1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link href="coqdoc.css" rel="stylesheet" type="text/css" />
<title>mathcomp.solvable.extraspecial</title>
</head>
<body>
<div id="page">
<div id="header">
</div>
<div id="main">
<h1 class="libtitle">Library mathcomp.solvable.extraspecial</h1>
<div class="code">
<span class="comment">(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. <br/>
Distributed under the terms of CeCILL-B. *)</span><br/>
<span class="id" title="keyword">Require</span> <span class="id" title="keyword">Import</span> <a class="idref" href="mathcomp.ssreflect.ssreflect.html#"><span class="id" title="library">mathcomp.ssreflect.ssreflect</span></a>.<br/>
<br/>
</div>
<div class="doc">
This file contains the fine structure thorems for extraspecial p-groups.
Together with the material in the maximal and extremal libraries, it
completes the coverage of Aschbacher, section 23.
We define canonical representatives for the group classes that cover the
extremal p-groups (non-abelian p-groups with a cyclic maximal subgroup):
'Mod_m == the modular group of order m, for m = p ^ n, p prime and n >= 3.
'D_m == the dihedral group of order m, for m = 2n >= 4.
'Q_m == the generalized quaternion group of order m, for q = 2 ^ n >= 8.
'SD_m == the semi-dihedral group of order m, for m = 2 ^ n >= 16.
In each case the notation is defined in the %type, %g and %G scopes, where
it denotes a finGroupType, a full gset and the full group for that type.
However each notation is only meaningful under the given conditions, in
We construct and study the following extraspecial groups:
p^{1+2} == if p is prime, an extraspecial group of order p^3 that has
exponent p or 4, and p-rank 2: thus p^{1+2} is isomorphic to
'D_8 if p - 2, and NOT isomorphic to 'Mod(p^3) if p is odd.
p^{1+2*n} == the central product of n copies of p^{1+2}, thus of order
p^(1+2*n) if p is a prime, and, when n > 0, a representative
of the (unique) isomorphism class of extraspecial groups of
order p^(1+2*n), of exponent p or 4, and p-rank n+1.
'D^n == an alternative (and preferred) notation for 2^{1+2*n}, which
is isomorphic to the central product of n copies od 'D_8.
'D^n*Q == the central product of 'D^n with 'Q_8, thus isomorphic to
all extraspecial groups of order 2 ^ (2 * n + 3) that are
not isomorphic to 'D^n.+1 (or, equivalently, have 2-rank n).
As in extremal.v, these notations are simultaneously defined in the %type,
%g and %G scopes -- depending on the syntactic context, they denote either
a finGroupType, the set, or the group of all its elements.
</div>
<div class="code">
<br/>
<span class="id" title="keyword">Set Implicit Arguments</span>.<br/>
<br/>
<span class="id" title="keyword">Local Open</span> <span class="id" title="keyword">Scope</span> <span class="id" title="var">ring_scope</span>.<br/>
<span class="id" title="keyword">Import</span> <span class="id" title="var">GroupScope</span> <span class="id" title="var">GRing.Theory</span>.<br/>
<br/>
<span class="id" title="keyword">Reserved Notation</span> "p ^{1+2}" (<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 2, <span class="id" title="var">format</span> "p ^{1+2}").<br/>
<span class="id" title="keyword">Reserved Notation</span> "p ^{1+2* n }"<br/>
(<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 2, <span class="id" title="var">n</span> <span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 2, <span class="id" title="var">format</span> "p ^{1+2* n }").<br/>
<span class="id" title="keyword">Reserved Notation</span> "''D^' n" (<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 8, <span class="id" title="var">n</span> <span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 2, <span class="id" title="var">format</span> "''D^' n").<br/>
<span class="id" title="keyword">Reserved Notation</span> "''D^' n * 'Q'"<br/>
(<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 8, <span class="id" title="var">n</span> <span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 2, <span class="id" title="var">format</span> "''D^' n * 'Q'").<br/>
<br/>
<span class="id" title="keyword">Module</span> <a name="Pextraspecial"><span class="id" title="module">Pextraspecial</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="Pextraspecial.Construction"><span class="id" title="section">Construction</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="Pextraspecial.Construction.p"><span class="id" title="variable">p</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="Pextraspecial.act"><span class="id" title="definition">act</span></a> <span class="id" title="var">ij</span> (<span class="id" title="var">k</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">Z_p</span></a>) := <span class="id" title="keyword">let</span>: <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#44400027531d4bc3f586a1997dc874c0"><span class="id" title="notation">(</span></a><span class="id" title="var">i</span><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#44400027531d4bc3f586a1997dc874c0"><span class="id" title="notation">,</span></a> <span class="id" title="var">j</span><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#44400027531d4bc3f586a1997dc874c0"><span class="id" title="notation">)</span></a> := <a class="idref" href="mathcomp.solvable.extraspecial.html#ij"><span class="id" title="variable">ij</span></a> <span class="id" title="tactic">in</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#44400027531d4bc3f586a1997dc874c0"><span class="id" title="notation">(</span></a><span class="id" title="var">i</span> <a class="idref" href="mathcomp.algebra.ssralg.html#ae4d81913e6239182a9ac7467ffde8cd"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#k"><span class="id" title="variable">k</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <span class="id" title="var">j</span><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#44400027531d4bc3f586a1997dc874c0"><span class="id" title="notation">,</span></a> <span class="id" title="var">j</span><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#44400027531d4bc3f586a1997dc874c0"><span class="id" title="notation">)</span></a>.<br/>
