1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link href="coqdoc.css" rel="stylesheet" type="text/css" />
<title>mathcomp.field.finfield</title>
</head>
<body>
<div id="page">
<div id="header">
</div>
<div id="main">
<h1 class="libtitle">Library mathcomp.field.finfield</h1>
<div class="code">
<span class="comment">(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. <br/>
Distributed under the terms of CeCILL-B. *)</span><br/>
<span class="id" title="keyword">Require</span> <span class="id" title="keyword">Import</span> <a class="idref" href="mathcomp.ssreflect.ssreflect.html#"><span class="id" title="library">mathcomp.ssreflect.ssreflect</span></a>.<br/>
<br/>
</div>
<div class="doc">
Additional constructions and results on finite fields.
<div class="paragraph"> </div>
FinFieldExtType L == A FinFieldType structure on the carrier of L,
where L IS a fieldExtType F structure for an
F that has a finFieldType structure. This
does not take any existing finType structure
on L; this should not be made canonical.
FinSplittingFieldType F L == A SplittingFieldType F structure on the
carrier of L, where L IS a fieldExtType F for
an F with a finFieldType structure; this
should not be made canonical.
Import FinVector :: Declares canonical default finType, finRing,
etc structures (including FinFieldExtType
above) for abstract vectType, FalgType and
fieldExtType over a finFieldType. This should
be used with caution (e.g., local to a proof)
as the finType so obtained may clash with the
canonical one for standard types like matrix.
PrimeCharType charRp == The carrier of a ringType R such that
charRp : p \in [char R] holds. This type has
canonical ringType, ..., fieldType structures
compatible with those of R, as well as
canonical lmodType 'F_p, ..., algType 'F_p
structures, plus an FalgType structure if R
is a finUnitRingType and a splittingFieldType
struture if R is a finFieldType.
FinSplittingFieldFor nz_p == sigma-pair whose sval is a splittingFieldType
that is the splitting field for p : {poly F}
over F : finFieldType, given nz_p : p != 0.
PrimePowerField pr_p k_gt0 == sigma2-triple whose s2val is a finFieldType
of characteristic p and order m = p ^ k,
given pr_p : prime p and k_gt0 : k > 0.
FinDomainFieldType domR == A finFieldType structure on a finUnitRingType
R, given domR : GRing.IntegralDomain.axiom R.
This is intended to be used inside proofs,
where one cannot declare Canonical instances.
Otherwise one should construct explicitly the
intermediate structures using the ssralg and
finalg constructors, and finDomain_mulrC domR
finDomain_fieldP domR to prove commutativity
and field axioms (the former is Wedderburn's
little theorem).
FinDomainSplittingFieldType domR charRp == A splittingFieldType structure
that repackages the two constructions above.
</div>
<div class="code">
<br/>
<span class="id" title="keyword">Set Implicit Arguments</span>.<br/>
<br/>
<span class="id" title="keyword">Import</span> <span class="id" title="var">GroupScope</span> <span class="id" title="var">GRing.Theory</span> <span class="id" title="var">FinRing.Theory</span>.<br/>
<span class="id" title="keyword">Local Open</span> <span class="id" title="keyword">Scope</span> <span class="id" title="var">ring_scope</span>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="FinRing"><span class="id" title="section">FinRing</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="FinRing.R"><span class="id" title="variable">R</span></a> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Ring.Exports.finRingType"><span class="id" title="abbreviation">finRingType</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="finRing_nontrivial"><span class="id" title="lemma">finRing_nontrivial</span></a> : <a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinRing.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 1%<span class="id" title="var">g</span>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="finRing_gt1"><span class="id" title="lemma">finRing_gt1</span></a> : 1 <a class="idref" href="mathcomp.ssreflect.ssrnat.html#989c98e7ddd65d5bf37c334ff2076de8"><span class="id" title="notation"><</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.field.finfield.html#FinRing.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#FinRing"><span class="id" title="section">FinRing</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="FinField"><span class="id" title="section">FinField</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="FinField.F"><span class="id" title="variable">F</span></a> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Field.Exports.finFieldType"><span class="id" title="abbreviation">finFieldType</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="card_finField_unit"><span class="id" title="lemma">card_finField_unit</span></a> : <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#f7c6b2be51cd10aae4ae8951352903f1"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f7c6b2be51cd10aae4ae8951352903f1"><span class="id" title="notation">unit</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinField.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f7c6b2be51cd10aae4ae8951352903f1"><span class="id" title="notation">}</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.field.finfield.html#FinField.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#1d63841e595f2805afd872744cbb1cce"><span class="id" title="notation">.-1</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="finField_unit"><span class="id" title="definition">finField_unit</span></a> <span class="id" title="var">x</span> (<span class="id" title="var">nz_x</span> : <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0) :=<br/>
<a class="idref" href="mathcomp.algebra.finalg.html#FinRing.unit"><span class="id" title="abbreviation">FinRing.unit</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinField.F"><span class="id" title="variable">F</span></a> (<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#etrans"><span class="id" title="definition">etrans</span></a> (<a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Theory.unitfE"><span class="id" title="definition">unitfE</span></a> <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="mathcomp.field.finfield.html#nz_x"><span class="id" title="variable">nz_x</span></a>).<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="expf_card"><span class="id" title="lemma">expf_card</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#fb22424322c3d7eb9b837dfca65ce21e"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.field.finfield.html#FinField.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">:></span></a> <a class="idref" href="mathcomp.field.finfield.html#FinField.F"><span class="id" title="variable">F</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="finField_genPoly"><span class="id" title="lemma">finField_genPoly</span></a> : <a class="idref" href="mathcomp.algebra.poly.html#9f0d1035fe3072a93b6e6065c1932def"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.poly.html#9f0d1035fe3072a93b6e6065c1932def"><span class="id" title="notation">X</span></a><a class="idref" href="mathcomp.algebra.poly.html#9f0d1035fe3072a93b6e6065c1932def"><span class="id" title="notation">^</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.field.finfield.html#FinField.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#d70623330b2787db6b196e37db7d8f45"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">X</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#24846b5795605f82696a43aa191874ea"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#24846b5795605f82696a43aa191874ea"><span class="id" title="notation">prod_x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#24846b5795605f82696a43aa191874ea"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">X</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#d70623330b2787db6b196e37db7d8f45"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">P</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#24846b5795605f82696a43aa191874ea"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">:></span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinField.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="finCharP"><span class="id" title="lemma">finCharP</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#f5350ad671d3ce0e1e463e298917cf6e"><span class="id" title="notation">{</span></a><span class="id" title="var">p</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#f5350ad671d3ce0e1e463e298917cf6e"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.field.finfield.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#f5350ad671d3ce0e1e463e298917cf6e"><span class="id" title="notation">&</span></a> <a class="idref" href="mathcomp.field.finfield.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">char</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinField.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">]</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#f5350ad671d3ce0e1e463e298917cf6e"><span class="id" title="notation">}</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="finField_is_abelem"><span class="id" title="lemma">finField_is_abelem</span></a> : <a class="idref" href="mathcomp.solvable.abelian.html#is_abelem"><span class="id" title="definition">is_abelem</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinField.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="card_finCharP"><span class="id" title="lemma">card_finCharP</span></a> <span class="id" title="var">p</span> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.field.finfield.html#FinField.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.field.finfield.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#4c362bcf0e947e2792a2e6989b44aeb0"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.field.finfield.html#n"><span class="id" title="variable">n</span></a>)%<span class="id" title="var">N</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.field.finfield.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.field.finfield.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">char</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinField.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#FinField"><span class="id" title="section">FinField</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="CardVspace"><span class="id" title="section">CardVspace</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variables</span> (<a name="CardVspace.F"><span class="id" title="variable">F</span></a> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Field.Exports.finFieldType"><span class="id" title="abbreviation">finFieldType</span></a>) (<a name="CardVspace.T"><span class="id" title="variable">T</span></a> : <a class="idref" href="mathcomp.ssreflect.fintype.html#Finite.Exports.finType"><span class="id" title="abbreviation">finType</span></a>).<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="CardVspace.Vector"><span class="id" title="section">Vector</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="CardVspace.Vector.cvT"><span class="id" title="variable">cvT</span></a> : <a class="idref" href="mathcomp.algebra.vector.html#Vector.class_of"><span class="id" title="record">Vector.class_of</span></a> <a class="idref" href="mathcomp.field.finfield.html#CardVspace.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.field.finfield.html#CardVspace.T"><span class="id" title="variable">T</span></a>.<br/>
