1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import fintype finset fingroup morphism perm action.
From mathcomp Require Import ssralg countalg.
(*****************************************************************************)
(* This file clones the entire ssralg hierachy for finite types; this allows *)
(* type inference to function properly on expressions that mix combinatorial *)
(* and algebraic operators (e.g., [set x + y | x in A, y in A]). *)
(* finZmodType, finRingType, finComRingType, finUnitRingType, *)
(* finComUnitRingType, finIdomType, finFieldType finLmodType, *)
(* finLalgType finAlgType finUnitAlgType *)
(* == the finite counterparts of zmodType, etc. *)
(* Note that a finFieldType is canonically decidable. All these structures *)
(* can be derived using [xxxType of T] forms, e.g., if R has both canonical *)
(* finType and ringType structures, then *)
(* Canonical R_finRingType := Eval hnf in [finRingType of R]. *)
(* declares the derived finRingType structure for R. As the implementation *)
(* of the derivation is somewhat involved, the Eval hnf normalization is *)
(* strongly recommended. *)
(* This file also provides direct tie-ins with finite group theory: *)
(* [baseFinGroupType of R for +%R] == the (canonical) additive group *)
(* [finGroupType of R for +%R] structures for R *)
(* {unit R} == the type of units of R, which has a *)
(* canonical group structure. *)
(* FinRing.unit R Ux == the element of {unit R} corresponding *)
(* to x, where Ux : x \in GRing.unit. *)
(* 'U%act == the action by right multiplication of *)
(* {unit R} on R, via FinRing.unit_act. *)
(* (This is also a group action.) *)
(*****************************************************************************)
Local Open Scope ring_scope.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Module FinRing.
Local Notation mixin_of T b := (Finite.mixin_of (EqType T b)).
Section Generic.
(* Implicits *)
Variables (type base_type : Type) (class_of base_of : Type -> Type).
Variable to_choice : forall T, base_of T -> Choice.class_of T.
Variable base_sort : base_type -> Type.
(* Explicits *)
Variable Pack : forall T, class_of T -> type.
Variable Class : forall T b, mixin_of T (to_choice b) -> class_of T.
Variable base_class : forall bT, base_of (base_sort bT).
Definition gen_pack T :=
fun bT b & phant_id (base_class bT) b =>
fun fT m & phant_id (Finite.class fT) (Finite.Class m) =>
Pack (@Class T b m).
End Generic.
Arguments gen_pack [type base_type class_of base_of to_choice base_sort].
Local Notation fin_ c := (@Finite.Class _ c c).
Local Notation do_pack pack T := (pack T _ _ id _ _ id).
Import GRing.Theory.
Definition groupMixin V := FinGroup.Mixin (@addrA V) (@add0r V) (@addNr V).
Local Notation base_group T vT fT :=
(@FinGroup.PackBase T (groupMixin vT) (Finite.class fT)).
Local Notation fin_group B V := (@FinGroup.Pack B (@addNr V)).
Module Zmodule.
Section ClassDef.
Record class_of M :=
Class { base : GRing.Zmodule.class_of M; mixin : mixin_of M base }.
Local Coercion base : class_of >-> GRing.Zmodule.class_of.
Local Coercion base2 R (c : class_of R) : CountRing.Zmodule.class_of R :=
CountRing.Zmodule.Class c (mixin c).
Local Coercion mixin : class_of >-> mixin_of.
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.Zmodule.class.
Variable cT : type.
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition countType := @Countable.Pack cT (fin_ xclass).
Definition finType := @Finite.Pack cT (fin_ xclass).
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition countZmodType := @CountRing.Zmodule.Pack cT xclass.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition zmod_finType := @Finite.Pack zmodType (fin_ xclass).
Definition zmod_baseFinGroupType := base_group zmodType zmodType finType.
Definition zmod_finGroupType := fin_group zmod_baseFinGroupType zmodType.
Definition countZmod_finType := @Finite.Pack countZmodType (fin_ xclass).
Definition countZmod_baseFinGroupType :=
base_group countZmodType zmodType finType.
Definition countZmod_finGroupType :=
fin_group countZmod_baseFinGroupType zmodType.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.Zmodule.class_of.
Coercion base2 : class_of >-> CountRing.Zmodule.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion baseFinGroupType : type >-> FinGroup.base_type.
Canonical baseFinGroupType.
Coercion finGroupType : type >-> FinGroup.type.
Canonical finGroupType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> CountRing.Zmodule.type.
Canonical countZmodType.
Canonical zmod_finType.
Canonical zmod_baseFinGroupType.
Canonical zmod_finGroupType.
Canonical countZmod_finType.
Canonical countZmod_baseFinGroupType.
Canonical countZmod_finGroupType.
Notation finZmodType := type.
Notation "[ 'finZmodType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finZmodType' 'of' T ]") : form_scope.
Notation "[ 'baseFinGroupType' 'of' R 'for' +%R ]" :=
(BaseFinGroupType R (groupMixin _))
(at level 0, format "[ 'baseFinGroupType' 'of' R 'for' +%R ]")
: form_scope.
Notation "[ 'finGroupType' 'of' R 'for' +%R ]" :=
(@FinGroup.clone R _ (finGroupType _) id _ id)
(at level 0, format "[ 'finGroupType' 'of' R 'for' +%R ]") : form_scope.
End Exports.
End Zmodule.
Import Zmodule.Exports.
Section AdditiveGroup.
Variable U : finZmodType.
Implicit Types x y : U.
Lemma zmod1gE : 1%g = 0 :> U. Proof. by []. Qed.
Lemma zmodVgE x : x^-1%g = - x. Proof. by []. Qed.
Lemma zmodMgE x y : (x * y)%g = x + y. Proof. by []. Qed.
Lemma zmodXgE n x : (x ^+ n)%g = x *+ n. Proof. by []. Qed.
Lemma zmod_mulgC x y : commute x y. Proof. exact: GRing.addrC. Qed.
Lemma zmod_abelian (A : {set U}) : abelian A.
Proof. by apply/centsP=> x _ y _; apply: zmod_mulgC. Qed.
End AdditiveGroup.
Module Ring.
Section ClassDef.
Record class_of R :=
Class { base : GRing.Ring.class_of R; mixin : mixin_of R base }.
Local Coercion base : class_of >-> GRing.Ring.class_of.
Local Coercion base2 R (c : class_of R) : CountRing.Ring.class_of R :=
CountRing.Ring.Class c (mixin c).
Local Coercion base3 R (c : class_of R) : Zmodule.class_of R :=
Zmodule.Class (mixin c).
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.Ring.class.
Variable cT : type.
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition countType := @Countable.Pack cT (fin_ xclass).
Definition finType := @Finite.Pack cT (fin_ xclass).
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition countZmodType := @CountRing.Zmodule.Pack cT xclass.
Definition finZmodType := @Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition countRingType := @CountRing.Ring.Pack cT xclass.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition ring_finType := @Finite.Pack ringType (fin_ xclass).
Definition ring_baseFinGroupType := base_group ringType zmodType finType.
Definition ring_finGroupType := fin_group ring_baseFinGroupType zmodType.
Definition ring_finZmodType := @Zmodule.Pack ringType xclass.
Definition countRing_finType := @Finite.Pack countRingType (fin_ xclass).
