perm_const s a : col_perm s (const_mx a) = const_mx a.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma xrow_const i1 i2 a : xrow i1 i2 (const_mx a) = const_mx a.
Proof. exact: row_perm_const. Qed.
Lemma xcol_const j1 j2 a : xcol j1 j2 (const_mx a) = const_mx a.
Proof. exact: col_perm_const. Qed.
Lemma rowP (u v : 'rV[R]_n) : u 0 =1 v 0 <-> u = v.
Proof. by split=> [eq_uv | -> //]; apply/matrixP=> i; rewrite ord1. Qed.
Lemma rowK u_ i0 : row i0 (\matrix_i u_ i) = u_ i0.
Proof. by apply/rowP=> i'; rewrite !mxE. Qed.
Lemma row_matrixP A B : (forall i, row i A = row i B) <-> A = B.
Proof.
split=> [eqAB | -> //]; apply/matrixP=> i j.
by move/rowP/(_ j): (eqAB i); rewrite !mxE.
Qed.
Lemma colP (u v : 'cV[R]_m) : u^~ 0 =1 v^~ 0 <-> u = v.
Proof. by split=> [eq_uv | -> //]; apply/matrixP=> i j; rewrite ord1. Qed.
Lemma row_const i0 a : row i0 (const_mx a) = const_mx a.
Proof. by apply/rowP=> j; rewrite !mxE. Qed.
Lemma col_const j0 a : col j0 (const_mx a) = const_mx a.
Proof. by apply/colP=> i; rewrite !mxE. Qed.
Lemma row'_const i0 a : row' i0 (const_mx a) = const_mx a.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma col'_const j0 a : col' j0 (const_mx a) = const_mx a.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma col_perm1 A : col_perm 1 A = A.
Proof. by apply/matrixP=> i j; rewrite mxE perm1. Qed.
Lemma row_perm1 A : row_perm 1 A = A.
Proof. by apply/matrixP=> i j; rewrite mxE perm1. Qed.
Lemma col_permM s t A : col_perm (s * t) A = col_perm s (col_perm t A).
Proof. by apply/matrixP=> i j; rewrite !mxE permM. Qed.
Lemma row_permM s t A : row_perm (s * t) A = row_perm s (row_perm t A).
Proof. by apply/matrixP=> i j; rewrite !mxE permM. Qed.
Lemma col_row_permC s t A :
col_perm s (row_perm t A) = row_perm t (col_perm s A).
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma rowEsub i : row i = rowsub (fun=> i). Proof. by []. Qed.
Lemma colEsub j : col j = colsub (fun=> j). Proof. by []. Qed.
Lemma row'Esub i : row' i = rowsub (lift i). Proof. by []. Qed.
Lemma col'Esub j : col' j = colsub (lift j). Proof. by []. Qed.
Lemma row_permEsub s : row_perm s = rowsub s.
Proof. by rewrite /row_perm /mxsub !unlock. Qed.
Lemma col_permEsub s : col_perm s = colsub s.
Proof. by rewrite /col_perm /mxsub !unlock. Qed.
Lemma xrowEsub i1 i2 : xrow i1 i2 = rowsub (tperm i1 i2).
Proof. exact: row_permEsub. Qed.
Lemma xcolEsub j1 j2 : xcol j1 j2 = colsub (tperm j1 j2).
Proof. exact: col_permEsub. Qed.
Lemma mxsub_id : mxsub id id =1 id.
Proof. by move=> A; apply/matrixP => i j; rewrite !mxE. Qed.
Lemma eq_mxsub m' n' f f' g g' : f =1 f' -> g =1 g' ->
@mxsub m' n' f g =1 mxsub f' g'.
Proof. by move=> eq_f eq_g A; apply/matrixP => i j; rewrite !mxE eq_f eq_g. Qed.
Lemma eq_rowsub m' (f f' : 'I_m' -> 'I_m) : f =1 f' -> rowsub f =1 rowsub f'.
Proof. by move=> /eq_mxsub; apply. Qed.
Lemma eq_colsub n' (g g' : 'I_n' -> 'I_n) : g =1 g' -> colsub g =1 colsub g'.
Proof. by move=> /eq_mxsub; apply. Qed.
Lemma mxsub_eq_id f g : f =1 id -> g =1 id -> mxsub f g =1 id.
Proof. by move=> fid gid A; rewrite (eq_mxsub fid gid) mxsub_id. Qed.
Lemma mxsub_eq_colsub n' f g : f =1 id -> @mxsub _ n' f g =1 colsub g.
Proof. by move=> f_id; apply: eq_mxsub. Qed.
Lemma mxsub_eq_rowsub m' f g : g =1 id -> @mxsub m' _ f g =1 rowsub f.
Proof. exact: eq_mxsub. Qed.
Lemma mxsub_ffunl m' n' f g : @mxsub m' n' (finfun f) g =1 mxsub f g.
Proof. by apply: eq_mxsub => // i; rewrite ffunE. Qed.
Lemma mxsub_ffunr m' n' f g : @mxsub m' n' f (finfun g) =1 mxsub f g.
Proof. by apply: eq_mxsub => // i; rewrite ffunE. Qed.
Lemma mxsub_ffun m' n' f g : @mxsub m' n' (finfun f) (finfun g) =1 mxsub f g.
Proof. by move=> A; rewrite mxsub_ffunl mxsub_ffunr. Qed.
Lemma mxsub_const m' n' f g a : @mxsub m' n' f g (const_mx a) = const_mx a.
Proof. by apply/matrixP => i j; rewrite !mxE. Qed.
End FixedDim.
Local Notation colsub g := (mxsub id g).
Local Notation rowsub f := (mxsub f id).
Local Notation "A ^T" := (trmx A) : ring_scope.
Lemma castmx_id m n erefl_mn (A : 'M_(m, n)) : castmx erefl_mn A = A.
Proof. by case: erefl_mn => e_m e_n; rewrite [e_m]eq_axiomK [e_n]eq_axiomK. Qed.
Lemma castmx_comp m1 n1 m2 n2 m3 n3 (eq_m1 : m1 = m2) (eq_n1 : n1 = n2)
(eq_m2 : m2 = m3) (eq_n2 : n2 = n3) A :
castmx (eq_m2, eq_n2) (castmx (eq_m1, eq_n1) A)
= castmx (etrans eq_m1 eq_m2, etrans eq_n1 eq_n2) A.
Proof.
by case: m2 / eq_m1 eq_m2; case: m3 /; case: n2 / eq_n1 eq_n2; case: n3 /.
Qed.
Lemma castmxK m1 n1 m2 n2 (eq_m : m1 = m2) (eq_n : n1 = n2) :
cancel (castmx (eq_m, eq_n)) (castmx (esym eq_m, esym eq_n)).
Proof. by case: m2 / eq_m; case: n2 / eq_n. Qed.
Lemma castmxKV m1 n1 m2 n2 (eq_m : m1 = m2) (eq_n : n1 = n2) :
cancel (castmx (esym eq_m, esym eq_n)) (castmx (eq_m, eq_n)).
Proof. by case: m2 / eq_m; case: n2 / eq_n. Qed.
(* This can be use to reverse an equation that involves a cast. *)
Lemma castmx_sym m1 n1 m2 n2 (eq_m : m1 = m2) (eq_n : n1 = n2) A1 A2 :
A1 = castmx (eq_m, eq_n) A2 -> A2 = castmx (esym eq_m, esym eq_n) A1.
Proof. by move/(canLR (castmxK _ _)). Qed.
Lemma castmxE m1 n1 m2 n2 (eq_mn : (m1 = m2) * (n1 = n2)) A i j :
castmx eq_mn A i j =
A (cast_ord (esym eq_mn.1) i) (cast_ord (esym eq_mn.2) j).
Proof.
by do [case: eq_mn; case: m2 /; case: n2 /] in A i j *; rewrite !cast_ord_id.
Qed.
Lemma conform_mx_id m n (B A : 'M_(m, n)) : conform_mx B A = A.
Proof. by rewrite /conform_mx; do 2!case: eqP => // *; rewrite castmx_id. Qed.
Lemma nonconform_mx m m' n n' (B : 'M_(m', n')) (A : 'M_(m, n)) :
(m != m') || (n != n') -> conform_mx B A = B.
Proof. by rewrite /conform_mx; do 2!case: eqP. Qed.
Lemma conform_castmx m1 n1 m2 n2 m3 n3
(e_mn : (m2 = m3) * (n2 = n3)) (B : 'M_(m1, n1)) A :
conform_mx B (castmx e_mn A) = conform_mx B A.
Proof. by do [case: e_mn; case: m3 /; case: n3 /] in A *. Qed.
Lemma trmxK m n : cancel (@trmx m n) (@trmx n m).
Proof. by move=> A; apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma trmx_inj m n : injective (@trmx m n).
Proof. exact: can_inj (@trmxK m n). Qed.
Lemma trmx_cast m1 n1 m2 n2 (eq_mn : (m1 = m2) * (n1 = n2)) A :
(castmx eq_mn A)^T = castmx (eq_mn.2, eq_mn.1) A^T.
Proof.
by case: eq_mn => eq_m eq_n; apply/matrixP=> i j; rewrite !(mxE, castmxE).
Qed.
Lemma tr_row_perm m n s (A : 'M_(m, n)) : (row_perm s A)^T = col_perm s A^T.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma tr_col_perm m n s (A : 'M_(m, n)) : (col_perm s A)^T = row_perm s A^T.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma tr_xrow m n i1 i2 (A : 'M_(m, n)) : (xrow i1 i2 A)^T = xcol i1 i2 A^T.
Proof. exact: tr_row_perm. Qed.
Lemma tr_xcol m n j1 j2 (A : 'M_(m, n)) : (xcol j1 j2 A)^T = xrow j1 j2 A^T.
Proof. exact: tr_col_perm. Qed.
Lemma row_id n i (V : 'rV_n) : row i V = V.
Proof. by apply/rowP=> j; rewrite mxE [i]ord1. Qed.
Lemma col_id n j (V : 'cV_n) : col j V = V.
Proof. by apply/colP=> i; rewrite mxE [j]ord1. Qed.
Lemma row_eq m1 m2 n i1 i2 (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) :
row i1 A1 = row i2 A2 -> A1 i1 =1 A2 i2.
Proof. by move/rowP=> eqA12 j; have:= eqA12 j; rewrite !mxE. Qed.
Lemma col_eq m n1 n2 j1 j2 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) :
col j1 A1 = col j2 A2 -> A1^~ j1 =1 A2^~ j2.
Proof. by move/colP=> eqA12 i; have:= eqA12 i; rewrite !mxE. Qed.
Lemma row'_eq m n i0 (A B : 'M_(m, n)) :
row' i0 A = row' i0 B -> {in predC1 i0, A =2 B}.
Proof.
move/matrixP=> eqAB' i; rewrite !inE eq_sym; case/unlift_some=> i' -> _ j.
by have:= eqAB' i' j; rewrite !mxE.
Qed.
Lemma col'_eq m n j0 (A B : 'M_(m, n)) :
col' j0 A = col' j0 B -> forall i, {in predC1 j0, A i =1 B i}.
Proof.
move/matrixP=> eqAB' i j; rewrite !inE eq_sym; case/unlift_some=> j' -> _.
by have:= eqAB' i j'; rewrite !mxE.
Qed.
Lemma tr_row m n i0 (A : 'M_(m, n)) : (row i0 A)^T = col i0 A^T.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma tr_row' m n i0 (A : 'M_(m, n)) : (row' i0 A)^T = col' i0 A^T.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma tr_col m n j0 (A : 'M_(m, n)) : (col j0 A)^T = row j0 A^T.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma tr_col' m n j0 (A : 'M_(m, n)) : (col' j0 A)^T = row' j0 A^T.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma mxsub_comp m1 m2 m3 n1 n2 n3
(f : 'I_m2 -> 'I_m1) (f' : 'I_m3 -> 'I_m2)
(g : 'I_n2 -> 'I_n1) (g' : 'I_n3 -> 'I_n2) (A : 'M_(m1, n1)) :
mxsub (f \o f') (g \o g') A = mxsub f' g' (mxsub f g A).
Proof. by apply/matrixP => i j; rewrite !mxE. Qed.
Lemma rowsub_comp m1 m2 m3 n
(f : 'I_m2 -> 'I_m1) (f' : 'I_m3 -> 'I_m2) (A : 'M_(m1, n)) :
rowsub (f \o f') A = rowsub f' (rowsub f A).
Proof. exact: mxsub_comp. Qed.
Lemma colsub_comp m n n2 n3
(g : 'I_n2 -> 'I_n) (g' : 'I_n3 -> 'I_n2) (A : 'M_(m, n)) :
colsub (g \o g') A = colsub g' (colsub g A).
Proof. exact: mxsub_comp. Qed.
Lemma mxsubrc m1 m2 n n2 f g (A : 'M_(m1, n)) :
mxsub f g A = rowsub f (colsub g A) :> 'M_(m2, n2).
Proof. exact: mxsub_comp. Qed.
Lemma mxsubcr m1 m2 n n2 f g (A : 'M_(m1, n)) :
mxsub f g A = colsub g (rowsub f A) :> 'M_(m2, n2).
Proof. exact: mxsub_comp. Qed.
Lemma rowsub_cast m1 m2 n (eq_m : m1 = m2) (A : 'M_(m2, n)) :
rowsub (cast_ord eq_m) A = castmx (esym eq_m, erefl) A.
Proof. by case: _ / eq_m in A *; apply: (mxsub_eq_id (cast_ord_id _)). Qed.
Lemma colsub_cast m n1 n2 (eq_n : n1 = n2) (A : 'M_(m, n2)) :
colsub (cast_ord eq_n) A = castmx (erefl, esym eq_n) A.
Proof. by case: _ / eq_n in A *; apply: (mxsub_eq_id _ (cast_ord_id _)). Qed.
Lemma mxsub_cast m1 m2 n1 n2 (eq_m : m1 = m2) (eq_n : n1 = n2) A :
mxsub (cast_ord eq_m) (cast_ord eq_n) A = castmx (esym eq_m, esym eq_n) A.
Proof. by rewrite mxsubrc rowsub_cast colsub_cast castmx_comp/= etrans_id. Qed.
Lemma castmxEsub m1 m2 n1 n2 (eq_mn : (m1 = m2) * (n1 = n2)) A :
castmx eq_mn A = mxsub (cast_ord (esym eq_mn.1)) (cast_ord (esym eq_mn.2)) A.
Proof. by rewrite mxsub_cast !esymK; case: eq_mn. Qed.
Lemma trmx_mxsub m1 m2 n1 n2 f g (A : 'M_(m1, n1)) :
(mxsub f g A)^T = mxsub g f A^T :> 'M_(n2, m2).
Proof. by apply/matrixP => i j; rewrite !mxE. Qed.
Lemma row_mxsub m1 m2 n1 n2
(f : 'I_m2 -> 'I_m1) (g : 'I_n2 -> 'I_n1) (A : 'M_(m1, n1)) i :
row i (mxsub f g A) = row (f i) (colsub g A).
Proof. by rewrite !rowEsub -!mxsub_comp. Qed.
Lemma col_mxsub m1 m2 n1 n2
(f : 'I_m2 -> 'I_m1) (g : 'I_n2 -> 'I_n1) (A : 'M_(m1, n1)) i :
col i (mxsub f g A) = col (g i) (rowsub f A).
Proof. by rewrite !colEsub -!mxsub_comp. Qed.
Lemma row_rowsub m1 m2 n (f : 'I_m2 -> 'I_m1) (A : 'M_(m1, n)) i :
row i (rowsub f A) = row (f i) A.
Proof. by rewrite row_mxsub mxsub_id. Qed.
Lemma col_colsub m n1 n2 (g : 'I_n2 -> 'I_n1) (A : 'M_(m, n1)) i :
col i (colsub g A) = col (g i) A.
Proof. by rewrite col_mxsub mxsub_id. Qed.
Ltac split_mxE := apply/matrixP=> i j; do ![rewrite mxE | case: split => ?].
Section CutPaste.
Variables m m1 m2 n n1 n2 : nat.
(* Concatenating two matrices, in either direction. *)
Fact row_mx_key : unit. Proof. by []. Qed.
Definition row_mx (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) : 'M[R]_(m, n1 + n2) :=
\matrix[row_mx_key]_(i, j)
match split j with inl j1 => A1 i j1 | inr j2 => A2 i j2 end.
Fact col_mx_key : unit. Proof. by []. Qed.
Definition col_mx (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) : 'M[R]_(m1 + m2, n) :=
\matrix[col_mx_key]_(i, j)
match split i with inl i1 => A1 i1 j | inr i2 => A2 i2 j end.
(* Left/Right | Up/Down submatrices of a rows | columns matrix. *)
(* The shape of the (dependent) width parameters of the type of A *)
(* determines which submatrix is selected. *)
Fact lsubmx_key : unit. Proof. by []. Qed.
Definition lsubmx (A : 'M[R]_(m, n1 + n2)) :=
\matrix[lsubmx_key]_(i, j) A i (lshift n2 j).
Fact rsubmx_key : unit. Proof. by []. Qed.
Definition rsubmx (A : 'M[R]_(m, n1 + n2)) :=
\matrix[rsubmx_key]_(i, j) A i (rshift n1 j).
Fact usubmx_key : unit. Proof. by []. Qed.
Definition usubmx (A : 'M[R]_(m1 + m2, n)) :=
\matrix[usubmx_key]_(i, j) A (lshift m2 i) j.
Fact dsubmx_key : unit. Proof. by []. Qed.
Definition dsubmx (A : 'M[R]_(m1 + m2, n)) :=
\matrix[dsubmx_key]_(i, j) A (rshift m1 i) j.
Lemma row_mxEl A1 A2 i j : row_mx A1 A2 i (lshift n2 j) = A1 i j.
Proof. by rewrite mxE (unsplitK (inl _ _)). Qed.
Lemma row_mxKl A1 A2 : lsubmx (row_mx A1 A2) = A1.
Proof. by apply/matrixP=> i j; rewrite mxE row_mxEl. Qed.
Lemma row_mxEr A1 A2 i j : row_mx A1 A2 i (rshift n1 j) = A2 i j.
Proof. by rewrite mxE (unsplitK (inr _ _)). Qed.
Lemma row_mxKr A1 A2 : rsubmx (row_mx A1 A2) = A2.
Proof. by apply/matrixP=> i j; rewrite mxE row_mxEr. Qed.
Lemma hsubmxK A : row_mx (lsubmx A) (rsubmx A) = A.
Proof.
by apply/matrixP=> i j; rewrite !mxE; case: split_ordP => k ->; rewrite !mxE.
Qed.
Lemma col_mxEu A1 A2 i j : col_mx A1 A2 (lshift m2 i) j = A1 i j.
Proof. by rewrite mxE (unsplitK (inl _ _)). Qed.
Lemma col_mxKu A1 A2 : usubmx (col_mx A1 A2) = A1.
Proof. by apply/matrixP=> i j; rewrite mxE col_mxEu. Qed.
Lemma col_mxEd A1 A2 i j : col_mx A1 A2 (rshift m1 i) j = A2 i j.
Proof. by rewrite mxE (unsplitK (inr _ _)). Qed.
Lemma col_mxKd A1 A2 : dsubmx (col_mx A1 A2) = A2.
Proof. by apply/matrixP=> i j; rewrite mxE col_mxEd. Qed.
Lemma lsubmxEsub : lsubmx = colsub (lshift _).
Proof. by rewrite /lsubmx /mxsub !unlock. Qed.
Lemma rsubmxEsub : rsubmx = colsub (@rshift _ _).
Proof. by rewrite /rsubmx /mxsub !unlock. Qed.
Lemma usubmxEsub : usubmx = rowsub (lshift _).
Proof. by rewrite /usubmx /mxsub !unlock. Qed.
Lemma dsubmxEsub : dsubmx = rowsub (@rshift _ _).
Proof. by rewrite /dsubmx /mxsub !unlock. Qed.
Lemma eq_row_mx A1 A2 B1 B2 : row_mx A1 A2 = row_mx B1 B2 -> A1 = B1 /\ A2 = B2.
Proof.
move=> eqAB; move: (congr1 lsubmx eqAB) (congr1 rsubmx eqAB).
by rewrite !(row_mxKl, row_mxKr).
Qed.
Lemma eq_col_mx A1 A2 B1 B2 : col_mx A1 A2 = col_mx B1 B2 -> A1 = B1 /\ A2 = B2.
Proof.
move=> eqAB; move: (congr1 usubmx eqAB) (congr1 dsubmx eqAB).
by rewrite !(col_mxKu, col_mxKd).
Qed.
Lemma row_mx_const a : row_mx (const_mx a) (const_mx a) = const_mx a.
Proof. by split_mxE. Qed.
Lemma col_mx_const a : col_mx (const_mx a) (const_mx a) = const_mx a.
Proof. by split_mxE. Qed.
Lemma row_usubmx A i : row i (usubmx A) = row (lshift m2 i) A.
Proof. by apply/rowP=> j; rewrite !mxE; congr (A _ _); apply/val_inj. Qed.
Lemma row_dsubmx A i : row i (dsubmx A) = row (rshift m1 i) A.
Proof. by apply/rowP=> j; rewrite !mxE; congr (A _ _); apply/val_inj. Qed.
Lemma col_lsubmx A i : col i (lsubmx A) = col (lshift n2 i) A.
Proof. by apply/colP=> j; rewrite !mxE; congr (A _ _); apply/val_inj. Qed.
Lemma col_rsubmx A i : col i (rsubmx A) = col (rshift n1 i) A.
Proof. by apply/colP=> j; rewrite !mxE; congr (A _ _); apply/val_inj. Qed.
End CutPaste.
Lemma trmx_lsub m n1 n2 (A : 'M_(m, n1 + n2)) : (lsubmx A)^T = usubmx A^T.
Proof. by split_mxE. Qed.
Lemma trmx_rsub m n1 n2 (A : 'M_(m, n1 + n2)) : (rsubmx A)^T = dsubmx A^T.
Proof. by split_mxE. Qed.