<span class="id" title="keyword">Let</span> <a name="CardVspace.Vector.vT"><span class="id" title="variable">vT</span></a> := <a class="idref" href="mathcomp.algebra.vector.html#Vector.Pack"><span class="id" title="constructor">Vector.Pack</span></a> (<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#Phant"><span class="id" title="constructor">Phant</span></a> <a class="idref" href="mathcomp.field.finfield.html#CardVspace.F"><span class="id" title="variable">F</span></a>) <a class="idref" href="mathcomp.field.finfield.html#CardVspace.Vector.cvT"><span class="id" title="variable">cvT</span></a> <a class="idref" href="mathcomp.field.finfield.html#CardVspace.T"><span class="id" title="variable">T</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="card_vspace"><span class="id" title="lemma">card_vspace</span></a> (<span class="id" title="var">V</span> : <a class="idref" href="mathcomp.algebra.vector.html#ca0a177f6d6581a7f5199987cd7ee21c"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.vector.html#ca0a177f6d6581a7f5199987cd7ee21c"><span class="id" title="notation">vspace</span></a> <a class="idref" href="mathcomp.field.finfield.html#CardVspace.Vector.vT"><span class="id" title="variable">vT</span></a><a class="idref" href="mathcomp.algebra.vector.html#ca0a177f6d6581a7f5199987cd7ee21c"><span class="id" title="notation">}</span></a>) : <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.field.finfield.html#V"><span class="id" title="variable">V</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.field.finfield.html#CardVspace.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#4c362bcf0e947e2792a2e6989b44aeb0"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.vector.html#ee35a6780ccd60155a3be89dcb5fdb30"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.vector.html#ee35a6780ccd60155a3be89dcb5fdb30"><span class="id" title="notation">dim</span></a> <a class="idref" href="mathcomp.field.finfield.html#V"><span class="id" title="variable">V</span></a>)%<span class="id" title="var">N</span>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="card_vspacef"><span class="id" title="lemma">card_vspacef</span></a> : <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">{:</span></a> <a class="idref" href="mathcomp.field.finfield.html#CardVspace.Vector.vT"><span class="id" title="variable">vT</span></a><a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">}</span></a>%<span class="id" title="var">VS</span><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.field.finfield.html#CardVspace.T"><span class="id" title="variable">T</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#CardVspace.Vector"><span class="id" title="section">Vector</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="CardVspace.caT"><span class="id" title="variable">caT</span></a> : <a class="idref" href="mathcomp.field.falgebra.html#Falgebra.class_of"><span class="id" title="record">Falgebra.class_of</span></a> <a class="idref" href="mathcomp.field.finfield.html#CardVspace.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.field.finfield.html#CardVspace.T"><span class="id" title="variable">T</span></a>.<br/>
<span class="id" title="keyword">Let</span> <a name="CardVspace.aT"><span class="id" title="variable">aT</span></a> := <a class="idref" href="mathcomp.field.falgebra.html#Falgebra.Pack"><span class="id" title="constructor">Falgebra.Pack</span></a> (<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#Phant"><span class="id" title="constructor">Phant</span></a> <a class="idref" href="mathcomp.field.finfield.html#CardVspace.F"><span class="id" title="variable">F</span></a>) <a class="idref" href="mathcomp.field.finfield.html#CardVspace.caT"><span class="id" title="variable">caT</span></a> <a class="idref" href="mathcomp.field.finfield.html#CardVspace.T"><span class="id" title="variable">T</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="card_vspace1"><span class="id" title="lemma">card_vspace1</span></a> : <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|(</span></a>1%<span class="id" title="var">VS</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#4509b22bf26e3d6d771897e22bd8bc8f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.vector.html#ca0a177f6d6581a7f5199987cd7ee21c"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.vector.html#ca0a177f6d6581a7f5199987cd7ee21c"><span class="id" title="notation">vspace</span></a> <a class="idref" href="mathcomp.field.finfield.html#CardVspace.aT"><span class="id" title="variable">aT</span></a><a class="idref" href="mathcomp.algebra.vector.html#ca0a177f6d6581a7f5199987cd7ee21c"><span class="id" title="notation">}</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">)|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.field.finfield.html#CardVspace.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#CardVspace"><span class="id" title="section">CardVspace</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="VectFinMixin"><span class="id" title="lemma">VectFinMixin</span></a> (<span class="id" title="var">R</span> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Ring.Exports.finRingType"><span class="id" title="abbreviation">finRingType</span></a>) (<span class="id" title="var">vT</span> : <a class="idref" href="mathcomp.algebra.vector.html#Vector.Exports.vectType"><span class="id" title="abbreviation">vectType</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="variable">R</span></a>) : <a class="idref" href="mathcomp.ssreflect.fintype.html#Finite.mixin_of"><span class="id" title="record">Finite.mixin_of</span></a> <a class="idref" href="mathcomp.field.finfield.html#vT"><span class="id" title="variable">vT</span></a>.<br/>
<br/>
</div>
<div class="doc">
These instancces are not exported by default because they conflict with
existing finType instances such as matrix_finType or primeChar_finType.
</div>
<div class="code">
<span class="id" title="keyword">Module</span> <a name="FinVector"><span class="id" title="module">FinVector</span></a>.<br/>
<span class="id" title="keyword">Section</span> <a name="FinVector.Interfaces"><span class="id" title="section">Interfaces</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="FinVector.Interfaces.F"><span class="id" title="variable">F</span></a> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Field.Exports.finFieldType"><span class="id" title="abbreviation">finFieldType</span></a>.<br/>
<span class="id" title="keyword">Implicit</span> <span class="id" title="keyword">Types</span> (<span class="id" title="var">vT</span> : <a class="idref" href="mathcomp.algebra.vector.html#Vector.Exports.vectType"><span class="id" title="abbreviation">vectType</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinVector.Interfaces.F"><span class="id" title="variable">F</span></a>) (<span class="id" title="var">aT</span> : <a class="idref" href="mathcomp.field.falgebra.html#Falgebra.Exports.FalgType"><span class="id" title="abbreviation">FalgType</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinVector.Interfaces.F"><span class="id" title="variable">F</span></a>) (<span class="id" title="var">fT</span> : <a class="idref" href="mathcomp.field.fieldext.html#FieldExt.Exports.fieldExtType"><span class="id" title="abbreviation">fieldExtType</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinVector.Interfaces.F"><span class="id" title="variable">F</span></a>).<br/>
<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">vect_finType</span> <span class="id" title="var">vT</span> := <a class="idref" href="mathcomp.ssreflect.fintype.html#Finite.Exports.FinType"><span class="id" title="abbreviation">FinType</span></a> <a class="idref" href="mathcomp.field.finfield.html#vT"><span class="id" title="variable">vT</span></a> (<a class="idref" href="mathcomp.field.finfield.html#VectFinMixin"><span class="id" title="lemma">VectFinMixin</span></a> <a class="idref" href="mathcomp.field.finfield.html#vT"><span class="id" title="variable">vT</span></a>).<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Falg_finType</span> <span class="id" title="var">aT</span> := <a class="idref" href="mathcomp.ssreflect.fintype.html#Finite.Exports.FinType"><span class="id" title="abbreviation">FinType</span></a> <a class="idref" href="mathcomp.field.finfield.html#aT"><span class="id" title="variable">aT</span></a> (<a class="idref" href="mathcomp.field.finfield.html#VectFinMixin"><span class="id" title="lemma">VectFinMixin</span></a> <a class="idref" href="mathcomp.field.finfield.html#aT"><span class="id" title="variable">aT</span></a>).<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">fieldExt_finType</span> <span class="id" title="var">fT</span> := <a class="idref" href="mathcomp.ssreflect.fintype.html#Finite.Exports.FinType"><span class="id" title="abbreviation">FinType</span></a> <a class="idref" href="mathcomp.field.finfield.html#fT"><span class="id" title="variable">fT</span></a> (<a class="idref" href="mathcomp.field.finfield.html#VectFinMixin"><span class="id" title="lemma">VectFinMixin</span></a> <a class="idref" href="mathcomp.field.finfield.html#fT"><span class="id" title="variable">fT</span></a>).<br/>
<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Falg_finRingType</span> <span class="id" title="var">aT</span> := <a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">finRingType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#aT"><span class="id" title="variable">aT</span></a><a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">fieldExt_finRingType</span> <span class="id" title="var">fT</span> := <a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">finRingType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#fT"><span class="id" title="variable">fT</span></a><a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">fieldExt_finFieldType</span> <span class="id" title="var">fT</span> := <a class="idref" href="mathcomp.algebra.finalg.html#07fdfbae2c02044f4dae6b5dbeb0c7c7"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#07fdfbae2c02044f4dae6b5dbeb0c7c7"><span class="id" title="notation">finFieldType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#07fdfbae2c02044f4dae6b5dbeb0c7c7"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#fT"><span class="id" title="variable">fT</span></a><a class="idref" href="mathcomp.algebra.finalg.html#07fdfbae2c02044f4dae6b5dbeb0c7c7"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="FinVector.finField_splittingField_axiom"><span class="id" title="lemma">finField_splittingField_axiom</span></a> <span class="id" title="var">fT</span> : <a class="idref" href="mathcomp.field.galois.html#SplittingField.axiom"><span class="id" title="definition">SplittingField.axiom</span></a> <a class="idref" href="mathcomp.field.finfield.html#fT"><span class="id" title="variable">fT</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#FinVector.Interfaces"><span class="id" title="section">Interfaces</span></a>.<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#FinVector"><span class="id" title="module">FinVector</span></a>.<br/>
