1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link href="coqdoc.css" rel="stylesheet" type="text/css" />
<title>mathcomp.algebra.zmodp</title>
</head>
<body>
<div id="page">
<div id="header">
</div>
<div id="main">
<h1 class="libtitle">Library mathcomp.algebra.zmodp</h1>
<div class="code">
<span class="comment">(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. <br/>
Distributed under the terms of CeCILL-B. *)</span><br/>
<span class="id" title="keyword">Require</span> <span class="id" title="keyword">Import</span> <a class="idref" href="mathcomp.ssreflect.ssreflect.html#"><span class="id" title="library">mathcomp.ssreflect.ssreflect</span></a>.<br/>
<br/>
</div>
<div class="doc">
Definition of the additive group and ring Zp, represented as 'I_p
<div class="paragraph"> </div>
Definitions:
From fintype.v:
'I_p == the subtype of integers less than p, taken here as the type of
the integers mod p.
This file:
inZp == the natural projection from nat into the integers mod p,
represented as 'I_p. Here p is implicit, but MUST be of the
form n.+1.
The operations:
Zp0 == the identity element for addition
Zp1 == the identity element for multiplication, and a generator of
additive group
Zp_opp == inverse function for addition
Zp_add == addition
Zp_mul == multiplication
Zp_inv == inverse function for multiplication
Note that while 'I_n.+1 has canonical finZmodType and finGroupType
structures, only 'I_n.+2 has a canonical ring structure (it has, in fact,
a canonical finComUnitRing structure), and hence an associated
multiplicative unit finGroupType. To mitigate the issues caused by the
trivial "ring" (which is, indeed is NOT a ring in the ssralg/finalg
formalization), we define additional notation:
'Z_p == the type of integers mod (max p 2); this is always a proper
ring, by constructions. Note that 'Z_p is provably equal to
'I_p if p > 1, and convertible to 'I_p if p is of the form
n.+2.
Zp p == the subgroup of integers mod (max p 1) in 'Z_p; this is thus
is thus all of 'Z_p if p > 1, and else the trivial group.
units_Zp p == the group of all units of 'Z_p -- i.e., the group of
(multiplicative) automorphisms of Zp p.
We show that Zp and units_Zp are abelian, and compute their orders.
We use a similar technique to represent the prime fields:
'F_p == the finite field of integers mod the first prime divisor of
maxn p 2. This is provably equal to 'Z_p and 'I_p if p is
provably prime, and indeed convertible to the above if p is
a concrete prime such as 2, 5 or 23.
Note finally that due to the canonical structures it is possible to use
0%R instead of Zp0, and 1%R instead of Zp1 (for the latter, p must be of
the form n.+2, and 1%R : nat will simplify to 1%N).
</div>
<div class="code">
<br/>
<span class="id" title="keyword">Set Implicit Arguments</span>.<br/>
<br/>
<span class="id" title="keyword">Local Open</span> <span class="id" title="keyword">Scope</span> <span class="id" title="var">ring_scope</span>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="ZpDef"><span class="id" title="section">ZpDef</span></a>.<br/>
<br/>
</div>
<div class="doc">
<div class="paragraph"> </div>
Mod p arithmetic on the finite set {0, 1, 2, ..., p - 1}
</div>
<div class="code">
<br/>
<span class="id" title="keyword">Variable</span> <a name="ZpDef.p'"><span class="id" title="variable">p'</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/>
<br/>
<span class="id" title="keyword">Implicit</span> <span class="id" title="keyword">Types</span> <span class="id" title="var">x</span> <span class="id" title="var">y</span> <span class="id" title="var">z</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a>.<br/>
<br/>
</div>
<div class="doc">
Standard injection; val (inZp i) = i %% p
</div>
<div class="code">
<span class="id" title="keyword">Definition</span> <a name="inZp"><span class="id" title="definition">inZp</span></a> <span class="id" title="var">i</span> := <a class="idref" href="mathcomp.ssreflect.fintype.html#Ordinal"><span class="id" title="constructor">Ordinal</span></a> (<a class="idref" href="mathcomp.ssreflect.div.html#ltn_pmod"><span class="id" title="lemma">ltn_pmod</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#i"><span class="id" title="variable">i</span></a> (<a class="idref" href="mathcomp.ssreflect.ssrnat.html#ltn0Sn"><span class="id" title="lemma">ltn0Sn</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ZpDef.p'"><span class="id" title="variable">p'</span></a>)).<br/>
<span class="id" title="keyword">Lemma</span> <a name="modZp"><span class="id" title="lemma">modZp</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#2179ac53e82aa7c0b2f2f5a16b5510ea"><span class="id" title="notation">%%</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#p"><span class="id" title="abbreviation">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a>.<br/>
<span class="id" title="keyword">Lemma</span> <a name="valZpK"><span class="id" title="lemma">valZpK</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#inZp"><span class="id" title="definition">inZp</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a>.<br/>
<br/>
</div>
<div class="doc">
Operations
</div>
<div class="code">
<span class="id" title="keyword">Definition</span> <a name="Zp0"><span class="id" title="definition">Zp0</span></a> : <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a> := <a class="idref" href="mathcomp.ssreflect.fintype.html#ord0"><span class="id" title="definition">ord0</span></a>.<br/>
<span class="id" title="keyword">Definition</span> <a name="Zp1"><span class="id" title="definition">Zp1</span></a> := <a class="idref" href="mathcomp.algebra.zmodp.html#inZp"><span class="id" title="definition">inZp</span></a> 1.<br/>
<span class="id" title="keyword">Definition</span> <a name="Zp_opp"><span class="id" title="definition">Zp_opp</span></a> <span class="id" title="var">x</span> := <a class="idref" href="mathcomp.algebra.zmodp.html#inZp"><span class="id" title="definition">inZp</span></a> (<a class="idref" href="mathcomp.algebra.zmodp.html#p"><span class="id" title="abbreviation">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#9482aae3d3b06e249765c1225dbb8cbb"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a>).<br/>
