1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link href="coqdoc.css" rel="stylesheet" type="text/css" />
<title>mathcomp.character.integral_char</title>
</head>
<body>
<div id="page">
<div id="header">
</div>
<div id="main">
<h1 class="libtitle">Library mathcomp.character.integral_char</h1>
<div class="code">
<span class="comment">(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. <br/>
Distributed under the terms of CeCILL-B. *)</span><br/>
<span class="id" title="keyword">Require</span> <span class="id" title="keyword">Import</span> <a class="idref" href="mathcomp.ssreflect.ssreflect.html#"><span class="id" title="library">mathcomp.ssreflect.ssreflect</span></a>.<br/>
<br/>
</div>
<div class="doc">
This file provides some standard results based on integrality properties
of characters, such as theorem asserting that the degree of an irreducible
character of G divides the order of G (Isaacs 3.11), or the famous p^a.q^b
solvability theorem of Burnside.
Defined here:
'K_k == the kth class sum in gring F G, where k : 'I#|classes G|, and
F is inferred from the context.
:= gset_mx F G (enum_val k) (see mxrepresentation.v).
--> The 'K_k form a basis of 'Z(group_ring F G)%%MS.
gring_classM_coef i j k == the coordinate of 'K_i *m 'K_j on 'K_k; this
is usually abbreviated as a i j k.
gring_classM_coef_set A B z == the set of all (x, y) in setX A B such
that x * y = z; if A and B are respectively the ith and jth
conjugacy class of G, and z is in the kth conjugacy class, then
gring_classM_coef i j k is exactly the cardinal of this set.
'omega_i<span class="inlinecode">#<span class="id" title="var">A</span>#</span> == the mode of 'chi<span class="inlinecode">#<span class="id" title="var">G</span>#</span>#<i>i on (A \in 'Z(group_ring algC G))%MS,
i.e., the z such that gring_op 'Chi_i A = z%:M.
</div>
<div class="code">
<br/>
<span class="id" title="keyword">Set Implicit Arguments</span>.<br/>
<br/>
<span class="id" title="keyword">Import</span> <span class="id" title="var">GroupScope</span> <span class="id" title="var">GRing.Theory</span> <span class="id" title="var">Num.Theory</span>.<br/>
<span class="id" title="keyword">Local Open</span> <span class="id" title="keyword">Scope</span> <span class="id" title="var">ring_scope</span>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="group_num_field_exists"><span class="id" title="lemma">group_num_field_exists</span></a> (<span class="id" title="var">gT</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>) (<span class="id" title="var">G</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) :<br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#e4098fb21bb0cc5ef8d3e3bf7391b88b"><span class="id" title="notation">{</span></a><span class="id" title="var">Qn</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#e4098fb21bb0cc5ef8d3e3bf7391b88b"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.field.galois.html#SplittingField.Exports.splittingFieldType"><span class="id" title="abbreviation">splittingFieldType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#e4098fb21bb0cc5ef8d3e3bf7391b88b"><span class="id" title="notation">&</span></a> <a class="idref" href="mathcomp.field.galois.html#galois"><span class="id" title="definition">galois</span></a> 1 <a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">{:</span></a><a class="idref" href="mathcomp.character.integral_char.html#Qn"><span class="id" title="variable">Qn</span></a><a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">}</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#e4098fb21bb0cc5ef8d3e3bf7391b88b"><span class="id" title="notation">&</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#e4098fb21bb0cc5ef8d3e3bf7391b88b"><span class="id" title="notation">{</span></a><span class="id" title="var">QnC</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#e4098fb21bb0cc5ef8d3e3bf7391b88b"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#0c709ebe43ddbd7719f75250a7b916d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#0c709ebe43ddbd7719f75250a7b916d9"><span class="id" title="notation">rmorphism</span></a> <a class="idref" href="mathcomp.character.integral_char.html#Qn"><span class="id" title="variable">Qn</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.field.algC.html#Algebraics.Exports.algC"><span class="id" title="abbreviation">algC</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#0c709ebe43ddbd7719f75250a7b916d9"><span class="id" title="notation">}</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#e4098fb21bb0cc5ef8d3e3bf7391b88b"><span class="id" title="notation">&</span></a> <span class="id" title="keyword">∀</span> <span class="id" title="var">nuQn</span> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#argumentType"><span class="id" title="definition">argumentType</span></a> (<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#mem"><span class="id" title="definition">mem</span></a> (<a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">Gal</span></a><a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">{:</span></a><a class="idref" href="mathcomp.character.integral_char.html#Qn"><span class="id" title="variable">Qn</span></a><a class="idref" href="mathcomp.algebra.vector.html#899a5fd19c4f3564d9757a9ac446b1dc"><span class="id" title="notation">}</span></a>%<span class="id" title="var">VS</span> <a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">/</span></a> 1%<span class="id" title="var">VS</span><a class="idref" href="mathcomp.field.galois.html#7f39fd713ca3f00fbfda8b71eae7e2e1"><span class="id" title="notation">)</span></a>)),<br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#72ca3fac4636a1b19c963b12162882cf"><span class="id" title="notation">{</span></a><span class="id" title="var">nu</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#72ca3fac4636a1b19c963b12162882cf"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#0c709ebe43ddbd7719f75250a7b916d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#0c709ebe43ddbd7719f75250a7b916d9"><span class="id" title="notation">rmorphism</span></a> <a class="idref" href="mathcomp.field.algC.html#Algebraics.Exports.algC"><span class="id" title="abbreviation">algC</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.field.algC.html#Algebraics.Exports.algC"><span class="id" title="abbreviation">algC</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#0c709ebe43ddbd7719f75250a7b916d9"><span class="id" title="notation">}</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#72ca3fac4636a1b19c963b12162882cf"><span class="id" title="notation">|</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#59b5bb4add86e1e9ecbe874e74b2216e"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#59b5bb4add86e1e9ecbe874e74b2216e"><span class="id" title="notation">morph</span></a> <a class="idref" href="mathcomp.character.integral_char.html#QnC"><span class="id" title="variable">QnC</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#59b5bb4add86e1e9ecbe874e74b2216e"><span class="id" title="notation">:</span></a> <span class="id" title="var">a</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#59b5bb4add86e1e9ecbe874e74b2216e"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.character.integral_char.html#nuQn"><span class="id" title="variable">nuQn</span></a> <a class="idref" href="mathcomp.character.integral_char.html#a"><span class="id" title="variable">a</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#59b5bb4add86e1e9ecbe874e74b2216e"><span class="id" title="notation">>-></span></a> <a class="idref" href="mathcomp.character.integral_char.html#nu"><span class="id" title="variable">nu</span></a> <a class="idref" href="mathcomp.character.integral_char.html#a"><span class="id" title="variable">a</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#59b5bb4add86e1e9ecbe874e74b2216e"><span class="id" title="notation">}</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#72ca3fac4636a1b19c963b12162882cf"><span class="id" title="notation">}</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#e4098fb21bb0cc5ef8d3e3bf7391b88b"><span class="id" title="notation">&</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#e4098fb21bb0cc5ef8d3e3bf7391b88b"><span class="id" title="notation">{</span></a><span class="id" title="var">w</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#e4098fb21bb0cc5ef8d3e3bf7391b88b"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.character.integral_char.html#Qn"><span