<br/>
<span class="id" title="keyword">Notation</span> <a name="FinFieldExtType"><span class="id" title="abbreviation">FinFieldExtType</span></a> := <a class="idref" href="mathcomp.field.finfield.html#fieldExt_finFieldType"><span class="id" title="definition">FinVector.fieldExt_finFieldType</span></a>.<br/>
<span class="id" title="keyword">Notation</span> <a name="FinSplittingFieldAxiom"><span class="id" title="abbreviation">FinSplittingFieldAxiom</span></a> := (<a class="idref" href="mathcomp.field.finfield.html#finField_splittingField_axiom"><span class="id" title="lemma">FinVector.finField_splittingField_axiom</span></a> <span class="id" title="var">_</span>).<br/>
<span class="id" title="keyword">Notation</span> <a name="FinSplittingFieldType"><span class="id" title="abbreviation">FinSplittingFieldType</span></a> <span class="id" title="var">F</span> <span class="id" title="var">L</span> :=<br/>
(<a class="idref" href="mathcomp.field.galois.html#SplittingField.Exports.SplittingFieldType"><span class="id" title="abbreviation">SplittingFieldType</span></a> <span class="id" title="var">F</span> <span class="id" title="var">L</span> <a class="idref" href="mathcomp.field.finfield.html#FinSplittingFieldAxiom"><span class="id" title="abbreviation">FinSplittingFieldAxiom</span></a>).<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="PrimeChar"><span class="id" title="section">PrimeChar</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="PrimeChar.p"><span class="id" title="variable">p</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="PrimeChar.PrimeCharRing"><span class="id" title="section">PrimeCharRing</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="PrimeChar.PrimeCharRing.R0"><span class="id" title="variable">R0</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Ring.Exports.ringType"><span class="id" title="abbreviation">ringType</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="PrimeCharType"><span class="id" title="definition">PrimeCharType</span></a> <span class="id" title="keyword">of</span> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">char</span></a> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.PrimeCharRing.R0"><span class="id" title="variable">R0</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">]</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#predArgType"><span class="id" title="definition">predArgType</span></a> := <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.PrimeCharRing.R0"><span class="id" title="variable">R0</span></a>.<br/>
<br/>
<span class="id" title="keyword">Hypothesis</span> <a name="PrimeChar.PrimeCharRing.charRp"><span class="id" title="variable">charRp</span></a> : <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">char</span></a> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.PrimeCharRing.R0"><span class="id" title="variable">R0</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Implicit</span> <span class="id" title="keyword">Types</span> (<span class="id" title="var">a</span> <span class="id" title="var">b</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a>) (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a>).<br/>
<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_eqType</span> := <a class="idref" href="mathcomp.ssreflect.eqtype.html#cb062fd562aed512787df99359c6e3f2"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.eqtype.html#cb062fd562aed512787df99359c6e3f2"><span class="id" title="notation">eqType</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#cb062fd562aed512787df99359c6e3f2"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.ssreflect.eqtype.html#cb062fd562aed512787df99359c6e3f2"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_choiceType</span> := <a class="idref" href="mathcomp.ssreflect.choice.html#1731a28227324c9e5fc49499029635b3"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.choice.html#1731a28227324c9e5fc49499029635b3"><span class="id" title="notation">choiceType</span></a> <a class="idref" href="mathcomp.ssreflect.choice.html#1731a28227324c9e5fc49499029635b3"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.ssreflect.choice.html#1731a28227324c9e5fc49499029635b3"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_zmodType</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#af6385fc2df84aeeec6855073f75cc68"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af6385fc2df84aeeec6855073f75cc68"><span class="id" title="notation">zmodType</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#af6385fc2df84aeeec6855073f75cc68"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af6385fc2df84aeeec6855073f75cc68"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_ringType</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#dee4f3431027813095272c568fc6b5ce"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#dee4f3431027813095272c568fc6b5ce"><span class="id" title="notation">ringType</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#dee4f3431027813095272c568fc6b5ce"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#dee4f3431027813095272c568fc6b5ce"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="primeChar_scale"><span class="id" title="definition">primeChar_scale</span></a> <span class="id" title="var">a</span> <span class="id" title="var">x</span> := <a class="idref" href="mathcomp.field.finfield.html#a"><span class="id" title="variable">a</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a>.<br/>
<br/>
<span class="id" title="keyword">Let</span> <a name="PrimeChar.PrimeCharRing.natrFp"><span class="id" title="variable">natrFp</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#inZp"><span class="id" title="definition">inZp</span></a> <a class="idref" href="mathcomp.field.finfield.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#4509b22bf26e3d6d771897e22bd8bc8f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.field.finfield.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">:></span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="primeChar_scaleA"><span class="id" title="lemma">primeChar_scaleA</span></a> <span class="id" title="var">a</span> <span class="id" title="var">b</span> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.field.finfield.html#a"><span class="id" title="variable">a</span></a> <a class="idref" href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f"><span class="id" title="notation">p</span></a><a class="idref" href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.field.finfield.html#b"><span class="id" title="variable">b</span></a> <a class="idref" href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f"><span class="id" title="notation">p</span></a><a class="idref" href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.field.finfield.html#a"><span class="id" title="variable">a</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.field.finfield.html#b"><span class="id" title="variable">b</span></a><a class="idref" href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f"><span class="id" title="notation">p</span></a><a class="idref" href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="primeChar_scale1"><span class="id" title="lemma">primeChar_scale1</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#left_id"><span class="id" title="definition">left_id</span></a> 1 <a class="idref" href="mathcomp.field.finfield.html#primeChar_scale"><span class="id" title="definition">primeChar_scale</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="primeChar_scaleDr"><span class="id" title="lemma">primeChar_scaleDr</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#right_distributive"><span class="id" title="definition">right_distributive</span></a> <a class="idref" href="mathcomp.field.finfield.html#primeChar_scale"><span class="id" title="definition">primeChar_scale</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#327bb2f0da6fd7c01a004dedcfc2dee4"><span class="id" title="notation">+%</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#327bb2f0da6fd7c01a004dedcfc2dee4"><span class="id" title="notation">R</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="primeChar_scaleDl"><span class="id" title="lemma">primeChar_scaleDl</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#3014e73af2a90fd800d8681479d76336"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#3014e73af2a90fd800d8681479d76336"><span class="id" title="notation">morph</span></a> <a class="idref" href="mathcomp.field.finfield.html#primeChar_scale"><span class="id" title="definition">primeChar_scale</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#8f28bbd804547edd8de802d63ef85617"><span class="id" title="notation">^~</span></a> <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#3014e73af2a90fd800d8681479d76336"><span class="id" title="notation">:</span></a> <span class="id" title="var">a</span> <span class="id" title="var">b</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#3014e73af2a90fd800d8681479d76336"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.field.finfield.html#a"><span class="id" title="variable">a</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#ae4d81913e6239182a9ac7467ffde8cd"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.field.finfield.html#b"><span class="id" title="variable">b</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#3014e73af2a90fd800d8681479d76336"><span class="id" title="notation">}</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="primeChar_lmodMixin"><span class="id" title="definition">primeChar_lmodMixin</span></a> :=<br/>
<a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Lmodule.Exports.LmodMixin"><span class="id" title="abbreviation">LmodMixin</span></a> <a class="idref" href="mathcomp.field.finfield.html#primeChar_scaleA"><span class="id" title="lemma">primeChar_scaleA</span></a> <a class="idref" href="mathcomp.field.finfield.html#primeChar_scale1"><span class="id" title="lemma">primeChar_scale1</span></a><br/>
<a class="idref" href="mathcomp.field.finfield.html#primeChar_scaleDr"><span class="id" title="lemma">primeChar_scaleDr</span></a> <a class="idref" href="mathcomp.field.finfield.html#primeChar_scaleDl"><span class="id" title="lemma">primeChar_scaleDl</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_lmodType</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Lmodule.Exports.LmodType"><span class="id" title="abbreviation">LmodType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#primeChar_lmodMixin"><span class="id" title="definition">primeChar_lmodMixin</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="primeChar_scaleAl"><span class="id" title="lemma">primeChar_scaleAl</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Lalgebra.axiom"><span class="id" title="definition">GRing.Lalgebra.axiom</span></a> ( <a class="idref" href="mathcomp.algebra.ssralg.html#d5d4e2467843f67554f1a8a22d125de9"><span class="id" title="notation">*%</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#d5d4e2467843f67554f1a8a22d125de9"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#4509b22bf26e3d6d771897e22bd8bc8f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a>).<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_LalgType</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Lalgebra.Exports.LalgType"><span class="id" title="abbreviation">LalgType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#primeChar_scaleAl"><span class="id" title="lemma">primeChar_scaleAl</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="primeChar_scaleAr"><span class="id" title="lemma">primeChar_scaleAr</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Algebra.axiom"><span class="id" title="definition">GRing.Algebra.axiom</span></a> <a class="idref" href="mathcomp.field.finfield.html#primeChar_LalgType"><span class="id" title="definition">primeChar_LalgType</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_algType</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Algebra.Exports.AlgType"><span class="id" title="abbreviation">AlgType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#primeChar_scaleAr"><span class="id" title="lemma">primeChar_scaleAr</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.PrimeCharRing"><span class="id" title="section">PrimeCharRing</span></a>.<br/>
