1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype.
From mathcomp
Require Import ssralg finset fingroup morphism perm action.
(*****************************************************************************)
(* This file clones the entire ssralg hierachy for finite types; this allows *)
(* type inference to function properly on expressions that mix combinatorial *)
(* and algebraic operators (e.g., [set x + y | x in A, y in A]). *)
(* finZmodType, finRingType, finComRingType, finUnitRingType, *)
(* finComUnitRingType, finIdomType, finFieldType finLmodType, *)
(* finLalgType finAlgType finUnitAlgType *)
(* == the finite counterparts of zmodType, etc. *)
(* Note that a finFieldType is canonically decidable. All these structures *)
(* can be derived using [xxxType of T] forms, e.g., if R has both canonical *)
(* finType and ringType structures, then *)
(* Canonical R_finRingType := Eval hnf in [finRingType of R]. *)
(* declares the derived finRingType structure for R. As the implementation *)
(* of the derivation is somewhat involved, the Eval hnf normalization is *)
(* strongly recommended. *)
(* This file also provides direct tie-ins with finite group theory: *)
(* [baseFinGroupType of R for +%R] == the (canonical) additive group *)
(* [finGroupType of R for +%R] structures for R *)
(* {unit R} == the type of units of R, which has a *)
(* canonical group structure. *)
(* FinRing.unit R Ux == the element of {unit R} corresponding *)
(* to x, where Ux : x \in GRing.unit. *)
(* 'U%act == the action by right multiplication of *)
(* {unit R} on R, via FinRing.unit_act. *)
(* (This is also a group action.) *)
(*****************************************************************************)
Local Open Scope ring_scope.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Module FinRing.
Local Notation mixin_of T b := (Finite.mixin_of (EqType T b)).
Section Generic.
(* Implicits *)
Variables (type base_type : Type) (class_of base_of : Type -> Type).
Variable to_choice : forall T, base_of T -> Choice.class_of T.
Variable base_sort : base_type -> Type.
(* Explicits *)
Variable Pack : forall T, class_of T -> Type -> type.
Variable Class : forall T b, mixin_of T (to_choice b) -> class_of T.
Variable base_class : forall bT, base_of (base_sort bT).
Definition gen_pack T :=
fun bT b & phant_id (base_class bT) b =>
fun fT m & phant_id (Finite.class fT) (Finite.Class m) =>
Pack (@Class T b m) T.
End Generic.
Arguments gen_pack [type base_type class_of base_of to_choice base_sort].
Local Notation fin_ c := (@Finite.Class _ c c).
Local Notation do_pack pack T := (pack T _ _ id _ _ id).
Import GRing.Theory.
Definition groupMixin V := FinGroup.Mixin (@addrA V) (@add0r V) (@addNr V).
Local Notation base_group T vT fT :=
(@FinGroup.PackBase T (groupMixin vT) (Finite.class fT)).
Local Notation fin_group B V := (@FinGroup.Pack B (@addNr V)).
Module Zmodule.
Section ClassDef.
Record class_of M :=
Class { base : GRing.Zmodule.class_of M; mixin : mixin_of M base }.
Local Coercion base : class_of >-> GRing.Zmodule.class_of.
Local Coercion mixin : class_of >-> mixin_of.
Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.Zmodule.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (fin_ xclass) xT.
Definition finType := @Finite.Pack cT (fin_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition join_finType := @Finite.Pack zmodType (fin_ xclass) xT.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition join_baseFinGroupType := base_group zmodType zmodType finType.
Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.Zmodule.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Canonical join_finType.
Notation finZmodType := type.
Notation "[ 'finZmodType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finZmodType' 'of' T ]") : form_scope.
Coercion baseFinGroupType : type >-> FinGroup.base_type.
Canonical baseFinGroupType.
Coercion finGroupType : type >-> FinGroup.type.
Canonical finGroupType.
Canonical join_baseFinGroupType.
Canonical join_finGroupType.
Notation "[ 'baseFinGroupType' 'of' R 'for' +%R ]" :=
(BaseFinGroupType R (groupMixin _))
(at level 0, format "[ 'baseFinGroupType' 'of' R 'for' +%R ]")
: form_scope.
Notation "[ 'finGroupType' 'of' R 'for' +%R ]" :=
(@FinGroup.clone R _ (finGroupType _) id _ id)
(at level 0, format "[ 'finGroupType' 'of' R 'for' +%R ]") : form_scope.
End Exports.
End Zmodule.
Import Zmodule.Exports.
Section AdditiveGroup.
Variable U : finZmodType.
Implicit Types x y : U.
Lemma zmod1gE : 1%g = 0 :> U. Proof. by []. Qed.
Lemma zmodVgE x : x^-1%g = - x. Proof. by []. Qed.
Lemma zmodMgE x y : (x * y)%g = x + y. Proof. by []. Qed.
Lemma zmodXgE n x : (x ^+ n)%g = x *+ n. Proof. by []. Qed.