class="id" title="variable">Qn</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#e4098fb21bb0cc5ef8d3e3bf7391b88b"><span class="id" title="notation">&</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.poly.html#92efb5ea268b6e2f9a125afe76aecbba"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.algebra.poly.html#92efb5ea268b6e2f9a125afe76aecbba"><span class="id" title="notation">primitive_root</span></a> <a class="idref" href="mathcomp.character.integral_char.html#w"><span class="id" title="variable">w</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d82a7d96d3659d805ffe732283716822"><span class="id" title="notation">∧</span></a> <a class="idref" href="mathcomp.field.falgebra.html#8327f1e5c19a7e79cb67878854f30e5f"><span class="id" title="notation"><<</span></a>1<a class="idref" href="mathcomp.field.falgebra.html#8327f1e5c19a7e79cb67878854f30e5f"><span class="id" title="notation">;</span></a> <a class="idref" href="mathcomp.character.integral_char.html#w"><span class="id" title="variable">w</span></a><a class="idref" href="mathcomp.field.falgebra.html#8327f1e5c19a7e79cb67878854f30e5f"><span class="id" title="notation">>></span></a>%<span class="id" title="var">VS</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.vector.html#fullv"><span class="id" title="definition">fullv</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#e4098fb21bb0cc5ef8d3e3bf7391b88b"><span class="id" title="notation">&</span></a> <span class="id" title="keyword">∀</span> (<span class="id" title="var">hT</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>) (<span class="id" title="var">H</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.integral_char.html#hT"><span class="id" title="variable">hT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) (<span class="id" title="var">phi</span> : <a class="idref" href="mathcomp.character.classfun.html#d35bff44a2e44c0688f93d605f17e822"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.classfun.html#d35bff44a2e44c0688f93d605f17e822"><span class="id" title="notation">CF</span></a><a class="idref" href="mathcomp.character.classfun.html#d35bff44a2e44c0688f93d605f17e822"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.integral_char.html#H"><span class="id" title="variable">H</span></a><a class="idref" href="mathcomp.character.classfun.html#d35bff44a2e44c0688f93d605f17e822"><span class="id" title="notation">)</span></a>),<br/>
<a class="idref" href="mathcomp.character.integral_char.html#phi"><span class="id" title="variable">phi</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">is</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">a</span></a> <a class="idref" href="mathcomp.character.character.html#character"><span class="id" title="definition">character</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
<span class="id" title="keyword">∀</span> <span class="id" title="var">x</span>, (<a class="idref" href="mathcomp.fingroup.fingroup.html#89402f0d9375903caa99ad84144160d5"><span class="id" title="notation">#[</span></a><a class="idref" href="mathcomp.character.integral_char.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#89402f0d9375903caa99ad84144160d5"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#aa34fd1c61c5cf0a3356b624a5d2afed"><span class="id" title="notation">%|</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>)%<span class="id" title="var">N</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#5b63cb9ed0fed82566685c66e56592e4"><span class="id" title="notation">{</span></a><span class="id" title="var">a</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#5b63cb9ed0fed82566685c66e56592e4"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.character.integral_char.html#QnC"><span class="id" title="variable">QnC</span></a> <a class="idref" href="mathcomp.character.integral_char.html#a"><span class="id" title="variable">a</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.integral_char.html#phi"><span class="id" title="variable">phi</span></a> <a class="idref" href="mathcomp.character.integral_char.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#5b63cb9ed0fed82566685c66e56592e4"><span class="id" title="notation">}</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#e4098fb21bb0cc5ef8d3e3bf7391b88b"><span class="id" title="notation">}}}</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="GenericClassSums"><span class="id" title="section">GenericClassSums</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is Isaacs, Theorem (2.4), generalized to an arbitrary field, and with
the combinatorial definition of the coeficients exposed.
This part could move to mxrepresentation.
</div>
<div class="code">
<br/>
<span class="id" title="keyword">Variable</span> (<a name="GenericClassSums.gT"><span class="id" title="variable">gT</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>) (<a name="GenericClassSums.G"><span class="id" title="variable">G</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) (<a name="GenericClassSums.F"><span class="id" title="variable">F</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Exports.fieldType"><span class="id" title="abbreviation">fieldType</span></a>).<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="gring_classM_coef_set"><span class="id" title="definition">gring_classM_coef_set</span></a> (<span class="id" title="var">Ki</span> <span class="id" title="var">Kj</span> : <a class="idref" href="mathcomp.ssreflect.finset.html#0fec877de6d09ef39abb9b599a84eb0e"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#0fec877de6d09ef39abb9b599a84eb0e"><span class="id" title="notation">set</span></a> <a class="idref" href="mathcomp.character.integral_char.html#GenericClassSums.gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#0fec877de6d09ef39abb9b599a84eb0e"><span class="id" title="notation">}</span></a>) <span class="id" title="var">g</span> :=<br/>
<a class="idref" href="mathcomp.ssreflect.finset.html#11a9aebd9632a5968df4f5811663355a"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#11a9aebd9632a5968df4f5811663355a"><span class="id" title="notation">set</span></a> <span class="id" title="var">xy</span> <a class="idref" href="mathcomp.ssreflect.finset.html#11a9aebd9632a5968df4f5811663355a"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#a4c99a0dbc2a758b24afbd951fc3a580"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.eqtype.html#a4c99a0dbc2a758b24afbd951fc3a580"><span class="id" title="notation">predX</span></a> <a class="idref" href="mathcomp.character.integral_char.html#Ki"><span class="id" title="variable">Ki</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#a4c99a0dbc2a758b24afbd951fc3a580"><span class="id" title="notation">&</span></a> <a class="idref" href="mathcomp.character.integral_char.html#Kj"><span class="id" title="variable">Kj</span></a><a class="idref" href="mathcomp.ssreflect.eqtype.html#a4c99a0dbc2a758b24afbd951fc3a580"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#11a9aebd9632a5968df4f5811663355a"><span class="id" title="notation">|</span></a> <span class="id" title="keyword">let</span>: <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#44400027531d4bc3f586a1997dc874c0"><span class="id" title="notation">(</span></a><span class="id" title="var">x</span><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#44400027531d4bc3f586a1997dc874c0"><span class="id" title="notation">,</span></a> <span class="id" title="var">y</span><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#44400027531d4bc3f586a1997dc874c0"><span class="id" title="notation">)</span></a> := <a class="idref" href="mathcomp.character.integral_char.html#xy"><span class="id" title="variable">xy</span></a> <span class="id" title="tactic">in</span> <span class="id" title="var">x</span> <a class="idref" href="mathcomp.fingroup.fingroup.html#169fb610eeaa28cebf8ec36928167473"><span class="id" title="notation">×</span></a> <span class="id" title="var">y</span> <a class="idref" href="mathcomp.ssreflect.eqtype.html#17d28d004d0863cb022d4ce832ddaaae"><span class="id" title="notation">==</span></a> <a class="idref" href="mathcomp.character.integral_char.html#g"><span class="id" title="variable">g</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#11a9aebd9632a5968df4f5811663355a"><span class="id" title="notation">]</span></a>%<span class="id" title="var">g</span>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="gring_classM_coef"><span class="id" title="definition">gring_classM_coef</span></a> (<span class="id" title="var">i</span> <span class="id" title="var">j</span> <span class="id" title="var">k</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#classes"><span class="id" title="definition">classes</span></a> <a class="idref" href="mathcomp.character.integral_char.html#GenericClassSums.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>) :=<br/>