Definition countRing_baseFinGroupType :=
base_group countRingType zmodType finType.
Definition countRing_finGroupType :=
fin_group countRing_baseFinGroupType zmodType.
Definition countRing_finZmodType := @Zmodule.Pack countRingType xclass.
End ClassDef.
Module Import Exports.
Coercion base : class_of >-> GRing.Ring.class_of.
Coercion base2 : class_of >-> CountRing.Ring.class_of.
Coercion base3 : class_of >-> Zmodule.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion baseFinGroupType : type >-> FinGroup.base_type.
Canonical baseFinGroupType.
Coercion finGroupType : type >-> FinGroup.type.
Canonical finGroupType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> CountRing.Zmodule.type.
Canonical countZmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> CountRing.Ring.type.
Canonical countRingType.
Canonical ring_finType.
Canonical ring_baseFinGroupType.
Canonical ring_finGroupType.
Canonical ring_finZmodType.
Canonical countRing_finType.
Canonical countRing_baseFinGroupType.
Canonical countRing_finGroupType.
Canonical countRing_finZmodType.
Notation finRingType := type.
Notation "[ 'finRingType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finRingType' 'of' T ]") : form_scope.
End Exports.
Section Unit.
Variable R : finRingType.
Definition is_inv (x y : R) := (x * y == 1) && (y * x == 1).
Definition unit := [qualify a x : R | [exists y, is_inv x y]].
Definition inv x := odflt x (pick (is_inv x)).
Lemma mulVr : {in unit, left_inverse 1 inv *%R}.
Proof.
rewrite /inv => x Ux; case: pickP => [y | no_y]; last by case/pred0P: Ux.
by case/andP=> _; move/eqP.
Qed.
Lemma mulrV : {in unit, right_inverse 1 inv *%R}.
Proof.
rewrite /inv => x Ux; case: pickP => [y | no_y]; last by case/pred0P: Ux.
by case/andP; move/eqP.
Qed.
Lemma intro_unit x y : y * x = 1 /\ x * y = 1 -> x \is a unit.
Proof.
by case=> yx1 xy1; apply/existsP; exists y; rewrite /is_inv xy1 yx1 !eqxx.
Qed.
Lemma invr_out : {in [predC unit], inv =1 id}.
Proof.
rewrite /inv => x nUx; case: pickP => // y invxy.
by case/existsP: nUx; exists y.
Qed.
Definition UnitMixin := GRing.UnitRing.Mixin mulVr mulrV intro_unit invr_out.
End Unit.
End Ring.
Import Ring.Exports.
Module ComRing.
Section ClassDef.
Record class_of R :=
Class { base : GRing.ComRing.class_of R; mixin : mixin_of R base }.
Local Coercion base : class_of >-> GRing.ComRing.class_of.
Local Coercion base2 R (c : class_of R) : CountRing.ComRing.class_of R :=
CountRing.ComRing.Class c (mixin c).
Local Coercion base3 R (c : class_of R) : Ring.class_of R :=
Ring.Class (mixin c).
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.ComRing.class.
Variable cT : type.
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition countType := @Countable.Pack cT (fin_ xclass).
Definition finType := @Finite.Pack cT (fin_ xclass).
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition countZmodType := @CountRing.Zmodule.Pack cT xclass.
Definition finZmodType := @Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition countRingType := @CountRing.Ring.Pack cT xclass.
Definition finRingType := @Ring.Pack cT xclass.
Definition comRingType := @GRing.ComRing.Pack cT xclass.
Definition countComRingType := @CountRing.ComRing.Pack cT xclass.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition comRing_finType := @Finite.Pack comRingType (fin_ xclass).
Definition comRing_baseFinGroupType := base_group comRingType zmodType finType.
Definition comRing_finGroupType := fin_group comRing_baseFinGroupType zmodType.
Definition comRing_finZmodType := @Zmodule.Pack comRingType xclass.
Definition comRing_finRingType := @Ring.Pack comRingType xclass.
Definition countComRing_finType := @Finite.Pack countComRingType (fin_ xclass).
Definition countComRing_baseFinGroupType :=
base_group countComRingType zmodType finType.
Definition countComRing_finGroupType :=
fin_group countComRing_baseFinGroupType zmodType.
Definition countComRing_finZmodType := @Zmodule.Pack countComRingType xclass.
Definition countComRing_finRingType := @Ring.Pack countComRingType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.ComRing.class_of.
Coercion base2 : class_of >-> CountRing.ComRing.class_of.
Coercion base3 : class_of >-> Ring.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion baseFinGroupType : type >-> FinGroup.base_type.
Canonical baseFinGroupType.
Coercion finGroupType : type >-> FinGroup.type.
Canonical finGroupType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> CountRing.Zmodule.type.
Canonical countZmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> CountRing.Ring.type.
Canonical countRingType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion countComRingType : type >-> CountRing.ComRing.type.
Canonical countComRingType.
Canonical comRing_finType.
Canonical comRing_baseFinGroupType.
Canonical comRing_finGroupType.
Canonical comRing_finZmodType.
Canonical comRing_finRingType.
Canonical countComRing_finType.
Canonical countComRing_baseFinGroupType.
Canonical countComRing_finGroupType.
Canonical countComRing_finZmodType.
Canonical countComRing_finRingType.
Notation finComRingType := FinRing.ComRing.type.
Notation "[ 'finComRingType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finComRingType' 'of' T ]") : form_scope.
End Exports.
End ComRing.
Import ComRing.Exports.
Module UnitRing.
Section ClassDef.
Record class_of R :=
Class { base : GRing.UnitRing.class_of R; mixin : mixin_of R base }.
Local Coercion base : class_of >-> GRing.UnitRing.class_of.
Local Coercion base2 R (c : class_of R) : CountRing.UnitRing.class_of R :=
CountRing.UnitRing.Class c (mixin c).
Local Coercion base3 R (c : class_of R) : Ring.class_of R :=
Ring.Class (mixin c).
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.UnitRing.class.
Variable cT : type.
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition countType := @Countable.Pack cT (fin_ xclass).
Definition finType := @Finite.Pack cT (fin_ xclass).
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition countZmodType := @CountRing.Zmodule.Pack cT xclass.
Definition finZmodType := @Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition countRingType := @CountRing.Ring.Pack cT xclass.
Definition finRingType := @Ring.Pack cT xclass.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
Definition countUnitRingType := @CountRing.UnitRing.Pack cT xclass.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition unitRing_finType := @Finite.Pack unitRingType (fin_ xclass).
Definition unitRing_baseFinGroupType :=
base_group unitRingType zmodType finType.
Definition unitRing_finGroupType :=
fin_group unitRing_baseFinGroupType zmodType.
Definition unitRing_finZmodType := @Zmodule.Pack unitRingType xclass.
Definition unitRing_finRingType := @Ring.Pack unitRingType xclass.
Definition countUnitRing_finType :=
@Finite.Pack countUnitRingType (fin_ xclass).
Definition countUnitRing_baseFinGroupType :=
base_group countUnitRingType zmodType finType.
Definition countUnitRing_finGroupType :=
fin_group countUnitRing_baseFinGroupType zmodType.
Definition countUnitRing_finZmodType := @Zmodule.Pack countUnitRingType xclass.