Lemma zmod_mulgC x y : commute x y. Proof. exact: GRing.addrC. Qed.
Lemma zmod_abelian (A : {set U}) : abelian A.
Proof. by apply/centsP=> x _ y _; apply: zmod_mulgC. Qed.
End AdditiveGroup.
Module Ring.
Section ClassDef.
Record class_of R :=
Class { base : GRing.Ring.class_of R; mixin : mixin_of R base }.
Definition base2 R (c : class_of R) := Zmodule.Class (mixin c).
Local Coercion base : class_of >-> GRing.Ring.class_of.
Local Coercion base2 : class_of >-> Zmodule.class_of.
Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.Ring.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (fin_ xclass) xT.
Definition finType := @Finite.Pack cT (fin_ xclass) cT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass cT.
Definition finZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition join_finType := @Finite.Pack ringType (fin_ xclass) xT.
Definition join_finZmodType := @Zmodule.Pack ringType xclass xT.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition join_baseFinGroupType := base_group ringType zmodType finType.
Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
End ClassDef.
Module Import Exports.
Coercion base : class_of >-> GRing.Ring.class_of.
Coercion base2 : class_of >-> Zmodule.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Canonical join_finType.
Canonical join_finZmodType.
Notation finRingType := type.
Notation "[ 'finRingType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finRingType' 'of' T ]") : form_scope.
Canonical baseFinGroupType.
Canonical finGroupType.
Canonical join_baseFinGroupType.
Canonical join_finGroupType.
End Exports.
Section Unit.
Variable R : finRingType.
Definition is_inv (x y : R) := (x * y == 1) && (y * x == 1).
Definition unit := [qualify a x : R | [exists y, is_inv x y]].
Definition inv x := odflt x (pick (is_inv x)).
Lemma mulVr : {in unit, left_inverse 1 inv *%R}.
Proof.
rewrite /inv => x Ux; case: pickP => [y | no_y]; last by case/pred0P: Ux.
by case/andP=> _; move/eqP.
Qed.
Lemma mulrV : {in unit, right_inverse 1 inv *%R}.
Proof.
rewrite /inv => x Ux; case: pickP => [y | no_y]; last by case/pred0P: Ux.
by case/andP; move/eqP.
Qed.
Lemma intro_unit x y : y * x = 1 /\ x * y = 1 -> x \is a unit.
Proof.
by case=> yx1 xy1; apply/existsP; exists y; rewrite /is_inv xy1 yx1 !eqxx.
Qed.
Lemma invr_out : {in [predC unit], inv =1 id}.
Proof.
rewrite /inv => x nUx; case: pickP => // y invxy.
by case/existsP: nUx; exists y.
Qed.
Definition UnitMixin := GRing.UnitRing.Mixin mulVr mulrV intro_unit invr_out.
End Unit.
End Ring.
Import Ring.Exports.
Module ComRing.
Section ClassDef.
Record class_of R :=
Class { base : GRing.ComRing.class_of R; mixin : mixin_of R base }.
Definition base2 R (c : class_of R) := Ring.Class (mixin c).
Local Coercion base : class_of >-> GRing.ComRing.class_of.
Local Coercion base2 : class_of >-> Ring.class_of.
Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.ComRing.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (fin_ xclass) xT.
Definition finType := @Finite.Pack cT (fin_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition finZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition finRingType := @Ring.Pack cT xclass xT.
Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
Definition join_finType := @Finite.Pack comRingType (fin_ xclass) xT.
Definition join_finZmodType := @Zmodule.Pack comRingType xclass xT.
Definition join_finRingType := @Ring.Pack comRingType xclass xT.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition join_baseFinGroupType := base_group comRingType zmodType finType.
Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.ComRing.class_of.
Coercion base2 : class_of >-> Ring.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Canonical join_finType.
Canonical join_finZmodType.
Canonical join_finRingType.
Notation finComRingType := FinRing.ComRing.type.
Notation "[ 'finComRingType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finComRingType' 'of' T ]") : form_scope.
Canonical baseFinGroupType.
Canonical finGroupType.
Canonical join_baseFinGroupType.
Canonical join_finGroupType.
End Exports.
End ComRing.
Import ComRing.Exports.
Module UnitRing.
Section ClassDef.
Record class_of R :=
Class { base : GRing.UnitRing.class_of R; mixin : mixin_of R base }.
Definition base2 R (c : class_of R) := Ring.Class (mixin c).
Local Coercion base : class_of >-> GRing.UnitRing.class_of.
Local Coercion base2 : class_of >-> Ring.class_of.
Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.UnitRing.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (fin_ xclass) xT.
Definition finType := @Finite.Pack cT (fin_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition finZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition finRingType := @Ring.Pack cT xclass xT.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
Definition join_finType := @Finite.Pack unitRingType (fin_ xclass) xT.