<br/>
<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_unitRingType</span> (<span class="id" title="var">R</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.UnitRing.Exports.unitRingType"><span class="id" title="abbreviation">unitRingType</span></a>) <span class="id" title="var">charRp</span> :=<br/>
<a class="idref" href="mathcomp.algebra.ssralg.html#f02859ca87d7563e473a6ba817bdc33f"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#f02859ca87d7563e473a6ba817bdc33f"><span class="id" title="notation">unitRingType</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#f02859ca87d7563e473a6ba817bdc33f"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#type"><span class="id" title="abbreviation">type</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#charRp"><span class="id" title="variable">charRp</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#f02859ca87d7563e473a6ba817bdc33f"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_unitAlgType</span> (<span class="id" title="var">R</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.UnitRing.Exports.unitRingType"><span class="id" title="abbreviation">unitRingType</span></a>) <span class="id" title="var">charRp</span> :=<br/>
<a class="idref" href="mathcomp.algebra.ssralg.html#bdb1eed686184a9a4099efa772be7bc7"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#bdb1eed686184a9a4099efa772be7bc7"><span class="id" title="notation">unitAlgType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#bdb1eed686184a9a4099efa772be7bc7"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#type"><span class="id" title="abbreviation">type</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#charRp"><span class="id" title="variable">charRp</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#bdb1eed686184a9a4099efa772be7bc7"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_comRingType</span> (<span class="id" title="var">R</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.ComRing.Exports.comRingType"><span class="id" title="abbreviation">comRingType</span></a>) <span class="id" title="var">charRp</span> :=<br/>
<a class="idref" href="mathcomp.algebra.ssralg.html#57b384122345a94c564987d4b6ee9f0f"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#57b384122345a94c564987d4b6ee9f0f"><span class="id" title="notation">comRingType</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#57b384122345a94c564987d4b6ee9f0f"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#type"><span class="id" title="abbreviation">type</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#charRp"><span class="id" title="variable">charRp</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#57b384122345a94c564987d4b6ee9f0f"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_comUnitRingType</span> (<span class="id" title="var">R</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.ComUnitRing.Exports.comUnitRingType"><span class="id" title="abbreviation">comUnitRingType</span></a>) <span class="id" title="var">charRp</span> :=<br/>
<a class="idref" href="mathcomp.algebra.ssralg.html#e3ee791c903b0283e51d52d0692558ec"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#e3ee791c903b0283e51d52d0692558ec"><span class="id" title="notation">comUnitRingType</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#e3ee791c903b0283e51d52d0692558ec"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#type"><span class="id" title="abbreviation">type</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#charRp"><span class="id" title="variable">charRp</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#e3ee791c903b0283e51d52d0692558ec"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_idomainType</span> (<span class="id" title="var">R</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.IntegralDomain.Exports.idomainType"><span class="id" title="abbreviation">idomainType</span></a>) <span class="id" title="var">charRp</span> :=<br/>
<a class="idref" href="mathcomp.algebra.ssralg.html#9894f8fff6e44a40eb9fd9cfcbde7780"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9894f8fff6e44a40eb9fd9cfcbde7780"><span class="id" title="notation">idomainType</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#9894f8fff6e44a40eb9fd9cfcbde7780"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#type"><span class="id" title="abbreviation">type</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#charRp"><span class="id" title="variable">charRp</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9894f8fff6e44a40eb9fd9cfcbde7780"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_fieldType</span> (<span class="id" title="var">F</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Exports.fieldType"><span class="id" title="abbreviation">fieldType</span></a>) <span class="id" title="var">charFp</span> :=<br/>
<a class="idref" href="mathcomp.algebra.ssralg.html#005edfce3bb0bbe988e3333ca30adc0f"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#005edfce3bb0bbe988e3333ca30adc0f"><span class="id" title="notation">fieldType</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#005edfce3bb0bbe988e3333ca30adc0f"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#type"><span class="id" title="abbreviation">type</span></a> <a class="idref" href="mathcomp.field.finfield.html#F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.field.finfield.html#charFp"><span class="id" title="variable">charFp</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#005edfce3bb0bbe988e3333ca30adc0f"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="PrimeChar.FinRing"><span class="id" title="section">FinRing</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variables</span> (<a name="PrimeChar.FinRing.R0"><span class="id" title="variable">R0</span></a> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Ring.Exports.finRingType"><span class="id" title="abbreviation">finRingType</span></a>) (<a name="PrimeChar.FinRing.charRp"><span class="id" title="variable">charRp</span></a> : <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">char</span></a> <a class="idref" href="mathcomp.field.finfield.html#R0"><span class="id" title="variable">R0</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">]</span></a>).<br/>
<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_finType</span> := <a class="idref" href="mathcomp.ssreflect.fintype.html#eb1f7a25d8e03f1f02a5769831d0e74e"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#eb1f7a25d8e03f1f02a5769831d0e74e"><span class="id" title="notation">finType</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#eb1f7a25d8e03f1f02a5769831d0e74e"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#eb1f7a25d8e03f1f02a5769831d0e74e"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_finZmodType</span> := <a class="idref" href="mathcomp.algebra.finalg.html#2980bb304205aec85bc1eeb5d0a573a5"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#2980bb304205aec85bc1eeb5d0a573a5"><span class="id" title="notation">finZmodType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#2980bb304205aec85bc1eeb5d0a573a5"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.algebra.finalg.html#2980bb304205aec85bc1eeb5d0a573a5"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_baseGroupType</span> := <a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">baseFinGroupType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">for</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">+%</span></a><a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">R</span></a><a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_groupType</span> := <a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">finGroupType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">for</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">+%</span></a><a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">R</span></a><a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_finRingType</span> := <a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">finRingType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_finLmodType</span> := <a class="idref" href="mathcomp.algebra.finalg.html#73928e07fdf596d7d0d44cccaf9a9cb3"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#73928e07fdf596d7d0d44cccaf9a9cb3"><span class="id" title="notation">finLmodType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#73928e07fdf596d7d0d44cccaf9a9cb3"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.algebra.finalg.html#73928e07fdf596d7d0d44cccaf9a9cb3"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_finLalgType</span> := <a class="idref" href="mathcomp.algebra.finalg.html#f791552e58608a16cb248da4e7f34691"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f791552e58608a16cb248da4e7f34691"><span class="id" title="notation">finLalgType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#f791552e58608a16cb248da4e7f34691"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f791552e58608a16cb248da4e7f34691"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_finAlgType</span> := <a class="idref" href="mathcomp.algebra.finalg.html#1f3938acab41e5853e751c34c441bf83"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#1f3938acab41e5853e751c34c441bf83"><span class="id" title="notation">finAlgType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#1f3938acab41e5853e751c34c441bf83"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.algebra.finalg.html#1f3938acab41e5853e751c34c441bf83"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Let</span> <a name="PrimeChar.FinRing.pr_p"><span class="id" title="variable">pr_p</span></a> : <a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.p"><span class="id" title="variable">p</span></a>. <br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="primeChar_abelem"><span class="id" title="lemma">primeChar_abelem</span></a> : <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.abelian.html#bcb4124a3d9b102768b81d5d3006e029"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.solvable.abelian.html#bcb4124a3d9b102768b81d5d3006e029"><span class="id" title="notation">abelem</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="primeChar_pgroup"><span class="id" title="lemma">primeChar_pgroup</span></a> : <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#5b9c9ef075a2fca9df30ee4ac4a1af18"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#5b9c9ef075a2fca9df30ee4ac4a1af18"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="order_primeChar"><span class="id" title="lemma">order_primeChar</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#9e45f909d1732d6d9e153b650829bccf"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="mathcomp.ssreflect.eqtype.html#9e45f909d1732d6d9e153b650829bccf"><span class="id" title="notation">:></span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#89402f0d9375903caa99ad84144160d5"><span class="id" title="notation">#[</span></a><a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#89402f0d9375903caa99ad84144160d5"><span class="id" title="notation">]</span></a>%<span class="id" title="var">g</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.p"><span class="id" title="variable">p</span></a>.<br/>