Lemma tr_row_mx m n1 n2 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) :
(row_mx A1 A2)^T = col_mx A1^T A2^T.
Proof. by split_mxE. Qed.
Lemma tr_col_mx m1 m2 n (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) :
(col_mx A1 A2)^T = row_mx A1^T A2^T.
Proof. by split_mxE. Qed.
Lemma trmx_usub m1 m2 n (A : 'M_(m1 + m2, n)) : (usubmx A)^T = lsubmx A^T.
Proof. by split_mxE. Qed.
Lemma trmx_dsub m1 m2 n (A : 'M_(m1 + m2, n)) : (dsubmx A)^T = rsubmx A^T.
Proof. by split_mxE. Qed.
Lemma vsubmxK m1 m2 n (A : 'M_(m1 + m2, n)) : col_mx (usubmx A) (dsubmx A) = A.
Proof. by apply: trmx_inj; rewrite tr_col_mx trmx_usub trmx_dsub hsubmxK. Qed.
Lemma cast_row_mx m m' n1 n2 (eq_m : m = m') A1 A2 :
castmx (eq_m, erefl _) (row_mx A1 A2)
= row_mx (castmx (eq_m, erefl n1) A1) (castmx (eq_m, erefl n2) A2).
Proof. by case: m' / eq_m. Qed.
Lemma cast_col_mx m1 m2 n n' (eq_n : n = n') A1 A2 :
castmx (erefl _, eq_n) (col_mx A1 A2)
= col_mx (castmx (erefl m1, eq_n) A1) (castmx (erefl m2, eq_n) A2).
Proof. by case: n' / eq_n. Qed.
(* This lemma has Prenex Implicits to help RL rewrititng with castmx_sym. *)
Lemma row_mxA m n1 n2 n3 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) (A3 : 'M_(m, n3)) :
let cast := (erefl m, esym (addnA n1 n2 n3)) in
row_mx A1 (row_mx A2 A3) = castmx cast (row_mx (row_mx A1 A2) A3).
Proof.
apply: (canRL (castmxKV _ _)); apply/matrixP=> i j.
rewrite castmxE !mxE cast_ord_id; case: splitP => j1 /= def_j.
have: (j < n1 + n2) && (j < n1) by rewrite def_j lshift_subproof /=.
by move: def_j; do 2![case: splitP => // ? ->; rewrite ?mxE] => /ord_inj->.
case: splitP def_j => j2 ->{j} def_j; rewrite !mxE.
have: ~~ (j2 < n1) by rewrite -leqNgt def_j leq_addr.
have: j1 < n2 by rewrite -(ltn_add2l n1) -def_j.
by move: def_j; do 2![case: splitP => // ? ->] => /addnI/val_inj->.
have: ~~ (j1 < n2) by rewrite -leqNgt -(leq_add2l n1) -def_j leq_addr.
by case: splitP def_j => // ? ->; rewrite addnA => /addnI/val_inj->.
Qed.
Definition row_mxAx := row_mxA. (* bypass Prenex Implicits. *)
(* This lemma has Prenex Implicits to help RL rewrititng with castmx_sym. *)
Lemma col_mxA m1 m2 m3 n (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) (A3 : 'M_(m3, n)) :
let cast := (esym (addnA m1 m2 m3), erefl n) in
col_mx A1 (col_mx A2 A3) = castmx cast (col_mx (col_mx A1 A2) A3).
Proof. by apply: trmx_inj; rewrite trmx_cast !tr_col_mx -row_mxA. Qed.
Definition col_mxAx := col_mxA. (* bypass Prenex Implicits. *)
Lemma row_row_mx m n1 n2 i0 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) :
row i0 (row_mx A1 A2) = row_mx (row i0 A1) (row i0 A2).
Proof.
by apply/matrixP=> i j; rewrite !mxE; case: (split j) => j'; rewrite mxE.
Qed.
Lemma col_col_mx m1 m2 n j0 (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) :
col j0 (col_mx A1 A2) = col_mx (col j0 A1) (col j0 A2).
Proof. by apply: trmx_inj; rewrite !(tr_col, tr_col_mx, row_row_mx). Qed.
Lemma row'_row_mx m n1 n2 i0 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) :
row' i0 (row_mx A1 A2) = row_mx (row' i0 A1) (row' i0 A2).
Proof.
by apply/matrixP=> i j; rewrite !mxE; case: (split j) => j'; rewrite mxE.
Qed.
Lemma col'_col_mx m1 m2 n j0 (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) :
col' j0 (col_mx A1 A2) = col_mx (col' j0 A1) (col' j0 A2).
Proof. by apply: trmx_inj; rewrite !(tr_col', tr_col_mx, row'_row_mx). Qed.
Lemma colKl m n1 n2 j1 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) :
col (lshift n2 j1) (row_mx A1 A2) = col j1 A1.
Proof. by apply/matrixP=> i j; rewrite !(row_mxEl, mxE). Qed.
Lemma colKr m n1 n2 j2 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) :
col (rshift n1 j2) (row_mx A1 A2) = col j2 A2.
Proof. by apply/matrixP=> i j; rewrite !(row_mxEr, mxE). Qed.
Lemma rowKu m1 m2 n i1 (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) :
row (lshift m2 i1) (col_mx A1 A2) = row i1 A1.
Proof. by apply/matrixP=> i j; rewrite !(col_mxEu, mxE). Qed.
Lemma rowKd m1 m2 n i2 (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) :
row (rshift m1 i2) (col_mx A1 A2) = row i2 A2.
Proof. by apply/matrixP=> i j; rewrite !(col_mxEd, mxE). Qed.
Lemma col'Kl m n1 n2 j1 (A1 : 'M_(m, n1.+1)) (A2 : 'M_(m, n2)) :
col' (lshift n2 j1) (row_mx A1 A2) = row_mx (col' j1 A1) A2.
Proof.
apply/matrixP=> i /= j; symmetry; rewrite 2!mxE; case: split_ordP => j' ->.
by rewrite mxE -(row_mxEl _ A2); congr (row_mx _ _ _); apply: ord_inj.
rewrite -(row_mxEr A1); congr (row_mx _ _ _); apply: ord_inj => /=.
by rewrite /bump -ltnS -addSn ltn_addr.
Qed.
Lemma row'Ku m1 m2 n i1 (A1 : 'M_(m1.+1, n)) (A2 : 'M_(m2, n)) :
row' (lshift m2 i1) (@col_mx m1.+1 m2 n A1 A2) = col_mx (row' i1 A1) A2.
Proof.
by apply: trmx_inj; rewrite tr_col_mx !(@tr_row' _.+1) (@tr_col_mx _.+1) col'Kl.
Qed.
Lemma mx'_cast m n : 'I_n -> (m + n.-1)%N = (m + n).-1.
Proof. by case=> j /ltn_predK <-; rewrite addnS. Qed.
Lemma col'Kr m n1 n2 j2 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) :
col' (rshift n1 j2) (@row_mx m n1 n2 A1 A2)
= castmx (erefl m, mx'_cast n1 j2) (row_mx A1 (col' j2 A2)).
Proof.
apply/matrixP=> i j; symmetry; rewrite castmxE mxE cast_ord_id.
case: splitP => j' /= def_j.
rewrite mxE -(row_mxEl _ A2); congr (row_mx _ _ _); apply: ord_inj.
by rewrite /= def_j /bump leqNgt ltn_addr.
rewrite 2!mxE -(row_mxEr A1); congr (row_mx _ _ _ _); apply: ord_inj.
by rewrite /= def_j /bump leq_add2l addnCA.
Qed.
Lemma row'Kd m1 m2 n i2 (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) :
row' (rshift m1 i2) (col_mx A1 A2)
= castmx (mx'_cast m1 i2, erefl n) (col_mx A1 (row' i2 A2)).
Proof. by apply: trmx_inj; rewrite trmx_cast !(tr_row', tr_col_mx) col'Kr. Qed.
Section Block.
Variables m1 m2 n1 n2 : nat.
(* Building a block matrix from 4 matrices : *)
(* up left, up right, down left and down right components *)
Definition block_mx Aul Aur Adl Adr : 'M_(m1 + m2, n1 + n2) :=
col_mx (row_mx Aul Aur) (row_mx Adl Adr).
Lemma eq_block_mx Aul Aur Adl Adr Bul Bur Bdl Bdr :
block_mx Aul Aur Adl Adr = block_mx Bul Bur Bdl Bdr ->
[/\ Aul = Bul, Aur = Bur, Adl = Bdl & Adr = Bdr].
Proof. by case/eq_col_mx; do 2!case/eq_row_mx=> -> ->. Qed.
Lemma block_mx_const a :
block_mx (const_mx a) (const_mx a) (const_mx a) (const_mx a) = const_mx a.
Proof. by split_mxE. Qed.
Section CutBlock.
Variable A : matrix R (m1 + m2) (n1 + n2).
Definition ulsubmx := lsubmx (usubmx A).
Definition ursubmx := rsubmx (usubmx A).
Definition dlsubmx := lsubmx (dsubmx A).
Definition drsubmx := rsubmx (dsubmx A).
Lemma submxK : block_mx ulsubmx ursubmx dlsubmx drsubmx = A.
Proof. by rewrite /block_mx !hsubmxK vsubmxK. Qed.
Lemma ulsubmxEsub : ulsubmx = mxsub (lshift _) (lshift _) A.
Proof. by rewrite /ulsubmx lsubmxEsub usubmxEsub -mxsub_comp. Qed.
Lemma dlsubmxEsub : dlsubmx = mxsub (@rshift _ _) (lshift _) A.
Proof. by rewrite /dlsubmx lsubmxEsub dsubmxEsub -mxsub_comp. Qed.
Lemma ursubmxEsub : ursubmx = mxsub (lshift _) (@rshift _ _) A.
Proof. by rewrite /ursubmx rsubmxEsub usubmxEsub -mxsub_comp. Qed.
Lemma drsubmxEsub : drsubmx = mxsub (@rshift _ _) (@rshift _ _) A.
Proof. by rewrite /drsubmx rsubmxEsub dsubmxEsub -mxsub_comp. Qed.
End CutBlock.
Section CatBlock.
Variables (Aul : 'M[R]_(m1, n1)) (Aur : 'M[R]_(m1, n2)).
Variables (Adl : 'M[R]_(m2, n1)) (Adr : 'M[R]_(m2, n2)).
Let A := block_mx Aul Aur Adl Adr.
Lemma block_mxEul i j : A (lshift m2 i) (lshift n2 j) = Aul i j.
Proof. by rewrite col_mxEu row_mxEl. Qed.
Lemma block_mxKul : ulsubmx A = Aul.
Proof. by rewrite /ulsubmx col_mxKu row_mxKl. Qed.
Lemma block_mxEur i j : A (lshift m2 i) (rshift n1 j) = Aur i j.
Proof. by rewrite col_mxEu row_mxEr. Qed.
Lemma block_mxKur : ursubmx A = Aur.
Proof. by rewrite /ursubmx col_mxKu row_mxKr. Qed.
Lemma block_mxEdl i j : A (rshift m1 i) (lshift n2 j) = Adl i j.
Proof. by rewrite col_mxEd row_mxEl. Qed.
Lemma block_mxKdl : dlsubmx A = Adl.
Proof. by rewrite /dlsubmx col_mxKd row_mxKl. Qed.
Lemma block_mxEdr i j : A (rshift m1 i) (rshift n1 j) = Adr i j.
Proof. by rewrite col_mxEd row_mxEr. Qed.
Lemma block_mxKdr : drsubmx A = Adr.
Proof. by rewrite /drsubmx col_mxKd row_mxKr. Qed.
Lemma block_mxEv : A = col_mx (row_mx Aul Aur) (row_mx Adl Adr).
Proof. by []. Qed.
End CatBlock.
End Block.
Section TrCutBlock.
Variables m1 m2 n1 n2 : nat.
Variable A : 'M[R]_(m1 + m2, n1 + n2).
Lemma trmx_ulsub : (ulsubmx A)^T = ulsubmx A^T.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma trmx_ursub : (ursubmx A)^T = dlsubmx A^T.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma trmx_dlsub : (dlsubmx A)^T = ursubmx A^T.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma trmx_drsub : (drsubmx A)^T = drsubmx A^T.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
End TrCutBlock.
Section TrBlock.
Variables m1 m2 n1 n2 : nat.
Variables (Aul : 'M[R]_(m1, n1)) (Aur : 'M[R]_(m1, n2)).
Variables (Adl : 'M[R]_(m2, n1)) (Adr : 'M[R]_(m2, n2)).
Lemma tr_block_mx :
(block_mx Aul Aur Adl Adr)^T = block_mx Aul^T Adl^T Aur^T Adr^T.
Proof.
rewrite -[_^T]submxK -trmx_ulsub -trmx_ursub -trmx_dlsub -trmx_drsub.
by rewrite block_mxKul block_mxKur block_mxKdl block_mxKdr.
Qed.
Lemma block_mxEh :
block_mx Aul Aur Adl Adr = row_mx (col_mx Aul Adl) (col_mx Aur Adr).
Proof. by apply: trmx_inj; rewrite tr_block_mx tr_row_mx 2!tr_col_mx. Qed.
End TrBlock.
(* This lemma has Prenex Implicits to help RL rewrititng with castmx_sym. *)
Lemma block_mxA m1 m2 m3 n1 n2 n3
(A11 : 'M_(m1, n1)) (A12 : 'M_(m1, n2)) (A13 : 'M_(m1, n3))
(A21 : 'M_(m2, n1)) (A22 : 'M_(m2, n2)) (A23 : 'M_(m2, n3))
(A31 : 'M_(m3, n1)) (A32 : 'M_(m3, n2)) (A33 : 'M_(m3, n3)) :
let cast := (esym (addnA m1 m2 m3), esym (addnA n1 n2 n3)) in
let row1 := row_mx A12 A13 in let col1 := col_mx A21 A31 in
let row3 := row_mx A31 A32 in let col3 := col_mx A13 A23 in
block_mx A11 row1 col1 (block_mx A22 A23 A32 A33)
= castmx cast (block_mx (block_mx A11 A12 A21 A22) col3 row3 A33).
Proof.
rewrite /= block_mxEh !col_mxA -cast_row_mx -block_mxEv -block_mxEh.
rewrite block_mxEv block_mxEh !row_mxA -cast_col_mx -block_mxEh -block_mxEv.
by rewrite castmx_comp etrans_id.
Qed.
Definition block_mxAx := block_mxA. (* Bypass Prenex Implicits *)
Section Induction.
Lemma row_ind m (P : forall n, 'M[R]_(m, n) -> Type) :
(forall A, P 0%N A) ->
(forall n c A, P n A -> P (1 + n)%N (row_mx c A)) ->
forall n A, P n A.
Proof.
move=> P0 PS; elim=> [//|n IHn] A.
by rewrite -[n.+1]/(1 + n)%N in A *; rewrite -[A]hsubmxK; apply: PS.
Qed.
Lemma col_ind n (P : forall m, 'M[R]_(m, n) -> Type) :
(forall A, P 0%N A) ->
(forall m r A, P m A -> P (1 + m)%N (col_mx r A)) ->
forall m A, P m A.
Proof.
move=> P0 PS; elim=> [//|m IHm] A.
by rewrite -[m.+1]/(1 + m)%N in A *; rewrite -[A]vsubmxK; apply: PS.
Qed.
Lemma mx_ind (P : forall m n, 'M[R]_(m, n) -> Type) :
(forall m A, P m 0%N A) ->
(forall n A, P 0%N n A) ->
(forall m n x r c A, P m n A -> P (1 + m)%N (1 + n)%N (block_mx x r c A)) ->
forall m n A, P m n A.
Proof.
move=> P0l P0r PS; elim=> [|m IHm] [|n] A; do ?by [apply: P0l|apply: P0r].
by rewrite -[A](@submxK 1 _ 1); apply: PS.
Qed.
Definition matrix_rect := mx_ind.
Definition matrix_rec := mx_ind.
Definition matrix_ind := mx_ind.
Lemma sqmx_ind (P : forall n, 'M[R]_n -> Type) :
(forall A, P 0%N A) ->
(forall n x r c A, P n A -> P (1 + n)%N (block_mx x r c A)) ->
forall n A, P n A.
Proof.
by move=> P0 PS; elim=> [//|n IHn] A; rewrite -[A](@submxK 1 _ 1); apply: PS.
Qed.
Lemma ringmx_ind (P : forall n, 'M[R]_n.+1 -> Type) :
(forall x, P 0%N x) ->
(forall n x (r : 'rV_n.+1) (c : 'cV_n.+1) A,
P n A -> P (1 + n)%N (block_mx x r c A)) ->
forall n A, P n A.
Proof.
by move=> P0 PS; elim=> [//|n IHn] A; rewrite -[A](@submxK 1 _ 1); apply: PS.
Qed.
Lemma mxsub_ind
(weight : forall m n, 'M[R]_(m, n) -> nat)
(sub : forall m n m' n', ('I_m' -> 'I_m) -> ('I_n' -> 'I_n) -> Prop)
(P : forall m n, 'M[R]_(m, n) -> Type) :
(forall m n (A : 'M[R]_(m, n)),
(forall m' n' f g, weight m' n' (mxsub f g A) < weight m n A ->
sub m n m' n' f g ->
P m' n' (mxsub f g A)) -> P m n A) ->
forall m n A, P m n A.
Proof.
move=> Psub m n A; have [k] := ubnP (weight m n A).
elim: k => [//|k IHk] in m n A *.
rewrite ltnS => lt_A_k; apply: Psub => m' n' f g lt_A'_A ?.
by apply: IHk; apply: leq_trans lt_A_k.
Qed.
End Induction.
(* Bijections mxvec : 'M_(m, n) <----> 'rV_(m * n) : vec_mx *)
Section VecMatrix.
Variables m n : nat.
Lemma mxvec_cast : #|{:'I_m * 'I_n}| = (m * n)%N.
Proof. by rewrite card_prod !card_ord. Qed.
Definition mxvec_index (i : 'I_m) (j : 'I_n) :=
cast_ord mxvec_cast (enum_rank (i, j)).
Variant is_mxvec_index : 'I_(m * n) -> Type :=
IsMxvecIndex i j : is_mxvec_index (mxvec_index i j).
Lemma mxvec_indexP k : is_mxvec_index k.
Proof.
rewrite -[k](cast_ordK (esym mxvec_cast)) esymK.
by rewrite -[_ k]enum_valK; case: (enum_val _).
Qed.
Coercion pair_of_mxvec_index k (i_k : is_mxvec_index k) :=
let: IsMxvecIndex i j := i_k in (i, j).
Definition mxvec (A : 'M[R]_(m, n)) :=
castmx (erefl _, mxvec_cast) (\row_k A (enum_val k).1 (enum_val k).2).
Fact vec_mx_key : unit. Proof. by []. Qed.
Definition vec_mx (u : 'rV[R]_(m * n)) :=
\matrix[vec_mx_key]_(i, j) u 0 (mxvec_index i j).
Lemma mxvecE A i j : mxvec A 0 (mxvec_index i j) = A i j.
Proof. by rewrite castmxE mxE cast_ordK enum_rankK. Qed.
Lemma mxvecK : cancel mxvec vec_mx.
Proof. by move=> A; apply/matrixP=> i j; rewrite mxE mxvecE. Qed.
Lemma vec_mxK : cancel vec_mx mxvec.
Proof.
by move=> u; apply/rowP=> k; case/mxvec_indexP: k => i j; rewrite mxvecE mxE.
Qed.
Lemma curry_mxvec_bij : {on 'I_(m * n), bijective (prod_curry mxvec_index)}.
Proof.
exists (enum_val \o cast_ord (esym mxvec_cast)) => [[i j] _ | k _] /=.
by rewrite cast_ordK enum_rankK.
by case/mxvec_indexP: k => i j /=; rewrite cast_ordK enum_rankK.
Qed.
End VecMatrix.
End MatrixStructural.
Arguments const_mx {R m n}.
Arguments row_mxA {R m n1 n2 n3 A1 A2 A3}.
Arguments col_mxA {R m1 m2 m3 n A1 A2 A3}.
Arguments block_mxA
{R m1 m2 m3 n1 n2 n3 A11 A12 A13 A21 A22 A23 A31 A32 A33}.
Prenex Implicits castmx trmx trmxK lsubmx rsubmx usubmx dsubmx row_mx col_mx.
Prenex Implicits block_mx ulsubmx ursubmx dlsubmx drsubmx.
Prenex Implicits mxvec vec_mx mxvec_indexP mxvecK vec_mxK.
Arguments trmx_inj {R m n} [A1 A2] eqA12t : rename.
Notation "A ^T" := (trmx A) : ring_scope.
Notation colsub g := (mxsub id g).
Notation rowsub f := (mxsub f id).
Arguments eq_mxsub [R m n m' n' f] f' [g] g' _.
Arguments eq_rowsub [R m n m' f] f' _.
Arguments eq_colsub [R m n n' g] g' _.
(* Matrix parametricity. *)
Section MapMatrix.
Variables (aT rT : Type) (f : aT -> rT).
Fact map_mx_key : unit. Proof. by []. Qed.
Definition map_mx m n (A : 'M_(m, n)) := \matrix[map_mx_key]_(i, j) f (A i j).
Notation "A ^f" := (map_mx A) : ring_scope.
Section OneMatrix.
Variables (m n : nat) (A : 'M[aT]_(m, n)).
Lemma map_trmx : A^f^T = A^T^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_const_mx a : (const_mx a)^f = const_mx (f a) :> 'M_(m, n).
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_row i : (row i A)^f = row i A^f.
Proof. by apply/rowP=> j; rewrite !mxE. Qed.
Lemma map_col j : (col j A)^f = col j A^f.
Proof. by apply/colP=> i; rewrite !mxE. Qed.