<a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#gring_classM_coef_set"><span class="id" title="definition">gring_classM_coef_set</span></a> (<a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.integral_char.html#i"><span class="id" title="variable">i</span></a>) (<a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.integral_char.html#j"><span class="id" title="variable">j</span></a>) (<a class="idref" href="mathcomp.fingroup.fingroup.html#repr"><span class="id" title="definition">repr</span></a> (<a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.integral_char.html#k"><span class="id" title="variable">k</span></a>))<a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="gring_class_sum"><span class="id" title="definition">gring_class_sum</span></a> (<span class="id" title="var">i</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#classes"><span class="id" title="definition">classes</span></a> <a class="idref" href="mathcomp.character.integral_char.html#GenericClassSums.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>) := <a class="idref" href="mathcomp.character.mxrepresentation.html#gset_mx"><span class="id" title="definition">gset_mx</span></a> <a class="idref" href="mathcomp.character.integral_char.html#GenericClassSums.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.character.integral_char.html#GenericClassSums.G"><span class="id" title="variable">G</span></a> (<a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.integral_char.html#i"><span class="id" title="variable">i</span></a>).<br/>
<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="gring_class_sum_central"><span class="id" title="lemma">gring_class_sum_central</span></a> <span class="id" title="var">i</span> : (<a class="idref" href="mathcomp.character.integral_char.html#afc4c4affce3b8ef6e9f442c1d91639c"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.integral_char.html#afc4c4affce3b8ef6e9f442c1d91639c"><span class="id" title="notation">K_i</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#bfc118b745d1a8ee504472dad1db645c"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#bfc118b745d1a8ee504472dad1db645c"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">Z</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.mxrepresentation.html#group_ring"><span class="id" title="definition">group_ring</span></a> <a class="idref" href="mathcomp.character.integral_char.html#GenericClassSums.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.character.integral_char.html#GenericClassSums.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">)</span></a>)%<span class="id" title="var">MS</span>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="set_gring_classM_coef"><span class="id" title="lemma">set_gring_classM_coef</span></a> (<span class="id" title="var">i</span> <span class="id" title="var">j</span> <span class="id" title="var">k</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#classes"><span class="id" title="definition">classes</span></a> <a class="idref" href="mathcomp.character.integral_char.html#GenericClassSums.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>) <span class="id" title="var">g</span> :<br/>
<a class="idref" href="mathcomp.character.integral_char.html#g"><span class="id" title="variable">g</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.integral_char.html#k"><span class="id" title="variable">k</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
<a class="idref" href="mathcomp.character.integral_char.html#a"><span class="id" title="abbreviation">a</span></a> <a class="idref" href="mathcomp.character.integral_char.html#i"><span class="id" title="variable">i</span></a> <a class="idref" href="mathcomp.character.integral_char.html#j"><span class="id" title="variable">j</span></a> <a class="idref" href="mathcomp.character.integral_char.html#k"><span class="id" title="variable">k</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#gring_classM_coef_set"><span class="id" title="definition">gring_classM_coef_set</span></a> (<a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.integral_char.html#i"><span class="id" title="variable">i</span></a>) (<a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.integral_char.html#j"><span class="id" title="variable">j</span></a>) <a class="idref" href="mathcomp.character.integral_char.html#g"><span class="id" title="variable">g</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>.<br/>
<br/>
<span class="id" title="keyword">Theorem</span> <a name="gring_classM_expansion"><span class="id" title="lemma">gring_classM_expansion</span></a> <span class="id" title="var">i</span> <span class="id" title="var">j</span> : <a class="idref" href="mathcomp.character.integral_char.html#afc4c4affce3b8ef6e9f442c1d91639c"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.integral_char.html#afc4c4affce3b8ef6e9f442c1d91639c"><span class="id" title="notation">K_i</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#9c6b777e699b0b93592b907e7450465e"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c6b777e699b0b93592b907e7450465e"><span class="id" title="notation">m</span></a> <a class="idref" href="mathcomp.character.integral_char.html#afc4c4affce3b8ef6e9f442c1d91639c"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.integral_char.html#afc4c4affce3b8ef6e9f442c1d91639c"><span class="id" title="notation">K_j</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#640778742e86daa97d31c9911c679af3"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#640778742e86daa97d31c9911c679af3"><span class="id" title="notation">sum_k</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.integral_char.html#a"><span class="id" title="abbreviation">a</span></a> <a class="idref" href="mathcomp.character.integral_char.html#i"><span class="id" title="variable">i</span></a> <a class="idref" href="mathcomp.character.integral_char.html#j"><span class="id" title="variable">j</span></a> <a class="idref" href="mathcomp.character.integral_char.html#k"><span class="id" title="variable">k</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#81f8078534dcbb7e13a32d292f766525"><span class="id" title="notation">*:</span></a> <a class="idref" href="mathcomp.character.integral_char.html#afc4c4affce3b8ef6e9f442c1d91639c"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.integral_char.html#afc4c4affce3b8ef6e9f442c1d91639c"><span class="id" title="notation">K_k</span></a>.<br/>
<br/>
<span class="id" title="keyword">Fact</span> <a name="gring_irr_mode_key"><span class="id" title="lemma">gring_irr_mode_key</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#unit"><span class="id" title="inductive">unit</span></a>. <br/>
<span class="id" title="keyword">Definition</span> <a name="gring_irr_mode_def"><span class="id" title="definition">gring_irr_mode_def</span></a> (<span class="id" title="var">i</span> : <a class="idref" href="mathcomp.character.character.html#Iirr"><span class="id" title="abbreviation">Iirr</span></a> <a class="idref" href="mathcomp.character.integral_char.html#GenericClassSums.G"><span class="id" title="variable">G</span></a>) := <a class="idref" href="mathcomp.algebra.ssralg.html#f3016d4e55aa553d3e912592ec65e342"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> 1%<span class="id" title="var">g</span><a class="idref" href="mathcomp.algebra.ssralg.html#f3016d4e55aa553d3e912592ec65e342"><span class="id" title="notation">)^-1</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#81f8078534dcbb7e13a32d292f766525"><span class="id" title="notation">*:</span></a> <a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a>.<br/>