Definition join_finZmodType := @Zmodule.Pack unitRingType xclass xT.
Definition join_finRingType := @Ring.Pack unitRingType xclass xT.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition join_baseFinGroupType := base_group unitRingType zmodType finType.
Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.UnitRing.class_of.
Coercion base2 : class_of >-> Ring.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Canonical join_finType.
Canonical join_finZmodType.
Canonical join_finRingType.
Notation finUnitRingType := FinRing.UnitRing.type.
Notation "[ 'finUnitRingType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finUnitRingType' 'of' T ]") : form_scope.
Canonical baseFinGroupType.
Canonical finGroupType.
Canonical join_baseFinGroupType.
Canonical join_finGroupType.
End Exports.
End UnitRing.
Import UnitRing.Exports.
Section UnitsGroup.
Variable R : finUnitRingType.
Inductive unit_of (phR : phant R) := Unit (x : R) of x \is a GRing.unit.
Bind Scope group_scope with unit_of.
Let phR := Phant R.
Local Notation uT := (unit_of phR).
Implicit Types u v : uT.
Definition uval u := let: Unit x _ := u in x.
Canonical unit_subType := [subType for uval].
Definition unit_eqMixin := Eval hnf in [eqMixin of uT by <:].
Canonical unit_eqType := Eval hnf in EqType uT unit_eqMixin.
Definition unit_choiceMixin := [choiceMixin of uT by <:].
Canonical unit_choiceType := Eval hnf in ChoiceType uT unit_choiceMixin.
Definition unit_countMixin := [countMixin of uT by <:].
Canonical unit_countType := Eval hnf in CountType uT unit_countMixin.
Canonical unit_subCountType := Eval hnf in [subCountType of uT].
Definition unit_finMixin := [finMixin of uT by <:].
Canonical unit_finType := Eval hnf in FinType uT unit_finMixin.
Canonical unit_subFinType := Eval hnf in [subFinType of uT].
Definition unit1 := Unit phR (@GRing.unitr1 _).
Lemma unit_inv_proof u : (val u)^-1 \is a GRing.unit.
Proof. by rewrite GRing.unitrV ?(valP u). Qed.
Definition unit_inv u := Unit phR (unit_inv_proof u).
Lemma unit_mul_proof u v : val u * val v \is a GRing.unit.
Proof. by rewrite (GRing.unitrMr _ (valP u)) ?(valP v). Qed.
Definition unit_mul u v := Unit phR (unit_mul_proof u v).
Lemma unit_muluA : associative unit_mul.
Proof. by move=> u v w; apply: val_inj; apply: GRing.mulrA. Qed.
Lemma unit_mul1u : left_id unit1 unit_mul.
Proof. by move=> u; apply: val_inj; apply: GRing.mul1r. Qed.
Lemma unit_mulVu : left_inverse unit1 unit_inv unit_mul.
Proof. by move=> u; apply: val_inj; apply: GRing.mulVr (valP u). Qed.
Definition unit_GroupMixin := FinGroup.Mixin unit_muluA unit_mul1u unit_mulVu.
Canonical unit_baseFinGroupType :=
Eval hnf in BaseFinGroupType uT unit_GroupMixin.
Canonical unit_finGroupType := Eval hnf in FinGroupType unit_mulVu.
Lemma val_unit1 : val (1%g : uT) = 1. Proof. by []. Qed.
Lemma val_unitM x y : val (x * y : uT)%g = val x * val y. Proof. by []. Qed.
Lemma val_unitV x : val (x^-1 : uT)%g = (val x)^-1. Proof. by []. Qed.
Lemma val_unitX n x : val (x ^+ n : uT)%g = val x ^+ n.
Proof. by case: n; last by elim=> //= n ->. Qed.
Definition unit_act x u := x * val u.
Lemma unit_actE x u : unit_act x u = x * val u. Proof. by []. Qed.
Canonical unit_action :=
@TotalAction _ _ unit_act (@GRing.mulr1 _) (fun _ _ _ => GRing.mulrA _ _ _).
Lemma unit_is_groupAction : @is_groupAction _ R setT setT unit_action.
Proof.
move=> u _ /=; rewrite inE; apply/andP; split.
by apply/subsetP=> x _; rewrite inE.
by apply/morphicP=> x y _ _; rewrite !actpermE /= [_ u]GRing.mulrDl.
Qed.
Canonical unit_groupAction := GroupAction unit_is_groupAction.
End UnitsGroup.
Module Import UnitsGroupExports.
Bind Scope group_scope with unit_of.
Canonical unit_subType.
Canonical unit_eqType.
Canonical unit_choiceType.
Canonical unit_countType.
Canonical unit_subCountType.
Canonical unit_finType.
Canonical unit_subFinType.
Canonical unit_baseFinGroupType.
Canonical unit_finGroupType.
Canonical unit_action.
Canonical unit_groupAction.
End UnitsGroupExports.