<br/>
<span class="id" title="keyword">Let</span> <a name="PrimeChar.FinRing.n"><span class="id" title="variable">n</span></a> := <a class="idref" href="mathcomp.ssreflect.prime.html#logn"><span class="id" title="definition">logn</span></a> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="card_primeChar"><span class="id" title="lemma">card_primeChar</span></a> : <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.field.finfield.html#PrimeChar.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#4c362bcf0e947e2792a2e6989b44aeb0"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.FinRing.n"><span class="id" title="variable">n</span></a>)%<span class="id" title="var">N</span>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="primeChar_vectAxiom"><span class="id" title="lemma">primeChar_vectAxiom</span></a> : <a class="idref" href="mathcomp.algebra.vector.html#Vector.axiom"><span class="id" title="abbreviation">Vector.axiom</span></a> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.FinRing.n"><span class="id" title="variable">n</span></a> (<a class="idref" href="mathcomp.field.finfield.html#primeChar_lmodType"><span class="id" title="definition">primeChar_lmodType</span></a> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.FinRing.charRp"><span class="id" title="variable">charRp</span></a>).<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="primeChar_vectMixin"><span class="id" title="definition">primeChar_vectMixin</span></a> := <a class="idref" href="mathcomp.algebra.vector.html#Vector.Mixin"><span class="id" title="constructor">Vector.Mixin</span></a> <a class="idref" href="mathcomp.field.finfield.html#primeChar_vectAxiom"><span class="id" title="lemma">primeChar_vectAxiom</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_vectType</span> := <a class="idref" href="mathcomp.algebra.vector.html#Vector.Exports.VectType"><span class="id" title="abbreviation">VectType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="abbreviation">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#primeChar_vectMixin"><span class="id" title="definition">primeChar_vectMixin</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="primeChar_dimf"><span class="id" title="lemma">primeChar_dimf</span></a> : <a class="idref" href="mathcomp.algebra.vector.html#ee35a6780ccd60155a3be89dcb5fdb30"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.vector.html#ee35a6780ccd60155a3be89dcb5fdb30"><span class="id" title="notation">dim</span></a> <a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">{:</span></a><a class="idref" href="mathcomp.field.finfield.html#primeChar_vectType"><span class="id" title="definition">primeChar_vectType</span></a><a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">}</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.FinRing.n"><span class="id" title="variable">n</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.FinRing"><span class="id" title="section">FinRing</span></a>.<br/>
<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_finUnitRingType</span> (<span class="id" title="var">R</span> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.UnitRing.Exports.finUnitRingType"><span class="id" title="abbreviation">finUnitRingType</span></a>) <span class="id" title="var">charRp</span> :=<br/>
<a class="idref" href="mathcomp.algebra.finalg.html#7f21453830587186138043335ab91dd1"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#7f21453830587186138043335ab91dd1"><span class="id" title="notation">finUnitRingType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#7f21453830587186138043335ab91dd1"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#type"><span class="id" title="abbreviation">type</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#charRp"><span class="id" title="variable">charRp</span></a><a class="idref" href="mathcomp.algebra.finalg.html#7f21453830587186138043335ab91dd1"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_finUnitAlgType</span> (<span class="id" title="var">R</span> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.UnitRing.Exports.finUnitRingType"><span class="id" title="abbreviation">finUnitRingType</span></a>) <span class="id" title="var">charRp</span> :=<br/>
<a class="idref" href="mathcomp.algebra.finalg.html#9af0def31728327fea663946c68b8952"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#9af0def31728327fea663946c68b8952"><span class="id" title="notation">finUnitAlgType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#9af0def31728327fea663946c68b8952"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#type"><span class="id" title="abbreviation">type</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#charRp"><span class="id" title="variable">charRp</span></a><a class="idref" href="mathcomp.algebra.finalg.html#9af0def31728327fea663946c68b8952"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_FalgType</span> (<span class="id" title="var">R</span> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.UnitRing.Exports.finUnitRingType"><span class="id" title="abbreviation">finUnitRingType</span></a>) <span class="id" title="var">charRp</span> :=<br/>
<a class="idref" href="mathcomp.field.falgebra.html#3c0387428f19a365dfa0c989db9030d7"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.field.falgebra.html#3c0387428f19a365dfa0c989db9030d7"><span class="id" title="notation">FalgType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.field.falgebra.html#3c0387428f19a365dfa0c989db9030d7"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#type"><span class="id" title="abbreviation">type</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#charRp"><span class="id" title="variable">charRp</span></a><a class="idref" href="mathcomp.field.falgebra.html#3c0387428f19a365dfa0c989db9030d7"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_finComRingType</span> (<span class="id" title="var">R</span> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.ComRing.Exports.finComRingType"><span class="id" title="abbreviation">finComRingType</span></a>) <span class="id" title="var">charRp</span> :=<br/>
<a class="idref" href="mathcomp.algebra.finalg.html#381777e14bce98b548cb274563c7fc56"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#381777e14bce98b548cb274563c7fc56"><span class="id" title="notation">finComRingType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#381777e14bce98b548cb274563c7fc56"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#type"><span class="id" title="abbreviation">type</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#charRp"><span class="id" title="variable">charRp</span></a><a class="idref" href="mathcomp.algebra.finalg.html#381777e14bce98b548cb274563c7fc56"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_finComUnitRingType</span> (<span class="id" title="var">R</span> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.ComUnitRing.Exports.finComUnitRingType"><span class="id" title="abbreviation">finComUnitRingType</span></a>) <span class="id" title="var">charRp</span> :=<br/>
<a class="idref" href="mathcomp.algebra.finalg.html#f0aa4fcf143660f4378ecfead8f3fdda"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f0aa4fcf143660f4378ecfead8f3fdda"><span class="id" title="notation">finComUnitRingType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#f0aa4fcf143660f4378ecfead8f3fdda"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#type"><span class="id" title="abbreviation">type</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#charRp"><span class="id" title="variable">charRp</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f0aa4fcf143660f4378ecfead8f3fdda"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_finIdomainType</span> (<span class="id" title="var">R</span> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.IntegralDomain.Exports.finIdomainType"><span class="id" title="abbreviation">finIdomainType</span></a>) <span class="id" title="var">charRp</span> :=<br/>
<a class="idref" href="mathcomp.algebra.finalg.html#6c49b73b4d6aa1a932fafe7684bba39c"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#6c49b73b4d6aa1a932fafe7684bba39c"><span class="id" title="notation">finIdomainType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#6c49b73b4d6aa1a932fafe7684bba39c"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#type"><span class="id" title="abbreviation">type</span></a> <a class="idref" href="mathcomp.field.finfield.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#charRp"><span class="id" title="variable">charRp</span></a><a class="idref" href="mathcomp.algebra.finalg.html#6c49b73b4d6aa1a932fafe7684bba39c"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="PrimeChar.FinField"><span class="id" title="section">FinField</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variables</span> (<a name="PrimeChar.FinField.F0"><span class="id" title="variable">F0</span></a> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Field.Exports.finFieldType"><span class="id" title="abbreviation">finFieldType</span></a>) (<a name="PrimeChar.FinField.charFp"><span class="id" title="variable">charFp</span></a> : <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">char</span></a> <a class="idref" href="mathcomp.field.finfield.html#F0"><span class="id" title="variable">F0</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">]</span></a>).<br/>
<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_finFieldType</span> := <a class="idref" href="mathcomp.algebra.finalg.html#07fdfbae2c02044f4dae6b5dbeb0c7c7"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#07fdfbae2c02044f4dae6b5dbeb0c7c7"><span class="id" title="notation">finFieldType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#07fdfbae2c02044f4dae6b5dbeb0c7c7"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#F"><span class="id" title="abbreviation">F</span></a><a class="idref" href="mathcomp.algebra.finalg.html#07fdfbae2c02044f4dae6b5dbeb0c7c7"><span class="id" title="notation">]</span></a>.<br/>
</div>
<div class="doc">
We need to use the eta-long version of the constructor here as projections
of the Canonical fieldType of F cannot be computed syntactically.