Definition countUnitRing_finRingType := @Ring.Pack countUnitRingType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.UnitRing.class_of.
Coercion base2 : class_of >-> CountRing.UnitRing.class_of.
Coercion base3 : class_of >-> Ring.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion baseFinGroupType : type >-> FinGroup.base_type.
Canonical baseFinGroupType.
Coercion finGroupType : type >-> FinGroup.type.
Canonical finGroupType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> CountRing.Zmodule.type.
Canonical countZmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> CountRing.Ring.type.
Canonical countRingType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion countUnitRingType : type >-> CountRing.UnitRing.type.
Canonical countUnitRingType.
Canonical unitRing_finType.
Canonical unitRing_baseFinGroupType.
Canonical unitRing_finGroupType.
Canonical unitRing_finZmodType.
Canonical unitRing_finRingType.
Canonical countUnitRing_finType.
Canonical countUnitRing_baseFinGroupType.
Canonical countUnitRing_finGroupType.
Canonical countUnitRing_finZmodType.
Canonical countUnitRing_finRingType.
Notation finUnitRingType := FinRing.UnitRing.type.
Notation "[ 'finUnitRingType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finUnitRingType' 'of' T ]") : form_scope.
End Exports.
End UnitRing.
Import UnitRing.Exports.
Section UnitsGroup.
Variable R : finUnitRingType.
Inductive unit_of (phR : phant R) := Unit (x : R) of x \is a GRing.unit.
Bind Scope group_scope with unit_of.
Let phR := Phant R.
Local Notation uT := (unit_of phR).
Implicit Types u v : uT.
Definition uval u := let: Unit x _ := u in x.
Canonical unit_subType := [subType for uval].
Definition unit_eqMixin := Eval hnf in [eqMixin of uT by <:].
Canonical unit_eqType := Eval hnf in EqType uT unit_eqMixin.
Definition unit_choiceMixin := [choiceMixin of uT by <:].
Canonical unit_choiceType := Eval hnf in ChoiceType uT unit_choiceMixin.
Definition unit_countMixin := [countMixin of uT by <:].
Canonical unit_countType := Eval hnf in CountType uT unit_countMixin.
Canonical unit_subCountType := Eval hnf in [subCountType of uT].
Definition unit_finMixin := [finMixin of uT by <:].
Canonical unit_finType := Eval hnf in FinType uT unit_finMixin.
Canonical unit_subFinType := Eval hnf in [subFinType of uT].
Definition unit1 := Unit phR (@GRing.unitr1 _).
Lemma unit_inv_proof u : (val u)^-1 \is a GRing.unit.
Proof. by rewrite GRing.unitrV ?(valP u). Qed.
Definition unit_inv u := Unit phR (unit_inv_proof u).
Lemma unit_mul_proof u v : val u * val v \is a GRing.unit.
Proof. by rewrite (GRing.unitrMr _ (valP u)) ?(valP v). Qed.
Definition unit_mul u v := Unit phR (unit_mul_proof u v).
Lemma unit_muluA : associative unit_mul.
Proof. by move=> u v w; apply: val_inj; apply: GRing.mulrA. Qed.
Lemma unit_mul1u : left_id unit1 unit_mul.
Proof. by move=> u; apply: val_inj; apply: GRing.mul1r. Qed.
Lemma unit_mulVu : left_inverse unit1 unit_inv unit_mul.
Proof. by move=> u; apply: val_inj; apply: GRing.mulVr (valP u). Qed.
Definition unit_GroupMixin := FinGroup.Mixin unit_muluA unit_mul1u unit_mulVu.
Canonical unit_baseFinGroupType :=
Eval hnf in BaseFinGroupType uT unit_GroupMixin.
Canonical unit_finGroupType := Eval hnf in FinGroupType unit_mulVu.
Lemma val_unit1 : val (1%g : uT) = 1. Proof. by []. Qed.
Lemma val_unitM x y : val (x * y : uT)%g = val x * val y. Proof. by []. Qed.
Lemma val_unitV x : val (x^-1 : uT)%g = (val x)^-1. Proof. by []. Qed.
Lemma val_unitX n x : val (x ^+ n : uT)%g = val x ^+ n.
Proof. by case: n; last by elim=> //= n ->. Qed.
Definition unit_act x u := x * val u.
Lemma unit_actE x u : unit_act x u = x * val u. Proof. by []. Qed.
Canonical unit_action :=
@TotalAction _ _ unit_act (@GRing.mulr1 _) (fun _ _ _ => GRing.mulrA _ _ _).
Lemma unit_is_groupAction : @is_groupAction _ R setT setT unit_action.
Proof.
move=> u _ /=; rewrite inE; apply/andP; split.
by apply/subsetP=> x _; rewrite inE.
by apply/morphicP=> x y _ _; rewrite !actpermE /= [_ u]GRing.mulrDl.
Qed.
Canonical unit_groupAction := GroupAction unit_is_groupAction.
End UnitsGroup.
Module Import UnitsGroupExports.
Bind Scope group_scope with unit_of.
Canonical unit_subType.
Canonical unit_eqType.
Canonical unit_choiceType.
Canonical unit_countType.
Canonical unit_subCountType.
Canonical unit_finType.
Canonical unit_subFinType.
Canonical unit_baseFinGroupType.
Canonical unit_finGroupType.
Canonical unit_action.
Canonical unit_groupAction.
End UnitsGroupExports.
Notation unit R Ux := (Unit (Phant R) Ux).
Module ComUnitRing.
Section ClassDef.
Record class_of R :=
Class { base : GRing.ComUnitRing.class_of R; mixin : mixin_of R base }.
Local Coercion base : class_of >-> GRing.ComUnitRing.class_of.
Local Coercion base2 R (c : class_of R) : CountRing.ComUnitRing.class_of R :=
CountRing.ComUnitRing.Class c (mixin c).
Local Coercion base3 R (c : class_of R) : ComRing.class_of R :=
ComRing.Class (mixin c).
Local Coercion base4 R (c : class_of R) : UnitRing.class_of R :=
@UnitRing.Class R (base c) (mixin c).
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.ComUnitRing.class.
Variable cT : type.
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition countType := @Countable.Pack cT (fin_ xclass).
Definition finType := @Finite.Pack cT (fin_ xclass).
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition countZmodType := @CountRing.Zmodule.Pack cT xclass.
Definition finZmodType := @Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition countRingType := @CountRing.Ring.Pack cT xclass.
Definition finRingType := @Ring.Pack cT xclass.
Definition comRingType := @GRing.ComRing.Pack cT xclass.
Definition countComRingType := @CountRing.ComRing.Pack cT xclass.
Definition finComRingType := @ComRing.Pack cT xclass.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
Definition countUnitRingType := @CountRing.UnitRing.Pack cT xclass.
Definition finUnitRingType := @UnitRing.Pack cT xclass.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
Definition countComUnitRingType := @CountRing.ComUnitRing.Pack cT xclass.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition comUnitRing_finType := @Finite.Pack comUnitRingType (fin_ xclass).
Definition comUnitRing_baseFinGroupType :=
base_group comUnitRingType zmodType finType.
Definition comUnitRing_finGroupType :=
fin_group comUnitRing_baseFinGroupType zmodType.
Definition comUnitRing_finZmodType := @Zmodule.Pack comUnitRingType xclass.