Notation unit R Ux := (Unit (Phant R) Ux).
Module ComUnitRing.
Section ClassDef.
Record class_of R :=
Class { base : GRing.ComUnitRing.class_of R; mixin : mixin_of R base }.
Definition base2 R (c : class_of R) := ComRing.Class (mixin c).
Definition base3 R (c : class_of R) := @UnitRing.Class R (base c) (mixin c).
Local Coercion base : class_of >-> GRing.ComUnitRing.class_of.
Local Coercion base2 : class_of >-> ComRing.class_of.
Local Coercion base3 : class_of >-> UnitRing.class_of.
Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.ComUnitRing.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (fin_ xclass) xT.
Definition finType := @Finite.Pack cT (fin_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition finZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition finRingType := @Ring.Pack cT xclass xT.
Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
Definition finComRingType := @ComRing.Pack cT xclass xT.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
Definition finUnitRingType := @UnitRing.Pack cT xclass xT.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
Definition join_finType := @Finite.Pack comUnitRingType (fin_ xclass) xT.
Definition join_finZmodType := @Zmodule.Pack comUnitRingType xclass xT.
Definition join_finRingType := @Ring.Pack comUnitRingType xclass xT.
Definition join_finComRingType := @ComRing.Pack comUnitRingType xclass xT.
Definition join_finUnitRingType := @UnitRing.Pack comUnitRingType xclass xT.
Definition ujoin_finComRingType := @ComRing.Pack unitRingType xclass xT.
Definition cjoin_finUnitRingType := @UnitRing.Pack comRingType xclass xT.
Definition fcjoin_finUnitRingType := @UnitRing.Pack finComRingType xclass xT.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition join_baseFinGroupType := base_group comUnitRingType zmodType finType.
Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.ComUnitRing.class_of.
Coercion base2 : class_of >-> ComRing.class_of.
Coercion base3 : class_of >-> UnitRing.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion finComRingType : type >-> ComRing.type.
Canonical finComRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion finUnitRingType : type >-> UnitRing.type.
Canonical finUnitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Canonical join_finType.
Canonical join_finZmodType.
Canonical join_finRingType.
Canonical join_finComRingType.
Canonical join_finUnitRingType.
Canonical ujoin_finComRingType.
Canonical cjoin_finUnitRingType.
Canonical fcjoin_finUnitRingType.
Notation finComUnitRingType := FinRing.ComUnitRing.type.
Notation "[ 'finComUnitRingType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finComUnitRingType' 'of' T ]") : form_scope.
Canonical baseFinGroupType.
Canonical finGroupType.
Canonical join_baseFinGroupType.
Canonical join_finGroupType.
End Exports.
End ComUnitRing.
Import ComUnitRing.Exports.
Module IntegralDomain.
Section ClassDef.
Record class_of R :=
Class { base : GRing.IntegralDomain.class_of R; mixin : mixin_of R base }.
Definition base2 R (c : class_of R) := ComUnitRing.Class (mixin c).
Local Coercion base : class_of >-> GRing.IntegralDomain.class_of.
Local Coercion base2 : class_of >-> ComUnitRing.class_of.
Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.IntegralDomain.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (fin_ xclass) xT.
Definition finType := @Finite.Pack cT (fin_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition finZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition finRingType := @Ring.Pack cT xclass xT.
Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
Definition finComRingType := @ComRing.Pack cT xclass xT.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
Definition finUnitRingType := @UnitRing.Pack cT xclass xT.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
Definition finComUnitRingType := @ComUnitRing.Pack cT xclass xT.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT.
Definition join_finType := @Finite.Pack idomainType (fin_ xclass) xT.
Definition join_finZmodType := @Zmodule.Pack idomainType xclass xT.
Definition join_finRingType := @Ring.Pack idomainType xclass xT.
Definition join_finUnitRingType := @UnitRing.Pack idomainType xclass xT.
Definition join_finComRingType := @ComRing.Pack idomainType xclass xT.
Definition join_finComUnitRingType := @ComUnitRing.Pack idomainType xclass xT.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition join_baseFinGroupType := base_group idomainType zmodType finType.
Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.IntegralDomain.class_of.
Coercion base2 : class_of >-> ComUnitRing.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion finComRingType : type >-> ComRing.type.
Canonical finComRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion finUnitRingType : type >-> UnitRing.type.
Canonical finUnitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion finComUnitRingType : type >-> ComUnitRing.type.
Canonical finComUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Canonical join_finType.
Canonical join_finZmodType.
Canonical join_finRingType.
Canonical join_finComRingType.
Canonical join_finUnitRingType.
Canonical join_finComUnitRingType.
Notation finIdomainType := FinRing.IntegralDomain.type.
Notation "[ 'finIdomainType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finIdomainType' 'of' T ]") : form_scope.
Canonical baseFinGroupType.
Canonical finGroupType.
Canonical join_baseFinGroupType.