Lemma map_row' i0 : (row' i0 A)^f = row' i0 A^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_col' j0 : (col' j0 A)^f = col' j0 A^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_mxsub m' n' g h : (@mxsub _ _ _ m' n' g h A)^f = mxsub g h A^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_row_perm s : (row_perm s A)^f = row_perm s A^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_col_perm s : (col_perm s A)^f = col_perm s A^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_xrow i1 i2 : (xrow i1 i2 A)^f = xrow i1 i2 A^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_xcol j1 j2 : (xcol j1 j2 A)^f = xcol j1 j2 A^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_castmx m' n' c : (castmx c A)^f = castmx c A^f :> 'M_(m', n').
Proof. by apply/matrixP=> i j; rewrite !(castmxE, mxE). Qed.
Lemma map_conform_mx m' n' (B : 'M_(m', n')) :
(conform_mx B A)^f = conform_mx B^f A^f.
Proof.
move: B; have [[<- <-] B|] := eqVneq (m, n) (m', n').
by rewrite !conform_mx_id.
by rewrite negb_and => neq_mn B; rewrite !nonconform_mx.
Qed.
Lemma map_mxvec : (mxvec A)^f = mxvec A^f.
Proof. by apply/rowP=> i; rewrite !(castmxE, mxE). Qed.
Lemma map_vec_mx (v : 'rV_(m * n)) : (vec_mx v)^f = vec_mx v^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
End OneMatrix.
Section Block.
Variables m1 m2 n1 n2 : nat.
Variables (Aul : 'M[aT]_(m1, n1)) (Aur : 'M[aT]_(m1, n2)).
Variables (Adl : 'M[aT]_(m2, n1)) (Adr : 'M[aT]_(m2, n2)).
Variables (Bh : 'M[aT]_(m1, n1 + n2)) (Bv : 'M[aT]_(m1 + m2, n1)).
Variable B : 'M[aT]_(m1 + m2, n1 + n2).
Lemma map_row_mx : (row_mx Aul Aur)^f = row_mx Aul^f Aur^f.
Proof. by apply/matrixP=> i j; do 2![rewrite !mxE //; case: split => ?]. Qed.
Lemma map_col_mx : (col_mx Aul Adl)^f = col_mx Aul^f Adl^f.
Proof. by apply/matrixP=> i j; do 2![rewrite !mxE //; case: split => ?]. Qed.
Lemma map_block_mx :
(block_mx Aul Aur Adl Adr)^f = block_mx Aul^f Aur^f Adl^f Adr^f.
Proof. by apply/matrixP=> i j; do 3![rewrite !mxE //; case: split => ?]. Qed.
Lemma map_lsubmx : (lsubmx Bh)^f = lsubmx Bh^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_rsubmx : (rsubmx Bh)^f = rsubmx Bh^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_usubmx : (usubmx Bv)^f = usubmx Bv^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_dsubmx : (dsubmx Bv)^f = dsubmx Bv^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_ulsubmx : (ulsubmx B)^f = ulsubmx B^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_ursubmx : (ursubmx B)^f = ursubmx B^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_dlsubmx : (dlsubmx B)^f = dlsubmx B^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma map_drsubmx : (drsubmx B)^f = drsubmx B^f.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
End Block.
End MapMatrix.
Arguments map_mx {aT rT} f {m n} A.
Section MultipleMapMatrix.
Context {R S T : Type} {m n : nat}.
Local Notation "M ^ phi" := (map_mx phi M).
Lemma map_mx_comp (f : R -> S) (g : S -> T)
(M : 'M_(m, n)) : M ^ (g \o f) = (M ^ f) ^ g.
Proof. by apply/matrixP => i j; rewrite !mxE. Qed.
Lemma eq_in_map_mx (g f : R -> S) (M : 'M_(m, n)) :
(forall i j, f (M i j) = g (M i j)) -> M ^ f = M ^ g.
Proof. by move=> fg; apply/matrixP => i j; rewrite !mxE. Qed.
Lemma eq_map_mx (g f : R -> S) : f =1 g ->
forall (M : 'M_(m, n)), M ^ f = M ^ g.
Proof. by move=> eq_fg M; apply/eq_in_map_mx. Qed.
Lemma map_mx_id_in (f : R -> R) (M : 'M_(m, n)) :
(forall i j, f (M i j) = M i j) -> M ^ f = M.
Proof. by move=> fM; apply/matrixP => i j; rewrite !mxE. Qed.
Lemma map_mx_id (f : R -> R) : f =1 id -> forall M : 'M_(m, n), M ^ f = M.
Proof. by move=> fid M; rewrite map_mx_id_in. Qed.
End MultipleMapMatrix.
Arguments eq_map_mx {R S m n} g [f].
Arguments eq_in_map_mx {R S m n} g [f M].
Arguments map_mx_id_in {R m n} [f M].
Arguments map_mx_id {R m n} [f].
(*****************************************************************************)
(********************* Matrix Zmodule (additive) structure *******************)
(*****************************************************************************)
Section MatrixZmodule.
Variable V : zmodType.
Section FixedDim.
Variables m n : nat.
Implicit Types A B : 'M[V]_(m, n).
Fact oppmx_key : unit. Proof. by []. Qed.
Fact addmx_key : unit. Proof. by []. Qed.
Definition oppmx A := \matrix[oppmx_key]_(i, j) (- A i j).
Definition addmx A B := \matrix[addmx_key]_(i, j) (A i j + B i j).
(* In principle, diag_mx and scalar_mx could be defined here, but since they *)
(* only make sense with the graded ring operations, we defer them to the *)
(* next section. *)
Lemma addmxA : associative addmx.
Proof. by move=> A B C; apply/matrixP=> i j; rewrite !mxE addrA. Qed.
Lemma addmxC : commutative addmx.
Proof. by move=> A B; apply/matrixP=> i j; rewrite !mxE addrC. Qed.
Lemma add0mx : left_id (const_mx 0) addmx.
Proof. by move=> A; apply/matrixP=> i j; rewrite !mxE add0r. Qed.
Lemma addNmx : left_inverse (const_mx 0) oppmx addmx.
Proof. by move=> A; apply/matrixP=> i j; rewrite !mxE addNr. Qed.
Definition matrix_zmodMixin := ZmodMixin addmxA addmxC add0mx addNmx.
Canonical matrix_zmodType := Eval hnf in ZmodType 'M[V]_(m, n) matrix_zmodMixin.
Lemma mulmxnE A d i j : (A *+ d) i j = A i j *+ d.
Proof. by elim: d => [|d IHd]; rewrite ?mulrS mxE ?IHd. Qed.
Lemma summxE I r (P : pred I) (E : I -> 'M_(m, n)) i j :
(\sum_(k <- r | P k) E k) i j = \sum_(k <- r | P k) E k i j.
Proof. by apply: (big_morph (fun A => A i j)) => [A B|]; rewrite mxE. Qed.
Lemma const_mx_is_additive : additive const_mx.
Proof. by move=> a b; apply/matrixP=> i j; rewrite !mxE. Qed.
Canonical const_mx_additive := Additive const_mx_is_additive.
End FixedDim.
Section Additive.
Variables (m n p q : nat) (f : 'I_p -> 'I_q -> 'I_m) (g : 'I_p -> 'I_q -> 'I_n).
Definition swizzle_mx k (A : 'M[V]_(m, n)) :=
\matrix[k]_(i, j) A (f i j) (g i j).
Lemma swizzle_mx_is_additive k : additive (swizzle_mx k).
Proof. by move=> A B; apply/matrixP=> i j; rewrite !mxE. Qed.
Canonical swizzle_mx_additive k := Additive (swizzle_mx_is_additive k).
End Additive.
Local Notation SwizzleAdd op := [additive of op as swizzle_mx _ _ _].
Canonical trmx_additive m n := SwizzleAdd (@trmx V m n).
Canonical row_additive m n i := SwizzleAdd (@row V m n i).
Canonical col_additive m n j := SwizzleAdd (@col V m n j).
Canonical row'_additive m n i := SwizzleAdd (@row' V m n i).
Canonical col'_additive m n j := SwizzleAdd (@col' V m n j).
Canonical mxsub_additive m n m' n' f g := SwizzleAdd (@mxsub V m n m' n' f g).
Canonical row_perm_additive m n s := SwizzleAdd (@row_perm V m n s).
Canonical col_perm_additive m n s := SwizzleAdd (@col_perm V m n s).
Canonical xrow_additive m n i1 i2 := SwizzleAdd (@xrow V m n i1 i2).
Canonical xcol_additive m n j1 j2 := SwizzleAdd (@xcol V m n j1 j2).
Canonical lsubmx_additive m n1 n2 := SwizzleAdd (@lsubmx V m n1 n2).
Canonical rsubmx_additive m n1 n2 := SwizzleAdd (@rsubmx V m n1 n2).
Canonical usubmx_additive m1 m2 n := SwizzleAdd (@usubmx V m1 m2 n).
Canonical dsubmx_additive m1 m2 n := SwizzleAdd (@dsubmx V m1 m2 n).
Canonical vec_mx_additive m n := SwizzleAdd (@vec_mx V m n).
Canonical mxvec_additive m n :=
Additive (can2_additive (@vec_mxK V m n) mxvecK).
Lemma flatmx0 n : all_equal_to (0 : 'M_(0, n)).
Proof. by move=> A; apply/matrixP=> [] []. Qed.
Lemma thinmx0 n : all_equal_to (0 : 'M_(n, 0)).
Proof. by move=> A; apply/matrixP=> i []. Qed.
Lemma trmx0 m n : (0 : 'M_(m, n))^T = 0.
Proof. exact: trmx_const. Qed.
Lemma row0 m n i0 : row i0 (0 : 'M_(m, n)) = 0.
Proof. exact: row_const. Qed.
Lemma col0 m n j0 : col j0 (0 : 'M_(m, n)) = 0.
Proof. exact: col_const. Qed.
Lemma mxvec_eq0 m n (A : 'M_(m, n)) : (mxvec A == 0) = (A == 0).
Proof. by rewrite (can2_eq mxvecK vec_mxK) raddf0. Qed.
Lemma vec_mx_eq0 m n (v : 'rV_(m * n)) : (vec_mx v == 0) = (v == 0).
Proof. by rewrite (can2_eq vec_mxK mxvecK) raddf0. Qed.
Lemma row_mx0 m n1 n2 : row_mx 0 0 = 0 :> 'M_(m, n1 + n2).
Proof. exact: row_mx_const. Qed.
Lemma col_mx0 m1 m2 n : col_mx 0 0 = 0 :> 'M_(m1 + m2, n).
Proof. exact: col_mx_const. Qed.
Lemma block_mx0 m1 m2 n1 n2 : block_mx 0 0 0 0 = 0 :> 'M_(m1 + m2, n1 + n2).
Proof. exact: block_mx_const. Qed.
Ltac split_mxE := apply/matrixP=> i j; do ![rewrite mxE | case: split => ?].
Lemma opp_row_mx m n1 n2 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) :
- row_mx A1 A2 = row_mx (- A1) (- A2).
Proof. by split_mxE. Qed.
Lemma opp_col_mx m1 m2 n (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) :
- col_mx A1 A2 = col_mx (- A1) (- A2).
Proof. by split_mxE. Qed.
Lemma opp_block_mx m1 m2 n1 n2 (Aul : 'M_(m1, n1)) Aur Adl (Adr : 'M_(m2, n2)) :
- block_mx Aul Aur Adl Adr = block_mx (- Aul) (- Aur) (- Adl) (- Adr).
Proof. by rewrite opp_col_mx !opp_row_mx. Qed.
Lemma add_row_mx m n1 n2 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) B1 B2 :
row_mx A1 A2 + row_mx B1 B2 = row_mx (A1 + B1) (A2 + B2).
Proof. by split_mxE. Qed.
Lemma add_col_mx m1 m2 n (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) B1 B2 :
col_mx A1 A2 + col_mx B1 B2 = col_mx (A1 + B1) (A2 + B2).
Proof. by split_mxE. Qed.
Lemma add_block_mx m1 m2 n1 n2 (Aul : 'M_(m1, n1)) Aur Adl (Adr : 'M_(m2, n2))
Bul Bur Bdl Bdr :
let A := block_mx Aul Aur Adl Adr in let B := block_mx Bul Bur Bdl Bdr in
A + B = block_mx (Aul + Bul) (Aur + Bur) (Adl + Bdl) (Adr + Bdr).
Proof. by rewrite /= add_col_mx !add_row_mx. Qed.
Lemma row_mx_eq0 (m n1 n2 : nat) (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)):
(row_mx A1 A2 == 0) = (A1 == 0) && (A2 == 0).
Proof.
apply/eqP/andP; last by case=> /eqP-> /eqP->; rewrite row_mx0.
by rewrite -row_mx0 => /eq_row_mx [-> ->].
Qed.
Lemma col_mx_eq0 (m1 m2 n : nat) (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)):
(col_mx A1 A2 == 0) = (A1 == 0) && (A2 == 0).
Proof. by rewrite - !trmx0 tr_col_mx row_mx_eq0. Qed.
Lemma block_mx_eq0 m1 m2 n1 n2 (Aul : 'M_(m1, n1)) Aur Adl (Adr : 'M_(m2, n2)) :
(block_mx Aul Aur Adl Adr == 0) =
[&& Aul == 0, Aur == 0, Adl == 0 & Adr == 0].
Proof. by rewrite col_mx_eq0 !row_mx_eq0 !andbA. Qed.
Lemma trmx_eq0 m n (A : 'M_(m, n)) : (A^T == 0) = (A == 0).
Proof. by rewrite -trmx0 (inj_eq trmx_inj). Qed.
Lemma matrix_eq0 m n (A : 'M_(m, n)) :
(A == 0) = [forall i, forall j, A i j == 0].
Proof.
apply/eqP/'forall_'forall_eqP => [-> i j|A_eq0]; first by rewrite !mxE.
by apply/matrixP => i j; rewrite A_eq0 !mxE.
Qed.
Lemma matrix0Pn m n (A : 'M_(m, n)) : reflect (exists i j, A i j != 0) (A != 0).
Proof.
by rewrite matrix_eq0; apply/(iffP forallPn) => -[i /forallPn]; exists i.
Qed.
Lemma rV0Pn n (v : 'rV_n) : reflect (exists i, v 0 i != 0) (v != 0).
Proof.
apply: (iffP (matrix0Pn _)) => [[i [j]]|[j]]; last by exists 0, j.
by rewrite ord1; exists j.
Qed.
Lemma cV0Pn n (v : 'cV_n) : reflect (exists i, v i 0 != 0) (v != 0).
Proof.
apply: (iffP (matrix0Pn _)) => [[i] [j]|[i]]; last by exists i, 0.
by rewrite ord1; exists i.
Qed.
Definition nz_row m n (A : 'M_(m, n)) :=
oapp (fun i => row i A) 0 [pick i | row i A != 0].
Lemma nz_row_eq0 m n (A : 'M_(m, n)) : (nz_row A == 0) = (A == 0).
Proof.
rewrite /nz_row; symmetry; case: pickP => [i /= nzAi | Ai0].
by rewrite (negPf nzAi); apply: contraTF nzAi => /eqP->; rewrite row0 eqxx.
by rewrite eqxx; apply/eqP/row_matrixP=> i; move/eqP: (Ai0 i) ->; rewrite row0.
Qed.
Definition is_diag_mx m n (A : 'M[V]_(m, n)) :=
[forall i : 'I__, forall j : 'I__, (i != j :> nat) ==> (A i j == 0)].
Lemma is_diag_mxP m n (A : 'M[V]_(m, n)) :
reflect (forall i j : 'I__, i != j :> nat -> A i j = 0) (is_diag_mx A).
Proof. by apply: (iffP 'forall_'forall_implyP) => /(_ _ _ _)/eqP. Qed.
Lemma mx0_is_diag m n : is_diag_mx (0 : 'M[V]_(m, n)).
Proof. by apply/is_diag_mxP => i j _; rewrite mxE. Qed.
Lemma mx11_is_diag (M : 'M_1) : is_diag_mx M.
Proof. by apply/is_diag_mxP => i j; rewrite !ord1 eqxx. Qed.
Definition is_trig_mx m n (A : 'M[V]_(m, n)) :=
[forall i : 'I__, forall j : 'I__, (i < j)%N ==> (A i j == 0)].
Lemma is_trig_mxP m n (A : 'M[V]_(m, n)) :
reflect (forall i j : 'I__, (i < j)%N -> A i j = 0) (is_trig_mx A).
Proof. by apply: (iffP 'forall_'forall_implyP) => /(_ _ _ _)/eqP. Qed.
Lemma is_diag_mx_is_trig m n (A : 'M[V]_(m, n)) : is_diag_mx A -> is_trig_mx A.
Proof.
by move=> /is_diag_mxP A_eq0; apply/is_trig_mxP=> i j lt_ij; rewrite A_eq0// ltn_eqF.
Qed.
Lemma mx0_is_trig m n : is_trig_mx (0 : 'M[V]_(m, n)).
Proof. by apply/is_trig_mxP => i j _; rewrite mxE. Qed.
Lemma mx11_is_trig (M : 'M_1) : is_trig_mx M.
Proof. by apply/is_trig_mxP => i j; rewrite !ord1 ltnn. Qed.
Lemma is_diag_mxEtrig m n (A : 'M[V]_(m, n)) :
is_diag_mx A = is_trig_mx A && is_trig_mx A^T.
Proof.
apply/is_diag_mxP/andP => [Adiag|[/is_trig_mxP Atrig /is_trig_mxP ATtrig]].
by split; apply/is_trig_mxP => i j lt_ij; rewrite ?mxE ?Adiag//;
[rewrite ltn_eqF|rewrite gtn_eqF].
by move=> i j; case: ltngtP => // [/Atrig|/ATtrig]; rewrite ?mxE.
Qed.
Lemma is_diag_trmx m n (A : 'M[V]_(m, n)) : is_diag_mx A^T = is_diag_mx A.
Proof. by rewrite !is_diag_mxEtrig trmxK andbC. Qed.
Lemma ursubmx_trig m1 m2 n1 n2 (A : 'M[V]_(m1 + m2, n1 + n2)) :
m1 <= n1 -> is_trig_mx A -> ursubmx A = 0.
Proof.
move=> leq_m1_n1 /is_trig_mxP Atrig; apply/matrixP => i j.
by rewrite !mxE Atrig//= ltn_addr// (@leq_trans m1).
Qed.
Lemma dlsubmx_diag m1 m2 n1 n2 (A : 'M[V]_(m1 + m2, n1 + n2)) :
n1 <= m1 -> is_diag_mx A -> dlsubmx A = 0.
Proof.
move=> leq_m2_n2 /is_diag_mxP Adiag; apply/matrixP => i j.
by rewrite !mxE Adiag// gtn_eqF//= ltn_addr// (@leq_trans n1).
Qed.
Lemma ulsubmx_trig m1 m2 n1 n2 (A : 'M[V]_(m1 + m2, n1 + n2)) :
is_trig_mx A -> is_trig_mx (ulsubmx A).
Proof.
move=> /is_trig_mxP Atrig; apply/is_trig_mxP => i j lt_ij.
by rewrite !mxE Atrig.
Qed.
Lemma drsubmx_trig m1 m2 n1 n2 (A : 'M[V]_(m1 + m2, n1 + n2)) :
m1 <= n1 -> is_trig_mx A -> is_trig_mx (drsubmx A).
Proof.
move=> leq_m1_n1 /is_trig_mxP Atrig; apply/is_trig_mxP => i j lt_ij.
by rewrite !mxE Atrig//= -addnS leq_add.
Qed.
Lemma ulsubmx_diag m1 m2 n1 n2 (A : 'M[V]_(m1 + m2, n1 + n2)) :
is_diag_mx A -> is_diag_mx (ulsubmx A).
Proof.
rewrite !is_diag_mxEtrig trmx_ulsub.
by move=> /andP[/ulsubmx_trig-> /ulsubmx_trig->].
Qed.
Lemma drsubmx_diag m1 m2 n1 n2 (A : 'M[V]_(m1 + m2, n1 + n2)) :
m1 = n1 -> is_diag_mx A -> is_diag_mx (drsubmx A).
Proof.
move=> eq_m1_n1 /is_diag_mxP Adiag; apply/is_diag_mxP => i j neq_ij.
by rewrite !mxE Adiag//= eq_m1_n1 eqn_add2l.
Qed.
Lemma is_trig_block_mx m1 m2 n1 n2 ul ur dl dr : m1 = n1 ->
@is_trig_mx (m1 + m2) (n1 + n2) (block_mx ul ur dl dr) =
[&& ur == 0, is_trig_mx ul & is_trig_mx dr].
Proof.
move=> eq_m1_n1; rewrite {}eq_m1_n1 in ul ur dl dr *.
apply/is_trig_mxP/and3P => [Atrig|]; last first.
move=> [/eqP-> /is_trig_mxP ul_trig /is_trig_mxP dr_trig] i j; rewrite !mxE.
do 2![case: split_ordP => ? ->; rewrite ?mxE//=] => lt_ij; rewrite ?ul_trig//.
move: lt_ij; rewrite ltnNge -ltnS.
by rewrite (leq_trans (ltn_ord _))// -addnS leq_addr.
by rewrite dr_trig//; move: lt_ij; rewrite ltn_add2l.
split.
- apply/eqP/matrixP => i j; have := Atrig (lshift _ i) (rshift _ j).
rewrite !mxE; case: split_ordP => k /eqP; rewrite eq_shift// ?mxE.
case: split_ordP => l /eqP; rewrite eq_shift// ?mxE => /eqP-> /eqP<- <- //.
by rewrite /= (leq_trans (ltn_ord _)) ?leq_addr.
- apply/is_trig_mxP => i j lt_ij; have := Atrig (lshift _ i) (lshift _ j).
rewrite !mxE; case: split_ordP => k /eqP; rewrite eq_shift// ?mxE.
by case: split_ordP => l /eqP; rewrite eq_shift// ?mxE => /eqP<- /eqP<- ->.
- apply/is_trig_mxP => i j lt_ij; have := Atrig (rshift _ i) (rshift _ j).
rewrite !mxE; case: split_ordP => k /eqP; rewrite eq_shift// ?mxE.
case: split_ordP => l /eqP; rewrite eq_shift// ?mxE => /eqP<- /eqP<- -> //.
by rewrite /= ltn_add2l.
Qed.