<span class="id" title="keyword">Definition</span> <a name="Zp_add"><span class="id" title="definition">Zp_add</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> := <a class="idref" href="mathcomp.algebra.zmodp.html#inZp"><span class="id" title="definition">inZp</span></a> (<a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#b3eea360671e1b32b18a26e15b3aace3"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#y"><span class="id" title="variable">y</span></a>).<br/>
<span class="id" title="keyword">Definition</span> <a name="Zp_mul"><span class="id" title="definition">Zp_mul</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> := <a class="idref" href="mathcomp.algebra.zmodp.html#inZp"><span class="id" title="definition">inZp</span></a> (<a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#697e4695610f677ae98a52af81f779d2"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#y"><span class="id" title="variable">y</span></a>).<br/>
<span class="id" title="keyword">Definition</span> <a name="Zp_inv"><span class="id" title="definition">Zp_inv</span></a> <span class="id" title="var">x</span> := <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#0348819abaa88c2cd747e8fa60dde7ae"><span class="id" title="notation">if</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#p"><span class="id" title="abbreviation">p</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#0348819abaa88c2cd747e8fa60dde7ae"><span class="id" title="notation">then</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#inZp"><span class="id" title="definition">inZp</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#c4877bbfe60d8f22b47ac99ace86216a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.ssreflect.div.html#egcdn"><span class="id" title="definition">egcdn</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#p"><span class="id" title="abbreviation">p</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#c4877bbfe60d8f22b47ac99ace86216a"><span class="id" title="notation">).1</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#0348819abaa88c2cd747e8fa60dde7ae"><span class="id" title="notation">else</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a>.<br/>
<br/>
</div>
<div class="doc">
Additive group structure.
</div>
<div class="code">
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_add0z"><span class="id" title="lemma">Zp_add0z</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#left_id"><span class="id" title="definition">left_id</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp0"><span class="id" title="definition">Zp0</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_add"><span class="id" title="definition">Zp_add</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_addNz"><span class="id" title="lemma">Zp_addNz</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#left_inverse"><span class="id" title="definition">left_inverse</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp0"><span class="id" title="definition">Zp0</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_opp"><span class="id" title="definition">Zp_opp</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_add"><span class="id" title="definition">Zp_add</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_addA"><span class="id" title="lemma">Zp_addA</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#associative"><span class="id" title="definition">associative</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_add"><span class="id" title="definition">Zp_add</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_addC"><span class="id" title="lemma">Zp_addC</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#commutative"><span class="id" title="definition">commutative</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_add"><span class="id" title="definition">Zp_add</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="Zp_zmodMixin"><span class="id" title="definition">Zp_zmodMixin</span></a> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Zmodule.Exports.ZmodMixin"><span class="id" title="abbreviation">ZmodMixin</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_addA"><span class="id" title="lemma">Zp_addA</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_addC"><span class="id" title="lemma">Zp_addC</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_add0z"><span class="id" title="lemma">Zp_add0z</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_addNz"><span class="id" title="lemma">Zp_addNz</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Zp_zmodType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Zmodule.Exports.ZmodType"><span class="id" title="abbreviation">ZmodType</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_zmodMixin"><span class="id" title="definition">Zp_zmodMixin</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Zp_finZmodType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.finalg.html#2980bb304205aec85bc1eeb5d0a573a5"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#2980bb304205aec85bc1eeb5d0a573a5"><span class="id" title="notation">finZmodType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#2980bb304205aec85bc1eeb5d0a573a5"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a><a class="idref" href="mathcomp.algebra.finalg.html#2980bb304205aec85bc1eeb5d0a573a5"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Zp_baseFinGroupType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">baseFinGroupType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">for</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">+%</span></a><a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">R</span></a><a class="idref" href="mathcomp.algebra.finalg.html#ee332ddd6e3626489ee70ea4c624f1cd"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Zp_finGroupType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">finGroupType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">for</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">+%</span></a><a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">R</span></a><a class="idref" href="mathcomp.algebra.finalg.html#ad4d9ed93eeed8e8e57c81c6e35699c4"><span class="id" title="notation">]</span></a>.<br/>
<br/>
</div>
<div class="doc">
Ring operations
</div>
<div class="code">