</div>
<div class="code">
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_fieldExtType</span> := <a class="idref" href="mathcomp.field.fieldext.html#5f5a3c95feae5e889ef0ed2ea21bd611"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.field.fieldext.html#5f5a3c95feae5e889ef0ed2ea21bd611"><span class="id" title="notation">fieldExtType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.field.fieldext.html#5f5a3c95feae5e889ef0ed2ea21bd611"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#F"><span class="id" title="abbreviation">F</span></a> <a class="idref" href="mathcomp.field.fieldext.html#5f5a3c95feae5e889ef0ed2ea21bd611"><span class="id" title="notation">for</span></a> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.FinField.F0"><span class="id" title="variable">F0</span></a><a class="idref" href="mathcomp.field.fieldext.html#5f5a3c95feae5e889ef0ed2ea21bd611"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">primeChar_splittingFieldType</span> := <a class="idref" href="mathcomp.field.finfield.html#FinSplittingFieldType"><span class="id" title="abbreviation">FinSplittingFieldType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.field.finfield.html#F"><span class="id" title="abbreviation">F</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar.FinField"><span class="id" title="section">FinField</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#PrimeChar"><span class="id" title="section">PrimeChar</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="FinSplittingField"><span class="id" title="section">FinSplittingField</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="FinSplittingField.F"><span class="id" title="variable">F</span></a> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Field.Exports.finFieldType"><span class="id" title="abbreviation">finFieldType</span></a>.<br/>
<br/>
</div>
<div class="doc">
By card_vspace order K = #|K| for any finType structure on L; however we
do not want to impose the FinVector instance here.
</div>
<div class="code">
<span class="id" title="keyword">Let</span> <a name="FinSplittingField.order"><span class="id" title="variable">order</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.algebra.vector.html#Vector.Exports.vectType"><span class="id" title="abbreviation">vectType</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinSplittingField.F"><span class="id" title="variable">F</span></a>) (<span class="id" title="var">K</span> : <a class="idref" href="mathcomp.algebra.vector.html#ca0a177f6d6581a7f5199987cd7ee21c"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.vector.html#ca0a177f6d6581a7f5199987cd7ee21c"><span class="id" title="notation">vspace</span></a> <a class="idref" href="mathcomp.field.finfield.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.algebra.vector.html#ca0a177f6d6581a7f5199987cd7ee21c"><span class="id" title="notation">}</span></a>) := (<a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.field.finfield.html#FinSplittingField.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#4c362bcf0e947e2792a2e6989b44aeb0"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.vector.html#ee35a6780ccd60155a3be89dcb5fdb30"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.vector.html#ee35a6780ccd60155a3be89dcb5fdb30"><span class="id" title="notation">dim</span></a> <a class="idref" href="mathcomp.field.finfield.html#K"><span class="id" title="variable">K</span></a>)%<span class="id" title="var">N</span>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="FinSplittingField.FinGalois"><span class="id" title="section">FinGalois</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="FinSplittingField.FinGalois.L"><span class="id" title="variable">L</span></a> : <a class="idref" href="mathcomp.field.galois.html#SplittingField.Exports.splittingFieldType"><span class="id" title="abbreviation">splittingFieldType</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinSplittingField.F"><span class="id" title="variable">F</span></a>.<br/>
<span class="id" title="keyword">Implicit</span> <span class="id" title="keyword">Types</span> (<span class="id" title="var">a</span> <span class="id" title="var">b</span> : <a class="idref" href="mathcomp.field.finfield.html#FinSplittingField.F"><span class="id" title="variable">F</span></a>) (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.field.finfield.html#FinSplittingField.FinGalois.L"><span class="id" title="variable">L</span></a>) (<span class="id" title="var">K</span> <span class="id" title="var">E</span> : <a class="idref" href="mathcomp.field.fieldext.html#da0a594fae595c8172b1a3e2dd69d19d"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.field.fieldext.html#da0a594fae595c8172b1a3e2dd69d19d"><span class="id" title="notation">subfield</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinSplittingField.FinGalois.L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.field.fieldext.html#da0a594fae595c8172b1a3e2dd69d19d"><span class="id" title="notation">}</span></a>).<br/>
<br/>
<span class="id" title="keyword">Let</span> <a name="FinSplittingField.FinGalois.galL"><span class="id" title="variable">galL</span></a> <span class="id" title="var">K</span> : <a class="idref" href="mathcomp.field.galois.html#galois"><span class="id" title="definition">galois</span></a> <a class="idref" href="mathcomp.field.finfield.html#K"><span class="id" title="variable">K</span></a> <a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">{:</span></a><a class="idref" href="mathcomp.field.finfield.html#FinSplittingField.FinGalois.L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">}</span></a>.<br/>
<br/>
<span class="id" title="keyword">Fact</span> <a name="galLgen"><span class="id" title="lemma">galLgen</span></a> <span class="id" title="var">K</span> :<br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#f5350ad671d3ce0e1e463e298917cf6e"><span class="id" title="notation">{</span></a><span class="id" title="var">alpha</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#f5350ad671d3ce0e1e463e298917cf6e"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.solvable.cyclic.html#generator"><span class="id" title="definition">generator</span></a> <a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">Gal</span></a><a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">{:</span></a><a class="idref" href="mathcomp.field.finfield.html#FinSplittingField.FinGalois.L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">}</span></a> <a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.field.finfield.html#K"><span class="id" title="variable">K</span></a><a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.field.finfield.html#alpha"><span class="id" title="variable">alpha</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#f5350ad671d3ce0e1e463e298917cf6e"><span class="id" title="notation">&</span></a> <span class="id" title="keyword">∀</span> <span class="id" title="var">x</span>, <a class="idref" href="mathcomp.field.finfield.html#alpha"><span class="id" title="variable">alpha</span></a> <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#fb22424322c3d7eb9b837dfca65ce21e"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinSplittingField.order"><span class="id" title="variable">order</span></a> <a class="idref" href="mathcomp.field.finfield.html#K"><span class="id" title="variable">K</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#f5350ad671d3ce0e1e463e298917cf6e"><span class="id" title="notation">}</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="finField_galois"><span class="id" title="lemma">finField_galois</span></a> <span class="id" title="var">K</span> <span class="id" title="var">E</span> : (<a class="idref" href="mathcomp.field.finfield.html#K"><span class="id" title="variable">K</span></a> <a class="idref" href="mathcomp.algebra.vector.html#755d11a7d5629bce3486e7cbadc915e7"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.field.finfield.html#E"><span class="id" title="variable">E</span></a>)%<span class="id" title="var">VS</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.field.galois.html#galois"><span class="id" title="definition">galois</span></a> <a class="idref" href="mathcomp.field.finfield.html#K"><span class="id" title="variable">K</span></a> <a class="idref" href="mathcomp.field.finfield.html#E"><span class="id" title="variable">E</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="finField_galois_generator"><span class="id" title="lemma">finField_galois_generator</span></a> <span class="id" title="var">K</span> <span class="id" title="var">E</span> :<br/>