Lemma trigmx_ind (P : forall m n, 'M_(m, n) -> Type) :
(forall m, P m 0%N 0) ->
(forall n, P 0%N n 0) ->
(forall m n x c A, is_trig_mx A ->
P m n A -> P (1 + m)%N (1 + n)%N (block_mx x 0 c A)) ->
forall m n A, is_trig_mx A -> P m n A.
Proof.
move=> P0l P0r PS m n A; elim: A => {m n} [m|n|m n xx r c] A PA;
do ?by rewrite (flatmx0, thinmx0); by [apply: P0l|apply: P0r].
by rewrite is_trig_block_mx => // /and3P[/eqP-> _ Atrig]; apply: PS (PA _).
Qed.
Lemma trigsqmx_ind (P : forall n, 'M[V]_n -> Type) : (P 0%N 0) ->
(forall n x c A, is_trig_mx A -> P n A -> P (1 + n)%N (block_mx x 0 c A)) ->
forall n A, is_trig_mx A -> P n A.
Proof.
move=> P0 PS n A; elim/sqmx_ind: A => {n} [|n x r c] A PA.
by rewrite thinmx0; apply: P0.
by rewrite is_trig_block_mx => // /and3P[/eqP-> _ Atrig]; apply: PS (PA _).
Qed.
Lemma is_diag_block_mx m1 m2 n1 n2 ul ur dl dr : m1 = n1 ->
@is_diag_mx (m1 + m2) (n1 + n2) (block_mx ul ur dl dr) =
[&& ur == 0, dl == 0, is_diag_mx ul & is_diag_mx dr].
Proof.
move=> eq_m1_n1.
rewrite !is_diag_mxEtrig tr_block_mx !is_trig_block_mx// trmx_eq0.
by rewrite andbACA -!andbA; congr [&& _, _, _ & _]; rewrite andbCA.
Qed.
Lemma diagmx_ind (P : forall m n, 'M_(m, n) -> Type) :
(forall m, P m 0%N 0) ->
(forall n, P 0%N n 0) ->
(forall m n x c A, is_diag_mx A ->
P m n A -> P (1 + m)%N (1 + n)%N (block_mx x 0 c A)) ->
forall m n A, is_diag_mx A -> P m n A.
Proof.
move=> P0l P0r PS m n A Adiag; have Atrig := is_diag_mx_is_trig Adiag.
elim/trigmx_ind: Atrig Adiag => // {}m {}n r c {}A _ PA.
rewrite is_diag_block_mx => // /and4P[_ /eqP-> _ Adiag].
exact: PS (PA _).
Qed.
Lemma diagsqmx_ind (P : forall n, 'M[V]_n -> Type) :
(P 0%N 0) ->
(forall n x c A, is_diag_mx A -> P n A -> P (1 + n)%N (block_mx x 0 c A)) ->
forall n A, is_diag_mx A -> P n A.
Proof.
move=> P0 PS n A; elim/sqmx_ind: A => [|{}n x r c] A PA.
by rewrite thinmx0; apply: P0.
rewrite is_diag_block_mx => // /and4P[/eqP-> /eqP-> _ Adiag].
exact: PS (PA _).
Qed.
End MatrixZmodule.
Arguments is_diag_mx {V m n}.
Arguments is_diag_mxP {V m n A}.
Arguments is_trig_mx {V m n}.
Arguments is_trig_mxP {V m n A}.
Section FinZmodMatrix.
Variables (V : finZmodType) (m n : nat).
Local Notation MV := 'M[V]_(m, n).
Canonical matrix_finZmodType := Eval hnf in [finZmodType of MV].
Canonical matrix_baseFinGroupType :=
Eval hnf in [baseFinGroupType of MV for +%R].
Canonical matrix_finGroupType := Eval hnf in [finGroupType of MV for +%R].
End FinZmodMatrix.
(* Parametricity over the additive structure. *)
Section MapZmodMatrix.
Variables (aR rR : zmodType) (f : {additive aR -> rR}) (m n : nat).
Local Notation "A ^f" := (map_mx f A) : ring_scope.
Implicit Type A : 'M[aR]_(m, n).
Lemma map_mx0 : 0^f = 0 :> 'M_(m, n).
Proof. by rewrite map_const_mx raddf0. Qed.
Lemma map_mxN A : (- A)^f = - A^f.
Proof. by apply/matrixP=> i j; rewrite !mxE raddfN. Qed.
Lemma map_mxD A B : (A + B)^f = A^f + B^f.
Proof. by apply/matrixP=> i j; rewrite !mxE raddfD. Qed.
Lemma map_mxB A B : (A - B)^f = A^f - B^f.
Proof. by rewrite map_mxD map_mxN. Qed.
Definition map_mx_sum := big_morph _ map_mxD map_mx0.
Canonical map_mx_additive := Additive map_mxB.
End MapZmodMatrix.
(*****************************************************************************)
(*********** Matrix ring module, graded ring, and ring structures ************)
(*****************************************************************************)
Section MatrixAlgebra.
Variable R : ringType.
Section RingModule.
(* The ring module/vector space structure *)
Variables m n : nat.
Implicit Types A B : 'M[R]_(m, n).
Fact scalemx_key : unit. Proof. by []. Qed.
Definition scalemx x A := \matrix[scalemx_key]_(i, j) (x * A i j).
(* Basis *)
Fact delta_mx_key : unit. Proof. by []. Qed.
Definition delta_mx i0 j0 : 'M[R]_(m, n) :=
\matrix[delta_mx_key]_(i, j) ((i == i0) && (j == j0))%:R.
Local Notation "x *m: A" := (scalemx x A) (at level 40) : ring_scope.
Lemma scale1mx A : 1 *m: A = A.
Proof. by apply/matrixP=> i j; rewrite !mxE mul1r. Qed.
Lemma scalemxDl A x y : (x + y) *m: A = x *m: A + y *m: A.
Proof. by apply/matrixP=> i j; rewrite !mxE mulrDl. Qed.
Lemma scalemxDr x A B : x *m: (A + B) = x *m: A + x *m: B.
Proof. by apply/matrixP=> i j; rewrite !mxE mulrDr. Qed.
Lemma scalemxA x y A : x *m: (y *m: A) = (x * y) *m: A.
Proof. by apply/matrixP=> i j; rewrite !mxE mulrA. Qed.
Definition matrix_lmodMixin :=
LmodMixin scalemxA scale1mx scalemxDr scalemxDl.
Canonical matrix_lmodType :=
Eval hnf in LmodType R 'M[R]_(m, n) matrix_lmodMixin.
Lemma scalemx_const a b : a *: const_mx b = const_mx (a * b).
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma matrix_sum_delta A :
A = \sum_(i < m) \sum_(j < n) A i j *: delta_mx i j.
Proof.
apply/matrixP=> i j.
rewrite summxE (bigD1_ord i) // summxE (bigD1_ord j) //= !mxE !eqxx mulr1.
rewrite !big1 ?addr0 //= => [i' | j'] _.
by rewrite summxE big1// => j' _; rewrite !mxE eq_liftF mulr0.
by rewrite !mxE eqxx eq_liftF mulr0.
Qed.
End RingModule.
Section StructuralLinear.
Lemma swizzle_mx_is_scalable m n p q f g k :
scalable (@swizzle_mx R m n p q f g k).
Proof. by move=> a A; apply/matrixP=> i j; rewrite !mxE. Qed.
Canonical swizzle_mx_scalable m n p q f g k :=
AddLinear (@swizzle_mx_is_scalable m n p q f g k).
Local Notation SwizzleLin op := [linear of op as swizzle_mx _ _ _].
Canonical trmx_linear m n := SwizzleLin (@trmx R m n).
Canonical row_linear m n i := SwizzleLin (@row R m n i).
Canonical col_linear m n j := SwizzleLin (@col R m n j).
Canonical row'_linear m n i := SwizzleLin (@row' R m n i).
Canonical col'_linear m n j := SwizzleLin (@col' R m n j).
Canonical mxsub_linear m n m' n' f g := SwizzleLin (@mxsub R m n m' n' f g).
Canonical row_perm_linear m n s := SwizzleLin (@row_perm R m n s).
Canonical col_perm_linear m n s := SwizzleLin (@col_perm R m n s).
Canonical xrow_linear m n i1 i2 := SwizzleLin (@xrow R m n i1 i2).
Canonical xcol_linear m n j1 j2 := SwizzleLin (@xcol R m n j1 j2).
Canonical lsubmx_linear m n1 n2 := SwizzleLin (@lsubmx R m n1 n2).
Canonical rsubmx_linear m n1 n2 := SwizzleLin (@rsubmx R m n1 n2).
Canonical usubmx_linear m1 m2 n := SwizzleLin (@usubmx R m1 m2 n).
Canonical dsubmx_linear m1 m2 n := SwizzleLin (@dsubmx R m1 m2 n).
Canonical vec_mx_linear m n := SwizzleLin (@vec_mx R m n).
Definition mxvec_is_linear m n := can2_linear (@vec_mxK R m n) mxvecK.
Canonical mxvec_linear m n := AddLinear (@mxvec_is_linear m n).
End StructuralLinear.
Lemma trmx_delta m n i j : (delta_mx i j)^T = delta_mx j i :> 'M[R]_(n, m).
Proof. by apply/matrixP=> i' j'; rewrite !mxE andbC. Qed.
Lemma row_sum_delta n (u : 'rV_n) : u = \sum_(j < n) u 0 j *: delta_mx 0 j.
Proof. by rewrite {1}[u]matrix_sum_delta big_ord1. Qed.
Lemma delta_mx_lshift m n1 n2 i j :
delta_mx i (lshift n2 j) = row_mx (delta_mx i j) 0 :> 'M_(m, n1 + n2).
Proof.
apply/matrixP=> i' j'; rewrite !mxE -(can_eq splitK) (unsplitK (inl _ _)).
by case: split => ?; rewrite mxE ?andbF.
Qed.
Lemma delta_mx_rshift m n1 n2 i j :
delta_mx i (rshift n1 j) = row_mx 0 (delta_mx i j) :> 'M_(m, n1 + n2).
Proof.
apply/matrixP=> i' j'; rewrite !mxE -(can_eq splitK) (unsplitK (inr _ _)).
by case: split => ?; rewrite mxE ?andbF.
Qed.
Lemma delta_mx_ushift m1 m2 n i j :
delta_mx (lshift m2 i) j = col_mx (delta_mx i j) 0 :> 'M_(m1 + m2, n).
Proof.
apply/matrixP=> i' j'; rewrite !mxE -(can_eq splitK) (unsplitK (inl _ _)).
by case: split => ?; rewrite mxE.
Qed.
Lemma delta_mx_dshift m1 m2 n i j :
delta_mx (rshift m1 i) j = col_mx 0 (delta_mx i j) :> 'M_(m1 + m2, n).
Proof.
apply/matrixP=> i' j'; rewrite !mxE -(can_eq splitK) (unsplitK (inr _ _)).
by case: split => ?; rewrite mxE.
Qed.
Lemma vec_mx_delta m n i j :
vec_mx (delta_mx 0 (mxvec_index i j)) = delta_mx i j :> 'M_(m, n).
Proof.
by apply/matrixP=> i' j'; rewrite !mxE /= [_ == _](inj_eq enum_rank_inj).
Qed.
Lemma mxvec_delta m n i j :
mxvec (delta_mx i j) = delta_mx 0 (mxvec_index i j) :> 'rV_(m * n).
Proof. by rewrite -vec_mx_delta vec_mxK. Qed.
Ltac split_mxE := apply/matrixP=> i j; do ![rewrite mxE | case: split => ?].
Lemma scale_row_mx m n1 n2 a (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) :
a *: row_mx A1 A2 = row_mx (a *: A1) (a *: A2).
Proof. by split_mxE. Qed.
Lemma scale_col_mx m1 m2 n a (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) :
a *: col_mx A1 A2 = col_mx (a *: A1) (a *: A2).
Proof. by split_mxE. Qed.
Lemma scale_block_mx m1 m2 n1 n2 a (Aul : 'M_(m1, n1)) (Aur : 'M_(m1, n2))
(Adl : 'M_(m2, n1)) (Adr : 'M_(m2, n2)) :
a *: block_mx Aul Aur Adl Adr
= block_mx (a *: Aul) (a *: Aur) (a *: Adl) (a *: Adr).
Proof. by rewrite scale_col_mx !scale_row_mx. Qed.
(* Diagonal matrices *)
Fact diag_mx_key : unit. Proof. by []. Qed.
Definition diag_mx n (d : 'rV[R]_n) :=
\matrix[diag_mx_key]_(i, j) (d 0 i *+ (i == j)).
Lemma tr_diag_mx n (d : 'rV_n) : (diag_mx d)^T = diag_mx d.
Proof. by apply/matrixP=> i j; rewrite !mxE; case: eqVneq => // ->. Qed.
Lemma diag_mx_is_linear n : linear (@diag_mx n).
Proof.
by move=> a A B; apply/matrixP=> i j; rewrite !mxE mulrnAr mulrnDl.
Qed.
Canonical diag_mx_additive n := Additive (@diag_mx_is_linear n).
Canonical diag_mx_linear n := Linear (@diag_mx_is_linear n).
Lemma diag_mx_sum_delta n (d : 'rV_n) :
diag_mx d = \sum_i d 0 i *: delta_mx i i.
Proof.
apply/matrixP=> i j; rewrite summxE (bigD1_ord i) //= !mxE eqxx /=.
by rewrite eq_sym mulr_natr big1 ?addr0 // => i'; rewrite !mxE eq_liftF mulr0.
Qed.
Lemma row_diag_mx n (d : 'rV_n) i :
row i (diag_mx d) = d 0 i *: delta_mx 0 i.
Proof. by apply/rowP => j; rewrite !mxE eqxx eq_sym mulr_natr. Qed.
Lemma diag_mx_row m n (l : 'rV_n) (r : 'rV_m) :
diag_mx (row_mx l r) = block_mx (diag_mx l) 0 0 (diag_mx r).
Proof.
apply/matrixP => i j.
by do ?[rewrite !mxE; case: split_ordP => ? ->]; rewrite mxE eq_shift.
Qed.
Lemma diag_mxP n (A : 'M[R]_n) :
reflect (exists d : 'rV_n, A = diag_mx d) (is_diag_mx A).
Proof.
apply: (iffP is_diag_mxP) => [Adiag|[d ->] i j neq_ij]; last first.
by rewrite !mxE -val_eqE (negPf neq_ij).
exists (\row_i A i i); apply/matrixP => i j; rewrite !mxE.
by case: (altP (i =P j)) => [->|/Adiag->].
Qed.
Lemma diag_mx_is_diag n (r : 'rV[R]_n) : is_diag_mx (diag_mx r).
Proof. by apply/diag_mxP; exists r. Qed.
Lemma diag_mx_is_trig n (r : 'rV[R]_n) : is_trig_mx (diag_mx r).
Proof. exact/is_diag_mx_is_trig/diag_mx_is_diag. Qed.
(* Scalar matrix : a diagonal matrix with a constant on the diagonal *)
Section ScalarMx.
Variable n : nat.
Fact scalar_mx_key : unit. Proof. by []. Qed.
Definition scalar_mx x : 'M[R]_n :=
\matrix[scalar_mx_key]_(i , j) (x *+ (i == j)).
Notation "x %:M" := (scalar_mx x) : ring_scope.
Lemma diag_const_mx a : diag_mx (const_mx a) = a%:M :> 'M_n.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma tr_scalar_mx a : (a%:M)^T = a%:M.
Proof. by apply/matrixP=> i j; rewrite !mxE eq_sym. Qed.
Lemma trmx1 : (1%:M)^T = 1%:M. Proof. exact: tr_scalar_mx. Qed.
Lemma scalar_mx_is_additive : additive scalar_mx.
Proof. by move=> a b; rewrite -!diag_const_mx !raddfB. Qed.
Canonical scalar_mx_additive := Additive scalar_mx_is_additive.
Lemma scale_scalar_mx a1 a2 : a1 *: a2%:M = (a1 * a2)%:M :> 'M_n.
Proof. by apply/matrixP=> i j; rewrite !mxE mulrnAr. Qed.
Lemma scalemx1 a : a *: 1%:M = a%:M.
Proof. by rewrite scale_scalar_mx mulr1. Qed.
Lemma scalar_mx_sum_delta a : a%:M = \sum_i a *: delta_mx i i.
Proof.
by rewrite -diag_const_mx diag_mx_sum_delta; apply: eq_bigr => i _; rewrite mxE.
Qed.
Lemma mx1_sum_delta : 1%:M = \sum_i delta_mx i i.
Proof. by rewrite [1%:M]scalar_mx_sum_delta -scaler_sumr scale1r. Qed.
Lemma row1 i : row i 1%:M = delta_mx 0 i.
Proof. by apply/rowP=> j; rewrite !mxE eq_sym. Qed.
Definition is_scalar_mx (A : 'M[R]_n) :=
if insub 0%N is Some i then A == (A i i)%:M else true.
Lemma is_scalar_mxP A : reflect (exists a, A = a%:M) (is_scalar_mx A).
Proof.
rewrite /is_scalar_mx; case: insubP => [i _ _ | ].
by apply: (iffP eqP) => [|[a ->]]; [exists (A i i) | rewrite mxE eqxx].
rewrite -eqn0Ngt => /eqP n0; left; exists 0.
by rewrite raddf0; rewrite n0 in A *; rewrite [A]flatmx0.
Qed.
Lemma scalar_mx_is_scalar a : is_scalar_mx a%:M.
Proof. by apply/is_scalar_mxP; exists a. Qed.
Lemma mx0_is_scalar : is_scalar_mx 0.
Proof. by apply/is_scalar_mxP; exists 0; rewrite raddf0. Qed.
Lemma scalar_mx_is_diag a : is_diag_mx (a%:M).
Proof. by rewrite -diag_const_mx diag_mx_is_diag. Qed.
Lemma is_scalar_mx_is_diag A : is_scalar_mx A -> is_diag_mx A.
Proof. by move=> /is_scalar_mxP[a ->]; apply: scalar_mx_is_diag. Qed.
Lemma scalar_mx_is_trig a : is_trig_mx (a%:M).
Proof. by rewrite is_diag_mx_is_trig// scalar_mx_is_diag. Qed.
Lemma is_scalar_mx_is_trig A : is_scalar_mx A -> is_trig_mx A.
Proof. by move=> /is_scalar_mx_is_diag /is_diag_mx_is_trig. Qed.
End ScalarMx.
Notation "x %:M" := (scalar_mx _ x) : ring_scope.
Lemma mx11_scalar (A : 'M_1) : A = (A 0 0)%:M.
Proof. by apply/rowP=> j; rewrite ord1 mxE. Qed.
Lemma scalar_mx_block n1 n2 a : a%:M = block_mx a%:M 0 0 a%:M :> 'M_(n1 + n2).
Proof.
apply/matrixP=> i j; rewrite !mxE.
by do 2![case: split_ordP => ? ->; rewrite !mxE]; rewrite ?eq_shift.
Qed.
(* Matrix multiplication using bigops. *)
Fact mulmx_key : unit. Proof. by []. Qed.
Definition mulmx {m n p} (A : 'M_(m, n)) (B : 'M_(n, p)) : 'M[R]_(m, p) :=
\matrix[mulmx_key]_(i, k) \sum_j (A i j * B j k).
Local Notation "A *m B" := (mulmx A B) : ring_scope.
Lemma mulmxA m n p q (A : 'M_(m, n)) (B : 'M_(n, p)) (C : 'M_(p, q)) :
A *m (B *m C) = A *m B *m C.
Proof.
apply/matrixP=> i l; rewrite !mxE.
transitivity (\sum_j (\sum_k (A i j * (B j k * C k l)))).
by apply: eq_bigr => j _; rewrite mxE big_distrr.
rewrite exchange_big; apply: eq_bigr => j _; rewrite mxE big_distrl /=.
by apply: eq_bigr => k _; rewrite mulrA.
Qed.
Lemma mul0mx m n p (A : 'M_(n, p)) : 0 *m A = 0 :> 'M_(m, p).
Proof.
by apply/matrixP=> i k; rewrite !mxE big1 //= => j _; rewrite mxE mul0r.
Qed.
Lemma mulmx0 m n p (A : 'M_(m, n)) : A *m 0 = 0 :> 'M_(m, p).
Proof.
by apply/matrixP=> i k; rewrite !mxE big1 // => j _; rewrite mxE mulr0.
Qed.
Lemma mulmxN m n p (A : 'M_(m, n)) (B : 'M_(n, p)) : A *m (- B) = - (A *m B).
Proof.
apply/matrixP=> i k; rewrite !mxE -sumrN.
by apply: eq_bigr => j _; rewrite mxE mulrN.
Qed.
Lemma mulNmx m n p (A : 'M_(m, n)) (B : 'M_(n, p)) : - A *m B = - (A *m B).
Proof.
apply/matrixP=> i k; rewrite !mxE -sumrN.
by apply: eq_bigr => j _; rewrite mxE mulNr.
Qed.
Lemma mulmxDl m n p (A1 A2 : 'M_(m, n)) (B : 'M_(n, p)) :
(A1 + A2) *m B = A1 *m B + A2 *m B.
Proof.
apply/matrixP=> i k; rewrite !mxE -big_split /=.
by apply: eq_bigr => j _; rewrite !mxE -mulrDl.
Qed.
Lemma mulmxDr m n p (A : 'M_(m, n)) (B1 B2 : 'M_(n, p)) :
A *m (B1 + B2) = A *m B1 + A *m B2.
Proof.
apply/matrixP=> i k; rewrite !mxE -big_split /=.
by apply: eq_bigr => j _; rewrite mxE mulrDr.
Qed.
Lemma mulmxBl m n p (A1 A2 : 'M_(m, n)) (B : 'M_(n, p)) :
(A1 - A2) *m B = A1 *m B - A2 *m B.
Proof. by rewrite mulmxDl mulNmx. Qed.
Lemma mulmxBr m n p (A : 'M_(m, n)) (B1 B2 : 'M_(n, p)) :
A *m (B1 - B2) = A *m B1 - A *m B2.