Definition comUnitRing_finRingType := @Ring.Pack comUnitRingType xclass.
Definition comUnitRing_finComRingType := @ComRing.Pack comUnitRingType xclass.
Definition comUnitRing_finUnitRingType := @UnitRing.Pack comUnitRingType xclass.
Definition countComUnitRing_finType :=
@Finite.Pack countComUnitRingType (fin_ xclass).
Definition countComUnitRing_baseFinGroupType :=
base_group countComUnitRingType zmodType finType.
Definition countComUnitRing_finGroupType :=
fin_group countComUnitRing_baseFinGroupType zmodType.
Definition countComUnitRing_finZmodType :=
@Zmodule.Pack countComUnitRingType xclass.
Definition countComUnitRing_finRingType :=
@Ring.Pack countComUnitRingType xclass.
Definition countComUnitRing_finComRingType :=
@ComRing.Pack countComUnitRingType xclass.
Definition countComUnitRing_finUnitRingType :=
@UnitRing.Pack countComUnitRingType xclass.
Definition unitRing_finComRingType := @ComRing.Pack unitRingType xclass.
Definition countUnitRing_finComRingType :=
@ComRing.Pack countUnitRingType xclass.
Definition comRing_finUnitRingType := @UnitRing.Pack comRingType xclass.
Definition countComRing_finUnitRingType :=
@UnitRing.Pack countComRingType xclass.
Definition finComRing_finUnitRingType := @UnitRing.Pack finComRingType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.ComUnitRing.class_of.
Coercion base2 : class_of >-> CountRing.ComUnitRing.class_of.
Coercion base3 : class_of >-> ComRing.class_of.
Coercion base4 : class_of >-> UnitRing.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion baseFinGroupType : type >-> FinGroup.base_type.
Canonical baseFinGroupType.
Coercion finGroupType : type >-> FinGroup.type.
Canonical finGroupType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> CountRing.Zmodule.type.
Canonical countZmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> CountRing.Ring.type.
Canonical countRingType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion countComRingType : type >-> CountRing.ComRing.type.
Canonical countComRingType.
Coercion finComRingType : type >-> ComRing.type.
Canonical finComRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion countUnitRingType : type >-> CountRing.UnitRing.type.
Canonical countUnitRingType.
Coercion finUnitRingType : type >-> UnitRing.type.
Canonical finUnitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion countComUnitRingType : type >-> CountRing.ComUnitRing.type.
Canonical countComUnitRingType.
Canonical comUnitRing_finType.
Canonical comUnitRing_baseFinGroupType.
Canonical comUnitRing_finGroupType.
Canonical comUnitRing_finZmodType.
Canonical comUnitRing_finRingType.
Canonical comUnitRing_finComRingType.
Canonical comUnitRing_finUnitRingType.
Canonical countComUnitRing_finType.
Canonical countComUnitRing_baseFinGroupType.
Canonical countComUnitRing_finGroupType.
Canonical countComUnitRing_finZmodType.
Canonical countComUnitRing_finRingType.
Canonical countComUnitRing_finComRingType.
Canonical countComUnitRing_finUnitRingType.
Canonical unitRing_finComRingType.
Canonical countUnitRing_finComRingType.
Canonical comRing_finUnitRingType.
Canonical countComRing_finUnitRingType.
Canonical finComRing_finUnitRingType.
Notation finComUnitRingType := FinRing.ComUnitRing.type.
Notation "[ 'finComUnitRingType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finComUnitRingType' 'of' T ]") : form_scope.
End Exports.
End ComUnitRing.
Import ComUnitRing.Exports.
Module IntegralDomain.
Section ClassDef.
Record class_of R :=
Class { base : GRing.IntegralDomain.class_of R; mixin : mixin_of R base }.
Local Coercion base : class_of >-> GRing.IntegralDomain.class_of.
Local Coercion base2 R (c : class_of R) : CountRing.IntegralDomain.class_of R :=
CountRing.IntegralDomain.Class c (mixin c).
Local Coercion base3 R (c : class_of R) : ComUnitRing.class_of R :=
ComUnitRing.Class (mixin c).
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.IntegralDomain.class.
Variable cT : type.
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition countType := @Countable.Pack cT (fin_ xclass).
Definition finType := @Finite.Pack cT (fin_ xclass).
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition countZmodType := @CountRing.Zmodule.Pack cT xclass.
Definition finZmodType := @Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition countRingType := @CountRing.Ring.Pack cT xclass.
Definition finRingType := @Ring.Pack cT xclass.
Definition comRingType := @GRing.ComRing.Pack cT xclass.
Definition countComRingType := @CountRing.ComRing.Pack cT xclass.
Definition finComRingType := @ComRing.Pack cT xclass.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
Definition countUnitRingType := @CountRing.UnitRing.Pack cT xclass.
Definition finUnitRingType := @UnitRing.Pack cT xclass.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
Definition countComUnitRingType := @CountRing.ComUnitRing.Pack cT xclass.
Definition finComUnitRingType := @ComUnitRing.Pack cT xclass.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
Definition countIdomainType := @CountRing.IntegralDomain.Pack cT xclass.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition idomain_finType := @Finite.Pack idomainType (fin_ xclass).
Definition idomain_baseFinGroupType := base_group idomainType zmodType finType.
Definition idomain_finGroupType := fin_group idomain_baseFinGroupType zmodType.
Definition idomain_finZmodType := @Zmodule.Pack idomainType xclass.
Definition idomain_finRingType := @Ring.Pack idomainType xclass.
Definition idomain_finUnitRingType := @UnitRing.Pack idomainType xclass.
Definition idomain_finComRingType := @ComRing.Pack idomainType xclass.
Definition idomain_finComUnitRingType := @ComUnitRing.Pack idomainType xclass.
Definition countIdomain_finType := @Finite.Pack countIdomainType (fin_ xclass).
Definition countIdomain_baseFinGroupType :=
base_group countIdomainType zmodType finType.
Definition countIdomain_finGroupType :=
fin_group countIdomain_baseFinGroupType zmodType.
Definition countIdomain_finZmodType := @Zmodule.Pack countIdomainType xclass.
Definition countIdomain_finRingType := @Ring.Pack countIdomainType xclass.
Definition countIdomain_finUnitRingType :=
@UnitRing.Pack countIdomainType xclass.
Definition countIdomain_finComRingType := @ComRing.Pack countIdomainType xclass.
Definition countIdomain_finComUnitRingType :=
@ComUnitRing.Pack countIdomainType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.IntegralDomain.class_of.
Coercion base2 : class_of >-> CountRing.IntegralDomain.class_of.
Coercion base3 : class_of >-> ComUnitRing.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion baseFinGroupType : type >-> FinGroup.base_type.
Canonical baseFinGroupType.
Coercion finGroupType : type >-> FinGroup.type.
Canonical finGroupType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> CountRing.Zmodule.type.
Canonical countZmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> CountRing.Ring.type.
Canonical countRingType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion countComRingType : type >-> CountRing.ComRing.type.
Canonical countComRingType.
Coercion finComRingType : type >-> ComRing.type.
Canonical finComRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion countUnitRingType : type >-> CountRing.UnitRing.type.
Canonical countUnitRingType.