(<a class="idref" href="mathcomp.field.finfield.html#K"><span class="id" title="variable">K</span></a> <a class="idref" href="mathcomp.algebra.vector.html#755d11a7d5629bce3486e7cbadc915e7"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.field.finfield.html#E"><span class="id" title="variable">E</span></a>)%<span class="id" title="var">VS</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#f5350ad671d3ce0e1e463e298917cf6e"><span class="id" title="notation">{</span></a><span class="id" title="var">alpha</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#f5350ad671d3ce0e1e463e298917cf6e"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.solvable.cyclic.html#generator"><span class="id" title="definition">generator</span></a> <a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">Gal</span></a><a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.field.finfield.html#E"><span class="id" title="variable">E</span></a> <a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.field.finfield.html#K"><span class="id" title="variable">K</span></a><a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.field.finfield.html#alpha"><span class="id" title="variable">alpha</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#f5350ad671d3ce0e1e463e298917cf6e"><span class="id" title="notation">&</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#5c59b35a0b51db520cf1fba473ecf127"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#5c59b35a0b51db520cf1fba473ecf127"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.field.finfield.html#E"><span class="id" title="variable">E</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#5c59b35a0b51db520cf1fba473ecf127"><span class="id" title="notation">,</span></a> <span class="id" title="keyword">∀</span> <span class="id" title="var">x</span>, <a class="idref" href="mathcomp.field.finfield.html#alpha"><span class="id" title="variable">alpha</span></a> <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#fb22424322c3d7eb9b837dfca65ce21e"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinSplittingField.order"><span class="id" title="variable">order</span></a> <a class="idref" href="mathcomp.field.finfield.html#K"><span class="id" title="variable">K</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#5c59b35a0b51db520cf1fba473ecf127"><span class="id" title="notation">}</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#f5350ad671d3ce0e1e463e298917cf6e"><span class="id" title="notation">}</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#FinSplittingField.FinGalois"><span class="id" title="section">FinGalois</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Fermat's_little_theorem"><span class="id" title="lemma">Fermat's_little_theorem</span></a> (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.field.fieldext.html#FieldExt.Exports.fieldExtType"><span class="id" title="abbreviation">fieldExtType</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinSplittingField.F"><span class="id" title="variable">F</span></a>) (<span class="id" title="var">K</span> : <a class="idref" href="mathcomp.field.fieldext.html#da0a594fae595c8172b1a3e2dd69d19d"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.field.fieldext.html#da0a594fae595c8172b1a3e2dd69d19d"><span class="id" title="notation">subfield</span></a> <a class="idref" href="mathcomp.field.finfield.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.field.fieldext.html#da0a594fae595c8172b1a3e2dd69d19d"><span class="id" title="notation">}</span></a>) <span class="id" title="var">a</span> :<br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.field.finfield.html#a"><span class="id" title="variable">a</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.field.finfield.html#K"><span class="id" title="variable">K</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.field.finfield.html#a"><span class="id" title="variable">a</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#fb22424322c3d7eb9b837dfca65ce21e"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinSplittingField.order"><span class="id" title="variable">order</span></a> <a class="idref" href="mathcomp.field.finfield.html#K"><span class="id" title="variable">K</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#17d28d004d0863cb022d4ce832ddaaae"><span class="id" title="notation">==</span></a> <a class="idref" href="mathcomp.field.finfield.html#a"><span class="id" title="variable">a</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">)</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#FinSplittingField"><span class="id" title="section">FinSplittingField</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="FinFieldExists"><span class="id" title="section">FinFieldExists</span></a>.<br/>
</div>
<div class="doc">
While he existence of finite splitting fields and of finite fields of
arbitrary prime power order is mathematically straightforward, it is
technically challenging to formalize in Coq. The Coq typechecker performs
poorly for the spme of the deeply nested dependent types used in the
construction, such as polynomials over extensions of extensions of finite
fields. Any conversion in a nested structure parameter incurs a huge
overhead as it is shared across term comparison by call-by-need evalution.
The proof of FinSplittingFieldFor is contrived to mitigate this effect:
the abbreviation map_poly_extField alone divides by 3 the proof checking
time, by reducing the number of occurrences of field(Ext)Type structures
in the subgoals; the succesive, apparently redundant 'suffices' localize
some of the conversions to smaller subgoals, yielding a further 8-fold
time gain. In particular, we construct the splitting field as a subtype
of a recursive construction rather than prove that the latter yields
precisely a splitting field.
<div class="paragraph"> </div>
The apparently redundant type annotation reduces checking time by 30%.
</div>
<div class="code">
<span class="id" title="keyword">Let</span> <a name="FinFieldExists.map_poly_extField"><span class="id" title="variable">map_poly_extField</span></a> (<span class="id" title="var">F</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Exports.fieldType"><span class="id" title="abbreviation">fieldType</span></a>) (<span class="id" title="var">L</span> : <a class="idref" href="mathcomp.field.fieldext.html#FieldExt.Exports.fieldExtType"><span class="id" title="abbreviation">fieldExtType</span></a> <a class="idref" href="mathcomp.field.finfield.html#F"><span class="id" title="variable">F</span></a>) :=<br/>
<a class="idref" href="mathcomp.algebra.poly.html#map_poly"><span class="id" title="definition">map_poly</span></a> (<a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Theory.in_alg"><span class="id" title="abbreviation">in_alg</span></a> <a class="idref" href="mathcomp.field.finfield.html#L"><span class="id" title="variable">L</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#4509b22bf26e3d6d771897e22bd8bc8f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.field.finfield.html#F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.field.finfield.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="FinSplittingFieldFor"><span class="id" title="lemma">FinSplittingFieldFor</span></a> (<span class="id" title="var">F</span> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Field.Exports.finFieldType"><span class="id" title="abbreviation">finFieldType</span></a>) (<span class="id" title="var">p</span> : <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.field.finfield.html#F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}</span></a>) :<br/>
<a class="idref" href="mathcomp.field.finfield.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#72ca3fac4636a1b19c963b12162882cf"><span class="id" title="notation">{</span></a><span class="id" title="var">L</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#72ca3fac4636a1b19c963b12162882cf"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.field.galois.html#SplittingField.Exports.splittingFieldType"><span class="id" title="abbreviation">splittingFieldType</span></a> <a class="idref" href="mathcomp.field.finfield.html#F"><span class="id" title="variable">F</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#72ca3fac4636a1b19c963b12162882cf"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.field.galois.html#splittingFieldFor"><span class="id" title="definition">splittingFieldFor</span></a> 1 <a class="idref" href="mathcomp.field.finfield.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.field.finfield.html#445fdb3ebc0ff682c0cd1af9d3a32b17"><span class="id" title="notation">^%:</span></a><a class="idref" href="mathcomp.field.finfield.html#445fdb3ebc0ff682c0cd1af9d3a32b17"><span class="id" title="notation">A</span></a> <a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">{:</span></a><a class="idref" href="mathcomp.field.finfield.html#L"><span class="id" title="variable">L</span></a><a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">}</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#72ca3fac4636a1b19c963b12162882cf"><span class="id" title="notation">}</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="PrimePowerField"><span class="id" title="lemma">PrimePowerField</span></a> <span class="id" title="var">p</span> <span class="id" title="var">k</span> (<span class="id" title="var">m</span> := (<a class="idref" href="mathcomp.field.finfield.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#4c362bcf0e947e2792a2e6989b44aeb0"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.field.finfield.html#k"><span class="id" title="variable">k</span></a>)%<span class="id" title="var">N</span>) :<br/>