Proof. by rewrite mulmxDr mulmxN. Qed.
Lemma mulmx_suml m n p (A : 'M_(n, p)) I r P (B_ : I -> 'M_(m, n)) :
(\sum_(i <- r | P i) B_ i) *m A = \sum_(i <- r | P i) B_ i *m A.
Proof.
by apply: (big_morph (mulmx^~ A)) => [B C|]; rewrite ?mul0mx ?mulmxDl.
Qed.
Lemma mulmx_sumr m n p (A : 'M_(m, n)) I r P (B_ : I -> 'M_(n, p)) :
A *m (\sum_(i <- r | P i) B_ i) = \sum_(i <- r | P i) A *m B_ i.
Proof.
by apply: (big_morph (mulmx A)) => [B C|]; rewrite ?mulmx0 ?mulmxDr.
Qed.
Lemma scalemxAl m n p a (A : 'M_(m, n)) (B : 'M_(n, p)) :
a *: (A *m B) = (a *: A) *m B.
Proof.
apply/matrixP=> i k; rewrite !mxE big_distrr /=.
by apply: eq_bigr => j _; rewrite mulrA mxE.
Qed.
(* Right scaling associativity requires a commutative ring *)
Lemma rowE m n i (A : 'M_(m, n)) : row i A = delta_mx 0 i *m A.
Proof.
apply/rowP=> j; rewrite !mxE (bigD1_ord i) //= mxE !eqxx mul1r.
by rewrite big1 ?addr0 // => i'; rewrite mxE /= lift_eqF mul0r.
Qed.
Lemma mul_rVP m n A B :((@mulmx 1 m n)^~ A =1 mulmx^~ B) <-> (A = B).
Proof. by split=> [eqAB|->//]; apply/row_matrixP => i; rewrite !rowE eqAB. Qed.
Lemma row_mul m n p (i : 'I_m) A (B : 'M_(n, p)) :
row i (A *m B) = row i A *m B.
Proof. by rewrite !rowE mulmxA. Qed.
Lemma mulmx_sum_row m n (u : 'rV_m) (A : 'M_(m, n)) :
u *m A = \sum_i u 0 i *: row i A.
Proof.
by apply/rowP=> j; rewrite mxE summxE; apply: eq_bigr => i _; rewrite !mxE.
Qed.
Lemma mxsub_mul m n m' n' p f g (A : 'M_(m, p)) (B : 'M_(p, n)) :
mxsub f g (A *m B) = rowsub f A *m colsub g B :> 'M_(m', n').
Proof. by split_mxE; apply: eq_bigr => k _; rewrite !mxE. Qed.
Lemma mul_rowsub_mx m n m' p f (A : 'M_(m, p)) (B : 'M_(p, n)) :
rowsub f A *m B = rowsub f (A *m B) :> 'M_(m', n).
Proof. by rewrite mxsub_mul mxsub_id. Qed.
Lemma mulmx_colsub m n n' p g (A : 'M_(m, p)) (B : 'M_(p, n)) :
A *m colsub g B = colsub g (A *m B) :> 'M_(m, n').
Proof. by rewrite mxsub_mul mxsub_id. Qed.
Lemma mul_delta_mx_cond m n p (j1 j2 : 'I_n) (i1 : 'I_m) (k2 : 'I_p) :
delta_mx i1 j1 *m delta_mx j2 k2 = delta_mx i1 k2 *+ (j1 == j2).
Proof.
apply/matrixP => i k; rewrite !mxE (bigD1_ord j1) //=.
rewrite mulmxnE !mxE !eqxx andbT -natrM -mulrnA !mulnb !andbA andbAC.
by rewrite big1 ?addr0 // => j; rewrite !mxE andbC -natrM lift_eqF.
Qed.
Lemma mul_delta_mx m n p (j : 'I_n) (i : 'I_m) (k : 'I_p) :
delta_mx i j *m delta_mx j k = delta_mx i k.
Proof. by rewrite mul_delta_mx_cond eqxx. Qed.
Lemma mul_delta_mx_0 m n p (j1 j2 : 'I_n) (i1 : 'I_m) (k2 : 'I_p) :
j1 != j2 -> delta_mx i1 j1 *m delta_mx j2 k2 = 0.
Proof. by rewrite mul_delta_mx_cond => /negPf->. Qed.
Lemma mul_diag_mx m n d (A : 'M_(m, n)) :
diag_mx d *m A = \matrix_(i, j) (d 0 i * A i j).
Proof.
apply/matrixP=> i j; rewrite !mxE (bigD1 i) //= mxE eqxx big1 ?addr0 // => i'.
by rewrite mxE eq_sym mulrnAl => /negPf->.
Qed.
Lemma mul_mx_diag m n (A : 'M_(m, n)) d :
A *m diag_mx d = \matrix_(i, j) (A i j * d 0 j).
Proof.
apply/matrixP=> i j; rewrite !mxE (bigD1 j) //= mxE eqxx big1 ?addr0 // => i'.
by rewrite mxE eq_sym mulrnAr; move/negPf->.
Qed.
Lemma mulmx_diag n (d e : 'rV_n) :
diag_mx d *m diag_mx e = diag_mx (\row_j (d 0 j * e 0 j)).
Proof. by apply/matrixP=> i j; rewrite mul_diag_mx !mxE mulrnAr. Qed.
Lemma mul_scalar_mx m n a (A : 'M_(m, n)) : a%:M *m A = a *: A.
Proof.
by rewrite -diag_const_mx mul_diag_mx; apply/matrixP=> i j; rewrite !mxE.
Qed.
Lemma scalar_mxM n a b : (a * b)%:M = a%:M *m b%:M :> 'M_n.
Proof. by rewrite mul_scalar_mx scale_scalar_mx. Qed.
Lemma mul1mx m n (A : 'M_(m, n)) : 1%:M *m A = A.
Proof. by rewrite mul_scalar_mx scale1r. Qed.
Lemma mulmx1 m n (A : 'M_(m, n)) : A *m 1%:M = A.
Proof.
rewrite -diag_const_mx mul_mx_diag.
by apply/matrixP=> i j; rewrite !mxE mulr1.
Qed.
Lemma rowsubE m m' n f (A : 'M_(m, n)) :
rowsub f A = rowsub f 1%:M *m A :> 'M_(m', n).
Proof. by rewrite mul_rowsub_mx mul1mx. Qed.
(* mulmx and col_perm, row_perm, xcol, xrow *)
Lemma mul_col_perm m n p s (A : 'M_(m, n)) (B : 'M_(n, p)) :
col_perm s A *m B = A *m row_perm s^-1 B.
Proof.
apply/matrixP=> i k; rewrite !mxE (reindex_perm s^-1).
by apply: eq_bigr => j _ /=; rewrite !mxE permKV.
Qed.
Lemma mul_row_perm m n p s (A : 'M_(m, n)) (B : 'M_(n, p)) :
A *m row_perm s B = col_perm s^-1 A *m B.
Proof. by rewrite mul_col_perm invgK. Qed.
Lemma mul_xcol m n p j1 j2 (A : 'M_(m, n)) (B : 'M_(n, p)) :
xcol j1 j2 A *m B = A *m xrow j1 j2 B.
Proof. by rewrite mul_col_perm tpermV. Qed.
(* Permutation matrix *)
Definition perm_mx n s : 'M_n := row_perm s 1%:M.
Definition tperm_mx n i1 i2 : 'M_n := perm_mx (tperm i1 i2).
Lemma col_permE m n s (A : 'M_(m, n)) : col_perm s A = A *m perm_mx s^-1.
Proof. by rewrite mul_row_perm mulmx1 invgK. Qed.
Lemma row_permE m n s (A : 'M_(m, n)) : row_perm s A = perm_mx s *m A.
Proof.
by rewrite -[perm_mx _]mul1mx mul_row_perm mulmx1 -mul_row_perm mul1mx.
Qed.
Lemma xcolE m n j1 j2 (A : 'M_(m, n)) : xcol j1 j2 A = A *m tperm_mx j1 j2.
Proof. by rewrite /xcol col_permE tpermV. Qed.
Lemma xrowE m n i1 i2 (A : 'M_(m, n)) : xrow i1 i2 A = tperm_mx i1 i2 *m A.
Proof. exact: row_permE. Qed.
Lemma perm_mxEsub n s : @perm_mx n s = rowsub s 1%:M.
Proof. by rewrite /perm_mx row_permEsub. Qed.
Lemma tperm_mxEsub n i1 i2 : @tperm_mx n i1 i2 = rowsub (tperm i1 i2) 1%:M.
Proof. by rewrite /tperm_mx perm_mxEsub. Qed.
Lemma tr_perm_mx n (s : 'S_n) : (perm_mx s)^T = perm_mx s^-1.
Proof. by rewrite -[_^T]mulmx1 tr_row_perm mul_col_perm trmx1 mul1mx. Qed.
Lemma tr_tperm_mx n i1 i2 : (tperm_mx i1 i2)^T = tperm_mx i1 i2 :> 'M_n.
Proof. by rewrite tr_perm_mx tpermV. Qed.
Lemma perm_mx1 n : perm_mx 1 = 1%:M :> 'M_n.
Proof. exact: row_perm1. Qed.
Lemma perm_mxM n (s t : 'S_n) : perm_mx (s * t) = perm_mx s *m perm_mx t.
Proof. by rewrite -row_permE -row_permM. Qed.
Definition is_perm_mx n (A : 'M_n) := [exists s, A == perm_mx s].
Lemma is_perm_mxP n (A : 'M_n) :
reflect (exists s, A = perm_mx s) (is_perm_mx A).
Proof. by apply: (iffP existsP) => [] [s /eqP]; exists s. Qed.
Lemma perm_mx_is_perm n (s : 'S_n) : is_perm_mx (perm_mx s).
Proof. by apply/is_perm_mxP; exists s. Qed.
Lemma is_perm_mx1 n : is_perm_mx (1%:M : 'M_n).
Proof. by rewrite -perm_mx1 perm_mx_is_perm. Qed.
Lemma is_perm_mxMl n (A B : 'M_n) :
is_perm_mx A -> is_perm_mx (A *m B) = is_perm_mx B.
Proof.
case/is_perm_mxP=> s ->.
apply/is_perm_mxP/is_perm_mxP=> [[t def_t] | [t ->]]; last first.
by exists (s * t)%g; rewrite perm_mxM.
exists (s^-1 * t)%g.
by rewrite perm_mxM -def_t -!row_permE -row_permM mulVg row_perm1.
Qed.
Lemma is_perm_mx_tr n (A : 'M_n) : is_perm_mx A^T = is_perm_mx A.
Proof.
apply/is_perm_mxP/is_perm_mxP=> [[t def_t] | [t ->]]; exists t^-1%g.
by rewrite -tr_perm_mx -def_t trmxK.
by rewrite tr_perm_mx.
Qed.
Lemma is_perm_mxMr n (A B : 'M_n) :
is_perm_mx B -> is_perm_mx (A *m B) = is_perm_mx A.
Proof.
case/is_perm_mxP=> s ->.
rewrite -[s]invgK -col_permE -is_perm_mx_tr tr_col_perm row_permE.
by rewrite is_perm_mxMl (perm_mx_is_perm, is_perm_mx_tr).
Qed.
(* Partial identity matrix (used in rank decomposition). *)
Fact pid_mx_key : unit. Proof. by []. Qed.
Definition pid_mx {m n} r : 'M[R]_(m, n) :=
\matrix[pid_mx_key]_(i, j) ((i == j :> nat) && (i < r))%:R.
Lemma pid_mx_0 m n : pid_mx 0 = 0 :> 'M_(m, n).
Proof. by apply/matrixP=> i j; rewrite !mxE andbF. Qed.
Lemma pid_mx_1 r : pid_mx r = 1%:M :> 'M_r.
Proof. by apply/matrixP=> i j; rewrite !mxE ltn_ord andbT. Qed.
Lemma pid_mx_row n r : pid_mx r = row_mx 1%:M 0 :> 'M_(r, r + n).
Proof.
apply/matrixP=> i j; rewrite !mxE ltn_ord andbT.
by case: split_ordP => j' ->; rewrite !mxE// (val_eqE (lshift n i)) eq_shift.
Qed.
Lemma pid_mx_col m r : pid_mx r = col_mx 1%:M 0 :> 'M_(r + m, r).
Proof.
apply/matrixP=> i j; rewrite !mxE andbC.
by case: split_ordP => ? ->; rewrite !mxE//.
Qed.
Lemma pid_mx_block m n r : pid_mx r = block_mx 1%:M 0 0 0 :> 'M_(r + m, r + n).
Proof.
apply/matrixP=> i j; rewrite !mxE row_mx0 andbC.
do ![case: split_ordP => ? ->; rewrite !mxE//].
by rewrite (val_eqE (lshift n _)) eq_shift.
Qed.
Lemma tr_pid_mx m n r : (pid_mx r)^T = pid_mx r :> 'M_(n, m).
Proof. by apply/matrixP=> i j; rewrite !mxE; case: eqVneq => // ->. Qed.
Lemma pid_mx_minv m n r : pid_mx (minn m r) = pid_mx r :> 'M_(m, n).
Proof. by apply/matrixP=> i j; rewrite !mxE leq_min ltn_ord. Qed.
Lemma pid_mx_minh m n r : pid_mx (minn n r) = pid_mx r :> 'M_(m, n).
Proof. by apply: trmx_inj; rewrite !tr_pid_mx pid_mx_minv. Qed.
Lemma mul_pid_mx m n p q r :
(pid_mx q : 'M_(m, n)) *m (pid_mx r : 'M_(n, p)) = pid_mx (minn n (minn q r)).
Proof.
apply/matrixP=> i k; rewrite !mxE !leq_min.
have [le_n_i | lt_i_n] := leqP n i.
rewrite andbF big1 // => j _.
by rewrite -pid_mx_minh !mxE leq_min ltnNge le_n_i andbF mul0r.
rewrite (bigD1 (Ordinal lt_i_n)) //= big1 ?addr0 => [|j].
by rewrite !mxE eqxx /= -natrM mulnb andbCA.
by rewrite -val_eqE /= !mxE eq_sym -natrM => /negPf->.
Qed.
Lemma pid_mx_id m n p r :
r <= n -> (pid_mx r : 'M_(m, n)) *m (pid_mx r : 'M_(n, p)) = pid_mx r.
Proof. by move=> le_r_n; rewrite mul_pid_mx minnn (minn_idPr _). Qed.
Definition copid_mx {n} r : 'M_n := 1%:M - pid_mx r.
Lemma mul_copid_mx_pid m n r :
r <= m -> copid_mx r *m pid_mx r = 0 :> 'M_(m, n).
Proof. by move=> le_r_m; rewrite mulmxBl mul1mx pid_mx_id ?subrr. Qed.
Lemma mul_pid_mx_copid m n r :
r <= n -> pid_mx r *m copid_mx r = 0 :> 'M_(m, n).
Proof. by move=> le_r_n; rewrite mulmxBr mulmx1 pid_mx_id ?subrr. Qed.
Lemma copid_mx_id n r :
r <= n -> copid_mx r *m copid_mx r = copid_mx r :> 'M_n.
Proof.
by move=> le_r_n; rewrite mulmxBl mul1mx mul_pid_mx_copid // oppr0 addr0.
Qed.
Lemma pid_mxErow m n (le_mn : m <= n) :
pid_mx m = rowsub (widen_ord le_mn) 1%:M.
Proof. by apply/matrixP=> i j; rewrite !mxE -!val_eqE/= ltn_ord andbT. Qed.
Lemma pid_mxEcol m n (le_mn : m <= n) :
pid_mx n = colsub (widen_ord le_mn) 1%:M.
Proof. by apply/matrixP=> i j; rewrite !mxE -!val_eqE/= ltn_ord andbT. Qed.
(* Block products; we cover all 1 x 2, 2 x 1, and 2 x 2 block products. *)
Lemma mul_mx_row m n p1 p2 (A : 'M_(m, n)) (Bl : 'M_(n, p1)) (Br : 'M_(n, p2)) :
A *m row_mx Bl Br = row_mx (A *m Bl) (A *m Br).
Proof.
apply/matrixP=> i k; rewrite !mxE.
by case defk: (split k); rewrite mxE; apply: eq_bigr => j _; rewrite mxE defk.
Qed.
Lemma mul_col_mx m1 m2 n p (Au : 'M_(m1, n)) (Ad : 'M_(m2, n)) (B : 'M_(n, p)) :
col_mx Au Ad *m B = col_mx (Au *m B) (Ad *m B).
Proof.
apply/matrixP=> i k; rewrite !mxE.
by case defi: (split i); rewrite mxE; apply: eq_bigr => j _; rewrite mxE defi.
Qed.
Lemma mul_row_col m n1 n2 p (Al : 'M_(m, n1)) (Ar : 'M_(m, n2))
(Bu : 'M_(n1, p)) (Bd : 'M_(n2, p)) :
row_mx Al Ar *m col_mx Bu Bd = Al *m Bu + Ar *m Bd.
Proof.
apply/matrixP=> i k; rewrite !mxE big_split_ord /=.
congr (_ + _); apply: eq_bigr => j _; first by rewrite row_mxEl col_mxEu.
by rewrite row_mxEr col_mxEd.
Qed.
Lemma mul_col_row m1 m2 n p1 p2 (Au : 'M_(m1, n)) (Ad : 'M_(m2, n))
(Bl : 'M_(n, p1)) (Br : 'M_(n, p2)) :
col_mx Au Ad *m row_mx Bl Br
= block_mx (Au *m Bl) (Au *m Br) (Ad *m Bl) (Ad *m Br).
Proof. by rewrite mul_col_mx !mul_mx_row. Qed.
Lemma mul_row_block m n1 n2 p1 p2 (Al : 'M_(m, n1)) (Ar : 'M_(m, n2))
(Bul : 'M_(n1, p1)) (Bur : 'M_(n1, p2))
(Bdl : 'M_(n2, p1)) (Bdr : 'M_(n2, p2)) :
row_mx Al Ar *m block_mx Bul Bur Bdl Bdr
= row_mx (Al *m Bul + Ar *m Bdl) (Al *m Bur + Ar *m Bdr).
Proof. by rewrite block_mxEh mul_mx_row !mul_row_col. Qed.
Lemma mul_block_col m1 m2 n1 n2 p (Aul : 'M_(m1, n1)) (Aur : 'M_(m1, n2))
(Adl : 'M_(m2, n1)) (Adr : 'M_(m2, n2))
(Bu : 'M_(n1, p)) (Bd : 'M_(n2, p)) :
block_mx Aul Aur Adl Adr *m col_mx Bu Bd
= col_mx (Aul *m Bu + Aur *m Bd) (Adl *m Bu + Adr *m Bd).
Proof. by rewrite mul_col_mx !mul_row_col. Qed.
Lemma mulmx_block m1 m2 n1 n2 p1 p2 (Aul : 'M_(m1, n1)) (Aur : 'M_(m1, n2))
(Adl : 'M_(m2, n1)) (Adr : 'M_(m2, n2))
(Bul : 'M_(n1, p1)) (Bur : 'M_(n1, p2))
(Bdl : 'M_(n2, p1)) (Bdr : 'M_(n2, p2)) :
block_mx Aul Aur Adl Adr *m block_mx Bul Bur Bdl Bdr
= block_mx (Aul *m Bul + Aur *m Bdl) (Aul *m Bur + Aur *m Bdr)
(Adl *m Bul + Adr *m Bdl) (Adl *m Bur + Adr *m Bdr).
Proof. by rewrite mul_col_mx !mul_row_block. Qed.
(* Correspondence between matrices and linear function on row vectors. *)
Section LinRowVector.
Variables m n : nat.
Fact lin1_mx_key : unit. Proof. by []. Qed.
Definition lin1_mx (f : 'rV[R]_m -> 'rV[R]_n) :=
\matrix[lin1_mx_key]_(i, j) f (delta_mx 0 i) 0 j.
Variable f : {linear 'rV[R]_m -> 'rV[R]_n}.
Lemma mul_rV_lin1 u : u *m lin1_mx f = f u.
Proof.
rewrite {2}[u]matrix_sum_delta big_ord1 linear_sum; apply/rowP=> i.
by rewrite mxE summxE; apply: eq_bigr => j _; rewrite linearZ !mxE.
Qed.
End LinRowVector.
(* Correspondence between matrices and linear function on matrices. *)
Section LinMatrix.
Variables m1 n1 m2 n2 : nat.
Definition lin_mx (f : 'M[R]_(m1, n1) -> 'M[R]_(m2, n2)) :=
lin1_mx (mxvec \o f \o vec_mx).
Variable f : {linear 'M[R]_(m1, n1) -> 'M[R]_(m2, n2)}.
Lemma mul_rV_lin u : u *m lin_mx f = mxvec (f (vec_mx u)).
Proof. exact: mul_rV_lin1. Qed.
Lemma mul_vec_lin A : mxvec A *m lin_mx f = mxvec (f A).
Proof. by rewrite mul_rV_lin mxvecK. Qed.
Lemma mx_rV_lin u : vec_mx (u *m lin_mx f) = f (vec_mx u).
Proof. by rewrite mul_rV_lin mxvecK. Qed.
Lemma mx_vec_lin A : vec_mx (mxvec A *m lin_mx f) = f A.
Proof. by rewrite mul_rV_lin !mxvecK. Qed.
End LinMatrix.
Canonical mulmx_additive m n p A := Additive (@mulmxBr m n p A).
Section Mulmxr.
Variables m n p : nat.
Implicit Type A : 'M[R]_(m, n).
Implicit Type B : 'M[R]_(n, p).
Definition mulmxr_head t B A := let: tt := t in A *m B.
Local Notation mulmxr := (mulmxr_head tt).
Definition lin_mulmxr B := lin_mx (mulmxr B).
Lemma mulmxr_is_linear B : linear (mulmxr B).
Proof. by move=> a A1 A2; rewrite /= mulmxDl scalemxAl. Qed.
Canonical mulmxr_additive B := Additive (mulmxr_is_linear B).
Canonical mulmxr_linear B := Linear (mulmxr_is_linear B).