<span class="id" title="keyword">Lemma</span> <a name="Pextraspecial.actP"><span class="id" title="lemma">actP</span></a> : <a class="idref" href="mathcomp.fingroup.action.html#is_action"><span class="id" title="definition">is_action</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">Z_p</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#Pextraspecial.act"><span class="id" title="definition">act</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">action</span> := <a class="idref" href="mathcomp.fingroup.action.html#Action"><span class="id" title="constructor">Action</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#Pextraspecial.actP"><span class="id" title="lemma">actP</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Pextraspecial.gactP"><span class="id" title="lemma">gactP</span></a> : <a class="idref" href="mathcomp.fingroup.action.html#is_groupAction"><span class="id" title="definition">is_groupAction</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">Z_p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#d19c7eafd0e2d195d10df94b392087b5"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">Z_p</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#Pextraspecial.action"><span class="id" title="definition">action</span></a>.<br/>
<span class="id" title="keyword">Definition</span> <a name="Pextraspecial.groupAction"><span class="id" title="definition">groupAction</span></a> := <a class="idref" href="mathcomp.fingroup.action.html#GroupAction"><span class="id" title="constructor">GroupAction</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#Pextraspecial.gactP"><span class="id" title="lemma">gactP</span></a>.<br/>
<br/>
<span class="id" title="keyword">Fact</span> <a name="Pextraspecial.gtype_key"><span class="id" title="lemma">gtype_key</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#unit"><span class="id" title="inductive">unit</span></a>. <br/>
<span class="id" title="keyword">Definition</span> <a name="Pextraspecial.gtype"><span class="id" title="definition">gtype</span></a> := <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#locked_with"><span class="id" title="definition">locked_with</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#Pextraspecial.gtype_key"><span class="id" title="lemma">gtype_key</span></a> (<a class="idref" href="mathcomp.fingroup.gproduct.html#sdprod_groupType"><span class="id" title="definition">sdprod_groupType</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#Pextraspecial.groupAction"><span class="id" title="definition">groupAction</span></a>).<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="Pextraspecial.ngtype"><span class="id" title="definition">ngtype</span></a> := <a class="idref" href="mathcomp.solvable.center.html#ncprod"><span class="id" title="definition">ncprod</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#Pextraspecial.gtype"><span class="id" title="definition">gtype</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.solvable.extraspecial.html#Pextraspecial.Construction"><span class="id" title="section">Construction</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="Pextraspecial.ngtypeQ"><span class="id" title="definition">ngtypeQ</span></a> <span class="id" title="var">n</span> := <a class="idref" href="mathcomp.solvable.center.html#xcprod"><span class="id" title="definition">xcprod</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#Pextraspecial.ngtype"><span class="id" title="definition">ngtype</span></a> 2 <a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.solvable.extremal.html#24d327e6c4148d6dd7b561fa4e1277bd"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extremal.html#24d327e6c4148d6dd7b561fa4e1277bd"><span class="id" title="notation">Q_8</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.solvable.extraspecial.html#Pextraspecial"><span class="id" title="module">Pextraspecial</span></a>.<br/>
<br/>
<span class="id" title="keyword">Notation</span> <a name="4930a1d10a5aad7b22b82525a70cd4ea"><span class="id" title="notation">"</span></a>p ^{1+2}" := (<a class="idref" href="mathcomp.solvable.extraspecial.html#gtype"><span class="id" title="definition">Pextraspecial.gtype</span></a> <span class="id" title="var">p</span>) : <span class="id" title="var">type_scope</span>.<br/>
<span class="id" title="keyword">Notation</span> <a name="354a7719245e28a5f784cfb19c81f53a"><span class="id" title="notation">"</span></a>p ^{1+2}" := <a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#gsort"><span class="id" title="abbreviation">gsort</span></a> <span class="id" title="var">p</span><a class="idref" href="mathcomp.solvable.extraspecial.html#4930a1d10a5aad7b22b82525a70cd4ea"><span class="id" title="notation">^{1+2}</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a> : <span class="id" title="var">group_scope</span>.<br/>
<span class="id" title="keyword">Notation</span> <a name="fecf17babbfd20e65dfb992ab39dd060"><span class="id" title="notation">"</span></a>p ^{1+2}" := <a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#gsort"><span class="id" title="abbreviation">gsort</span></a> <span class="id" title="var">p</span><a class="idref" href="mathcomp.solvable.extraspecial.html#4930a1d10a5aad7b22b82525a70cd4ea"><span class="id" title="notation">^{1+2}</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">]</span></a>%<span class="id" title="var">G</span> : <span class="id" title="var">Group_scope</span>.<br/>
<br/>
<span class="id" title="keyword">Notation</span> <a name="d5734ed590b969504e2a2cee2726792f"><span class="id" title="notation">"</span></a>p ^{1+2* n }" := (<a class="idref" href="mathcomp.solvable.extraspecial.html#ngtype"><span class="id" title="definition">Pextraspecial.ngtype</span></a> <span class="id" title="var">p</span> <span class="id" title="var">n</span>) : <span class="id" title="var">type_scope</span>.<br/>