Coercion finUnitRingType : type >-> UnitRing.type.
Canonical finUnitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion countComUnitRingType : type >-> CountRing.ComUnitRing.type.
Canonical countComUnitRingType.
Coercion finComUnitRingType : type >-> ComUnitRing.type.
Canonical finComUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion countIdomainType : type >-> CountRing.IntegralDomain.type.
Canonical countIdomainType.
Canonical idomain_finType.
Canonical idomain_baseFinGroupType.
Canonical idomain_finGroupType.
Canonical idomain_finZmodType.
Canonical idomain_finRingType.
Canonical idomain_finUnitRingType.
Canonical idomain_finComRingType.
Canonical idomain_finComUnitRingType.
Canonical countIdomain_finType.
Canonical countIdomain_baseFinGroupType.
Canonical countIdomain_finGroupType.
Canonical countIdomain_finZmodType.
Canonical countIdomain_finRingType.
Canonical countIdomain_finUnitRingType.
Canonical countIdomain_finComRingType.
Canonical countIdomain_finComUnitRingType.
Notation finIdomainType := FinRing.IntegralDomain.type.
Notation "[ 'finIdomainType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finIdomainType' 'of' T ]") : form_scope.
End Exports.
End IntegralDomain.
Import IntegralDomain.Exports.
Module Field.
Section ClassDef.
Record class_of R :=
Class { base : GRing.Field.class_of R; mixin : mixin_of R base }.
Local Coercion base : class_of >-> GRing.Field.class_of.
Local Coercion base2 R (c : class_of R) : CountRing.Field.class_of R :=
CountRing.Field.Class c (mixin c).
Local Coercion base3 R (c : class_of R) : IntegralDomain.class_of R :=
IntegralDomain.Class (mixin c).
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Definition pack := gen_pack Pack Class GRing.Field.class.
Variable cT : type.
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition countType := @Countable.Pack cT (fin_ xclass).
Definition finType := @Finite.Pack cT (fin_ xclass).
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition countZmodType := @CountRing.Zmodule.Pack cT xclass.
Definition finZmodType := @Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition countRingType := @CountRing.Ring.Pack cT xclass.
Definition finRingType := @Ring.Pack cT xclass.
Definition comRingType := @GRing.ComRing.Pack cT xclass.
Definition countComRingType := @CountRing.ComRing.Pack cT xclass.
Definition finComRingType := @ComRing.Pack cT xclass.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
Definition countUnitRingType := @CountRing.UnitRing.Pack cT xclass.
Definition finUnitRingType := @UnitRing.Pack cT xclass.
Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass.
Definition countComUnitRingType := @CountRing.ComUnitRing.Pack cT xclass.
Definition finComUnitRingType := @ComUnitRing.Pack cT xclass.
Definition idomainType := @GRing.IntegralDomain.Pack cT xclass.
Definition countIdomainType := @CountRing.IntegralDomain.Pack cT xclass.
Definition finIdomainType := @IntegralDomain.Pack cT xclass.
Definition fieldType := @GRing.Field.Pack cT xclass.
Definition countFieldType := @CountRing.Field.Pack cT xclass.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition field_finType := @Finite.Pack fieldType (fin_ xclass).
Definition field_baseFinGroupType := base_group fieldType zmodType finType.
Definition field_finGroupType := fin_group field_baseFinGroupType zmodType.
Definition field_finZmodType := @Zmodule.Pack fieldType xclass.
Definition field_finRingType := @Ring.Pack fieldType xclass.
Definition field_finUnitRingType := @UnitRing.Pack fieldType xclass.
Definition field_finComRingType := @ComRing.Pack fieldType xclass.
Definition field_finComUnitRingType := @ComUnitRing.Pack fieldType xclass.
Definition field_finIdomainType := @IntegralDomain.Pack fieldType xclass.
Definition countField_finType := @Finite.Pack countFieldType (fin_ xclass).
Definition countField_baseFinGroupType :=
base_group countFieldType zmodType finType.
Definition countField_finGroupType :=
fin_group countField_baseFinGroupType zmodType.
Definition countField_finZmodType := @Zmodule.Pack countFieldType xclass.
Definition countField_finRingType := @Ring.Pack countFieldType xclass.
Definition countField_finUnitRingType := @UnitRing.Pack countFieldType xclass.
Definition countField_finComRingType := @ComRing.Pack countFieldType xclass.
Definition countField_finComUnitRingType :=
@ComUnitRing.Pack countFieldType xclass.
Definition countField_finIdomainType :=
@IntegralDomain.Pack countFieldType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.Field.class_of.
Coercion base2 : class_of >-> CountRing.Field.class_of.
Coercion base3 : class_of >-> IntegralDomain.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion baseFinGroupType : type >-> FinGroup.base_type.
Canonical baseFinGroupType.
Coercion finGroupType : type >-> FinGroup.type.
Canonical finGroupType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> CountRing.Zmodule.type.
Canonical countZmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> CountRing.Ring.type.
Canonical countRingType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion comRingType : type >-> GRing.ComRing.type.
Canonical comRingType.
Coercion countComRingType : type >-> CountRing.ComRing.type.
Canonical countComRingType.
Coercion finComRingType : type >-> ComRing.type.
Canonical finComRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion countUnitRingType : type >-> CountRing.UnitRing.type.
Canonical countUnitRingType.
Coercion finUnitRingType : type >-> UnitRing.type.
Canonical finUnitRingType.
Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
Canonical comUnitRingType.
Coercion countComUnitRingType : type >-> CountRing.ComUnitRing.type.
Canonical countComUnitRingType.
Coercion finComUnitRingType : type >-> ComUnitRing.type.
Canonical finComUnitRingType.
Coercion idomainType : type >-> GRing.IntegralDomain.type.
Canonical idomainType.
Coercion countIdomainType : type >-> CountRing.IntegralDomain.type.
Canonical countIdomainType.
Coercion finIdomainType : type >-> IntegralDomain.type.
Canonical finIdomainType.
Coercion fieldType : type >-> GRing.Field.type.
Canonical fieldType.
Coercion countFieldType : type >-> CountRing.Field.type.
Canonical countFieldType.
Canonical field_finType.
Canonical field_baseFinGroupType.
Canonical field_finGroupType.
Canonical field_finZmodType.
Canonical field_finRingType.
Canonical field_finUnitRingType.
Canonical field_finComRingType.
Canonical field_finComUnitRingType.
Canonical field_finIdomainType.
Canonical countField_finType.
Canonical countField_baseFinGroupType.
Canonical countField_finGroupType.
Canonical countField_finZmodType.
Canonical countField_finRingType.
Canonical countField_finUnitRingType.
Canonical countField_finComRingType.
Canonical countField_finComUnitRingType.
Canonical countField_finIdomainType.
Notation finFieldType := FinRing.Field.type.
Notation "[ 'finFieldType' 'of' T ]" := (do_pack pack T)
(at level 0, format "[ 'finFieldType' 'of' T ]") : form_scope.
End Exports.
End Field.
Import Field.Exports.
Section DecideField.
Variable F : Field.type.