Canonical join_finGroupType.
End Exports.
End IntegralDomain.
Import IntegralDomain.Exports.
Module Field.
Section ClassDef.
Record class_of R :=
Class { base : GRing.Field.class_of R; mixin : mixin_of R base }.
Definition base2 R (c : class_of R) := IntegralDomain.Class (mixin c).
Local Coercion base : class_of >-> GRing.Field.class_of.
Local Coercion base2 : class_of >-> IntegralDomain.class_of.
Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.Field.class.
Variable cT : type.
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (fin_ xclass) xT.
Definition finType := @Finite.Pack cT (fin_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition finZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition finRingType := @Ring.Pack cT xclass xT.
Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
Definition finComRingType := @ComRing.Pack cT xclass xT.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
Definition finUnitRingType := @UnitRing.Pack cT xclass xT.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
Definition finComUnitRingType := @ComUnitRing.Pack cT xclass xT.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT.
Definition finIdomainType := @IntegralDomain.Pack cT xclass xT.
Definition fieldType := @GRing.Field.Pack cT xclass xT.
Definition join_finType := @Finite.Pack fieldType (fin_ xclass) xT.
Definition join_finZmodType := @Zmodule.Pack fieldType xclass xT.
Definition join_finRingType := @Ring.Pack fieldType xclass xT.
Definition join_finUnitRingType := @UnitRing.Pack fieldType xclass xT.
Definition join_finComRingType := @ComRing.Pack fieldType xclass xT.
Definition join_finComUnitRingType := @ComUnitRing.Pack fieldType xclass xT.
Definition join_finIdomainType := @IntegralDomain.Pack fieldType xclass xT.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition join_baseFinGroupType := base_group fieldType zmodType finType.
Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.Field.class_of.
Coercion base2 : class_of >-> IntegralDomain.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion finComRingType : type >-> ComRing.type.
Canonical finComRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion finUnitRingType : type >-> UnitRing.type.
Canonical finUnitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion finComUnitRingType : type >-> ComUnitRing.type.
Canonical finComUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion finIdomainType : type >-> IntegralDomain.type.
Canonical finIdomainType.
Coercion fieldType : type >-> GRing.Field.type.
Canonical fieldType.
Canonical join_finType.
Canonical join_finZmodType.
Canonical join_finRingType.
Canonical join_finComRingType.
Canonical join_finUnitRingType.
Canonical join_finComUnitRingType.
Canonical join_finIdomainType.
Notation finFieldType := FinRing.Field.type.
Notation "[ 'finFieldType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finFieldType' 'of' T ]") : form_scope.
Canonical baseFinGroupType.
Canonical finGroupType.
Canonical join_baseFinGroupType.
Canonical join_finGroupType.
End Exports.
End Field.
Import Field.Exports.
Section DecideField.
Variable F : Field.type.
Fixpoint sat e f :=
match f with
| GRing.Bool b => b
| t1 == t2 => (GRing.eval e t1 == GRing.eval e t2)%bool
| GRing.Unit t => GRing.eval e t \is a GRing.unit
| f1 /\ f2 => sat e f1 && sat e f2
| f1 \/ f2 => sat e f1 || sat e f2
| f1 ==> f2 => (sat e f1 ==> sat e f2)%bool
| ~ f1 => ~~ sat e f1
| ('exists 'X_k, f1) => [exists x : F, sat (set_nth 0%R e k x) f1]
| ('forall 'X_k, f1) => [forall x : F, sat (set_nth 0%R e k x) f1]
end%T.
Lemma decidable : GRing.DecidableField.axiom sat.
Proof.
move=> e f; elim: f e;
try by move=> f1 IH1 f2 IH2 e /=; case IH1; case IH2; constructor; tauto.
- by move=> b e; apply: idP.
- by move=> t1 t2 e; apply: eqP.
- by move=> t e; apply: idP.
- by move=> f IH e /=; case: IH; constructor.
- by move=> i f IH e; apply: (iffP existsP) => [] [x fx]; exists x; apply/IH.
by move=> i f IH e; apply: (iffP forallP) => f_ x; apply/IH.
Qed.
Definition DecidableFieldMixin := DecFieldMixin decidable.
End DecideField.
Module DecField.
Section Joins.
Variable cT : Field.type.
Let xT := let: Field.Pack T _ _ := cT in T.
Let xclass : Field.class_of xT := Field.class cT.
Definition type := Eval hnf in DecFieldType cT (DecidableFieldMixin cT).
Definition finType := @Finite.Pack type (fin_ xclass) xT.
Definition finZmodType := @Zmodule.Pack type xclass xT.
Definition finRingType := @Ring.Pack type xclass xT.
Definition finUnitRingType := @UnitRing.Pack type xclass xT.
Definition finComRingType := @ComRing.Pack type xclass xT.
Definition finComUnitRingType := @ComUnitRing.Pack type xclass xT.