<span class="id" title="keyword">Notation</span> <a name="a7c316c84561ad9c93c7896226b3cab1"><span class="id" title="notation">"</span></a>p ^{1+2* n }" := <a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#gsort"><span class="id" title="abbreviation">gsort</span></a> <span class="id" title="var">p</span><a class="idref" href="mathcomp.solvable.extraspecial.html#d5734ed590b969504e2a2cee2726792f"><span class="id" title="notation">^{1+2*</span></a><span class="id" title="var">n</span><a class="idref" href="mathcomp.solvable.extraspecial.html#d5734ed590b969504e2a2cee2726792f"><span class="id" title="notation">}</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a> : <span class="id" title="var">group_scope</span>.<br/>
<span class="id" title="keyword">Notation</span> <a name="6d7462d9f1e45e8985bc5fef0096491d"><span class="id" title="notation">"</span></a>p ^{1+2* n }" := <a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#gsort"><span class="id" title="abbreviation">gsort</span></a> <span class="id" title="var">p</span><a class="idref" href="mathcomp.solvable.extraspecial.html#d5734ed590b969504e2a2cee2726792f"><span class="id" title="notation">^{1+2*</span></a><span class="id" title="var">n</span><a class="idref" href="mathcomp.solvable.extraspecial.html#d5734ed590b969504e2a2cee2726792f"><span class="id" title="notation">}</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">]</span></a>%<span class="id" title="var">G</span> : <span class="id" title="var">Group_scope</span>.<br/>
<br/>
<span class="id" title="keyword">Notation</span> <a name="ba80690771cb8385c9d31dd9f3c06f59"><span class="id" title="notation">"</span></a>''D^' n" := (<a class="idref" href="mathcomp.solvable.extraspecial.html#ngtype"><span class="id" title="definition">Pextraspecial.ngtype</span></a> 2 <span class="id" title="var">n</span>) : <span class="id" title="var">type_scope</span>.<br/>
<span class="id" title="keyword">Notation</span> <a name="a8a830ccefaf9cb4d4b2f49d65e5334b"><span class="id" title="notation">"</span></a>''D^' n" := <a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#gsort"><span class="id" title="abbreviation">gsort</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ba80690771cb8385c9d31dd9f3c06f59"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#ba80690771cb8385c9d31dd9f3c06f59"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#ba80690771cb8385c9d31dd9f3c06f59"><span class="id" title="notation">^</span></a><span class="id" title="var">n</span><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a> : <span class="id" title="var">group_scope</span>.<br/>
<span class="id" title="keyword">Notation</span> <a name="11fb2c38b9f35b58f4576164683416e2"><span class="id" title="notation">"</span></a>''D^' n" := <a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#gsort"><span class="id" title="abbreviation">gsort</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ba80690771cb8385c9d31dd9f3c06f59"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#ba80690771cb8385c9d31dd9f3c06f59"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#ba80690771cb8385c9d31dd9f3c06f59"><span class="id" title="notation">^</span></a><span class="id" title="var">n</span><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">]</span></a>%<span class="id" title="var">G</span> : <span class="id" title="var">Group_scope</span>.<br/>
<br/>
<span class="id" title="keyword">Notation</span> <a name="060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">"</span></a>''D^' n * 'Q'" := (<a class="idref" href="mathcomp.solvable.extraspecial.html#ngtypeQ"><span class="id" title="definition">Pextraspecial.ngtypeQ</span></a> <span class="id" title="var">n</span>) : <span class="id" title="var">type_scope</span>.<br/>
<span class="id" title="keyword">Notation</span> <a name="e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">"</span></a>''D^' n * 'Q'" := <a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#gsort"><span class="id" title="abbreviation">gsort</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">^</span></a><span class="id" title="var">n</span><a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">Q</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a> : <span class="id" title="var">group_scope</span>.<br/>
<span class="id" title="keyword">Notation</span> <a name="802dab5ec0a31aa7f85d95659b7db935"><span class="id" title="notation">"</span></a>''D^' n * 'Q'" := <a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#gsort"><span class="id" title="abbreviation">gsort</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">^</span></a><span class="id" title="var">n</span><a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">Q</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#a9a62cd128c968b470b51a9773e2f64a"><span class="id" title="notation">]</span></a>%<span class="id" title="var">G</span> : <span class="id" title="var">Group_scope</span>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="ExponentPextraspecialTheory"><span class="id" title="section">ExponentPextraspecialTheory</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/>
<span class="id" title="keyword">Hypothesis</span> <a name="ExponentPextraspecialTheory.p_pr"><span class="id" title="variable">p_pr</span></a> : <a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a>.<br/>
<span class="id" title="keyword">Let</span> <a name="ExponentPextraspecialTheory.p_gt1"><span class="id" title="variable">p_gt1</span></a> := <a class="idref" href="mathcomp.ssreflect.prime.html#prime_gt1"><span class="id" title="lemma">prime_gt1</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p_pr"><span class="id" title="variable">p_pr</span></a>.<br/>
<span class="id" title="keyword">Let</span> <a name="ExponentPextraspecialTheory.p_gt0"><span class="id" title="variable">p_gt0</span></a> := <a class="idref" href="mathcomp.ssreflect.ssrnat.html#ltnW"><span class="id" title="lemma">ltnW</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p_gt1"><span class="id" title="variable">p_gt1</span></a>.<br/>
<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="card_pX1p2"><span class="id" title="lemma">card_pX1p2</span></a> : <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#354a7719245e28a5f784cfb19c81f53a"><span class="id" title="notation">^{1+2}</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#4c362bcf0e947e2792a2e6989b44aeb0"><span class="id" title="notation">^</span></a> 3)%<span class="id" title="var">N</span>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Grp_pX1p2"><span class="id" title="lemma">Grp_pX1p2</span></a> :<br/>