Lemma lin_mulmxr_is_linear : linear lin_mulmxr.
Proof.
move=> a A B; apply/row_matrixP; case/mxvec_indexP=> i j.
rewrite linearP /= !rowE !mul_rV_lin /= vec_mx_delta -linearP mulmxDr.
congr (mxvec (_ + _)); apply/row_matrixP=> k.
rewrite linearZ /= !row_mul rowE mul_delta_mx_cond.
by case: (k == i); [rewrite -!rowE linearZ | rewrite !mul0mx raddf0].
Qed.
Canonical lin_mulmxr_additive := Additive lin_mulmxr_is_linear.
Canonical lin_mulmxr_linear := Linear lin_mulmxr_is_linear.
End Mulmxr.
(* The trace. *)
Section Trace.
Variable n : nat.
Definition mxtrace (A : 'M[R]_n) := \sum_i A i i.
Local Notation "'\tr' A" := (mxtrace A) : ring_scope.
Lemma mxtrace_tr A : \tr A^T = \tr A.
Proof. by apply: eq_bigr=> i _; rewrite mxE. Qed.
Lemma mxtrace_is_scalar : scalar mxtrace.
Proof.
move=> a A B; rewrite mulr_sumr -big_split /=; apply: eq_bigr=> i _.
by rewrite !mxE.
Qed.
Canonical mxtrace_additive := Additive mxtrace_is_scalar.
Canonical mxtrace_linear := Linear mxtrace_is_scalar.
Lemma mxtrace0 : \tr 0 = 0. Proof. exact: raddf0. Qed.
Lemma mxtraceD A B : \tr (A + B) = \tr A + \tr B. Proof. exact: raddfD. Qed.
Lemma mxtraceZ a A : \tr (a *: A) = a * \tr A. Proof. exact: scalarZ. Qed.
Lemma mxtrace_diag D : \tr (diag_mx D) = \sum_j D 0 j.
Proof. by apply: eq_bigr => j _; rewrite mxE eqxx. Qed.
Lemma mxtrace_scalar a : \tr a%:M = a *+ n.
Proof.
rewrite -diag_const_mx mxtrace_diag.
by rewrite (eq_bigr _ (fun j _ => mxE _ _ 0 j)) sumr_const card_ord.
Qed.
Lemma mxtrace1 : \tr 1%:M = n%:R. Proof. exact: mxtrace_scalar. Qed.
End Trace.
Local Notation "'\tr' A" := (mxtrace A) : ring_scope.
Lemma trace_mx11 (A : 'M_1) : \tr A = A 0 0.
Proof. by rewrite {1}[A]mx11_scalar mxtrace_scalar. Qed.
Lemma mxtrace_block n1 n2 (Aul : 'M_n1) Aur Adl (Adr : 'M_n2) :
\tr (block_mx Aul Aur Adl Adr) = \tr Aul + \tr Adr.
Proof.
rewrite /(\tr _) big_split_ord /=.
by congr (_ + _); apply: eq_bigr => i _; rewrite (block_mxEul, block_mxEdr).
Qed.
(* The matrix ring structure requires a strutural condition (dimension of the *)
(* form n.+1) to satisfy the nontriviality condition we have imposed. *)
Section MatrixRing.
Variable n' : nat.
Local Notation n := n'.+1.
Lemma matrix_nonzero1 : 1%:M != 0 :> 'M_n.
Proof. by apply/eqP=> /matrixP/(_ 0 0)/eqP; rewrite !mxE oner_eq0. Qed.
Definition matrix_ringMixin :=
RingMixin (@mulmxA n n n n) (@mul1mx n n) (@mulmx1 n n)
(@mulmxDl n n n) (@mulmxDr n n n) matrix_nonzero1.
Canonical matrix_ringType := Eval hnf in RingType 'M[R]_n matrix_ringMixin.
Canonical matrix_lAlgType := Eval hnf in LalgType R 'M[R]_n (@scalemxAl n n n).
Lemma mulmxE : mulmx = *%R. Proof. by []. Qed.
Lemma idmxE : 1%:M = 1 :> 'M_n. Proof. by []. Qed.
Lemma scalar_mx_is_multiplicative : multiplicative (@scalar_mx n).
Proof. by split=> //; apply: scalar_mxM. Qed.
Canonical scalar_mx_rmorphism := AddRMorphism scalar_mx_is_multiplicative.
End MatrixRing.
Section LiftPerm.
(* Block expresssion of a lifted permutation matrix, for the Cormen LUP. *)
Variable n : nat.
(* These could be in zmodp, but that would introduce a dependency on perm. *)
Definition lift0_perm s : 'S_n.+1 := lift_perm 0 0 s.
Lemma lift0_perm0 s : lift0_perm s 0 = 0.
Proof. exact: lift_perm_id. Qed.
Lemma lift0_perm_lift s k' :
lift0_perm s (lift 0 k') = lift (0 : 'I_n.+1) (s k').
Proof. exact: lift_perm_lift. Qed.
Lemma lift0_permK s : cancel (lift0_perm s) (lift0_perm s^-1).
Proof. by move=> i; rewrite /lift0_perm -lift_permV permK. Qed.
Lemma lift0_perm_eq0 s i : (lift0_perm s i == 0) = (i == 0).
Proof. by rewrite (canF_eq (lift0_permK s)) lift0_perm0. Qed.
(* Block expresssion of a lifted permutation matrix *)
Definition lift0_mx A : 'M_(1 + n) := block_mx 1 0 0 A.
Lemma lift0_mx_perm s : lift0_mx (perm_mx s) = perm_mx (lift0_perm s).
Proof.
apply/matrixP=> /= i j; rewrite !mxE split1 /=; case: unliftP => [i'|] -> /=.
rewrite lift0_perm_lift !mxE split1 /=.
by case: unliftP => [j'|] ->; rewrite ?(inj_eq (lift_inj _)) /= !mxE.
rewrite lift0_perm0 !mxE split1 /=.
by case: unliftP => [j'|] ->; rewrite /= mxE.
Qed.
Lemma lift0_mx_is_perm s : is_perm_mx (lift0_mx (perm_mx s)).
Proof. by rewrite lift0_mx_perm perm_mx_is_perm. Qed.
End LiftPerm.
(* Determinants and adjugates are defined here, but most of their properties *)
(* only hold for matrices over a commutative ring, so their theory is *)
(* deferred to that section. *)
(* The determinant, in one line with the Leibniz Formula *)
Definition determinant n (A : 'M_n) : R :=
\sum_(s : 'S_n) (-1) ^+ s * \prod_i A i (s i).
(* The cofactor of a matrix on the indexes i and j *)
Definition cofactor n A (i j : 'I_n) : R :=
(-1) ^+ (i + j) * determinant (row' i (col' j A)).
(* The adjugate matrix : defined as the transpose of the matrix of cofactors *)
Fact adjugate_key : unit. Proof. by []. Qed.
Definition adjugate n (A : 'M_n) := \matrix[adjugate_key]_(i, j) cofactor A j i.
End MatrixAlgebra.
Arguments delta_mx {R m n}.
Arguments scalar_mx {R n}.
Arguments perm_mx {R n}.
Arguments tperm_mx {R n}.
Arguments pid_mx {R m n}.
Arguments copid_mx {R n}.
Arguments lin_mulmxr {R m n p}.
Prenex Implicits diag_mx is_scalar_mx.
Prenex Implicits mulmx mxtrace determinant cofactor adjugate.
Arguments is_scalar_mxP {R n A}.
Arguments mul_delta_mx {R m n p}.
Hint Extern 0 (is_true (is_diag_mx (scalar_mx _))) =>
apply: scalar_mx_is_diag : core.
Hint Extern 0 (is_true (is_trig_mx (scalar_mx _))) =>
apply: scalar_mx_is_trig : core.
Hint Extern 0 (is_true (is_diag_mx (diag_mx _))) =>
apply: diag_mx_is_diag : core.
Hint Extern 0 (is_true (is_trig_mx (diag_mx _))) =>
apply: diag_mx_is_trig : core.
Notation "a %:M" := (scalar_mx a) : ring_scope.
Notation "A *m B" := (mulmx A B) : ring_scope.
Notation mulmxr := (mulmxr_head tt).
Notation "\tr A" := (mxtrace A) : ring_scope.
Notation "'\det' A" := (determinant A) : ring_scope.
Notation "'\adj' A" := (adjugate A) : ring_scope.
(* Non-commutative transpose requires multiplication in the converse ring. *)
Lemma trmx_mul_rev (R : ringType) m n p (A : 'M[R]_(m, n)) (B : 'M[R]_(n, p)) :
(A *m B)^T = (B : 'M[R^c]_(n, p))^T *m (A : 'M[R^c]_(m, n))^T.
Proof.
by apply/matrixP=> k i; rewrite !mxE; apply: eq_bigr => j _; rewrite !mxE.
Qed.
Canonical matrix_countZmodType (M : countZmodType) m n :=
[countZmodType of 'M[M]_(m, n)].
Canonical matrix_countRingType (R : countRingType) n :=
[countRingType of 'M[R]_n.+1].
Canonical matrix_finLmodType (R : finRingType) m n :=
[finLmodType R of 'M[R]_(m, n)].
Canonical matrix_finRingType (R : finRingType) n' :=
Eval hnf in [finRingType of 'M[R]_n'.+1].
Canonical matrix_finLalgType (R : finRingType) n' :=
[finLalgType R of 'M[R]_n'.+1].
(* Parametricity over the algebra structure. *)
Section MapRingMatrix.
Variables (aR rR : ringType) (f : {rmorphism aR -> rR}).
Local Notation "A ^f" := (map_mx f A) : ring_scope.
Section FixedSize.
Variables m n p : nat.
Implicit Type A : 'M[aR]_(m, n).
Lemma map_mxZ a A : (a *: A)^f = f a *: A^f.
Proof. by apply/matrixP=> i j; rewrite !mxE rmorphM. Qed.
Lemma map_mxM A B : (A *m B)^f = A^f *m B^f :> 'M_(m, p).
Proof.
apply/matrixP=> i k; rewrite !mxE rmorph_sum //.
by apply: eq_bigr => j; rewrite !mxE rmorphM.
Qed.
Lemma map_delta_mx i j : (delta_mx i j)^f = delta_mx i j :> 'M_(m, n).
Proof. by apply/matrixP=> i' j'; rewrite !mxE rmorph_nat. Qed.
Lemma map_diag_mx d : (diag_mx d)^f = diag_mx d^f :> 'M_n.
Proof. by apply/matrixP=> i j; rewrite !mxE rmorphMn. Qed.
Lemma map_scalar_mx a : a%:M^f = (f a)%:M :> 'M_n.
Proof. by apply/matrixP=> i j; rewrite !mxE rmorphMn. Qed.
Lemma map_mx1 : 1%:M^f = 1%:M :> 'M_n.
Proof. by rewrite map_scalar_mx rmorph1. Qed.
Lemma map_perm_mx (s : 'S_n) : (perm_mx s)^f = perm_mx s.
Proof. by apply/matrixP=> i j; rewrite !mxE rmorph_nat. Qed.
Lemma map_tperm_mx (i1 i2 : 'I_n) : (tperm_mx i1 i2)^f = tperm_mx i1 i2.
Proof. exact: map_perm_mx. Qed.
Lemma map_pid_mx r : (pid_mx r)^f = pid_mx r :> 'M_(m, n).
Proof. by apply/matrixP=> i j; rewrite !mxE rmorph_nat. Qed.
Lemma trace_map_mx (A : 'M_n) : \tr A^f = f (\tr A).
Proof. by rewrite rmorph_sum; apply: eq_bigr => i _; rewrite mxE. Qed.
Lemma det_map_mx n' (A : 'M_n') : \det A^f = f (\det A).
Proof.
rewrite rmorph_sum //; apply: eq_bigr => s _.
rewrite rmorphM rmorph_sign rmorph_prod; congr (_ * _).
by apply: eq_bigr => i _; rewrite mxE.
Qed.
Lemma cofactor_map_mx (A : 'M_n) i j : cofactor A^f i j = f (cofactor A i j).
Proof. by rewrite rmorphM rmorph_sign -det_map_mx map_row' map_col'. Qed.
Lemma map_mx_adj (A : 'M_n) : (\adj A)^f = \adj A^f.
Proof. by apply/matrixP=> i j; rewrite !mxE cofactor_map_mx. Qed.
End FixedSize.
Lemma map_copid_mx n r : (copid_mx r)^f = copid_mx r :> 'M_n.
Proof. by rewrite map_mxB map_mx1 map_pid_mx. Qed.
Lemma map_mx_is_multiplicative n' (n := n'.+1) :
multiplicative (map_mx f : 'M_n -> 'M_n).
Proof. by split; [apply: map_mxM | apply: map_mx1]. Qed.
Canonical map_mx_rmorphism n' := AddRMorphism (map_mx_is_multiplicative n').
Lemma map_lin1_mx m n (g : 'rV_m -> 'rV_n) gf :
(forall v, (g v)^f = gf v^f) -> (lin1_mx g)^f = lin1_mx gf.
Proof.
by move=> def_gf; apply/matrixP=> i j; rewrite !mxE -map_delta_mx -def_gf mxE.
Qed.
Lemma map_lin_mx m1 n1 m2 n2 (g : 'M_(m1, n1) -> 'M_(m2, n2)) gf :
(forall A, (g A)^f = gf A^f) -> (lin_mx g)^f = lin_mx gf.
Proof.
move=> def_gf; apply: map_lin1_mx => A /=.
by rewrite map_mxvec def_gf map_vec_mx.
Qed.
End MapRingMatrix.
Section CommMx.
(***********************************************************************)
(************* Commutation property specialized to 'M[R]_n *************)
(***********************************************************************)
(* GRing.comm is bound to (non trivial) rings, and matrices form a *)
(* (non trivial) ring only when they are square and of manifestly *)
(* positive size. However during proofs in endomorphism reduction, we *)
(* take restrictions, which are matrices of size #|V| (with V a matrix *)
(* space) and it becomes cumbersome to state commutation between *)
(* restrictions, unless we relax the setting, and this relaxation *)
(* corresponds to comm_mx A B := A *m B = B *m A. *)
(* As witnessed by comm_mxE, when A and B have type 'M_n.+1, *)
(* comm_mx A B is convertible to GRing.comm A B. *)
(* The boolean version comm_mxb is designed to be used with seq.allrel *)
(***********************************************************************)
Context {R : ringType} {n : nat}.
Implicit Types (f g p : 'M[R]_n) (fs : seq 'M[R]_n) (d : 'rV[R]_n) (I : Type).
Definition comm_mx f g : Prop := f *m g = g *m f.
Definition comm_mxb f g : bool := f *m g == g *m f.
Lemma comm_mx_sym f g : comm_mx f g -> comm_mx g f.
Proof. by rewrite /comm_mx. Qed.
Lemma comm_mx_refl f : comm_mx f f. Proof. by []. Qed.
Lemma comm_mx0 f : comm_mx f 0. Proof. by rewrite /comm_mx mulmx0 mul0mx. Qed.
Lemma comm0mx f : comm_mx 0 f. Proof. by rewrite /comm_mx mulmx0 mul0mx. Qed.
Lemma comm_mx1 f : comm_mx f 1%:M.
Proof. by rewrite /comm_mx mulmx1 mul1mx. Qed.
Lemma comm1mx f : comm_mx 1%:M f.
Proof. by rewrite /comm_mx mulmx1 mul1mx. Qed.
Hint Resolve comm_mx0 comm0mx comm_mx1 comm1mx : core.
Lemma comm_mxN f g : comm_mx f g -> comm_mx f (- g).
Proof. by rewrite /comm_mx mulmxN mulNmx => ->. Qed.
Lemma comm_mxN1 f : comm_mx f (- 1%:M). Proof. exact/comm_mxN/comm_mx1. Qed.
Lemma comm_mxD f g g' : comm_mx f g -> comm_mx f g' -> comm_mx f (g + g').
Proof. by rewrite /comm_mx mulmxDl mulmxDr => -> ->. Qed.
Lemma comm_mxB f g g' : comm_mx f g -> comm_mx f g' -> comm_mx f (g - g').
Proof. by move=> fg fg'; apply/comm_mxD => //; apply/comm_mxN. Qed.
Lemma comm_mxM f g g' : comm_mx f g -> comm_mx f g' -> comm_mx f (g *m g').
Proof. by rewrite /comm_mx mulmxA => ->; rewrite -!mulmxA => ->. Qed.
Lemma comm_mx_sum I (s : seq I) (P : pred I) (F : I -> 'M[R]_n) (f : 'M[R]_n) :
(forall i : I, P i -> comm_mx f (F i)) -> comm_mx f (\sum_(i <- s | P i) F i).
Proof. by move=> comm_mxfF; elim/big_ind: _ => // g h; apply: comm_mxD. Qed.
Lemma comm_mxP f g : reflect (comm_mx f g) (comm_mxb f g).
Proof. exact: eqP. Qed.
Notation all_comm_mx := (allrel comm_mxb).
Lemma all_comm_mxP fs :
reflect {in fs &, forall f g, f *m g = g *m f} (all_comm_mx fs).
Proof. by apply: (iffP allrelP) => fsP ? ? ? ?; apply/eqP/fsP. Qed.
Lemma all_comm_mx1 f : all_comm_mx [:: f].
Proof. by rewrite /comm_mxb allrel1. Qed.
Lemma all_comm_mx2P f g : reflect (f *m g = g *m f) (all_comm_mx [:: f; g]).
Proof.
by rewrite /comm_mxb; apply: (iffP and4P) => [[_/eqP//]|->]; rewrite ?eqxx.
Qed.
Lemma all_comm_mx_cons f fs :
all_comm_mx (f :: fs) = all (comm_mxb f) fs && all_comm_mx fs.
Proof. by rewrite /comm_mxb [LHS]allrel_cons. Qed.
End CommMx.
Notation all_comm_mx := (allrel comm_mxb).
Lemma comm_mxE (R : ringType) (n : nat) : @comm_mx R n.+1 = @GRing.comm _.
Proof. by []. Qed.
Section ComMatrix.
(* Lemmas for matrices with coefficients in a commutative ring *)
Variable R : comRingType.
Section AssocLeft.
Variables m n p : nat.
Implicit Type A : 'M[R]_(m, n).
Implicit Type B : 'M[R]_(n, p).
Lemma trmx_mul A B : (A *m B)^T = B^T *m A^T.
Proof.
rewrite trmx_mul_rev; apply/matrixP=> k i; rewrite !mxE.
by apply: eq_bigr => j _; rewrite mulrC.
Qed.
Lemma scalemxAr a A B : a *: (A *m B) = A *m (a *: B).
Proof. by apply: trmx_inj; rewrite trmx_mul !linearZ /= trmx_mul scalemxAl. Qed.
Lemma mulmx_is_scalable A : scalable (@mulmx _ m n p A).
Proof. by move=> a B; rewrite scalemxAr. Qed.
Canonical mulmx_linear A := AddLinear (mulmx_is_scalable A).
Definition lin_mulmx A : 'M[R]_(n * p, m * p) := lin_mx (mulmx A).
Lemma lin_mulmx_is_linear : linear lin_mulmx.
Proof.
move=> a A B; apply/row_matrixP=> i; rewrite linearP /= !rowE !mul_rV_lin /=.
by rewrite [_ *m _](linearP (mulmxr_linear _ _)) linearP.
Qed.
Canonical lin_mulmx_additive := Additive lin_mulmx_is_linear.
Canonical lin_mulmx_linear := Linear lin_mulmx_is_linear.
End AssocLeft.
Section LinMulRow.
Variables m n : nat.
Definition lin_mul_row u : 'M[R]_(m * n, n) := lin1_mx (mulmx u \o vec_mx).
Lemma lin_mul_row_is_linear : linear lin_mul_row.
Proof.
move=> a u v; apply/row_matrixP=> i; rewrite linearP /= !rowE !mul_rV_lin1 /=.
by rewrite [_ *m _](linearP (mulmxr_linear _ _)).
Qed.
Canonical lin_mul_row_additive := Additive lin_mul_row_is_linear.
Canonical lin_mul_row_linear := Linear lin_mul_row_is_linear.
Lemma mul_vec_lin_row A u : mxvec A *m lin_mul_row u = u *m A.
Proof. by rewrite mul_rV_lin1 /= mxvecK. Qed.
End LinMulRow.
Lemma mxvec_dotmul m n (A : 'M[R]_(m, n)) u v :
mxvec (u^T *m v) *m (mxvec A)^T = u *m A *m v^T.
Proof.
transitivity (\sum_i \sum_j (u 0 i * A i j *: row j v^T)).
apply/rowP=> i; rewrite {i}ord1 mxE (reindex _ (curry_mxvec_bij _ _)) /=.
rewrite pair_bigA summxE; apply: eq_bigr => [[i j]] /= _.
by rewrite !mxE !mxvecE mxE big_ord1 mxE mulrAC.
rewrite mulmx_sum_row exchange_big; apply: eq_bigr => j _ /=.
by rewrite mxE -scaler_suml.
Qed.
Section MatrixAlgType.
Variable n' : nat.
Local Notation n := n'.+1.
Canonical matrix_algType :=
Eval hnf in AlgType R 'M[R]_n (fun k => scalemxAr k).
End MatrixAlgType.
Lemma diag_mxC n (d e : 'rV[R]_n) :
diag_mx d *m diag_mx e = diag_mx e *m diag_mx d.
Proof.
by rewrite !mulmx_diag; congr (diag_mx _); apply/rowP=> i; rewrite !mxE mulrC.
Qed.
Lemma diag_mx_comm n (d e : 'rV[R]_n) : comm_mx (diag_mx d) (diag_mx e).
Proof. exact: diag_mxC. Qed.
Lemma scalar_mxC m n a (A : 'M[R]_(m, n)) : A *m a%:M = a%:M *m A.
Proof.
by apply: trmx_inj; rewrite trmx_mul tr_scalar_mx !mul_scalar_mx linearZ.
Qed.
Lemma mul_mx_scalar m n a (A : 'M[R]_(m, n)) : A *m a%:M = a *: A.