Fixpoint sat e f :=
match f with
| GRing.Bool b => b
| t1 == t2 => (GRing.eval e t1 == GRing.eval e t2)%bool
| GRing.Unit t => GRing.eval e t \is a GRing.unit
| f1 /\ f2 => sat e f1 && sat e f2
| f1 \/ f2 => sat e f1 || sat e f2
| f1 ==> f2 => (sat e f1 ==> sat e f2)%bool
| ~ f1 => ~~ sat e f1
| ('exists 'X_k, f1) => [exists x : F, sat (set_nth 0%R e k x) f1]
| ('forall 'X_k, f1) => [forall x : F, sat (set_nth 0%R e k x) f1]
end%T.
Lemma decidable : GRing.DecidableField.axiom sat.
Proof.
move=> e f; elim: f e;
try by move=> f1 IH1 f2 IH2 e /=; case IH1; case IH2; constructor; tauto.
- by move=> b e; apply: idP.
- by move=> t1 t2 e; apply: eqP.
- by move=> t e; apply: idP.
- by move=> f IH e /=; case: IH; constructor.
- by move=> i f IH e; apply: (iffP existsP) => [] [x fx]; exists x; apply/IH.
by move=> i f IH e; apply: (iffP forallP) => f_ x; apply/IH.
Qed.
Definition DecidableFieldMixin := DecFieldMixin decidable.
End DecideField.
Module DecField.
Section Joins.
Variable cT : Field.type.
Let xT := let: Field.Pack T _ := cT in T.
Let xclass : Field.class_of xT := Field.class cT.
Definition type := Eval hnf in DecFieldType cT (DecidableFieldMixin cT).
Definition finType := @Finite.Pack type (fin_ xclass).
Definition finZmodType := @Zmodule.Pack type xclass.
Definition finRingType := @Ring.Pack type xclass.
Definition finUnitRingType := @UnitRing.Pack type xclass.
Definition finComRingType := @ComRing.Pack type xclass.
Definition finComUnitRingType := @ComUnitRing.Pack type xclass.
Definition finIdomainType := @IntegralDomain.Pack type xclass.
Definition baseFinGroupType := base_group type finZmodType finZmodType.
Definition finGroupType := fin_group baseFinGroupType cT.
End Joins.
Module Exports.
Coercion type : Field.type >-> GRing.DecidableField.type.
Canonical type.
Canonical finType.
Canonical finZmodType.
Canonical finRingType.
Canonical finUnitRingType.
Canonical finComRingType.
Canonical finComUnitRingType.
Canonical finIdomainType.
Canonical baseFinGroupType.
Canonical finGroupType.
End Exports.
End DecField.
Module Lmodule.
Section ClassDef.
Variable R : ringType.
Record class_of M :=
Class { base : GRing.Lmodule.class_of R M; mixin : mixin_of M base }.
Local Coercion base : class_of >-> GRing.Lmodule.class_of.
Local Coercion base2 R (c : class_of R) : Zmodule.class_of R :=
Zmodule.Class (mixin c).
Structure type (phR : phant R) := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (phR : phant R) (cT : type phR).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Definition pack := gen_pack (Pack phR) Class (@GRing.Lmodule.class R phR).
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition countType := @Countable.Pack cT (fin_ xclass).
Definition finType := @Finite.Pack cT (fin_ xclass).
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition countZmodType := @CountRing.Zmodule.Pack cT xclass.
Definition finZmodType := @Zmodule.Pack cT xclass.
Definition lmodType := @GRing.Lmodule.Pack R phR cT xclass.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition lmod_countType := @Countable.Pack lmodType (fin_ xclass).
Definition lmod_finType := @Finite.Pack lmodType (fin_ xclass).
Definition lmod_baseFinGroupType := base_group lmodType zmodType finType.
Definition lmod_finGroupType := fin_group lmod_baseFinGroupType zmodType.
Definition lmod_countZmodType := @CountRing.Zmodule.Pack lmodType xclass.
Definition lmod_finZmodType := @Zmodule.Pack lmodType xclass.
End ClassDef.
Module Import Exports.
Coercion base : class_of >-> GRing.Lmodule.class_of.
Coercion base2 : class_of >-> Zmodule.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion baseFinGroupType : type >-> FinGroup.base_type.
Canonical baseFinGroupType.
Coercion finGroupType : type >-> FinGroup.type.
Canonical finGroupType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> CountRing.Zmodule.type.
Canonical countZmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion lmodType : type >-> GRing.Lmodule.type.
Canonical lmodType.
Canonical lmod_countType.
Canonical lmod_finType.
Canonical lmod_baseFinGroupType.
Canonical lmod_finGroupType.
Canonical lmod_countZmodType.
Canonical lmod_finZmodType.
Notation finLmodType R := (FinRing.Lmodule.type (Phant R)).
Notation "[ 'finLmodType' R 'of' T ]" := (do_pack (@pack _ (Phant R)) T)
(at level 0, format "[ 'finLmodType' R 'of' T ]") : form_scope.
End Exports.
End Lmodule.
Import Lmodule.Exports.
Module Lalgebra.
Section ClassDef.
Variable R : ringType.
Record class_of M :=
Class { base : GRing.Lalgebra.class_of R M; mixin : mixin_of M base }.
Definition base2 M (c : class_of M) := Ring.Class (mixin c).
Definition base3 M (c : class_of M) := @Lmodule.Class _ _ (base c) (mixin c).
Local Coercion base : class_of >-> GRing.Lalgebra.class_of.
Local Coercion base2 : class_of >-> Ring.class_of.
Local Coercion base3 : class_of >-> Lmodule.class_of.
Structure type (phR : phant R) := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (phR : phant R) (cT : type phR).
Definition pack := gen_pack (Pack phR) Class (@GRing.Lalgebra.class R phR).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition countType := @Countable.Pack cT (fin_ xclass).
Definition finType := @Finite.Pack cT (fin_ xclass).
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition countZmodType := @CountRing.Zmodule.Pack cT xclass.
Definition finZmodType := @Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition countRingType := @CountRing.Ring.Pack cT xclass.
Definition finRingType := @Ring.Pack cT xclass.
Definition lmodType := @GRing.Lmodule.Pack R phR cT xclass.
Definition finLmodType := @Lmodule.Pack R phR cT xclass.
Definition lalgType := @GRing.Lalgebra.Pack R phR cT xclass.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition lalg_countType := @Countable.Pack lalgType (fin_ xclass).
Definition lalg_finType := @Finite.Pack lalgType (fin_ xclass).
Definition lalg_baseFinGroupType := base_group lalgType zmodType finType.
Definition lalg_finGroupType := fin_group lalg_baseFinGroupType zmodType.
Definition lalg_countZmodType := @CountRing.Zmodule.Pack lalgType xclass.
Definition lalg_finZmodType := @Zmodule.Pack lalgType xclass.
Definition lalg_finLmodType := @Lmodule.Pack R phR lalgType xclass.
Definition lalg_countRingType := @CountRing.Ring.Pack lalgType xclass.
Definition lalg_finRingType := @Ring.Pack lalgType xclass.
Definition lmod_countRingType := @CountRing.Ring.Pack lmodType xclass.
Definition lmod_finRingType := @Ring.Pack lmodType xclass.
Definition finLmod_ringType := @GRing.Ring.Pack finLmodType xclass.
Definition finLmod_countRingType := @CountRing.Ring.Pack finLmodType xclass.