<a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#354a7719245e28a5f784cfb19c81f53a"><span class="id" title="notation">^{1+2}</span></a> <a class="idref" href="mathcomp.fingroup.presentation.html#2e7e6fdc2fcc257cb8670b6b97d9b9ee"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.presentation.html#2e7e6fdc2fcc257cb8670b6b97d9b9ee"><span class="id" title="notation">isog</span></a> <a class="idref" href="mathcomp.fingroup.presentation.html#2e7e6fdc2fcc257cb8670b6b97d9b9ee"><span class="id" title="notation">Grp</span></a> <a class="idref" href="mathcomp.fingroup.presentation.html#2e7e6fdc2fcc257cb8670b6b97d9b9ee"><span class="id" title="notation">(</span></a><span class="id" title="var">x</span> <a class="idref" href="mathcomp.fingroup.presentation.html#2e7e6fdc2fcc257cb8670b6b97d9b9ee"><span class="id" title="notation">:</span></a> <span class="id" title="var">y</span> <a class="idref" href="mathcomp.fingroup.presentation.html#953d1fbe50819ac104ff2928ed9f1f35"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.fingroup.presentation.html#5b8f67ffc457596b97fe80b0e075accd"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.fingroup.presentation.html#93f82d9635dc31e1d0b435f42eb3dc73"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.fingroup.presentation.html#5b8f67ffc457596b97fe80b0e075accd"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="mathcomp.fingroup.presentation.html#93f82d9635dc31e1d0b435f42eb3dc73"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.fingroup.presentation.html#5b8f67ffc457596b97fe80b0e075accd"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.fingroup.presentation.html#a0040f72df5ea25d5ed5fbb0e00c50b5"><span class="id" title="notation">[~</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.fingroup.presentation.html#a0040f72df5ea25d5ed5fbb0e00c50b5"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.fingroup.presentation.html#a0040f72df5ea25d5ed5fbb0e00c50b5"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.fingroup.presentation.html#a0040f72df5ea25d5ed5fbb0e00c50b5"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.fingroup.presentation.html#5b8f67ffc457596b97fe80b0e075accd"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.fingroup.presentation.html#a0040f72df5ea25d5ed5fbb0e00c50b5"><span class="id" title="notation">[~</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.fingroup.presentation.html#a0040f72df5ea25d5ed5fbb0e00c50b5"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.fingroup.presentation.html#a0040f72df5ea25d5ed5fbb0e00c50b5"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.fingroup.presentation.html#a0040f72df5ea25d5ed5fbb0e00c50b5"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.fingroup.presentation.html#5b8f67ffc457596b97fe80b0e075accd"><span class="id" title="notation">)</span></a><a class="idref" href="mathcomp.fingroup.presentation.html#2e7e6fdc2fcc257cb8670b6b97d9b9ee"><span class="id" title="notation">)</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="pX1p2_pgroup"><span class="id" title="lemma">pX1p2_pgroup</span></a> : <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#5b9c9ef075a2fca9df30ee4ac4a1af18"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#5b9c9ef075a2fca9df30ee4ac4a1af18"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#354a7719245e28a5f784cfb19c81f53a"><span class="id" title="notation">^{1+2}</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is part of the existence half of Aschbacher ex. (8.7)(1)
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="pX1p2_extraspecial"><span class="id" title="lemma">pX1p2_extraspecial</span></a> : <a class="idref" href="mathcomp.solvable.maximal.html#extraspecial"><span class="id" title="definition">extraspecial</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#354a7719245e28a5f784cfb19c81f53a"><span class="id" title="notation">^{1+2}</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is part of the existence half of Aschbacher ex. (8.7)(1)
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="exponent_pX1p2"><span class="id" title="lemma">exponent_pX1p2</span></a> : <a class="idref" href="mathcomp.ssreflect.ssrnat.html#odd"><span class="id" title="definition">odd</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.abelian.html#exponent"><span class="id" title="definition">exponent</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#354a7719245e28a5f784cfb19c81f53a"><span class="id" title="notation">^{1+2}</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#aa34fd1c61c5cf0a3356b624a5d2afed"><span class="id" title="notation">%|</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is the uniqueness half of Aschbacher ex. (8.7)(1)
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="isog_pX1p2"><span class="id" title="lemma">isog_pX1p2</span></a> (<span class="id" title="var">gT</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>) (<span class="id" title="var">G</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) :<br/>