<span class="id" title="keyword">Definition</span> <a name="gring_irr_mode"><span class="id" title="definition">gring_irr_mode</span></a> := <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#locked_with"><span class="id" title="definition">locked_with</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gring_irr_mode_key"><span class="id" title="lemma">gring_irr_mode_key</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gring_irr_mode_def"><span class="id" title="definition">gring_irr_mode_def</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">gring_irr_mode_unlockable</span> := <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#58f94351327943cd874eb55da8e0ca14"><span class="id" title="notation">[</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#58f94351327943cd874eb55da8e0ca14"><span class="id" title="notation">unlockable</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#58f94351327943cd874eb55da8e0ca14"><span class="id" title="notation">fun</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gring_irr_mode"><span class="id" title="definition">gring_irr_mode</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#58f94351327943cd874eb55da8e0ca14"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.integral_char.html#GenericClassSums"><span class="id" title="section">GenericClassSums</span></a>.<br/>
<br/>
<br/>
<span class="id" title="keyword">Notation</span> <a name="c1170e3ef8cfb8250158dd746fcfbce5"><span class="id" title="notation">"</span></a>''K_' i" := (<a class="idref" href="mathcomp.character.integral_char.html#gring_class_sum"><span class="id" title="definition">gring_class_sum</span></a> <span class="id" title="var">_</span> <span class="id" title="var">i</span>)<br/>
(<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 8, <span class="id" title="var">i</span> <span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 2, <span class="id" title="var">format</span> "''K_' i") : <span class="id" title="var">ring_scope</span>.<br/>
<br/>
<span class="id" title="keyword">Notation</span> <a name="47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">"</span></a>''omega_' i [ A ]" := (<a class="idref" href="mathcomp.character.character.html#xcfun"><span class="id" title="definition">xcfun</span></a> (<a class="idref" href="mathcomp.character.integral_char.html#gring_irr_mode"><span class="id" title="definition">gring_irr_mode</span></a> <span class="id" title="var">i</span>) <span class="id" title="var">A</span>)<br/>
(<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 8, <span class="id" title="var">i</span> <span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 2, <span class="id" title="var">format</span> "''omega_' i [ A ]") : <span class="id" title="var">ring_scope</span>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="IntegralChar"><span class="id" title="section">IntegralChar</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variables</span> (<a name="IntegralChar.gT"><span class="id" title="variable">gT</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>) (<a name="IntegralChar.G"><span class="id" title="variable">G</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>).<br/>
<br/>
</div>
<div class="doc">
This is Isaacs, Corollary (3.6).
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="Aint_char"><span class="id" title="lemma">Aint_char</span></a> (<span class="id" title="var">chi</span> : <a class="idref" href="mathcomp.character.classfun.html#d35bff44a2e44c0688f93d605f17e822"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.classfun.html#d35bff44a2e44c0688f93d605f17e822"><span class="id" title="notation">CF</span></a><a class="idref" href="mathcomp.character.classfun.html#d35bff44a2e44c0688f93d605f17e822"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.character.classfun.html#d35bff44a2e44c0688f93d605f17e822"><span class="id" title="notation">)</span></a>) <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.character.integral_char.html#chi"><span class="id" title="variable">chi</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">is</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">a</span></a> <a class="idref" href="mathcomp.character.character.html#character"><span class="id" title="definition">character</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.integral_char.html#chi"><span class="id" title="variable">chi</span></a> <a class="idref" href="mathcomp.character.integral_char.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.field.algnum.html#Aint"><span class="id" title="definition">Aint</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Aint_irr"><span class="id" title="lemma">Aint_irr</span></a> <span class="id" title="var">i</span> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">chi</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">_i</span></a> <a class="idref" href="mathcomp.character.integral_char.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.field.algnum.html#Aint"><span class="id" title="definition">Aint</span></a>.<br/>
<br/>
<br/>
</div>
<div class="doc">
This is Isaacs (2.25).
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="mx_irr_gring_op_center_scalar"><span class="id" title="lemma">mx_irr_gring_op_center_scalar</span></a> <span class="id" title="var">n</span> (<span class="id" title="var">rG</span> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_representation"><span class="id" title="record">mx_representation</span></a> <a class="idref" href="mathcomp.field.algC.html#Algebraics.Exports.algCfield"><span class="id" title="abbreviation">algCfield</span></a> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.character.integral_char.html#n"><span class="id" title="variable">n</span></a>) <span class="id" title="var">A</span> :<br/>
<a class="idref" href="mathcomp.character.mxrepresentation.html#mx_irreducible"><span class="id" title="definition">mx_irreducible</span></a> <a class="idref" href="mathcomp.character.integral_char.html#rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> (<a class="idref" href="mathcomp.character.integral_char.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#bfc118b745d1a8ee504472dad1db645c"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#bfc118b745d1a8ee504472dad1db645c"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">Z</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.integral_char.html#R_G"><span class="id" title="abbreviation">R_G</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">)</span></a>)%<span class="id" title="var">MS</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#is_scalar_mx"><span class="id" title="definition">is_scalar_mx</span></a> (<a class="idref" href="mathcomp.character.mxrepresentation.html#gring_op"><span class="id" title="definition">gring_op</span></a> <a class="idref" href="mathcomp.character.integral_char.html#rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.integral_char.html#A"><span class="id" title="variable">A</span></a>).<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="IntegralChar.GringIrrMode"><span class="id" title="section">GringIrrMode</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="IntegralChar.GringIrrMode.i"><span class="id" title="variable">i</span></a> : <a class="idref" href="mathcomp.character.character.html#Iirr"><span class="id" title="abbreviation">Iirr</span></a> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.G"><span class="id" title="variable">G</span></a>.<br/>
<br/>
<span class="id" title="keyword">Let</span> <a name="IntegralChar.GringIrrMode.n"><span class="id" title="variable">n</span></a> := <a class="idref" href="mathcomp.character.mxrepresentation.html#irr_degree"><span class="id" title="definition">irr_degree</span></a> (<a class="idref" href="mathcomp.character.character.html#socle_of_Iirr"><span class="id" title="definition">socle_of_Iirr</span></a> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.GringIrrMode.i"><span class="id" title="variable">i</span></a>).<br/>