<a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.field.finfield.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> 0 <a class="idref" href="mathcomp.ssreflect.ssrnat.html#989c98e7ddd65d5bf37c334ff2076de8"><span class="id" title="notation"><</span></a> <a class="idref" href="mathcomp.field.finfield.html#k"><span class="id" title="variable">k</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">{</span></a><span class="id" title="var">Fm</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Field.Exports.finFieldType"><span class="id" title="abbreviation">finFieldType</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.field.finfield.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">char</span></a> <a class="idref" href="mathcomp.field.finfield.html#Fm"><span class="id" title="variable">Fm</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">&</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.field.finfield.html#Fm"><span class="id" title="variable">Fm</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.field.finfield.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">}</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#FinFieldExists"><span class="id" title="section">FinFieldExists</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="FinDomain"><span class="id" title="section">FinDomain</span></a>.<br/>
<br/>
<span class="id" title="keyword">Import</span> <span class="id" title="var">ssrnum</span> <span class="id" title="var">ssrint</span> <span class="id" title="var">algC</span> <span class="id" title="var">cyclotomic</span> <span class="id" title="var">Num.Theory</span>.<br/>
<span class="comment">(* Hide polynomial divisibility. *)</span><br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="FinDomain.R"><span class="id" title="variable">R</span></a> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.UnitRing.Exports.finUnitRingType"><span class="id" title="abbreviation">finUnitRingType</span></a>.<br/>
<br/>
<span class="id" title="keyword">Hypothesis</span> <a name="FinDomain.domR"><span class="id" title="variable">domR</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.IntegralDomain.axiom"><span class="id" title="definition">GRing.IntegralDomain.axiom</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomain.R"><span class="id" title="variable">R</span></a>.<br/>
<span class="id" title="keyword">Implicit</span> <span class="id" title="keyword">Types</span> <span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.field.finfield.html#FinDomain.R"><span class="id" title="variable">R</span></a>.<br/>
<br/>
<span class="id" title="keyword">Let</span> <a name="FinDomain.lregR"><span class="id" title="variable">lregR</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.lreg"><span class="id" title="definition">GRing.lreg</span></a> <a class="idref" href="mathcomp.field.finfield.html#x"><span class="id" title="variable">x</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="finDomain_field"><span class="id" title="lemma">finDomain_field</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.mixin_of"><span class="id" title="definition">GRing.Field.mixin_of</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomain.R"><span class="id" title="variable">R</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is Witt's proof of Wedderburn's little theorem.
</div>
<div class="code">
<span class="id" title="keyword">Theorem</span> <a name="finDomain_mulrC"><span class="id" title="lemma">finDomain_mulrC</span></a> : @<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#commutative"><span class="id" title="definition">commutative</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomain.R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomain.R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#d5d4e2467843f67554f1a8a22d125de9"><span class="id" title="notation">*%</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#d5d4e2467843f67554f1a8a22d125de9"><span class="id" title="notation">R</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="FinDomainFieldType"><span class="id" title="definition">FinDomainFieldType</span></a> : <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Field.Exports.finFieldType"><span class="id" title="abbreviation">finFieldType</span></a> :=<br/>
<span class="id" title="keyword">let</span> <span class="id" title="var">fin_unit_class</span> := <a class="idref" href="mathcomp.algebra.finalg.html#FinRing.UnitRing.class"><span class="id" title="definition">FinRing.UnitRing.class</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomain.R"><span class="id" title="variable">R</span></a> <span class="id" title="tactic">in</span><br/>
<span class="id" title="keyword">let</span> <span class="id" title="var">com_class</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.ComRing.Class"><span class="id" title="constructor">GRing.ComRing.Class</span></a> <a class="idref" href="mathcomp.field.finfield.html#finDomain_mulrC"><span class="id" title="lemma">finDomain_mulrC</span></a> <span class="id" title="tactic">in</span><br/>
<span class="id" title="keyword">let</span> <span class="id" title="var">com_unit_class</span> := @<a class="idref" href="mathcomp.algebra.ssralg.html#GRing.ComUnitRing.Class"><span class="id" title="constructor">GRing.ComUnitRing.Class</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomain.R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#com_class"><span class="id" title="variable">com_class</span></a> <a class="idref" href="mathcomp.field.finfield.html#fin_unit_class"><span class="id" title="variable">fin_unit_class</span></a> <span class="id" title="tactic">in</span><br/>
<span class="id" title="keyword">let</span> <span class="id" title="var">dom_class</span> := @<a class="idref" href="mathcomp.algebra.ssralg.html#GRing.IntegralDomain.Class"><span class="id" title="constructor">GRing.IntegralDomain.Class</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomain.R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#com_unit_class"><span class="id" title="variable">com_unit_class</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomain.domR"><span class="id" title="variable">domR</span></a> <span class="id" title="tactic">in</span><br/>
<span class="id" title="keyword">let</span> <span class="id" title="var">field_class</span> := @<a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Class"><span class="id" title="constructor">GRing.Field.Class</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomain.R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#dom_class"><span class="id" title="variable">dom_class</span></a> <a class="idref" href="mathcomp.field.finfield.html#finDomain_field"><span class="id" title="lemma">finDomain_field</span></a> <span class="id" title="tactic">in</span><br/>
<span class="id" title="keyword">let</span> <span class="id" title="var">finfield_class</span> := @<a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Field.Class"><span class="id" title="constructor">FinRing.Field.Class</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomain.R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.finfield.html#field_class"><span class="id" title="variable">field_class</span></a> <a class="idref" href="mathcomp.field.finfield.html#fin_unit_class"><span class="id" title="variable">fin_unit_class</span></a> <span class="id" title="tactic">in</span><br/>
<a class="idref" href="mathcomp.algebra.finalg.html#FinRing.Field.Pack"><span class="id" title="constructor">FinRing.Field.Pack</span></a> <a class="idref" href="mathcomp.field.finfield.html#finfield_class"><span class="id" title="variable">finfield_class</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomain.R"><span class="id" title="variable">R</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="FinDomainSplittingFieldType"><span class="id" title="definition">FinDomainSplittingFieldType</span></a> <span class="id" title="var">p</span> (<span class="id" title="var">charRp</span> : <a class="idref" href="mathcomp.field.finfield.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">char</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomain.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">]</span></a>) :=<br/>
<span class="id" title="keyword">let</span> <span class="id" title="var">RoverFp</span> := @<a class="idref" href="mathcomp.field.finfield.html#primeChar_splittingFieldType"><span class="id" title="definition">primeChar_splittingFieldType</span></a> <a class="idref" href="mathcomp.field.finfield.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomainFieldType"><span class="id" title="definition">FinDomainFieldType</span></a> <a class="idref" href="mathcomp.field.finfield.html#charRp"><span class="id" title="variable">charRp</span></a> <span class="id" title="tactic">in</span><br/>
<a class="idref" href="mathcomp.field.galois.html#201f8b6ebe31f6a88a3d073a45335fc2"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.field.galois.html#201f8b6ebe31f6a88a3d073a45335fc2"><span class="id" title="notation">splittingFieldType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.field.galois.html#201f8b6ebe31f6a88a3d073a45335fc2"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.field.finfield.html#FinDomain.R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.field.galois.html#201f8b6ebe31f6a88a3d073a45335fc2"><span class="id" title="notation">for</span></a> <a class="idref" href="mathcomp.field.finfield.html#RoverFp"><span class="id" title="variable">RoverFp</span></a><a class="idref" href="mathcomp.field.galois.html#201f8b6ebe31f6a88a3d073a45335fc2"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.field.finfield.html#FinDomain"><span class="id" title="section">FinDomain</span></a>.<br/>
</div>
</div>
<div id="footer">
<hr/><a href="index.html">Index</a><hr/>This page has been generated by <a href="http://coq.inria.fr/">coqdoc</a>
</div>
</div>
</body>
</html>
|