<a class="idref" href="mathcomp.solvable.maximal.html#extraspecial"><span class="id" title="definition">extraspecial</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.abelian.html#exponent"><span class="id" title="definition">exponent</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#aa34fd1c61c5cf0a3356b624a5d2afed"><span class="id" title="notation">%|</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#4c362bcf0e947e2792a2e6989b44aeb0"><span class="id" title="notation">^</span></a> 3)%<span class="id" title="var">N</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">isog</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#354a7719245e28a5f784cfb19c81f53a"><span class="id" title="notation">^{1+2}</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.solvable.extraspecial.html#ExponentPextraspecialTheory"><span class="id" title="section">ExponentPextraspecialTheory</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="GeneralExponentPextraspecialTheory"><span class="id" title="section">GeneralExponentPextraspecialTheory</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="pX1p2id"><span class="id" title="lemma">pX1p2id</span></a> : <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a7c316c84561ad9c93c7896226b3cab1"><span class="id" title="notation">^{1+2*</span></a>1<a class="idref" href="mathcomp.solvable.extraspecial.html#a7c316c84561ad9c93c7896226b3cab1"><span class="id" title="notation">}</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">isog</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#354a7719245e28a5f784cfb19c81f53a"><span class="id" title="notation">^{1+2}</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="pX1p2S"><span class="id" title="lemma">pX1p2S</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.solvable.center.html#xcprod_spec"><span class="id" title="inductive">xcprod_spec</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#fecf17babbfd20e65dfb992ab39dd060"><span class="id" title="notation">^{1+2}</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#6d7462d9f1e45e8985bc5fef0096491d"><span class="id" title="notation">^{1+2*</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#6d7462d9f1e45e8985bc5fef0096491d"><span class="id" title="notation">}</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#d5734ed590b969504e2a2cee2726792f"><span class="id" title="notation">^{1+2*</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#361454269931ea8643f7b402f2ab7222"><span class="id" title="notation">.+1</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#d5734ed590b969504e2a2cee2726792f"><span class="id" title="notation">}</span></a>%<span class="id" title="keyword">type</span>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="card_pX1p2n"><span class="id" title="lemma">card_pX1p2n</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a7c316c84561ad9c93c7896226b3cab1"><span class="id" title="notation">^{1+2*</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a7c316c84561ad9c93c7896226b3cab1"><span class="id" title="notation">}</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#4c362bcf0e947e2792a2e6989b44aeb0"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#f460b977ac49dd1a229be682bc38c411"><span class="id" title="notation">.*2</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#361454269931ea8643f7b402f2ab7222"><span class="id" title="notation">.+1</span></a>)%<span class="id" title="var">N</span>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="pX1p2n_pgroup"><span class="id" title="lemma">pX1p2n_pgroup</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#5b9c9ef075a2fca9df30ee4ac4a1af18"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#5b9c9ef075a2fca9df30ee4ac4a1af18"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a7c316c84561ad9c93c7896226b3cab1"><span class="id" title="notation">^{1+2*</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a7c316c84561ad9c93c7896226b3cab1"><span class="id" title="notation">}</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is part of the existence half of Aschbacher (23.13)
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="exponent_pX1p2n"><span class="id" title="lemma">exponent_pX1p2n</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#odd"><span class="id" title="definition">odd</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.abelian.html#exponent"><span class="id" title="definition">exponent</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a7c316c84561ad9c93c7896226b3cab1"><span class="id" title="notation">^{1+2*</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a7c316c84561ad9c93c7896226b3cab1"><span class="id" title="notation">}</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is part of the existence half of Aschbacher (23.13) and (23.14)
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="pX1p2n_extraspecial"><span class="id" title="lemma">pX1p2n_extraspecial</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#19ab5cfd7e4f60fa14f22b576013bd96"><span class="id" title="notation">></span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.maximal.html#extraspecial"><span class="id" title="definition">extraspecial</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a7c316c84561ad9c93c7896226b3cab1"><span class="id" title="notation">^{1+2*</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a7c316c84561ad9c93c7896226b3cab1"><span class="id" title="notation">}</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is Aschbacher (23.12)
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="Ohm1_extraspecial_odd"><span class="id" title="lemma">Ohm1_extraspecial_odd</span></a> (<span class="id" title="var">gT</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>) (<span class="id" title="var">G</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) :<br/>
<a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#5b9c9ef075a2fca9df30ee4ac4a1af18"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#5b9c9ef075a2fca9df30ee4ac4a1af18"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.maximal.html#extraspecial"><span class="id" title="definition">extraspecial</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#odd"><span class="id" title="definition">odd</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