<span class="id" title="keyword">Let</span> <a name="IntegralChar.GringIrrMode.mxZn_inj"><span class="id" title="variable">mxZn_inj</span></a>: <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#injective"><span class="id" title="definition">injective</span></a> (@<a class="idref" href="mathcomp.algebra.matrix.html#scalar_mx"><span class="id" title="definition">scalar_mx</span></a> <a class="idref" href="mathcomp.field.algC.html#Algebraics.Exports.algCfield"><span class="id" title="abbreviation">algCfield</span></a> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.GringIrrMode.n"><span class="id" title="variable">n</span></a>).<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="cfRepr_gring_center"><span class="id" title="lemma">cfRepr_gring_center</span></a> <span class="id" title="var">n1</span> (<span class="id" title="var">rG</span> : <a class="idref" href="mathcomp.character.mxrepresentation.html#mx_representation"><span class="id" title="record">mx_representation</span></a> <a class="idref" href="mathcomp.field.algC.html#Algebraics.Exports.algCfield"><span class="id" title="abbreviation">algCfield</span></a> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.character.integral_char.html#n1"><span class="id" title="variable">n1</span></a>) <span class="id" title="var">A</span> :<br/>
<a class="idref" href="mathcomp.character.character.html#cfRepr"><span class="id" title="definition">cfRepr</span></a> <a class="idref" href="mathcomp.character.integral_char.html#rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> (<a class="idref" href="mathcomp.character.integral_char.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#bfc118b745d1a8ee504472dad1db645c"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#bfc118b745d1a8ee504472dad1db645c"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">Z</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.integral_char.html#R_G"><span class="id" title="abbreviation">R_G</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">)</span></a>)%<span class="id" title="var">MS</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#gring_op"><span class="id" title="definition">gring_op</span></a> <a class="idref" href="mathcomp.character.integral_char.html#rG"><span class="id" title="variable">rG</span></a> <a class="idref" href="mathcomp.character.integral_char.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">omega_i</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.integral_char.html#A"><span class="id" title="variable">A</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#6bc5aad53caab585f4bb088e10501342"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.matrix.html#6bc5aad53caab585f4bb088e10501342"><span class="id" title="notation">M</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="irr_gring_center"><span class="id" title="lemma">irr_gring_center</span></a> <span class="id" title="var">A</span> :<br/>
(<a class="idref" href="mathcomp.character.integral_char.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#bfc118b745d1a8ee504472dad1db645c"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#bfc118b745d1a8ee504472dad1db645c"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">Z</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.integral_char.html#R_G"><span class="id" title="abbreviation">R_G</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">)</span></a>)%<span class="id" title="var">MS</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.mxrepresentation.html#gring_op"><span class="id" title="definition">gring_op</span></a> <a class="idref" href="mathcomp.character.character.html#e5b0c5fb6feae803158d92833c2cdc72"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#e5b0c5fb6feae803158d92833c2cdc72"><span class="id" title="notation">Chi_i</span></a> <a class="idref" href="mathcomp.character.integral_char.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">omega_i</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.integral_char.html#A"><span class="id" title="variable">A</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.algebra.matrix.html#6bc5aad53caab585f4bb088e10501342"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.matrix.html#6bc5aad53caab585f4bb088e10501342"><span class="id" title="notation">M</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="gring_irr_modeM"><span class="id" title="lemma">gring_irr_modeM</span></a> <span class="id" title="var">A</span> <span class="id" title="var">B</span> :<br/>
(<a class="idref" href="mathcomp.character.integral_char.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#bfc118b745d1a8ee504472dad1db645c"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#bfc118b745d1a8ee504472dad1db645c"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">Z</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.integral_char.html#R_G"><span class="id" title="abbreviation">R_G</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">)</span></a>)%<span class="id" title="var">MS</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> (<a class="idref" href="mathcomp.character.integral_char.html#B"><span class="id" title="variable">B</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#bfc118b745d1a8ee504472dad1db645c"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#bfc118b745d1a8ee504472dad1db645c"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">Z</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.integral_char.html#R_G"><span class="id" title="abbreviation">R_G</span></a><a class="idref" href="mathcomp.algebra.mxalgebra.html#972f5ef28830d59d0a4b5dfdfda2843a"><span class="id" title="notation">)</span></a>)%<span class="id" title="var">MS</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
<a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">omega_i</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.integral_char.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="mathcomp.algebra.matrix.html#9c6b777e699b0b93592b907e7450465e"><span class="id" title="notation">×</span></a><a class="idref" href="mathcomp.algebra.matrix.html#9c6b777e699b0b93592b907e7450465e"><span class="id" title="notation">m</span></a> <a class="idref" href="mathcomp.character.integral_char.html#B"><span class="id" title="variable">B</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">omega_i</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.integral_char.html#A"><span class="id" title="variable">A</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">omega_i</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.integral_char.html#B"><span class="id" title="variable">B</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="gring_mode_class_sum_eq"><span class="id" title="lemma">gring_mode_class_sum_eq</span></a> (<span class="id" title="var">k</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#classes"><span class="id" title="definition">classes</span></a> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>) <span class="id" title="var">g</span> :<br/>
<a class="idref" href="mathcomp.character.integral_char.html#g"><span class="id" title="variable">g</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.integral_char.html#k"><span class="id" title="variable">k</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">omega_i</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.integral_char.html#c1170e3ef8cfb8250158dd746fcfbce5"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.integral_char.html#c1170e3ef8cfb8250158dd746fcfbce5"><span class="id" title="notation">K_k</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#g"><span class="id" title="variable">g</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#30988ee242f08216f4b40cf90b42b816"><span class="id" title="notation">^:</span></a> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> <a class="idref" href="mathcomp.character.integral_char.html#g"><span class="id" title="variable">g</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#4fa85b0aa898c2a7e18c3b076438c2e7"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> 1%<span class="id" title="var">g</span>.<br/>
<br/>
</div>
<div class="doc">
This is Isaacs, Theorem (3.7).
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="Aint_gring_mode_class_sum"><span class="id" title="lemma">Aint_gring_mode_class_sum</span></a> <span class="id" title="var">k</span> : <a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">omega_i</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.integral_char.html#c1170e3ef8cfb8250158dd746fcfbce5"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.integral_char.html#c1170e3ef8cfb8250158dd746fcfbce5"><span class="id" title="notation">K_k</span></a><a class="idref" href="mathcomp.character.integral_char.html#47d30fc39d66fa0fa54b1639ab583368"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.field.algnum.html#Aint"><span class="id" title="definition">Aint</span></a>.<br/>
<br/>
</div>
<div class="doc">
A more usable reformulation that does not involve the class sums.