Proof. by rewrite scalar_mxC mul_scalar_mx. Qed.
Lemma comm_mx_scalar n a (A : 'M[R]_n) : comm_mx A a%:M.
Proof. by rewrite /comm_mx mul_mx_scalar mul_scalar_mx. Qed.
Lemma comm_scalar_mx n a (A : 'M[R]_n) : comm_mx a%:M A.
Proof. exact/comm_mx_sym/comm_mx_scalar. Qed.
Lemma mxtrace_mulC m n (A : 'M[R]_(m, n)) B :
\tr (A *m B) = \tr (B *m A).
Proof.
have expand_trM C D: \tr (C *m D) = \sum_i \sum_j C i j * D j i.
by apply: eq_bigr => i _; rewrite mxE.
rewrite !{}expand_trM exchange_big /=.
by do 2!apply: eq_bigr => ? _; apply: mulrC.
Qed.
(* The theory of determinants *)
Lemma determinant_multilinear n (A B C : 'M[R]_n) i0 b c :
row i0 A = b *: row i0 B + c *: row i0 C ->
row' i0 B = row' i0 A ->
row' i0 C = row' i0 A ->
\det A = b * \det B + c * \det C.
Proof.
rewrite -[_ + _](row_id 0); move/row_eq=> ABC.
move/row'_eq=> BA; move/row'_eq=> CA.
rewrite !big_distrr -big_split; apply: eq_bigr => s _ /=.
rewrite -!(mulrCA (_ ^+s)) -mulrDr; congr (_ * _).
rewrite !(bigD1 i0 (_ : predT i0)) //= {}ABC !mxE mulrDl !mulrA.
by congr (_ * _ + _ * _); apply: eq_bigr => i i0i; rewrite ?BA ?CA.
Qed.
Lemma determinant_alternate n (A : 'M[R]_n) i1 i2 :
i1 != i2 -> A i1 =1 A i2 -> \det A = 0.
Proof.
move=> neq_i12 eqA12; pose t := tperm i1 i2.
have oddMt s: (t * s)%g = ~~ s :> bool by rewrite odd_permM odd_tperm neq_i12.
rewrite [\det A](bigID (@odd_perm _)) /=.
apply: canLR (subrK _) _; rewrite add0r -sumrN.
rewrite (reindex_inj (mulgI t)); apply: eq_big => //= s.
rewrite oddMt => /negPf->; rewrite mulN1r mul1r; congr (- _).
rewrite (reindex_perm t); apply: eq_bigr => /= i _.
by rewrite permM tpermK /t; case: tpermP => // ->; rewrite eqA12.
Qed.
Lemma det_tr n (A : 'M[R]_n) : \det A^T = \det A.
Proof.
rewrite [\det A^T](reindex_inj invg_inj) /=.
apply: eq_bigr => s _ /=; rewrite !odd_permV (reindex_perm s) /=.
by congr (_ * _); apply: eq_bigr => i _; rewrite mxE permK.
Qed.
Lemma det_perm n (s : 'S_n) : \det (perm_mx s) = (-1) ^+ s :> R.
Proof.
rewrite [\det _](bigD1 s) //= big1 => [|i _]; last by rewrite /= !mxE eqxx.
rewrite mulr1 big1 ?addr0 => //= t Dst.
case: (pickP (fun i => s i != t i)) => [i ist | Est].
by rewrite (bigD1 i) // mulrCA /= !mxE (negPf ist) mul0r.
by case/eqP: Dst; apply/permP => i; move/eqP: (Est i).
Qed.
Lemma det1 n : \det (1%:M : 'M[R]_n) = 1.
Proof. by rewrite -perm_mx1 det_perm odd_perm1. Qed.
Lemma det_mx00 (A : 'M[R]_0) : \det A = 1.
Proof. by rewrite flatmx0 -(flatmx0 1%:M) det1. Qed.
Lemma detZ n a (A : 'M[R]_n) : \det (a *: A) = a ^+ n * \det A.
Proof.
rewrite big_distrr /=; apply: eq_bigr => s _; rewrite mulrCA; congr (_ * _).
rewrite -[n in a ^+ n]card_ord -prodr_const -big_split /=.
by apply: eq_bigr=> i _; rewrite mxE.
Qed.
Lemma det0 n' : \det (0 : 'M[R]_n'.+1) = 0.
Proof. by rewrite -(scale0r 0) detZ exprS !mul0r. Qed.
Lemma det_scalar n a : \det (a%:M : 'M[R]_n) = a ^+ n.
Proof. by rewrite -{1}(mulr1 a) -scale_scalar_mx detZ det1 mulr1. Qed.
Lemma det_scalar1 a : \det (a%:M : 'M[R]_1) = a.
Proof. exact: det_scalar. Qed.
Lemma det_mx11 (M : 'M[R]_1) : \det M = M 0 0.
Proof. by rewrite {1}[M]mx11_scalar det_scalar. Qed.
Lemma det_mulmx n (A B : 'M[R]_n) : \det (A *m B) = \det A * \det B.
Proof.
rewrite big_distrl /=.
pose F := ('I_n ^ n)%type; pose AB s i j := A i j * B j (s i).
transitivity (\sum_(f : F) \sum_(s : 'S_n) (-1) ^+ s * \prod_i AB s i (f i)).
rewrite exchange_big; apply: eq_bigr => /= s _; rewrite -big_distrr /=.
congr (_ * _); rewrite -(bigA_distr_bigA (AB s)) /=.
by apply: eq_bigr => x _; rewrite mxE.
rewrite (bigID (fun f : F => injectiveb f)) /= addrC big1 ?add0r => [|f Uf].
rewrite (reindex (@pval _)) /=; last first.
pose in_Sn := insubd (1%g : 'S_n).
by exists in_Sn => /= f Uf; first apply: val_inj; apply: insubdK.
apply: eq_big => /= [s | s _]; rewrite ?(valP s) // big_distrr /=.
rewrite (reindex_inj (mulgI s)); apply: eq_bigr => t _ /=.
rewrite big_split /= mulrA mulrCA mulrA mulrCA mulrA.
rewrite -signr_addb odd_permM !pvalE; congr (_ * _); symmetry.
by rewrite (reindex_perm s); apply: eq_bigr => i; rewrite permM.
transitivity (\det (\matrix_(i, j) B (f i) j) * \prod_i A i (f i)).
rewrite mulrC big_distrr /=; apply: eq_bigr => s _.
rewrite mulrCA big_split //=; congr (_ * (_ * _)).
by apply: eq_bigr => x _; rewrite mxE.
case/injectivePn: Uf => i1 [i2 Di12 Ef12].
by rewrite (determinant_alternate Di12) ?simp //= => j; rewrite !mxE Ef12.
Qed.
Lemma detM n' (A B : 'M[R]_n'.+1) : \det (A * B) = \det A * \det B.
Proof. exact: det_mulmx. Qed.
(* Laplace expansion lemma *)
Lemma expand_cofactor n (A : 'M[R]_n) i j :
cofactor A i j =
\sum_(s : 'S_n | s i == j) (-1) ^+ s * \prod_(k | i != k) A k (s k).
Proof.
case: n A i j => [|n] A i0 j0; first by case: i0.
rewrite (reindex (lift_perm i0 j0)); last first.
pose ulsf i (s : 'S_n.+1) k := odflt k (unlift (s i) (s (lift i k))).
have ulsfK i (s : 'S_n.+1) k: lift (s i) (ulsf i s k) = s (lift i k).
rewrite /ulsf; have:= neq_lift i k.
by rewrite -(can_eq (permK s)) => /unlift_some[] ? ? ->.
have inj_ulsf: injective (ulsf i0 _).
move=> s; apply: can_inj (ulsf (s i0) s^-1%g) _ => k'.
by rewrite {1}/ulsf ulsfK !permK liftK.
exists (fun s => perm (inj_ulsf s)) => [s _ | s].
by apply/permP=> k'; rewrite permE /ulsf lift_perm_lift lift_perm_id liftK.
move/(s _ =P _) => si0; apply/permP=> k.
case: (unliftP i0 k) => [k'|] ->; rewrite ?lift_perm_id //.
by rewrite lift_perm_lift -si0 permE ulsfK.
rewrite /cofactor big_distrr /=.
apply: eq_big => [s | s _]; first by rewrite lift_perm_id eqxx.
rewrite -signr_odd mulrA -signr_addb oddD -odd_lift_perm; congr (_ * _).
case: (pickP 'I_n) => [k0 _ | n0]; last first.
by rewrite !big1 // => [j /unlift_some[i] | i _]; have:= n0 i.
rewrite (reindex (lift i0)).
by apply: eq_big => [k | k _] /=; rewrite ?neq_lift // !mxE lift_perm_lift.
exists (fun k => odflt k0 (unlift i0 k)) => k; first by rewrite liftK.
by case/unlift_some=> k' -> ->.
Qed.
Lemma expand_det_row n (A : 'M[R]_n) i0 :
\det A = \sum_j A i0 j * cofactor A i0 j.
Proof.
rewrite /(\det A) (partition_big (fun s : 'S_n => s i0) predT) //=.
apply: eq_bigr => j0 _; rewrite expand_cofactor big_distrr /=.
apply: eq_bigr => s /eqP Dsi0.
rewrite mulrCA (bigID (pred1 i0)) /= big_pred1_eq Dsi0; congr (_ * (_ * _)).
by apply: eq_bigl => i; rewrite eq_sym.
Qed.
Lemma cofactor_tr n (A : 'M[R]_n) i j : cofactor A^T i j = cofactor A j i.
Proof.
rewrite /cofactor addnC; congr (_ * _).
rewrite -tr_row' -tr_col' det_tr; congr (\det _).
by apply/matrixP=> ? ?; rewrite !mxE.
Qed.
Lemma cofactorZ n a (A : 'M[R]_n) i j :
cofactor (a *: A) i j = a ^+ n.-1 * cofactor A i j.
Proof. by rewrite {1}/cofactor !linearZ detZ mulrCA mulrA. Qed.
Lemma expand_det_col n (A : 'M[R]_n) j0 :
\det A = \sum_i (A i j0 * cofactor A i j0).
Proof.
rewrite -det_tr (expand_det_row _ j0).
by apply: eq_bigr => i _; rewrite cofactor_tr mxE.
Qed.
Lemma trmx_adj n (A : 'M[R]_n) : (\adj A)^T = \adj A^T.
Proof. by apply/matrixP=> i j; rewrite !mxE cofactor_tr. Qed.
Lemma adjZ n a (A : 'M[R]_n) : \adj (a *: A) = a^+n.-1 *: \adj A.
Proof. by apply/matrixP=> i j; rewrite !mxE cofactorZ. Qed.
(* Cramer Rule : adjugate on the left *)
Lemma mul_mx_adj n (A : 'M[R]_n) : A *m \adj A = (\det A)%:M.
Proof.
apply/matrixP=> i1 i2; rewrite !mxE; have [->|Di] := eqVneq.
rewrite (expand_det_row _ i2) //=.
by apply: eq_bigr => j _; congr (_ * _); rewrite mxE.
pose B := \matrix_(i, j) (if i == i2 then A i1 j else A i j).
have EBi12: B i1 =1 B i2 by move=> j; rewrite /= !mxE eqxx (negPf Di).
rewrite -[_ *+ _](determinant_alternate Di EBi12) (expand_det_row _ i2).
apply: eq_bigr => j _; rewrite !mxE eqxx; congr (_ * (_ * _)).
apply: eq_bigr => s _; congr (_ * _); apply: eq_bigr => i _.
by rewrite !mxE eq_sym -if_neg neq_lift.
Qed.
(* Cramer rule : adjugate on the right *)
Lemma mul_adj_mx n (A : 'M[R]_n) : \adj A *m A = (\det A)%:M.
Proof.
by apply: trmx_inj; rewrite trmx_mul trmx_adj mul_mx_adj det_tr tr_scalar_mx.
Qed.
Lemma adj1 n : \adj (1%:M) = 1%:M :> 'M[R]_n.
Proof. by rewrite -{2}(det1 n) -mul_adj_mx mulmx1. Qed.
(* Left inverses are right inverses. *)
Lemma mulmx1C n (A B : 'M[R]_n) : A *m B = 1%:M -> B *m A = 1%:M.
Proof.
move=> AB1; pose A' := \det B *: \adj A.
suffices kA: A' *m A = 1%:M by rewrite -[B]mul1mx -kA -(mulmxA A') AB1 mulmx1.
by rewrite -scalemxAl mul_adj_mx scale_scalar_mx mulrC -det_mulmx AB1 det1.
Qed.
(* Only tall matrices have inverses. *)
Lemma mulmx1_min m n (A : 'M[R]_(m, n)) B : A *m B = 1%:M -> m <= n.
Proof.
move=> AB1; rewrite leqNgt; apply/negP=> /subnKC; rewrite addSnnS.
move: (_ - _)%N => m' def_m; move: AB1; rewrite -{m}def_m in A B *.
rewrite -(vsubmxK A) -(hsubmxK B) mul_col_row scalar_mx_block.
case/eq_block_mx=> /mulmx1C BlAu1 AuBr0 _ => /eqP/idPn[].
by rewrite -[_ B]mul1mx -BlAu1 -mulmxA AuBr0 !mulmx0 eq_sym oner_neq0.
Qed.
Lemma det_ublock n1 n2 Aul (Aur : 'M[R]_(n1, n2)) Adr :
\det (block_mx Aul Aur 0 Adr) = \det Aul * \det Adr.
Proof.
elim: n1 => [|n1 IHn1] in Aul Aur *.
have ->: Aul = 1%:M by apply/matrixP=> i [].
rewrite det1 mul1r; congr (\det _); apply/matrixP=> i j.
by do 2![rewrite !mxE; case: splitP => [[]|k] //=; move/val_inj=> <- {k}].
rewrite (expand_det_col _ (lshift n2 0)) big_split_ord /=.
rewrite addrC big1 1?simp => [|i _]; last by rewrite block_mxEdl mxE simp.
rewrite (expand_det_col _ 0) big_distrl /=; apply: eq_bigr=> i _.
rewrite block_mxEul -!mulrA; do 2!congr (_ * _).
by rewrite col'_col_mx !col'Kl raddf0 row'Ku row'_row_mx IHn1.
Qed.
Lemma det_lblock n1 n2 Aul (Adl : 'M[R]_(n2, n1)) Adr :
\det (block_mx Aul 0 Adl Adr) = \det Aul * \det Adr.
Proof. by rewrite -det_tr tr_block_mx trmx0 det_ublock !det_tr. Qed.
Lemma det_trig n (A : 'M[R]_n) : is_trig_mx A -> \det A = \prod_(i < n) A i i.
Proof.
elim/trigsqmx_ind => [|k x c B Bt IHB]; first by rewrite ?big_ord0 ?det_mx00.
rewrite det_lblock big_ord_recl det_mx11 IHB//; congr (_ * _).
by rewrite -[ord0](lshift0 _ 0) block_mxEul.
by apply: eq_bigr => i; rewrite -!rshift1 block_mxEdr.
Qed.
Lemma det_diag n (d : 'rV[R]_n) : \det (diag_mx d) = \prod_i d 0 i.
Proof. by rewrite det_trig//; apply: eq_bigr => i; rewrite !mxE eqxx. Qed.
End ComMatrix.
Arguments lin_mul_row {R m n} u.
Arguments lin_mulmx {R m n p} A.
Arguments comm_mx_scalar {R n}.
Arguments comm_scalar_mx {R n}.
Arguments diag_mx_comm {R n}.
Canonical matrix_finAlgType (R : finComRingType) n' :=
[finAlgType R of 'M[R]_n'.+1].
Hint Resolve comm_mx_scalar comm_scalar_mx : core.
Notation "@ 'scalar_mx_comm'" := (deprecate scalar_mx_comm comm_mx_scalar)
(at level 10, only parsing) : fun_scope.
Notation scalar_mx_comm := (@scalar_mx_comm _ _) (only parsing).
(*****************************************************************************)
(********************** Matrix unit ring and inverse matrices ****************)
(*****************************************************************************)
Section MatrixInv.
Variables R : comUnitRingType.
Section Defs.
Variable n : nat.
Implicit Type A : 'M[R]_n.
Definition unitmx : pred 'M[R]_n := fun A => \det A \is a GRing.unit.
Definition invmx A := if A \in unitmx then (\det A)^-1 *: \adj A else A.
Lemma unitmxE A : (A \in unitmx) = (\det A \is a GRing.unit).
Proof. by []. Qed.
Lemma unitmx1 : 1%:M \in unitmx. Proof. by rewrite unitmxE det1 unitr1. Qed.
Lemma unitmx_perm s : perm_mx s \in unitmx.
Proof. by rewrite unitmxE det_perm unitrX ?unitrN ?unitr1. Qed.
Lemma unitmx_tr A : (A^T \in unitmx) = (A \in unitmx).
Proof. by rewrite unitmxE det_tr. Qed.
Lemma unitmxZ a A : a \is a GRing.unit -> (a *: A \in unitmx) = (A \in unitmx).
Proof. by move=> Ua; rewrite !unitmxE detZ unitrM unitrX. Qed.
Lemma invmx1 : invmx 1%:M = 1%:M.
Proof. by rewrite /invmx det1 invr1 scale1r adj1 if_same. Qed.
Lemma invmxZ a A : a *: A \in unitmx -> invmx (a *: A) = a^-1 *: invmx A.
Proof.
rewrite /invmx !unitmxE detZ unitrM => /andP[Ua U_A].
rewrite Ua U_A adjZ !scalerA invrM {U_A}//=.
case: (posnP n) A => [-> | n_gt0] A; first by rewrite flatmx0 [_ *: _]flatmx0.
rewrite unitrX_pos // in Ua; rewrite -[_ * _](mulrK Ua) mulrC -!mulrA.
by rewrite -exprSr prednK // !mulrA divrK ?unitrX.
Qed.
Lemma invmx_scalar a : invmx (a%:M) = a^-1%:M.
Proof.
case Ua: (a%:M \in unitmx).
by rewrite -scalemx1 in Ua *; rewrite invmxZ // invmx1 scalemx1.
rewrite /invmx Ua; have [->|n_gt0] := posnP n; first by rewrite ![_%:M]flatmx0.
by rewrite unitmxE det_scalar unitrX_pos // in Ua; rewrite invr_out ?Ua.
Qed.
Lemma mulVmx : {in unitmx, left_inverse 1%:M invmx mulmx}.
Proof.
by move=> A nsA; rewrite /invmx nsA -scalemxAl mul_adj_mx scale_scalar_mx mulVr.
Qed.
Lemma mulmxV : {in unitmx, right_inverse 1%:M invmx mulmx}.
Proof.
by move=> A nsA; rewrite /invmx nsA -scalemxAr mul_mx_adj scale_scalar_mx mulVr.
Qed.
Lemma mulKmx m : {in unitmx, @left_loop _ 'M_(n, m) invmx mulmx}.
Proof. by move=> A uA /= B; rewrite mulmxA mulVmx ?mul1mx. Qed.
Lemma mulKVmx m : {in unitmx, @rev_left_loop _ 'M_(n, m) invmx mulmx}.
Proof. by move=> A uA /= B; rewrite mulmxA mulmxV ?mul1mx. Qed.
Lemma mulmxK m : {in unitmx, @right_loop 'M_(m, n) _ invmx mulmx}.
Proof. by move=> A uA /= B; rewrite -mulmxA mulmxV ?mulmx1. Qed.
Lemma mulmxKV m : {in unitmx, @rev_right_loop 'M_(m, n) _ invmx mulmx}.
Proof. by move=> A uA /= B; rewrite -mulmxA mulVmx ?mulmx1. Qed.
Lemma det_inv A : \det (invmx A) = (\det A)^-1.
Proof.
case uA: (A \in unitmx); last by rewrite /invmx uA invr_out ?negbT.
by apply: (mulrI uA); rewrite -det_mulmx mulmxV ?divrr ?det1.
Qed.
Lemma unitmx_inv A : (invmx A \in unitmx) = (A \in unitmx).
Proof. by rewrite !unitmxE det_inv unitrV. Qed.
Lemma unitmx_mul A B : (A *m B \in unitmx) = (A \in unitmx) && (B \in unitmx).
Proof. by rewrite -unitrM -det_mulmx. Qed.
Lemma trmx_inv (A : 'M_n) : (invmx A)^T = invmx (A^T).
Proof. by rewrite (fun_if trmx) linearZ /= trmx_adj -unitmx_tr -det_tr. Qed.
Lemma invmxK : involutive invmx.
Proof.
move=> A; case uA : (A \in unitmx); last by rewrite /invmx !uA.
by apply: (can_inj (mulKVmx uA)); rewrite mulVmx // mulmxV ?unitmx_inv.
Qed.
Lemma mulmx1_unit A B : A *m B = 1%:M -> A \in unitmx /\ B \in unitmx.
Proof. by move=> AB1; apply/andP; rewrite -unitmx_mul AB1 unitmx1. Qed.
Lemma intro_unitmx A B : B *m A = 1%:M /\ A *m B = 1%:M -> unitmx A.
Proof. by case=> _ /mulmx1_unit[]. Qed.
Lemma invmx_out : {in [predC unitmx], invmx =1 id}.
Proof. by move=> A; rewrite inE /= /invmx -if_neg => ->. Qed.
End Defs.
Variable n' : nat.
Local Notation n := n'.+1.
Definition matrix_unitRingMixin :=
UnitRingMixin (@mulVmx n) (@mulmxV n) (@intro_unitmx n) (@invmx_out n).
Canonical matrix_unitRing :=
Eval hnf in UnitRingType 'M[R]_n matrix_unitRingMixin.
Canonical matrix_unitAlg := Eval hnf in [unitAlgType R of 'M[R]_n].
(* Lemmas requiring that the coefficients are in a unit ring *)
Lemma detV (A : 'M_n) : \det A^-1 = (\det A)^-1.
Proof. exact: det_inv. Qed.
Lemma unitr_trmx (A : 'M_n) : (A^T \is a GRing.unit) = (A \is a GRing.unit).
Proof. exact: unitmx_tr. Qed.