Definition finIdomainType := @IntegralDomain.Pack type xclass xT.
Definition baseFinGroupType := base_group type finZmodType finZmodType.
Definition finGroupType := fin_group baseFinGroupType cT.
End Joins.
Module Exports.
Coercion type : Field.type >-> GRing.DecidableField.type.
Canonical type.
Canonical finType.
Canonical finZmodType.
Canonical finRingType.
Canonical finUnitRingType.
Canonical finComRingType.
Canonical finComUnitRingType.
Canonical finIdomainType.
Canonical baseFinGroupType.
Canonical finGroupType.
End Exports.
End DecField.
Module Lmodule.
Section ClassDef.
Variable R : ringType.
Record class_of M :=
Class { base : GRing.Lmodule.class_of R M; mixin : mixin_of M base }.
Definition base2 R (c : class_of R) := Zmodule.Class (mixin c).
Local Coercion base : class_of >-> GRing.Lmodule.class_of.
Local Coercion base2 : class_of >-> Zmodule.class_of.
Structure type (phR : phant R) := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Variables (phR : phant R) (cT : type phR).
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Definition pack := gen_pack (Pack phR) Class (@GRing.Lmodule.class R phR).
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (fin_ xclass) xT.
Definition finType := @Finite.Pack cT (fin_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition finZmodType := @Zmodule.Pack cT xclass xT.
Definition lmodType := @GRing.Lmodule.Pack R phR cT xclass xT.
Definition join_finType := @Finite.Pack lmodType (fin_ xclass) xT.
Definition join_finZmodType := @Zmodule.Pack lmodType xclass xT.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition join_baseFinGroupType := base_group lmodType zmodType finType.
Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
End ClassDef.
Module Import Exports.
Coercion base : class_of >-> GRing.Lmodule.class_of.
Coercion base2 : class_of >-> Zmodule.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion lmodType : type >-> GRing.Lmodule.type.
Canonical lmodType.
Canonical join_finType.
Canonical join_finZmodType.
Notation finLmodType R := (FinRing.Lmodule.type (Phant R)).
Notation "[ 'finLmodType' R 'of' T ]" := (do_pack (@pack _ (Phant R)) T)
(at level 0, format "[ 'finLmodType' R 'of' T ]") : form_scope.
Canonical baseFinGroupType.
Canonical finGroupType.
Canonical join_baseFinGroupType.
Canonical join_finGroupType.
End Exports.
End Lmodule.
Import Lmodule.Exports.
Module Lalgebra.
Section ClassDef.
Variable R : ringType.
Record class_of M :=
Class { base : GRing.Lalgebra.class_of R M; mixin : mixin_of M base }.
Definition base2 M (c : class_of M) := Ring.Class (mixin c).
Definition base3 M (c : class_of M) := @Lmodule.Class _ _ (base c) (mixin c).
Local Coercion base : class_of >-> GRing.Lalgebra.class_of.
Local Coercion base2 : class_of >-> Ring.class_of.
Local Coercion base3 : class_of >-> Lmodule.class_of.
Structure type (phR : phant R) := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Variables (phR : phant R) (cT : type phR).
Definition pack := gen_pack (Pack phR) Class (@GRing.Lalgebra.class R phR).
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (fin_ xclass) xT.
Definition finType := @Finite.Pack cT (fin_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition finZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition finRingType := @Ring.Pack cT xclass xT.
Definition lmodType := @GRing.Lmodule.Pack R phR cT xclass xT.
Definition finLmodType := @Lmodule.Pack R phR cT xclass xT.
Definition lalgType := @GRing.Lalgebra.Pack R phR cT xclass xT.
Definition join_finType := @Finite.Pack lalgType (fin_ xclass) xT.
Definition join_finZmodType := @Zmodule.Pack lalgType xclass xT.
Definition join_finLmodType := @Lmodule.Pack R phR lalgType xclass xT.
Definition join_finRingType := @Ring.Pack lalgType xclass xT.
Definition rjoin_finLmodType := @Lmodule.Pack R phR ringType xclass xT.
Definition ljoin_finRingType := @Ring.Pack lmodType xclass xT.
Definition fljoin_finRingType := @Ring.Pack finLmodType xclass xT.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition join_baseFinGroupType := base_group lalgType zmodType finType.
Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.Lalgebra.class_of.
Coercion base2 : class_of >-> Ring.class_of.
Coercion base3 : class_of >-> Lmodule.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion lmodType : type >-> GRing.Lmodule.type.
Canonical lmodType.
Coercion finLmodType : type >-> Lmodule.type.
Canonical finLmodType.
Coercion lalgType : type >-> GRing.Lalgebra.type.
Canonical lalgType.
Canonical join_finType.
Canonical join_finZmodType.
Canonical join_finLmodType.
Canonical join_finRingType.
Canonical rjoin_finLmodType.
Canonical ljoin_finRingType.