</div>
<div class="code">
<span class="id" title="keyword">Corollary</span> <a name="Aint_class_div_irr1"><span class="id" title="lemma">Aint_class_div_irr1</span></a> <span class="id" title="var">x</span> :<br/>
<a class="idref" href="mathcomp.character.integral_char.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#30988ee242f08216f4b40cf90b42b816"><span class="id" title="notation">^:</span></a> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> <a class="idref" href="mathcomp.character.integral_char.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#4fa85b0aa898c2a7e18c3b076438c2e7"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> 1%<span class="id" title="var">g</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.field.algnum.html#Aint"><span class="id" title="definition">Aint</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is Isaacs, Theorem (3.8).
</div>
<div class="code">
<span class="id" title="keyword">Theorem</span> <a name="coprime_degree_support_cfcenter"><span class="id" title="lemma">coprime_degree_support_cfcenter</span></a> <span class="id" title="var">g</span> :<br/>
<a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> (<a class="idref" href="mathcomp.field.algC.html#Algebraics.Exports.truncC"><span class="id" title="definition">truncC</span></a> (<a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> 1%<span class="id" title="var">g</span>)) <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#g"><span class="id" title="variable">g</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#30988ee242f08216f4b40cf90b42b816"><span class="id" title="notation">^:</span></a> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.integral_char.html#g"><span class="id" title="variable">g</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#ad6d23746eb1a3b62e52010d3945a1db"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#ad6d23746eb1a3b62e52010d3945a1db"><span class="id" title="notation">notin</span></a> (<a class="idref" href="mathcomp.character.character.html#cfab1161405ba806c35c4f37c62102ab"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#cfab1161405ba806c35c4f37c62102ab"><span class="id" title="notation">Z</span></a><a class="idref" href="mathcomp.character.character.html#cfab1161405ba806c35c4f37c62102ab"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a><a class="idref" href="mathcomp.character.character.html#cfab1161405ba806c35c4f37c62102ab"><span class="id" title="notation">)</span></a>)%<span class="id" title="var">CF</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
<a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> <a class="idref" href="mathcomp.character.integral_char.html#g"><span class="id" title="variable">g</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.GringIrrMode"><span class="id" title="section">GringIrrMode</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is Isaacs, Theorem (3.9).
</div>
<div class="code">
<span class="id" title="keyword">Theorem</span> <a name="primes_class_simple_gt1"><span class="id" title="lemma">primes_class_simple_gt1</span></a> <span class="id" title="var">C</span> :<br/>
<a class="idref" href="mathcomp.solvable.gseries.html#simple"><span class="id" title="definition">simple</span></a> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#4b80c70cdb231351c5e129ba61f7f956"><span class="id" title="notation">~~</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#abelian"><span class="id" title="definition">abelian</span></a> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.integral_char.html#C"><span class="id" title="variable">C</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#adb8044960c962a921cca1bd48aae97d"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#classes"><span class="id" title="definition">classes</span></a> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar.G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#adb8044960c962a921cca1bd48aae97d"><span class="id" title="notation">)^#</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> (<a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> (<a class="idref" href="mathcomp.ssreflect.prime.html#primes"><span class="id" title="definition">primes</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#C"><span class="id" title="variable">C</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>) <a class="idref" href="mathcomp.ssreflect.ssrnat.html#19ab5cfd7e4f60fa14f22b576013bd96"><span class="id" title="notation">></span></a> 1)%<span class="id" title="var">N</span>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.integral_char.html#IntegralChar"><span class="id" title="section">IntegralChar</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="MoreIntegralChar"><span class="id" title="section">MoreIntegralChar</span></a>.<br/>
<br/>
<span class="id" title="keyword">Implicit</span> <span class="id" title="keyword">Type</span> <span class="id" title="var">gT</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#FinGroup.Exports.finGroupType"><span class="id" title="abbreviation">finGroupType</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is Burnside's famous p^a.q^b theorem (Isaacs, Theorem (3.10)).
</div>
<div class="code">
<span class="id" title="keyword">Theorem</span> <a name="Burnside_p_a_q_b"><span class="id" title="lemma">Burnside_p_a_q_b</span></a> <span class="id" title="var">gT</span> (<span class="id" title="var">G</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) :<br/>
(<a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> (<a class="idref" href="mathcomp.ssreflect.prime.html#primes"><span class="id" title="definition">primes</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>) <a class="idref" href="mathcomp.ssreflect.ssrnat.html#9b077c369e19739ef880736ba34623ff"><span class="id" title="notation">≤</span></a> 2)%<span class="id" title="var">N</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.solvable.nilpotent.html#solvable"><span class="id" title="definition">solvable</span></a> <a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is Isaacs, Theorem (3.11).
</div>
<div class="code">
<span class="id" title="keyword">Theorem</span> <a name="dvd_irr1_cardG"><span class="id" title="lemma">dvd_irr1_cardG</span></a> <span class="id" title="var">gT</span> (<span class="id" title="var">G</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) <span class="id" title="var">i</span> : (<a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">chi</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">_i</span></a> 1%<span class="id" title="var">g</span> <a class="idref" href="mathcomp.field.algC.html#9a2f23320469c9d2a314bb86625d5b32"><span class="id" title="notation">%|</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a>)%<span class="id" title="var">C</span>.<br/>
<br/>
</div>
<div class="doc">
This is Isaacs, Theorem (3.12).
</div>
<div class="code">
<span class="id" title="keyword">Theorem</span> <a name="dvd_irr1_index_center"><span class="id" title="lemma">dvd_irr1_index_center</span></a> <span class="id" title="var">gT</span> (<span class="id" title="var">G</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) <span class="id" title="var">i</span> :<br/>
(<a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">chi</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">_i</span></a> 1%<span class="id" title="var">g</span> <a class="idref" href="mathcomp.field.algC.html#9a2f23320469c9d2a314bb86625d5b32"><span class="id" title="notation">%|</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.character.character.html#cfab1161405ba806c35c4f37c62102ab"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#cfab1161405ba806c35c4f37c62102ab"><span class="id" title="notation">Z</span></a><a class="idref" href="mathcomp.character.character.html#cfab1161405ba806c35c4f37c62102ab"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a><a class="idref" href="mathcomp.character.character.html#cfab1161405ba806c35c4f37c62102ab"><span class="id" title="notation">)</span></a>%<span class="id" title="var">CF</span><a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">|</span></a>)%<span class="id" title="var">C</span>.<br/>
<br/>
</div>
<div class="doc">
This is Isaacs, Problem (3.7).