Definition finLmod_finRingType := @Ring.Pack finLmodType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.Lalgebra.class_of.
Coercion base2 : class_of >-> Ring.class_of.
Coercion base3 : class_of >-> Lmodule.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion baseFinGroupType : type >-> FinGroup.base_type.
Canonical baseFinGroupType.
Coercion finGroupType : type >-> FinGroup.type.
Canonical finGroupType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> CountRing.Zmodule.type.
Canonical countZmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> CountRing.Ring.type.
Canonical countRingType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion lmodType : type >-> GRing.Lmodule.type.
Canonical lmodType.
Coercion finLmodType : type >-> Lmodule.type.
Canonical finLmodType.
Coercion lalgType : type >-> GRing.Lalgebra.type.
Canonical lalgType.
Canonical lalg_countType.
Canonical lalg_finType.
Canonical lalg_baseFinGroupType.
Canonical lalg_finGroupType.
Canonical lalg_countZmodType.
Canonical lalg_finZmodType.
Canonical lalg_finLmodType.
Canonical lalg_countRingType.
Canonical lalg_finRingType.
Canonical lmod_countRingType.
Canonical lmod_finRingType.
Canonical finLmod_ringType.
Canonical finLmod_countRingType.
Canonical finLmod_finRingType.
Notation finLalgType R := (FinRing.Lalgebra.type (Phant R)).
Notation "[ 'finLalgType' R 'of' T ]" := (do_pack (@pack _ (Phant R)) T)
(at level 0, format "[ 'finLalgType' R 'of' T ]") : form_scope.
End Exports.
End Lalgebra.
Import Lalgebra.Exports.
Module Algebra.
Section ClassDef.
Variable R : ringType.
Record class_of M :=
Class { base : GRing.Algebra.class_of R M; mixin : mixin_of M base }.
Definition base2 M (c : class_of M) := Lalgebra.Class (mixin c).
Local Coercion base : class_of >-> GRing.Algebra.class_of.
Local Coercion base2 : class_of >->Lalgebra.class_of.
Structure type (phR : phant R) := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (phR : phant R) (cT : type phR).
Definition pack := gen_pack (Pack phR) Class (@GRing.Algebra.class R phR).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition countType := @Countable.Pack cT (fin_ xclass).
Definition finType := @Finite.Pack cT (fin_ xclass).
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition countZmodType := @CountRing.Zmodule.Pack cT xclass.
Definition finZmodType := @Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition countRingType := @CountRing.Ring.Pack cT xclass.
Definition finRingType := @Ring.Pack cT xclass.
Definition lmodType := @GRing.Lmodule.Pack R phR cT xclass.
Definition finLmodType := @Lmodule.Pack R phR cT xclass.
Definition lalgType := @GRing.Lalgebra.Pack R phR cT xclass.
Definition finLalgType := @Lalgebra.Pack R phR cT xclass.
Definition algType := @GRing.Algebra.Pack R phR cT xclass.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition alg_countType := @Countable.Pack algType (fin_ xclass).
Definition alg_finType := @Finite.Pack algType (fin_ xclass).
Definition alg_baseFinGroupType := base_group algType zmodType finType.
Definition alg_finGroupType := fin_group alg_baseFinGroupType zmodType.
Definition alg_countZmodType := @CountRing.Zmodule.Pack algType xclass.
Definition alg_finZmodType := @Zmodule.Pack algType xclass.
Definition alg_countRingType := @CountRing.Ring.Pack algType xclass.
Definition alg_finRingType := @Ring.Pack algType xclass.
Definition alg_finLmodType := @Lmodule.Pack R phR algType xclass.
Definition alg_finLalgType := @Lalgebra.Pack R phR algType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.Algebra.class_of.
Coercion base2 : class_of >-> Lalgebra.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion baseFinGroupType : type >-> FinGroup.base_type.
Canonical baseFinGroupType.
Coercion finGroupType : type >-> FinGroup.type.
Canonical finGroupType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> CountRing.Zmodule.type.
Canonical countZmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> CountRing.Ring.type.
Canonical countRingType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion lmodType : type >-> GRing.Lmodule.type.
Canonical lmodType.
Coercion finLmodType : type >-> Lmodule.type.
Canonical finLmodType.
Coercion lalgType : type >-> GRing.Lalgebra.type.
Canonical lalgType.
Coercion finLalgType : type >-> Lalgebra.type.
Canonical finLalgType.
Coercion algType : type >-> GRing.Algebra.type.
Canonical algType.
Canonical alg_countType.
Canonical alg_finType.
Canonical alg_baseFinGroupType.
Canonical alg_finGroupType.
Canonical alg_countZmodType.
Canonical alg_finZmodType.
Canonical alg_countRingType.
Canonical alg_finRingType.
Canonical alg_finLmodType.
Canonical alg_finLalgType.
Notation finAlgType R := (type (Phant R)).
Notation "[ 'finAlgType' R 'of' T ]" := (do_pack (@pack _ (Phant R)) T)
(at level 0, format "[ 'finAlgType' R 'of' T ]") : form_scope.
End Exports.
End Algebra.
Import Algebra.Exports.
Module UnitAlgebra.
Section ClassDef.
Variable R : unitRingType.
Record class_of M :=
Class { base : GRing.UnitAlgebra.class_of R M; mixin : mixin_of M base }.
Definition base2 M (c : class_of M) := Algebra.Class (mixin c).
Definition base3 M (c : class_of M) := @UnitRing.Class _ (base c) (mixin c).
Local Coercion base : class_of >-> GRing.UnitAlgebra.class_of.
Local Coercion base2 : class_of >-> Algebra.class_of.
Local Coercion base3 : class_of >-> UnitRing.class_of.
Structure type (phR : phant R) := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (phR : phant R) (cT : type phR).
Definition pack := gen_pack (Pack phR) Class (@GRing.UnitAlgebra.class R phR).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition countType := @Countable.Pack cT (fin_ xclass).
Definition finType := @Finite.Pack cT (fin_ xclass).
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition countZmodType := @CountRing.Zmodule.Pack cT xclass.
Definition finZmodType := @Zmodule.Pack cT xclass.
Definition ringType := @GRing.Ring.Pack cT xclass.
Definition countRingType := @CountRing.Ring.Pack cT xclass.
Definition finRingType := @Ring.Pack cT xclass.
Definition unitRingType := @GRing.UnitRing.Pack cT xclass.
Definition countUnitRingType := @CountRing.UnitRing.Pack cT xclass.
Definition finUnitRingType := @UnitRing.Pack cT xclass.
Definition lmodType := @GRing.Lmodule.Pack R phR cT xclass.
Definition finLmodType := @Lmodule.Pack R phR cT xclass.
Definition lalgType := @GRing.Lalgebra.Pack R phR cT xclass.
Definition finLalgType := @Lalgebra.Pack R phR cT xclass.
Definition algType := @GRing.Algebra.Pack R phR cT xclass.
Definition finAlgType := @Algebra.Pack R phR cT xclass.
Definition unitAlgType := @GRing.UnitAlgebra.Pack R phR cT xclass.
Definition baseFinGroupType := base_group cT zmodType finType.
Definition finGroupType := fin_group baseFinGroupType zmodType.
Definition unitAlg_countType := @Countable.Pack unitAlgType (fin_ xclass).