<span class="id" title="keyword">let</span> <span class="id" title="var">Y</span> := <a class="idref" href="mathcomp.solvable.abelian.html#c300ec465942bb74c9d0df0e983eeb01"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.abelian.html#c300ec465942bb74c9d0df0e983eeb01"><span class="id" title="notation">Ohm_1</span></a><a class="idref" href="mathcomp.solvable.abelian.html#c300ec465942bb74c9d0df0e983eeb01"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.solvable.abelian.html#c300ec465942bb74c9d0df0e983eeb01"><span class="id" title="notation">)</span></a> <span class="id" title="tactic">in</span><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#962a3cb7af009aedac7986e261646bd1"><span class="id" title="notation">[/\</span></a> <a class="idref" href="mathcomp.solvable.abelian.html#exponent"><span class="id" title="definition">exponent</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#Y"><span class="id" title="variable">Y</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#962a3cb7af009aedac7986e261646bd1"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#Y"><span class="id" title="variable">Y</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#aa34fd1c61c5cf0a3356b624a5d2afed"><span class="id" title="notation">%|</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#962a3cb7af009aedac7986e261646bd1"><span class="id" title="notation">&</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#Y"><span class="id" title="variable">Y</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#84eb6d2849dbf3581b1c0c05add5f2d8"><span class="id" title="notation">∃</span></a> <span class="id" title="var">E</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#84eb6d2849dbf3581b1c0c05add5f2d8"><span class="id" title="notation">,</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#ca13a32469ebe56c9f4cc99d00e8eeba"><span class="id" title="notation">[/\</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#Y"><span class="id" title="variable">Y</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#ca13a32469ebe56c9f4cc99d00e8eeba"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#E"><span class="id" title="variable">E</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#7a45dffb109c3069e5c675be68643e60"><span class="id" title="notation">∨</span></a> <a class="idref" href="mathcomp.solvable.maximal.html#extraspecial"><span class="id" title="definition">extraspecial</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#E"><span class="id" title="variable">E</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#ca13a32469ebe56c9f4cc99d00e8eeba"><span class="id" title="notation">,</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#fe60c20831f772c0c3c288abf68cc42a"><span class="id" title="notation">exists2</span></a> <span class="id" title="var">X</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#fe60c20831f772c0c3c288abf68cc42a"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#fe60c20831f772c0c3c288abf68cc42a"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#X"><span class="id" title="variable">X</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#fe60c20831f772c0c3c288abf68cc42a"><span class="id" title="notation">&</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#X"><span class="id" title="variable">X</span></a> <a class="idref" href="mathcomp.fingroup.gproduct.html#3733c0e43956ad2062ab5f1e57ceb9a8"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.gproduct.html#3733c0e43956ad2062ab5f1e57ceb9a8"><span class="id" title="notation">x</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#Y"><span class="id" title="variable">Y</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#ca13a32469ebe56c9f4cc99d00e8eeba"><span class="id" title="notation">&</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#84eb6d2849dbf3581b1c0c05add5f2d8"><span class="id" title="notation">∃</span></a> <span class="id" title="var">M</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#84eb6d2849dbf3581b1c0c05add5f2d8"><span class="id" title="notation">,</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#962a3cb7af009aedac7986e261646bd1"><span class="id" title="notation">[/\</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#M"><span class="id" title="variable">M</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">isog</span></a> <a class="idref" href="mathcomp.solvable.extremal.html#cde820eeae6e659d7da1ef2161ef68ea"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extremal.html#cde820eeae6e659d7da1ef2161ef68ea"><span class="id" title="notation">Mod_</span></a><a class="idref" href="mathcomp.solvable.extremal.html#cde820eeae6e659d7da1ef2161ef68ea"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#4c362bcf0e947e2792a2e6989b44aeb0"><span class="id" title="notation">^</span></a> 3<a class="idref" href="mathcomp.solvable.extremal.html#cde820eeae6e659d7da1ef2161ef68ea"><span class="id" title="notation">)</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#962a3cb7af009aedac7986e261646bd1"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#M"><span class="id" title="variable">M</span></a> <a class="idref" href="mathcomp.fingroup.gproduct.html#9607c0b7b0a7e59f4327b220d5a93330"><span class="id" title="notation">\*</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#962a3cb7af009aedac7986e261646bd1"><span class="id" title="notation">&</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#M"><span class="id" title="variable">M</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#cb41714a5a23482f7a48a98975fa8c59"><span class="id" title="notation">:&:</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#E"><span class="id" title="variable">E</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.solvable.center.html#07d637974acf808c1caadc3b5bdfa6d3"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.center.html#07d637974acf808c1caadc3b5bdfa6d3"><span class="id" title="notation">Z</span></a><a class="idref" href="mathcomp.solvable.center.html#07d637974acf808c1caadc3b5bdfa6d3"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#M"><span class="id" title="variable">M</span></a><a class="idref" href="mathcomp.solvable.center.html#07d637974acf808c1caadc3b5bdfa6d3"><span class="id" title="notation">)</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#962a3cb7af009aedac7986e261646bd1"><span class="id" title="notation">]</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#ca13a32469ebe56c9f4cc99d00e8eeba"><span class="id" title="notation">]</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#962a3cb7af009aedac7986e261646bd1"><span class="id" title="notation">]</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is the uniqueness half of Aschbacher (23.13); the proof incorporates
in part the proof that symplectic spaces are hyperbolic (19.16).