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="gring_classM_coef_sum_eq"><span class="id" title="lemma">gring_classM_coef_sum_eq</span></a> <span class="id" title="var">gT</span> (<span class="id" title="var">G</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) <span class="id" title="var">j1</span> <span class="id" title="var">j2</span> <span class="id" title="var">k</span> <span class="id" title="var">g1</span> <span class="id" title="var">g2</span> <span class="id" title="var">g</span> :<br/>
<span class="id" title="keyword">let</span> <span class="id" title="var">a</span> := @<a class="idref" href="mathcomp.character.integral_char.html#gring_classM_coef"><span class="id" title="definition">gring_classM_coef</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gT"><span class="id" title="variable">gT</span></a> <a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.character.integral_char.html#j1"><span class="id" title="variable">j1</span></a> <a class="idref" href="mathcomp.character.integral_char.html#j2"><span class="id" title="variable">j2</span></a> <span class="id" title="tactic">in</span> <span class="id" title="keyword">let</span> <span class="id" title="var">a_k</span> := <a class="idref" href="mathcomp.character.integral_char.html#a"><span class="id" title="variable">a</span></a> <a class="idref" href="mathcomp.character.integral_char.html#k"><span class="id" title="variable">k</span></a> <span class="id" title="tactic">in</span><br/>
<a class="idref" href="mathcomp.character.integral_char.html#g1"><span class="id" title="variable">g1</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.integral_char.html#j1"><span class="id" title="variable">j1</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.integral_char.html#g2"><span class="id" title="variable">g2</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.integral_char.html#j2"><span class="id" title="variable">j2</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.integral_char.html#g"><span class="id" title="variable">g</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.integral_char.html#k"><span class="id" title="variable">k</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
<span class="id" title="keyword">let</span> <span class="id" title="var">sum12g</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#640778742e86daa97d31c9911c679af3"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#640778742e86daa97d31c9911c679af3"><span class="id" title="notation">sum_i</span></a> <a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">chi</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">_i</span></a> <a class="idref" href="mathcomp.character.integral_char.html#g1"><span class="id" title="variable">g1</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> <a class="idref" href="mathcomp.character.integral_char.html#g2"><span class="id" title="variable">g2</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#b07d6e6599ef6e468ce182ffe6029532"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> <a class="idref" href="mathcomp.character.integral_char.html#g"><span class="id" title="variable">g</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#b07d6e6599ef6e468ce182ffe6029532"><span class="id" title="notation">)^*</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#4fa85b0aa898c2a7e18c3b076438c2e7"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> 1%<span class="id" title="var">g</span> <span class="id" title="tactic">in</span><br/>
<a class="idref" href="mathcomp.character.integral_char.html#a_k"><span class="id" title="variable">a_k</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.integral_char.html#j1"><span class="id" title="variable">j1</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#697e4695610f677ae98a52af81f779d2"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#enum_val"><span class="id" title="definition">enum_val</span></a> <a class="idref" href="mathcomp.character.integral_char.html#j2"><span class="id" title="variable">j2</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#4fa85b0aa898c2a7e18c3b076438c2e7"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.character.integral_char.html#sum12g"><span class="id" title="variable">sum12g</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is Isaacs, Problem (2.16).
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="index_support_dvd_degree"><span class="id" title="lemma">index_support_dvd_degree</span></a> <span class="id" title="var">gT</span> (<span class="id" title="var">G</span> <span class="id" title="var">H</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) <span class="id" title="var">chi</span> :<br/>
<a class="idref" href="mathcomp.character.integral_char.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#826eae8d7598a787ea56f4249e6e210e"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#826eae8d7598a787ea56f4249e6e210e"><span class="id" title="notation">subset</span></a> <a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.integral_char.html#chi"><span class="id" title="variable">chi</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">is</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">a</span></a> <a class="idref" href="mathcomp.character.character.html#character"><span class="id" title="definition">character</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.integral_char.html#chi"><span class="id" title="variable">chi</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.classfun.html#98d2bf34d82aa4f9a1163621bbcbea56"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.classfun.html#98d2bf34d82aa4f9a1163621bbcbea56"><span class="id" title="notation">CF</span></a><a class="idref" href="mathcomp.character.classfun.html#98d2bf34d82aa4f9a1163621bbcbea56"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.character.classfun.html#98d2bf34d82aa4f9a1163621bbcbea56"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.integral_char.html#H"><span class="id" title="variable">H</span></a><a class="idref" href="mathcomp.character.classfun.html#98d2bf34d82aa4f9a1163621bbcbea56"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#14a7a9c7dc61f86bfb664d400fabaf8a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.integral_char.html#H"><span class="id" title="variable">H</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#24f47bb7b1a372904563d2bdb8a213a4"><span class="id" title="notation">:==:</span></a> 1%<span class="id" title="var">g</span><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#14a7a9c7dc61f86bfb664d400fabaf8a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#14a7a9c7dc61f86bfb664d400fabaf8a"><span class="id" title="notation">||</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#abelian"><span class="id" title="definition">abelian</span></a> <a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
(<a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.character.integral_char.html#H"><span class="id" title="variable">H</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.field.algC.html#9a2f23320469c9d2a314bb86625d5b32"><span class="id" title="notation">%|</span></a> <a class="idref" href="mathcomp.character.integral_char.html#chi"><span class="id" title="variable">chi</span></a> 1%<span class="id" title="var">g</span>)%<span class="id" title="var">C</span>.<br/>
<br/>
</div>
<div class="doc">
This is Isaacs, Theorem (3.13).
</div>
<div class="code">
<span class="id" title="keyword">Theorem</span> <a name="faithful_degree_p_part"><span class="id" title="lemma">faithful_degree_p_part</span></a> <span class="id" title="var">gT</span> (<span class="id" title="var">p</span> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>) (<span class="id" title="var">G</span> <span class="id" title="var">P</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) <span class="id" title="var">i</span> :<br/>
<a class="idref" href="mathcomp.character.classfun.html#cfaithful"><span class="id" title="definition">cfaithful</span></a> <a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">chi</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">_i</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.character.integral_char.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.ssreflect.prime.html#8663a77d1d910826e10ba42d1e8d2a02"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.ssreflect.prime.html#8663a77d1d910826e10ba42d1e8d2a02"><span class="id" title="notation">nat</span></a> (<a class="idref" href="mathcomp.field.algC.html#Algebraics.Exports.truncC"><span class="id" title="definition">truncC</span></a> (<a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> 1%<span class="id" title="var">g</span>)) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
<a class="idref" href="mathcomp.character.integral_char.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#43f075314fcfccdaa8a5813debe2d9ed"><span class="id" title="notation">.-</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#43f075314fcfccdaa8a5813debe2d9ed"><span class="id" title="notation">Sylow</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#43f075314fcfccdaa8a5813debe2d9ed"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.solvable.pgroup.html#43f075314fcfccdaa8a5813debe2d9ed"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.character.integral_char.html#P"><span class="id" title="variable">P</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#abelian"><span class="id" title="definition">abelian</span></a> <a class="idref" href="mathcomp.character.integral_char.html#P"><span class="id" title="variable">P</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
<a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> 1%<span class="id" title="var">g</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.solvable.center.html#07d637974acf808c1caadc3b5bdfa6d3"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.solvable.center.html#07d637974acf808c1caadc3b5bdfa6d3"><span class="id" title="notation">Z</span></a><a class="idref" href="mathcomp.solvable.center.html#07d637974acf808c1caadc3b5bdfa6d3"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.solvable.center.html#07d637974acf808c1caadc3b5bdfa6d3"><span class="id" title="notation">)</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#f65ecb5148d1ef5a9c551827b20e9bfa"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.ssreflect.prime.html#fdd58465d6c6ade4406f2c94baecf8f8"><span class="id" title="notation">`</span></a><a class="idref" href="mathcomp.ssreflect.prime.html#fdd58465d6c6ade4406f2c94baecf8f8"><span class="id" title="notation">_p</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is Isaacs, Lemma (3.14).