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_mul1z"><span class="id" title="lemma">Zp_mul1z</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#left_id"><span class="id" title="definition">left_id</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp1"><span class="id" title="definition">Zp1</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mul"><span class="id" title="definition">Zp_mul</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_mulC"><span class="id" title="lemma">Zp_mulC</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#commutative"><span class="id" title="definition">commutative</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mul"><span class="id" title="definition">Zp_mul</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_mulz1"><span class="id" title="lemma">Zp_mulz1</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#right_id"><span class="id" title="definition">right_id</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp1"><span class="id" title="definition">Zp1</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mul"><span class="id" title="definition">Zp_mul</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_mulA"><span class="id" title="lemma">Zp_mulA</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#associative"><span class="id" title="definition">associative</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mul"><span class="id" title="definition">Zp_mul</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_mul_addr"><span class="id" title="lemma">Zp_mul_addr</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#right_distributive"><span class="id" title="definition">right_distributive</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mul"><span class="id" title="definition">Zp_mul</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_add"><span class="id" title="definition">Zp_add</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_mul_addl"><span class="id" title="lemma">Zp_mul_addl</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#left_distributive"><span class="id" title="definition">left_distributive</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mul"><span class="id" title="definition">Zp_mul</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_add"><span class="id" title="definition">Zp_add</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_mulVz"><span class="id" title="lemma">Zp_mulVz</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#p"><span class="id" title="abbreviation">p</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mul"><span class="id" title="definition">Zp_mul</span></a> (<a class="idref" href="mathcomp.algebra.zmodp.html#Zp_inv"><span class="id" title="definition">Zp_inv</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp1"><span class="id" title="definition">Zp1</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_mulzV"><span class="id" title="lemma">Zp_mulzV</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#p"><span class="id" title="abbreviation">p</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mul"><span class="id" title="definition">Zp_mul</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> (<a class="idref" href="mathcomp.algebra.zmodp.html#Zp_inv"><span class="id" title="definition">Zp_inv</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp1"><span class="id" title="definition">Zp1</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_intro_unit"><span class="id" title="lemma">Zp_intro_unit</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mul"><span class="id" title="definition">Zp_mul</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp1"><span class="id" title="definition">Zp1</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#p"><span class="id" title="abbreviation">p</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_inv_out"><span class="id" title="lemma">Zp_inv_out</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#4b80c70cdb231351c5e129ba61f7f956"><span class="id" title="notation">~~</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#p"><span class="id" title="abbreviation">p</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_inv"><span class="id" title="definition">Zp_inv</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_mulrn"><span class="id" title="lemma">Zp_mulrn</span></a> <span class="id" title="var">x</span> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#891e51846c7d1d63a9cb5458374cf308"><span class="id" title="notation">*+</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#inZp"><span class="id" title="definition">inZp</span></a> (<a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#697e4695610f677ae98a52af81f779d2"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a>).<br/>
<br/>
<span class="id" title="keyword">Import</span> <span class="id" title="var">GroupScope</span>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_mulgC"><span class="id" title="lemma">Zp_mulgC</span></a> : @<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#commutative"><span class="id" title="definition">commutative</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a> <span class="id" title="var">_</span> <a class="idref" href="mathcomp.fingroup.fingroup.html#mulg"><span class="id" title="definition">mulg</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_abelian"><span class="id" title="lemma">Zp_abelian</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#abelian"><span class="id" title="definition">abelian</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_expg"><span class="id" title="lemma">Zp_expg</span></a> <span class="id" title="var">x</span> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#86a04fb564fb97d388cad84a3a204260"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#inZp"><span class="id" title="definition">inZp</span></a> (<a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#697e4695610f677ae98a52af81f779d2"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a>).<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp1_expgz"><span class="id" title="lemma">Zp1_expgz</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#Zp1"><span class="id" title="definition">Zp1</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#86a04fb564fb97d388cad84a3a204260"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_cycle"><span class="id" title="lemma">Zp_cycle</span></a> : <a class="idref" href="mathcomp.ssreflect.finset.html#setT"><span class="id" title="abbreviation">setT</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#30152704c0ab4066186d0284456667e8"><span class="id" title="notation"><[</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#Zp1"><span class="id" title="definition">Zp1</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#30152704c0ab4066186d0284456667e8"><span class="id" title="notation">]></span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="order_Zp1"><span class="id" title="lemma">order_Zp1</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#89402f0d9375903caa99ad84144160d5"><span class="id" title="notation">#[</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#Zp1"><span class="id" title="definition">Zp1</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#89402f0d9375903caa99ad84144160d5"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#p"><span class="id" title="abbreviation">p</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.zmodp.html#ZpDef"><span class="id" title="section">ZpDef</span></a>.<br/>