Lemma trmxV (A : 'M_n) : A^-1^T = (A^T)^-1.
Proof. exact: trmx_inv. Qed.
Lemma perm_mxV (s : 'S_n) : perm_mx s^-1 = (perm_mx s)^-1.
Proof.
rewrite -[_^-1]mul1r; apply: (canRL (mulmxK (unitmx_perm s))).
by rewrite -perm_mxM mulVg perm_mx1.
Qed.
Lemma is_perm_mxV (A : 'M_n) : is_perm_mx A^-1 = is_perm_mx A.
Proof.
apply/is_perm_mxP/is_perm_mxP=> [] [s defA]; exists s^-1%g.
by rewrite -(invrK A) defA perm_mxV.
by rewrite defA perm_mxV.
Qed.
End MatrixInv.
Prenex Implicits unitmx invmx invmxK.
Canonical matrix_countUnitRingType (R : countComUnitRingType) n :=
[countUnitRingType of 'M[R]_n.+1].
(* Finite inversible matrices and the general linear group. *)
Section FinUnitMatrix.
Variables (n : nat) (R : finComUnitRingType).
Canonical matrix_finUnitRingType n' :=
Eval hnf in [finUnitRingType of 'M[R]_n'.+1].
Definition GLtype of phant R := {unit 'M[R]_n.-1.+1}.
Coercion GLval ph (u : GLtype ph) : 'M[R]_n.-1.+1 :=
let: FinRing.Unit A _ := u in A.
End FinUnitMatrix.
Bind Scope group_scope with GLtype.
Arguments GLval {n%N R ph} u%g.
Notation "{ ''GL_' n [ R ] }" := (GLtype n (Phant R))
(at level 0, n at level 2, format "{ ''GL_' n [ R ] }") : type_scope.
Notation "{ ''GL_' n ( p ) }" := {'GL_n['F_p]}
(at level 0, n at level 2, p at level 10,
format "{ ''GL_' n ( p ) }") : type_scope.
Section GL_unit.
Variables (n : nat) (R : finComUnitRingType).
Canonical GL_subType := [subType of {'GL_n[R]} for GLval].
Definition GL_eqMixin := Eval hnf in [eqMixin of {'GL_n[R]} by <:].
Canonical GL_eqType := Eval hnf in EqType {'GL_n[R]} GL_eqMixin.
Canonical GL_choiceType := Eval hnf in [choiceType of {'GL_n[R]}].
Canonical GL_countType := Eval hnf in [countType of {'GL_n[R]}].
Canonical GL_subCountType := Eval hnf in [subCountType of {'GL_n[R]}].
Canonical GL_finType := Eval hnf in [finType of {'GL_n[R]}].
Canonical GL_subFinType := Eval hnf in [subFinType of {'GL_n[R]}].
Canonical GL_baseFinGroupType := Eval hnf in [baseFinGroupType of {'GL_n[R]}].
Canonical GL_finGroupType := Eval hnf in [finGroupType of {'GL_n[R]}].
Definition GLgroup of phant R := [set: {'GL_n[R]}].
Canonical GLgroup_group ph := Eval hnf in [group of GLgroup ph].
Implicit Types u v : {'GL_n[R]}.
Lemma GL_1E : GLval 1 = 1. Proof. by []. Qed.
Lemma GL_VE u : GLval u^-1 = (GLval u)^-1. Proof. by []. Qed.
Lemma GL_VxE u : GLval u^-1 = invmx u. Proof. by []. Qed.
Lemma GL_ME u v : GLval (u * v) = GLval u * GLval v. Proof. by []. Qed.
Lemma GL_MxE u v : GLval (u * v) = u *m v. Proof. by []. Qed.
Lemma GL_unit u : GLval u \is a GRing.unit. Proof. exact: valP. Qed.
Lemma GL_unitmx u : val u \in unitmx. Proof. exact: GL_unit. Qed.
Lemma GL_det u : \det u != 0.
Proof.
by apply: contraL (GL_unitmx u); rewrite unitmxE => /eqP->; rewrite unitr0.
Qed.
End GL_unit.
Notation "''GL_' n [ R ]" := (GLgroup n (Phant R))
(at level 8, n at level 2, format "''GL_' n [ R ]") : group_scope.
Notation "''GL_' n ( p )" := 'GL_n['F_p]
(at level 8, n at level 2, p at level 10,
format "''GL_' n ( p )") : group_scope.
Notation "''GL_' n [ R ]" := (GLgroup_group n (Phant R)) : Group_scope.
Notation "''GL_' n ( p )" := (GLgroup_group n (Phant 'F_p)) : Group_scope.
(*****************************************************************************)
(********************** Matrices over a domain *******************************)
(*****************************************************************************)
Section MatrixDomain.
Variable R : idomainType.
Lemma scalemx_eq0 m n a (A : 'M[R]_(m, n)) :
(a *: A == 0) = (a == 0) || (A == 0).
Proof.
case nz_a: (a == 0) / eqP => [-> | _]; first by rewrite scale0r eqxx.
apply/eqP/eqP=> [aA0 | ->]; last exact: scaler0.
apply/matrixP=> i j; apply/eqP; move/matrixP/(_ i j)/eqP: aA0.
by rewrite !mxE mulf_eq0 nz_a.
Qed.
Lemma scalemx_inj m n a :
a != 0 -> injective ( *:%R a : 'M[R]_(m, n) -> 'M[R]_(m, n)).
Proof.
move=> nz_a A B eq_aAB; apply: contraNeq nz_a.
rewrite -[A == B]subr_eq0 -[a == 0]orbF => /negPf<-.
by rewrite -scalemx_eq0 linearB subr_eq0 /= eq_aAB.
Qed.
Lemma det0P n (A : 'M[R]_n) :
reflect (exists2 v : 'rV[R]_n, v != 0 & v *m A = 0) (\det A == 0).
Proof.
apply: (iffP eqP) => [detA0 | [v n0v vA0]]; last first.
apply: contraNeq n0v => nz_detA; rewrite -(inj_eq (scalemx_inj nz_detA)).
by rewrite scaler0 -mul_mx_scalar -mul_mx_adj mulmxA vA0 mul0mx.
elim: n => [|n IHn] in A detA0 *.
by case/idP: (oner_eq0 R); rewrite -detA0 [A]thinmx0 -(thinmx0 1%:M) det1.
have [{detA0}A'0 | nzA'] := eqVneq (row 0 (\adj A)) 0; last first.
exists (row 0 (\adj A)) => //; rewrite rowE -mulmxA mul_adj_mx detA0.
by rewrite mul_mx_scalar scale0r.
pose A' := col' 0 A; pose vA := col 0 A.
have defA: A = row_mx vA A'.
apply/matrixP=> i j; rewrite !mxE.
by case: split_ordP => j' ->; rewrite !mxE ?ord1; congr (A i _); apply: val_inj.
have{IHn} w_ j : exists w : 'rV_n.+1, [/\ w != 0, w 0 j = 0 & w *m A' = 0].
have [|wj nzwj wjA'0] := IHn (row' j A').
by apply/eqP; move/rowP/(_ j)/eqP: A'0; rewrite !mxE mulf_eq0 signr_eq0.
exists (\row_k oapp (wj 0) 0 (unlift j k)).
rewrite !mxE unlift_none -wjA'0; split=> //.
apply: contraNneq nzwj => w0; apply/eqP/rowP=> k'.
by move/rowP/(_ (lift j k')): w0; rewrite !mxE liftK.
apply/rowP=> k; rewrite !mxE (bigD1_ord j) //= mxE unlift_none mul0r add0r.
by apply: eq_big => //= k'; rewrite !mxE/= liftK.
have [w0 [/rV0Pn[j nz_w0j] w00_0 w0A']] := w_ 0; pose a0 := (w0 *m vA) 0 0.
have{w_} [wj [nz_wj wj0_0 wjA']] := w_ j; pose aj := (wj *m vA) 0 0.
have [aj0 | nz_aj] := eqVneq aj 0.
exists wj => //; rewrite defA (@mul_mx_row _ _ _ 1) [_ *m _]mx11_scalar -/aj.
by rewrite aj0 raddf0 wjA' row_mx0.
exists (aj *: w0 - a0 *: wj).
apply: contraNneq nz_aj; move/rowP/(_ j)/eqP; rewrite !mxE wj0_0 mulr0 subr0.
by rewrite mulf_eq0 (negPf nz_w0j) orbF.
rewrite defA (@mul_mx_row _ _ _ 1) !mulmxBl -!scalemxAl w0A' wjA' !linear0.
by rewrite -mul_mx_scalar -mul_scalar_mx -!mx11_scalar subrr addr0 row_mx0.
Qed.
End MatrixDomain.
Arguments det0P {R n A}.
(* Parametricity at the field level (mx_is_scalar, unit and inverse are only *)
(* mapped at this level). *)
Section MapFieldMatrix.
Variables (aF : fieldType) (rF : comUnitRingType) (f : {rmorphism aF -> rF}).
Local Notation "A ^f" := (map_mx f A) : ring_scope.
Lemma map_mx_inj {m n} : injective (map_mx f : 'M_(m, n) -> 'M_(m, n)).
Proof.
move=> A B eq_AB; apply/matrixP=> i j.
by move/matrixP/(_ i j): eq_AB; rewrite !mxE; apply: fmorph_inj.
Qed.
Lemma map_mx_is_scalar n (A : 'M_n) : is_scalar_mx A^f = is_scalar_mx A.
Proof.
rewrite /is_scalar_mx; case: (insub _) => // i.
by rewrite mxE -map_scalar_mx inj_eq //; apply: map_mx_inj.
Qed.
Lemma map_unitmx n (A : 'M_n) : (A^f \in unitmx) = (A \in unitmx).
Proof. by rewrite unitmxE det_map_mx // fmorph_unit // -unitfE. Qed.
Lemma map_mx_unit n' (A : 'M_n'.+1) :
(A^f \is a GRing.unit) = (A \is a GRing.unit).
Proof. exact: map_unitmx. Qed.
Lemma map_invmx n (A : 'M_n) : (invmx A)^f = invmx A^f.
Proof.
rewrite /invmx map_unitmx (fun_if (map_mx f)).
by rewrite map_mxZ map_mx_adj det_map_mx fmorphV.
Qed.
Lemma map_mx_inv n' (A : 'M_n'.+1) : A^-1^f = A^f^-1.
Proof. exact: map_invmx. Qed.
Lemma map_mx_eq0 m n (A : 'M_(m, n)) : (A^f == 0) = (A == 0).
Proof. by rewrite -(inj_eq map_mx_inj) raddf0. Qed.
End MapFieldMatrix.
Arguments map_mx_inj {aF rF f m n} [A1 A2] eqA12f : rename.
(*****************************************************************************)
(****************************** LUP decomposion ******************************)
(*****************************************************************************)
Section CormenLUP.
Variable F : fieldType.
(* Decomposition of the matrix A to P A = L U with *)
(* - P a permutation matrix *)
(* - L a unipotent lower triangular matrix *)
(* - U an upper triangular matrix *)
Fixpoint cormen_lup {n} :=
match n return let M := 'M[F]_n.+1 in M -> M * M * M with
| 0 => fun A => (1, 1, A)
| _.+1 => fun A =>
let k := odflt 0 [pick k | A k 0 != 0] in
let A1 : 'M_(1 + _) := xrow 0 k A in
let P1 : 'M_(1 + _) := tperm_mx 0 k in
let Schur := ((A k 0)^-1 *: dlsubmx A1) *m ursubmx A1 in
let: (P2, L2, U2) := cormen_lup (drsubmx A1 - Schur) in
let P := block_mx 1 0 0 P2 *m P1 in
let L := block_mx 1 0 ((A k 0)^-1 *: (P2 *m dlsubmx A1)) L2 in
let U := block_mx (ulsubmx A1) (ursubmx A1) 0 U2 in
(P, L, U)
end.
Lemma cormen_lup_perm n (A : 'M_n.+1) : is_perm_mx (cormen_lup A).1.1.
Proof.
elim: n => [|n IHn] /= in A *; first exact: is_perm_mx1.
set A' := _ - _; move/(_ A'): IHn; case: cormen_lup => [[P L U]] {A'}/=.
rewrite (is_perm_mxMr _ (perm_mx_is_perm _ _)).
by case/is_perm_mxP => s ->; apply: lift0_mx_is_perm.
Qed.
Lemma cormen_lup_correct n (A : 'M_n.+1) :
let: (P, L, U) := cormen_lup A in P * A = L * U.
Proof.
elim: n => [|n IHn] /= in A *; first by rewrite !mul1r.
set k := odflt _ _; set A1 : 'M_(1 + _) := xrow _ _ _.
set A' := _ - _; move/(_ A'): IHn; case: cormen_lup => [[P' L' U']] /= IHn.
rewrite -mulrA -!mulmxE -xrowE -/A1 /= -[n.+2]/(1 + n.+1)%N -{1}(submxK A1).
rewrite !mulmx_block !mul0mx !mulmx0 !add0r !addr0 !mul1mx -{L' U'}[L' *m _]IHn.
rewrite -scalemxAl !scalemxAr -!mulmxA addrC -mulrDr {A'}subrK.
congr (block_mx _ _ (_ *m _) _).
rewrite [_ *: _]mx11_scalar !mxE lshift0 tpermL {}/A1 {}/k.
case: pickP => /= [k nzAk0 | no_k]; first by rewrite mulVf ?mulmx1.
rewrite (_ : dlsubmx _ = 0) ?mul0mx //; apply/colP=> i.
by rewrite !mxE lshift0 (elimNf eqP (no_k _)).
Qed.
Lemma cormen_lup_detL n (A : 'M_n.+1) : \det (cormen_lup A).1.2 = 1.
Proof.
elim: n => [|n IHn] /= in A *; first by rewrite det1.
set A' := _ - _; move/(_ A'): IHn; case: cormen_lup => [[P L U]] {A'}/= detL.
by rewrite (@det_lblock _ 1) det1 mul1r.
Qed.
Lemma cormen_lup_lower n A (i j : 'I_n.+1) :
i <= j -> (cormen_lup A).1.2 i j = (i == j)%:R.
Proof.
elim: n => [|n IHn] /= in A i j *; first by rewrite [i]ord1 [j]ord1 mxE.
set A' := _ - _; move/(_ A'): IHn; case: cormen_lup => [[P L U]] {A'}/= Ll.
rewrite !mxE split1; case: unliftP => [i'|] -> /=; rewrite !mxE split1.
by case: unliftP => [j'|] -> //; apply: Ll.
by case: unliftP => [j'|] ->; rewrite /= mxE.
Qed.
Lemma cormen_lup_upper n A (i j : 'I_n.+1) :
j < i -> (cormen_lup A).2 i j = 0 :> F.
Proof.
elim: n => [|n IHn] /= in A i j *; first by rewrite [i]ord1.
set A' := _ - _; move/(_ A'): IHn; case: cormen_lup => [[P L U]] {A'}/= Uu.
rewrite !mxE split1; case: unliftP => [i'|] -> //=; rewrite !mxE split1.
by case: unliftP => [j'|] ->; [apply: Uu | rewrite /= mxE].
Qed.
End CormenLUP.
Section mxOver.
Section mxOverType.
Context {m n : nat} {T : Type}.
Implicit Types (S : {pred T}).
Definition mxOver (S : {pred T}) :=
[qualify a M : 'M[T]_(m, n) | [forall i, [forall j, M i j \in S]]].
Fact mxOver_key S : pred_key (mxOver S). Proof. by []. Qed.
Canonical mxOver_keyed S := KeyedQualifier (mxOver_key S).
Lemma mxOverP {S : {pred T}} {M : 'M[T]__} :
reflect (forall i j, M i j \in S) (M \is a mxOver S).
Proof. exact/'forall_forallP. Qed.
Lemma mxOverS (S1 S2 : {pred T}) :
{subset S1 <= S2} -> {subset mxOver S1 <= mxOver S2}.
Proof. by move=> sS12 M /mxOverP S1M; apply/mxOverP=> i j; apply/sS12/S1M. Qed.
Lemma mxOver_const c S : c \in S -> const_mx c \is a mxOver S.
Proof. by move=> cS; apply/mxOverP => i j; rewrite !mxE. Qed.
Lemma mxOver_constE c S : (m > 0)%N -> (n > 0)%N ->
(const_mx c \is a mxOver S) = (c \in S).
Proof.
move=> m_gt0 n_gt0; apply/idP/idP; last exact: mxOver_const.
by move=> /mxOverP /(_ (Ordinal m_gt0) (Ordinal n_gt0)); rewrite mxE.
Qed.
End mxOverType.
Lemma thinmxOver {n : nat} {T : Type} (M : 'M[T]_(n, 0)) S : M \is a mxOver S.
Proof. by apply/mxOverP => ? []. Qed.
Lemma flatmxOver {n : nat} {T : Type} (M : 'M[T]_(0, n)) S : M \is a mxOver S.
Proof. by apply/mxOverP => - []. Qed.
Section mxOverZmodule.
Context {M : zmodType} {m n : nat}.
Implicit Types (S : {pred M}).
Lemma mxOver0 S : 0 \in S -> 0 \is a @mxOver m n _ S.
Proof. exact: mxOver_const. Qed.
Section mxOverAdd.
Variables (S : {pred M}) (addS : addrPred S) (kS : keyed_pred addS).
Fact mxOver_add_subproof : addr_closed (@mxOver m n _ kS).
Proof.
split=> [|p q Sp Sq]; first by rewrite mxOver0 // ?rpred0.
by apply/mxOverP=> i j; rewrite mxE rpredD // !(mxOverP _).
Qed.
Canonical mxOver_addrPred := AddrPred mxOver_add_subproof.
End mxOverAdd.
Section mxOverOpp.
Variables (S : {pred M}) (oppS : opprPred S) (kS : keyed_pred oppS).
Fact mxOver_opp_subproof : oppr_closed (@mxOver m n _ kS).
Proof. by move=> A /mxOverP SA; apply/mxOverP=> i j; rewrite mxE rpredN. Qed.
Canonical mxOver_opprPred := OpprPred mxOver_opp_subproof.
End mxOverOpp.
Canonical mxOver_zmodPred (S : {pred M}) (zmodS : zmodPred S)
(kS : keyed_pred zmodS) := ZmodPred (@mxOver_opp_subproof _ _ kS).
End mxOverZmodule.
Section mxOverRing.
Context {R : ringType} {m n : nat}.
Lemma mxOver_scalar S c : 0 \in S -> c \in S -> c%:M \is a @mxOver n n R S.
Proof. by move=> S0 cS; apply/mxOverP => i j; rewrite !mxE; case: eqP. Qed.
Lemma mxOver_scalarE S c : (n > 0)%N ->
(c%:M \is a @mxOver n n R S) = ((n > 1) ==> (0 \in S)) && (c \in S).
Proof.
case: n => [|[|k]]//= _.
by apply/mxOverP/idP => [/(_ ord0 ord0)|cij i j]; rewrite ?mxE ?ord1.
apply/mxOverP/andP => [cij|[S0 cij] i j]; last by rewrite !mxE; case: eqP.
by split; [have := cij 0 1|have := cij 0 0]; rewrite !mxE.
Qed.
Section mxOverScale.
Variables (S : {pred R}) (mulS : mulrPred S) (kS : keyed_pred mulS).
Lemma mxOverZ : {in kS & mxOver kS, forall a : R, forall v : 'M[R]_(m, n),
a *: v \is a mxOver kS}.
Proof.
by move=> a v aS /mxOverP vS; apply/mxOverP => i j; rewrite !mxE rpredM.
Qed.
End mxOverScale.
Lemma mxOver_diag (S : {pred R}) k (D : 'rV[R]_k) :
0 \in S -> D \is a mxOver S -> diag_mx D \is a mxOver S.
Proof.
move=> S0 DS; apply/mxOverP => i j; rewrite !mxE.
by case: eqP => //; rewrite (mxOverP DS).
Qed.
Lemma mxOver_diagE (S : {pred R}) k (D : 'rV[R]_k) : k > 0 ->
(diag_mx D \is a mxOver S) = ((k > 1) ==> (0 \in S)) && (D \is a mxOver S).
Proof.
case: k => [|[|k]]//= in D * => _.
by rewrite [diag_mx _]mx11_scalar [D in RHS]mx11_scalar !mxE.
apply/idP/andP => [/mxOverP DS|[S0 DS]]; last exact: mxOver_diag.
split; first by have := DS 0 1; rewrite !mxE.
by apply/mxOverP => i j; have := DS j j; rewrite ord1 !mxE eqxx.
Qed.
Section mxOverMul.
Variables (S : predPredType R) (ringS : semiringPred S) (kS : keyed_pred ringS).
Lemma mxOverM p q r : {in mxOver kS & mxOver kS,
forall u : 'M[R]_(p, q), forall v : 'M[R]_(q, r), u *m v \is a mxOver kS}.
Proof.
move=> M N /mxOverP MS /mxOverP NS; apply/mxOverP => i j.
by rewrite !mxE rpred_sum // => k _; rewrite rpredM.
Qed.
End mxOverMul.
End mxOverRing.
Section mxRingOver.
Context {R : ringType} {n : nat}.
Section semiring.
Variables (S : {pred R}) (ringS : semiringPred S) (kS : keyed_pred ringS).
Fact mxOver_mul_subproof : mulr_closed (@mxOver n.+1 n.+1 _ kS).
Proof. by split; rewrite ?mxOver_scalar ?rpred0 ?rpred1//; apply: mxOverM. Qed.
Canonical mxOver_mulrPred := MulrPred mxOver_mul_subproof.
Canonical mxOver_semiringPred := SemiringPred mxOver_mul_subproof.
End semiring.
Canonical mxOver_subringPred (S : {pred R}) (ringS : subringPred S)
(kS : keyed_pred ringS):= SubringPred (mxOver_mul_subproof kS).
End mxRingOver.
End mxOver.
Notation "@ 'map_mx_sub'" :=
(deprecate map_mx_sub map_mxB) (at level 10, only parsing) : fun_scope.
Notation map_mx_sub := (fun f => @map_mx_sub _ _ f) (only parsing).
|