Canonical fljoin_finRingType.
Notation finLalgType R := (FinRing.Lalgebra.type (Phant R)).
Notation "[ 'finLalgType' R 'of' T ]" := (do_pack (@pack _ (Phant R)) T)
(at level 0, format "[ 'finLalgType' R 'of' T ]") : form_scope.
Canonical baseFinGroupType.
Canonical finGroupType.
Canonical join_baseFinGroupType.
Canonical join_finGroupType.
End Exports.
End Lalgebra.
Import Lalgebra.Exports.
Module Algebra.
Section ClassDef.
Variable R : ringType.
Record class_of M :=
Class { base : GRing.Algebra.class_of R M; mixin : mixin_of M base }.
Definition base2 M (c : class_of M) := Lalgebra.Class (mixin c).
Local Coercion base : class_of >-> GRing.Algebra.class_of.
Local Coercion base2 : class_of >->Lalgebra.class_of.
Structure type (phR : phant R) := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Variables (phR : phant R) (cT : type phR).
Definition pack := gen_pack (Pack phR) Class (@GRing.Algebra.class R phR).
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (fin_ xclass) xT.
Definition finType := @Finite.Pack cT (fin_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition finZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition finRingType := @Ring.Pack cT xclass xT.
Definition lmodType := @GRing.Lmodule.Pack R phR cT xclass xT.
Definition finLmodType := @Lmodule.Pack R phR cT xclass xT.
Definition lalgType := @GRing.Lalgebra.Pack R phR cT xclass xT.
Definition finLalgType := @Lalgebra.Pack R phR cT xclass xT.
Definition algType := @GRing.Algebra.Pack R phR cT xclass xT.
Definition join_finType := @Finite.Pack algType (fin_ xclass) xT.
Definition join_finZmodType := @Zmodule.Pack algType xclass xT.
Definition join_finRingType := @Ring.Pack algType xclass xT.
Definition join_finLmodType := @Lmodule.Pack R phR algType xclass xT.
Definition join_finLalgType := @Lalgebra.Pack R phR algType xclass xT.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition join_baseFinGroupType := base_group algType zmodType finType.
Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.Algebra.class_of.
Coercion base2 : class_of >-> Lalgebra.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion lmodType : type >-> GRing.Lmodule.type.
Canonical lmodType.
Coercion finLmodType : type >-> Lmodule.type.
Canonical finLmodType.
Coercion lalgType : type >-> GRing.Lalgebra.type.
Canonical lalgType.
Coercion finLalgType : type >-> Lalgebra.type.
Canonical finLalgType.
Coercion algType : type >-> GRing.Algebra.type.
Canonical algType.
Canonical join_finType.
Canonical join_finZmodType.
Canonical join_finLmodType.
Canonical join_finRingType.
Canonical join_finLalgType.
Notation finAlgType R := (type (Phant R)).
Notation "[ 'finAlgType' R 'of' T ]" := (do_pack (@pack _ (Phant R)) T)
(at level 0, format "[ 'finAlgType' R 'of' T ]") : form_scope.
Canonical baseFinGroupType.
Canonical finGroupType.
Canonical join_baseFinGroupType.
Canonical join_finGroupType.
End Exports.
End Algebra.
Import Algebra.Exports.
Module UnitAlgebra.
Section ClassDef.
Variable R : unitRingType.
Record class_of M :=
Class { base : GRing.UnitAlgebra.class_of R M; mixin : mixin_of M base }.
Definition base2 M (c : class_of M) := Algebra.Class (mixin c).
Definition base3 M (c : class_of M) := @UnitRing.Class _ (base c) (mixin c).
Local Coercion base : class_of >-> GRing.UnitAlgebra.class_of.
Local Coercion base2 : class_of >-> Algebra.class_of.
Local Coercion base3 : class_of >-> UnitRing.class_of.
Structure type (phR : phant R) := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Variables (phR : phant R) (cT : type phR).
Definition pack := gen_pack (Pack phR) Class (@GRing.UnitAlgebra.class R phR).
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (fin_ xclass) xT.
Definition finType := @Finite.Pack cT (fin_ xclass) xT.
Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
Definition finZmodType := @Zmodule.Pack cT xclass xT.
Definition ringType := @GRing.Ring.Pack cT xclass xT.
Definition finRingType := @Ring.Pack cT xclass xT.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
Definition finUnitRingType := @UnitRing.Pack cT xclass xT.
Definition lmodType := @GRing.Lmodule.Pack R phR cT xclass xT.
Definition finLmodType := @Lmodule.Pack R phR cT xclass xT.
Definition lalgType := @GRing.Lalgebra.Pack R phR cT xclass xT.
Definition finLalgType := @Lalgebra.Pack R phR cT xclass xT.
Definition algType := @GRing.Algebra.Pack R phR cT xclass xT.
Definition finAlgType := @Algebra.Pack R phR cT xclass xT.