Definition unitAlg_finType := @Finite.Pack unitAlgType (fin_ xclass).
Definition unitAlg_baseFinGroupType := base_group unitAlgType zmodType finType.
Definition unitAlg_finGroupType := fin_group unitAlg_baseFinGroupType zmodType.
Definition unitAlg_countZmodType := @CountRing.Zmodule.Pack unitAlgType xclass.
Definition unitAlg_finZmodType := @Zmodule.Pack unitAlgType xclass.
Definition unitAlg_countRingType := @CountRing.Ring.Pack unitAlgType xclass.
Definition unitAlg_finRingType := @Ring.Pack unitAlgType xclass.
Definition unitAlg_countUnitRingType :=
@CountRing.UnitRing.Pack unitAlgType xclass.
Definition unitAlg_finUnitRingType := @UnitRing.Pack unitAlgType xclass.
Definition unitAlg_finLmodType := @Lmodule.Pack R phR unitAlgType xclass.
Definition unitAlg_finLalgType := @Lalgebra.Pack R phR unitAlgType xclass.
Definition unitAlg_finAlgType := @Algebra.Pack R phR unitAlgType xclass.
Definition unitRing_finLmodType := @Lmodule.Pack R phR unitRingType xclass.
Definition unitRing_finLalgType := @Lalgebra.Pack R phR unitRingType xclass.
Definition unitRing_finAlgType := @Algebra.Pack R phR unitRingType xclass.
Definition countUnitRing_lmodType :=
@GRing.Lmodule.Pack R phR countUnitRingType xclass.
Definition countUnitRing_finLmodType :=
@Lmodule.Pack R phR countUnitRingType xclass.
Definition countUnitRing_lalgType :=
@GRing.Lalgebra.Pack R phR countUnitRingType xclass.
Definition countUnitRing_finLalgType :=
@Lalgebra.Pack R phR countUnitRingType xclass.
Definition countUnitRing_algType :=
@GRing.Algebra.Pack R phR countUnitRingType xclass.
Definition countUnitRing_finAlgType :=
@Algebra.Pack R phR countUnitRingType xclass.
Definition finUnitRing_lmodType :=
@GRing.Lmodule.Pack R phR finUnitRingType xclass.
Definition finUnitRing_finLmodType :=
@Lmodule.Pack R phR finUnitRingType xclass.
Definition finUnitRing_lalgType :=
@GRing.Lalgebra.Pack R phR finUnitRingType xclass.
Definition finUnitRing_finLalgType :=
@Lalgebra.Pack R phR finUnitRingType xclass.
Definition finUnitRing_algType :=
@GRing.Algebra.Pack R phR finUnitRingType xclass.
Definition finUnitRing_finAlgType :=
@Algebra.Pack R phR finUnitRingType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> GRing.UnitAlgebra.class_of.
Coercion base2 : class_of >-> Algebra.class_of.
Coercion base3 : class_of >-> UnitRing.class_of.
Coercion sort : type >-> Sortclass.
Bind Scope ring_scope with sort.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Coercion baseFinGroupType : type >-> FinGroup.base_type.
Canonical baseFinGroupType.
Coercion finGroupType : type >-> FinGroup.type.
Canonical finGroupType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion countZmodType : type >-> CountRing.Zmodule.type.
Canonical countZmodType.
Coercion finZmodType : type >-> Zmodule.type.
Canonical finZmodType.
Coercion ringType : type >-> GRing.Ring.type.
Canonical ringType.
Coercion countRingType : type >-> CountRing.Ring.type.
Canonical countRingType.
Coercion finRingType : type >-> Ring.type.
Canonical finRingType.
Coercion unitRingType : type >-> GRing.UnitRing.type.
Canonical unitRingType.
Coercion countUnitRingType : type >-> CountRing.UnitRing.type.
Canonical countUnitRingType.
Coercion finUnitRingType : type >-> UnitRing.type.
Canonical finUnitRingType.
Coercion lmodType : type >-> GRing.Lmodule.type.
Canonical lmodType.
Coercion finLmodType : type >-> Lmodule.type.
Canonical finLmodType.
Coercion lalgType : type >-> GRing.Lalgebra.type.
Canonical lalgType.
Coercion finLalgType : type >-> Lalgebra.type.
Canonical finLalgType.
Coercion algType : type >-> GRing.Algebra.type.
Canonical algType.
Coercion finAlgType : type >-> Algebra.type.
Canonical finAlgType.
Coercion unitAlgType : type >-> GRing.UnitAlgebra.type.
Canonical unitAlgType.
Canonical unitAlg_countType.
Canonical unitAlg_finType.
Canonical unitAlg_baseFinGroupType.
Canonical unitAlg_finGroupType.
Canonical unitAlg_countZmodType.
Canonical unitAlg_finZmodType.
Canonical unitAlg_countRingType.
Canonical unitAlg_finRingType.
Canonical unitAlg_countUnitRingType.
Canonical unitAlg_finUnitRingType.
Canonical unitAlg_finLmodType.
Canonical unitAlg_finLalgType.
Canonical unitAlg_finAlgType.
Canonical unitRing_finLmodType.
Canonical unitRing_finLalgType.
Canonical unitRing_finAlgType.
Canonical countUnitRing_lmodType.
Canonical countUnitRing_finLmodType.
Canonical countUnitRing_lalgType.
Canonical countUnitRing_finLalgType.
Canonical countUnitRing_algType.
Canonical countUnitRing_finAlgType.
Canonical finUnitRing_lmodType.
Canonical finUnitRing_finLmodType.
Canonical finUnitRing_lalgType.
Canonical finUnitRing_finLalgType.
Canonical finUnitRing_algType.
Canonical finUnitRing_finAlgType.
Notation finUnitAlgType R := (type (Phant R)).
Notation "[ 'finUnitAlgType' R 'of' T ]" := (do_pack (@pack _ (Phant R)) T)
(at level 0, format "[ 'finUnitAlgType' R 'of' T ]") : form_scope.
End Exports.
End UnitAlgebra.
Import UnitAlgebra.Exports.
Module Theory.
Definition zmod1gE := zmod1gE.
Definition zmodVgE := zmodVgE.
Definition zmodMgE := zmodMgE.
Definition zmodXgE := zmodXgE.
Definition zmod_mulgC := zmod_mulgC.
Definition zmod_abelian := zmod_abelian.
Definition val_unit1 := val_unit1.
Definition val_unitM := val_unitM.
Definition val_unitX := val_unitX.
Definition val_unitV := val_unitV.
Definition unit_actE := unit_actE.
End Theory.
End FinRing.
Import FinRing.
Export Zmodule.Exports Ring.Exports ComRing.Exports.
Export UnitRing.Exports UnitsGroupExports ComUnitRing.Exports.
Export IntegralDomain.Exports Field.Exports DecField.Exports.
Export Lmodule.Exports Lalgebra.Exports Algebra.Exports UnitAlgebra.Exports.
Notation "{ 'unit' R }" := (unit_of (Phant R))
(at level 0, format "{ 'unit' R }") : type_scope.
Prenex Implicits FinRing.uval.
Notation "''U'" := (unit_action _) (at level 8) : action_scope.
Notation "''U'" := (unit_groupAction _) (at level 8) : groupAction_scope.
|