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="isog_pX1p2n"><span class="id" title="lemma">isog_pX1p2n</span></a> <span class="id" title="var">n</span> (<span class="id" title="var">gT</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>) (<span class="id" title="var">G</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) :<br/>
<a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.maximal.html#extraspecial"><span class="id" title="definition">extraspecial</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#4c362bcf0e947e2792a2e6989b44aeb0"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#f460b977ac49dd1a229be682bc38c411"><span class="id" title="notation">.*2</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#361454269931ea8643f7b402f2ab7222"><span class="id" title="notation">.+1</span></a>)%<span class="id" title="var">N</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.abelian.html#exponent"><span class="id" title="definition">exponent</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#aa34fd1c61c5cf0a3356b624a5d2afed"><span class="id" title="notation">%|</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
<a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">isog</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a7c316c84561ad9c93c7896226b3cab1"><span class="id" title="notation">^{1+2*</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a7c316c84561ad9c93c7896226b3cab1"><span class="id" title="notation">}</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.solvable.extraspecial.html#GeneralExponentPextraspecialTheory"><span class="id" title="section">GeneralExponentPextraspecialTheory</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="isog_2X1p2"><span class="id" title="lemma">isog_2X1p2</span></a> : 2<a class="idref" href="mathcomp.solvable.extraspecial.html#354a7719245e28a5f784cfb19c81f53a"><span class="id" title="notation">^{1+2}</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">isog</span></a> <a class="idref" href="mathcomp.solvable.extremal.html#114753a05fa1a4c728fd6c58cce9f74c"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extremal.html#114753a05fa1a4c728fd6c58cce9f74c"><span class="id" title="notation">D_8</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Q8_extraspecial"><span class="id" title="lemma">Q8_extraspecial</span></a> : <a class="idref" href="mathcomp.solvable.maximal.html#extraspecial"><span class="id" title="definition">extraspecial</span></a> <a class="idref" href="mathcomp.solvable.extremal.html#7a3ab294f809847ed7e277c085de5f5d"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extremal.html#7a3ab294f809847ed7e277c085de5f5d"><span class="id" title="notation">Q_8</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="DnQ_P"><span class="id" title="lemma">DnQ_P</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.solvable.center.html#xcprod_spec"><span class="id" title="inductive">xcprod_spec</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#11fb2c38b9f35b58f4576164683416e2"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#11fb2c38b9f35b58f4576164683416e2"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#11fb2c38b9f35b58f4576164683416e2"><span class="id" title="notation">^</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.solvable.extremal.html#24d327e6c4148d6dd7b561fa4e1277bd"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extremal.html#24d327e6c4148d6dd7b561fa4e1277bd"><span class="id" title="notation">Q_8</span></a> (<a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">^</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#060cb01c343ba334280fa026c9b5c80b"><span class="id" title="notation">Q</span></a>)%<span class="id" title="keyword">type</span>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="card_DnQ"><span class="id" title="lemma">card_DnQ</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">^</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">Q</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> (2 <a class="idref" href="mathcomp.ssreflect.ssrnat.html#4c362bcf0e947e2792a2e6989b44aeb0"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#361454269931ea8643f7b402f2ab7222"><span class="id" title="notation">.+1</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#f460b977ac49dd1a229be682bc38c411"><span class="id" title="notation">.*2</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#361454269931ea8643f7b402f2ab7222"><span class="id" title="notation">.+1</span></a>)%<span class="id" title="var">N</span>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="DnQ_pgroup"><span class="id" title="lemma">DnQ_pgroup</span></a> <span class="id" title="var">n</span> : 2<a class="idref" href="mathcomp.solvable.pgroup.html#5b9c9ef075a2fca9df30ee4ac4a1af18"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#5b9c9ef075a2fca9df30ee4ac4a1af18"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">^</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">Q</span></a>.<br/>
<br/>
</div>
<div class="doc">
Final part of the existence half of Aschbacher (23.14).
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="DnQ_extraspecial"><span class="id" title="lemma">DnQ_extraspecial</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.solvable.maximal.html#extraspecial"><span class="id" title="definition">extraspecial</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">^</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">Q</span></a>.<br/>
<br/>
</div>
<div class="doc">
A special case of the uniqueness half of Achsbacher (23.14).