Definition unitAlgType := @GRing.UnitAlgebra.Pack R phR cT xclass xT.
Definition join_finType := @Finite.Pack unitAlgType (fin_ xclass) xT.
Definition join_finZmodType := @Zmodule.Pack unitAlgType xclass xT.
Definition join_finRingType := @Ring.Pack unitAlgType xclass xT.
Definition join_finUnitRingType := @UnitRing.Pack unitAlgType xclass xT.
Definition join_finLmodType := @Lmodule.Pack R phR unitAlgType xclass xT.
Definition join_finLalgType := @Lalgebra.Pack R phR unitAlgType xclass xT.
Definition join_finAlgType := @Algebra.Pack R phR unitAlgType xclass xT.
Definition ljoin_finUnitRingType := @UnitRing.Pack lmodType xclass xT.
Definition fljoin_finUnitRingType := @UnitRing.Pack finLmodType xclass xT.
Definition njoin_finUnitRingType := @UnitRing.Pack lalgType xclass xT.
Definition fnjoin_finUnitRingType := @UnitRing.Pack finLalgType xclass xT.
Definition ajoin_finUnitRingType := @UnitRing.Pack algType xclass xT.
Definition fajoin_finUnitRingType := @UnitRing.Pack finAlgType xclass xT.
Definition ujoin_finLmodType := @Lmodule.Pack R phR unitRingType xclass xT.
Definition ujoin_finLalgType := @Lalgebra.Pack R phR unitRingType xclass xT.
Definition ujoin_finAlgType := @Algebra.Pack R phR unitRingType xclass xT.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition join_baseFinGroupType := base_group unitAlgType zmodType finType.
Definition join_finGroupType := fin_group join_baseFinGroupType zmodType.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.UnitAlgebra.class_of.
Coercion base2 : class_of >-> Algebra.class_of.
Coercion base3 : class_of >-> UnitRing.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion finUnitRingType : type >-> UnitRing.type.
Canonical finUnitRingType.
Coercion lmodType : type >-> GRing.Lmodule.type.
Canonical lmodType.
Coercion finLmodType : type >-> Lmodule.type.
Canonical finLmodType.
Coercion lalgType : type >-> GRing.Lalgebra.type.
Canonical lalgType.
Coercion finLalgType : type >-> Lalgebra.type.
Canonical finLalgType.
Coercion algType : type >-> GRing.Algebra.type.
Canonical algType.
Coercion finAlgType : type >-> Algebra.type.
Canonical finAlgType.
Coercion unitAlgType : type >-> GRing.UnitAlgebra.type.
Canonical unitAlgType.
Canonical join_finType.
Canonical join_finZmodType.
Canonical join_finLmodType.
Canonical join_finRingType.
Canonical join_finLalgType.
Canonical join_finAlgType.
Canonical ljoin_finUnitRingType.
Canonical fljoin_finUnitRingType.
Canonical njoin_finUnitRingType.
Canonical fnjoin_finUnitRingType.
Canonical ajoin_finUnitRingType.
Canonical fajoin_finUnitRingType.
Canonical ujoin_finLmodType.
Canonical ujoin_finLalgType.
Canonical ujoin_finAlgType.
Notation finUnitAlgType R := (type (Phant R)).
Notation "[ 'finUnitAlgType' R 'of' T ]" := (do_pack (@pack _ (Phant R)) T)
(at level 0, format "[ 'finUnitAlgType' R 'of' T ]") : form_scope.
Canonical baseFinGroupType.
Canonical finGroupType.
Canonical join_baseFinGroupType.
Canonical join_finGroupType.
End Exports.
End UnitAlgebra.
Import UnitAlgebra.Exports.
Module Theory.
Definition zmod1gE := zmod1gE.
Definition zmodVgE := zmodVgE.
Definition zmodMgE := zmodMgE.
Definition zmodXgE := zmodXgE.
Definition zmod_mulgC := zmod_mulgC.
Definition zmod_abelian := zmod_abelian.
Definition val_unit1 := val_unit1.
Definition val_unitM := val_unitM.
Definition val_unitX := val_unitX.
Definition val_unitV := val_unitV.
Definition unit_actE := unit_actE.
End Theory.
End FinRing.
Import FinRing.
Export Zmodule.Exports Ring.Exports ComRing.Exports.
Export UnitRing.Exports UnitsGroupExports ComUnitRing.Exports.
Export IntegralDomain.Exports Field.Exports DecField.Exports.
Export Lmodule.Exports Lalgebra.Exports Algebra.Exports UnitAlgebra.Exports.
Notation "{ 'unit' R }" := (unit_of (Phant R))
(at level 0, format "{ 'unit' R }") : type_scope.
Prenex Implicits FinRing.uval.
Notation "''U'" := (unit_action _) (at level 8) : action_scope.
Notation "''U'" := (unit_groupAction _) (at level 8) : groupAction_scope.
|