Note that the assumption that G be cyclic is unnecessary, as S will be
empty if this is not the case.
</div>
<div class="code">
<span class="id" title="keyword">Lemma</span> <a name="sum_norm2_char_generators"><span class="id" title="lemma">sum_norm2_char_generators</span></a> <span class="id" title="var">gT</span> (<span class="id" title="var">G</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) (<span class="id" title="var">chi</span> : <a class="idref" href="mathcomp.character.classfun.html#d35bff44a2e44c0688f93d605f17e822"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.classfun.html#d35bff44a2e44c0688f93d605f17e822"><span class="id" title="notation">CF</span></a><a class="idref" href="mathcomp.character.classfun.html#d35bff44a2e44c0688f93d605f17e822"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.character.classfun.html#d35bff44a2e44c0688f93d605f17e822"><span class="id" title="notation">)</span></a>) :<br/>
<span class="id" title="keyword">let</span> <span class="id" title="var">S</span> := <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#880a9790dece461a678db8aa0c091f63"><span class="id" title="notation">[</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#880a9790dece461a678db8aa0c091f63"><span class="id" title="notation">pred</span></a> <span class="id" title="var">s</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#880a9790dece461a678db8aa0c091f63"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.solvable.cyclic.html#generator"><span class="id" title="definition">generator</span></a> <a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="mathcomp.character.integral_char.html#s"><span class="id" title="variable">s</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#880a9790dece461a678db8aa0c091f63"><span class="id" title="notation">]</span></a> <span class="id" title="tactic">in</span><br/>
<a class="idref" href="mathcomp.character.integral_char.html#chi"><span class="id" title="variable">chi</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">is</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">a</span></a> <a class="idref" href="mathcomp.character.character.html#character"><span class="id" title="definition">character</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#5c59b35a0b51db520cf1fba473ecf127"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#5c59b35a0b51db520cf1fba473ecf127"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.integral_char.html#S"><span class="id" title="variable">S</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#5c59b35a0b51db520cf1fba473ecf127"><span class="id" title="notation">,</span></a> <span class="id" title="keyword">∀</span> <span class="id" title="var">s</span>, <a class="idref" href="mathcomp.character.integral_char.html#chi"><span class="id" title="variable">chi</span></a> <a class="idref" href="mathcomp.character.integral_char.html#s"><span class="id" title="variable">s</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#5c59b35a0b51db520cf1fba473ecf127"><span class="id" title="notation">}</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a><br/>
<a class="idref" href="mathcomp.algebra.ssralg.html#0c791dbdc1655ae690f0a6c159a384c0"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#0c791dbdc1655ae690f0a6c159a384c0"><span class="id" title="notation">sum_</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#0c791dbdc1655ae690f0a6c159a384c0"><span class="id" title="notation">(</span></a><span class="id" title="var">s</span> <a class="idref" href="mathcomp.algebra.ssralg.html#0c791dbdc1655ae690f0a6c159a384c0"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.integral_char.html#S"><span class="id" title="variable">S</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#0c791dbdc1655ae690f0a6c159a384c0"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#c536f9a86d3c053391521360ac3f5a61"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.character.integral_char.html#chi"><span class="id" title="variable">chi</span></a> <a class="idref" href="mathcomp.character.integral_char.html#s"><span class="id" title="variable">s</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#c536f9a86d3c053391521360ac3f5a61"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#fb22424322c3d7eb9b837dfca65ce21e"><span class="id" title="notation">^+</span></a> 2 <a class="idref" href="mathcomp.algebra.ssrnum.html#4a55c8439dfd5912be472b2910ab4015"><span class="id" title="notation">≥</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.character.integral_char.html#S"><span class="id" title="variable">S</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a>.<br/>
<br/>
</div>
<div class="doc">
This is Burnside's vanishing theorem (Isaacs, Theorem (3.15)).
</div>
<div class="code">
<span class="id" title="keyword">Theorem</span> <a name="nonlinear_irr_vanish"><span class="id" title="lemma">nonlinear_irr_vanish</span></a> <span class="id" title="var">gT</span> (<span class="id" title="var">G</span> : <a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.character.integral_char.html#gT"><span class="id" title="variable">gT</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ab072eb546972c7e5cdaf33b8a35ce6b"><span class="id" title="notation">}</span></a>) <span class="id" title="var">i</span> :<br/>
<a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">chi</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.character.character.html#18b59bdb60cfba8ef35899cef605f5f1"><span class="id" title="notation">_i</span></a> 1%<span class="id" title="var">g</span> <a class="idref" href="mathcomp.algebra.ssrnum.html#07bcd9d86ae6b6828fbc17b15193853f"><span class="id" title="notation">></span></a> 1 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#28b18e493f7cb0bd8447607bdc385ff8"><span class="id" title="notation">exists2</span></a> <span class="id" title="var">x</span><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#28b18e493f7cb0bd8447607bdc385ff8"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.character.integral_char.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.character.integral_char.html#G"><span class="id" title="variable">G</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#28b18e493f7cb0bd8447607bdc385ff8"><span class="id" title="notation">&</span></a> <a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.character.character.html#04ab09ba1579a4628398b1ac594f25e6"><span class="id" title="notation">chi_i</span></a> <a class="idref" href="mathcomp.character.integral_char.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.character.integral_char.html#MoreIntegralChar"><span class="id" title="section">MoreIntegralChar</span></a>.<br/>
</div>
</div>
<div id="footer">
<hr/><a href="index.html">Index</a><hr/>This page has been generated by <a href="http://coq.inria.fr/">coqdoc</a>
</div>
</div>
</body>
</html>
|