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="card_isog8_extraspecial"><span class="id" title="lemma">card_isog8_extraspecial</span></a> (<span class="id" title="var">gT</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>) (<span class="id" title="var">G</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) :<br/>
<a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 8 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.maximal.html#extraspecial"><span class="id" title="definition">extraspecial</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#14a7a9c7dc61f86bfb664d400fabaf8a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">isog</span></a> <a class="idref" href="mathcomp.solvable.extremal.html#114753a05fa1a4c728fd6c58cce9f74c"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extremal.html#114753a05fa1a4c728fd6c58cce9f74c"><span class="id" title="notation">D_8</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#14a7a9c7dc61f86bfb664d400fabaf8a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#14a7a9c7dc61f86bfb664d400fabaf8a"><span class="id" title="notation">||</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#14a7a9c7dc61f86bfb664d400fabaf8a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">isog</span></a> <a class="idref" href="mathcomp.solvable.extremal.html#7a3ab294f809847ed7e277c085de5f5d"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extremal.html#7a3ab294f809847ed7e277c085de5f5d"><span class="id" title="notation">Q_8</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#14a7a9c7dc61f86bfb664d400fabaf8a"><span class="id" title="notation">)</span></a>.<br/>
<br/>
</div>
<div class="doc">
The uniqueness half of Achsbacher (23.14). The proof incorporates in part
the proof that symplectic spces are hyperbolic (Aschbacher (19.16)), and
the determination of quadratic spaces over 'F_2 (21.2); however we use
the second part of exercise (8.4) to avoid resorting to Witt's lemma and
Galois theory as in (20.9) and (21.1).
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="isog_2extraspecial"><span class="id" title="lemma">isog_2extraspecial</span></a> (<span class="id" title="var">gT</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>) (<span class="id" title="var">G</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) <span class="id" title="var">n</span> :<br/>
<a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> (2 <a class="idref" href="mathcomp.ssreflect.ssrnat.html#4c362bcf0e947e2792a2e6989b44aeb0"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#f460b977ac49dd1a229be682bc38c411"><span class="id" title="notation">.*2</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#361454269931ea8643f7b402f2ab7222"><span class="id" title="notation">.+1</span></a>)%<span class="id" title="var">N</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.maximal.html#extraspecial"><span class="id" title="definition">extraspecial</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">isog</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#a8a830ccefaf9cb4d4b2f49d65e5334b"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a8a830ccefaf9cb4d4b2f49d65e5334b"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a8a830ccefaf9cb4d4b2f49d65e5334b"><span class="id" title="notation">^</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#7a45dffb109c3069e5c675be68643e60"><span class="id" title="notation">∨</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">isog</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">^</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#1d63841e595f2805afd872744cbb1cce"><span class="id" title="notation">.-1</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">Q</span></a>.<br/>
<br/>
</div>
<div class="doc">
The first concluding remark of Aschbacher (23.14).
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="rank_Dn"><span class="id" title="lemma">rank_Dn</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.solvable.abelian.html#2e018390d4609ecf460bceadff549bb3"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.abelian.html#2e018390d4609ecf460bceadff549bb3"><span class="id" title="notation">r_2</span></a><a class="idref" href="mathcomp.solvable.abelian.html#2e018390d4609ecf460bceadff549bb3"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a8a830ccefaf9cb4d4b2f49d65e5334b"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a8a830ccefaf9cb4d4b2f49d65e5334b"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a8a830ccefaf9cb4d4b2f49d65e5334b"><span class="id" title="notation">^</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.solvable.abelian.html#2e018390d4609ecf460bceadff549bb3"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#361454269931ea8643f7b402f2ab7222"><span class="id" title="notation">.+1</span></a>.<br/>
<br/>
</div>
<div class="doc">
The second concluding remark of Aschbacher (23.14).
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="rank_DnQ"><span class="id" title="lemma">rank_DnQ</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.solvable.abelian.html#2e018390d4609ecf460bceadff549bb3"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.abelian.html#2e018390d4609ecf460bceadff549bb3"><span class="id" title="notation">r_2</span></a><a class="idref" href="mathcomp.solvable.abelian.html#2e018390d4609ecf460bceadff549bb3"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">^</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">Q</span></a><a class="idref" href="mathcomp.solvable.abelian.html#2e018390d4609ecf460bceadff549bb3"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#361454269931ea8643f7b402f2ab7222"><span class="id" title="notation">.+1</span></a>.<br/>
<br/>
</div>
<div class="doc">
The final concluding remark of Aschbacher (23.14).
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="not_isog_Dn_DnQ"><span class="id" title="lemma">not_isog_Dn_DnQ</span></a> <span class="id" title="var">n</span> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#4b80c70cdb231351c5e129ba61f7f956"><span class="id" title="notation">~~</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#4b80c70cdb231351c5e129ba61f7f956"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a8a830ccefaf9cb4d4b2f49d65e5334b"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a8a830ccefaf9cb4d4b2f49d65e5334b"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#a8a830ccefaf9cb4d4b2f49d65e5334b"><span class="id" title="notation">^</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.fingroup.morphism.html#cec6c3028572f2d4d267ecf02dc64058"><span class="id" title="notation">isog</span></a> <a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">D</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">^</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#1d63841e595f2805afd872744cbb1cce"><span class="id" title="notation">.-1</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.solvable.extraspecial.html#e3fa577cb2763741bb8ddb9fcf57e5b1"><span class="id" title="notation">Q</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#4b80c70cdb231351c5e129ba61f7f956"><span class="id" title="notation">)</span></a>.<br/>
</div>
</div>
<div id="footer">
<hr/><a href="index.html">Index</a><hr/>This page has been generated by <a href="http://coq.inria.fr/">coqdoc</a>
</div>
</div>
</body>
</html>
|