<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="ord1"><span class="id" title="lemma">ord1</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#all_equal_to"><span class="id" title="definition">all_equal_to</span></a> (0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#4509b22bf26e3d6d771897e22bd8bc8f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_1</span></a>).<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="lshift0"><span class="id" title="lemma">lshift0</span></a> <span class="id" title="var">m</span> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#lshift"><span class="id" title="definition">lshift</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#m"><span class="id" title="variable">m</span></a> (0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#4509b22bf26e3d6d771897e22bd8bc8f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#361454269931ea8643f7b402f2ab7222"><span class="id" title="notation">.+1</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">(</span></a>0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#4509b22bf26e3d6d771897e22bd8bc8f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#361454269931ea8643f7b402f2ab7222"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#b3eea360671e1b32b18a26e15b3aace3"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#361454269931ea8643f7b402f2ab7222"><span class="id" title="notation">).+1</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">)</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="rshift1"><span class="id" title="lemma">rshift1</span></a> <span class="id" title="var">n</span> : @<a class="idref" href="mathcomp.ssreflect.fintype.html#rshift"><span class="id" title="definition">rshift</span></a> 1 <a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#2500d48ed8e862ccfda98a44dff88963"><span class="id" title="notation">=1</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#lift"><span class="id" title="definition">lift</span></a> (0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#4509b22bf26e3d6d771897e22bd8bc8f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_n</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#361454269931ea8643f7b402f2ab7222"><span class="id" title="notation">.+1</span></a>).<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="split1"><span class="id" title="lemma">split1</span></a> <span class="id" title="var">n</span> <span class="id" title="var">i</span> :<br/>
<a class="idref" href="mathcomp.ssreflect.fintype.html#split"><span class="id" title="definition">split</span></a> (<a class="idref" href="mathcomp.algebra.zmodp.html#i"><span class="id" title="variable">i</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#4509b22bf26e3d6d771897e22bd8bc8f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">(</span></a>1 <a class="idref" href="mathcomp.ssreflect.ssrnat.html#b3eea360671e1b32b18a26e15b3aace3"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">)</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#oapp"><span class="id" title="abbreviation">oapp</span></a> (@<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#inr"><span class="id" title="constructor">inr</span></a> <span class="id" title="var">_</span> <span class="id" title="var">_</span>) (<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#inl"><span class="id" title="constructor">inl</span></a> <span class="id" title="var">_</span> 0) (<a class="idref" href="mathcomp.ssreflect.fintype.html#unlift"><span class="id" title="definition">unlift</span></a> 0 <a class="idref" href="mathcomp.algebra.zmodp.html#i"><span class="id" title="variable">i</span></a>).<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="big_ord1"><span class="id" title="lemma">big_ord1</span></a> <span class="id" title="var">R</span> <span class="id" title="var">idx</span> (<span class="id" title="var">op</span> : @<a class="idref" href="mathcomp.ssreflect.bigop.html#Monoid.law"><span class="id" title="record">Monoid.law</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#idx"><span class="id" title="variable">idx</span></a>) <span class="id" title="var">F</span> :<br/>
<a class="idref" href="mathcomp.ssreflect.bigop.html#567079cee6eb2eba482323c7e8d08df5"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#567079cee6eb2eba482323c7e8d08df5"><span class="id" title="notation">big</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#567079cee6eb2eba482323c7e8d08df5"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#op"><span class="id" title="variable">op</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#567079cee6eb2eba482323c7e8d08df5"><span class="id" title="notation">/</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#idx"><span class="id" title="variable">idx</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#567079cee6eb2eba482323c7e8d08df5"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#567079cee6eb2eba482323c7e8d08df5"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#567079cee6eb2eba482323c7e8d08df5"><span class="id" title="notation">(</span></a><span class="id" title="var">i</span> <a class="idref" href="mathcomp.ssreflect.bigop.html#567079cee6eb2eba482323c7e8d08df5"><span class="id" title="notation"><</span></a> 1<a class="idref" href="mathcomp.ssreflect.bigop.html#567079cee6eb2eba482323c7e8d08df5"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#i"><span class="id" title="variable">i</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#F"><span class="id" title="variable">F</span></a> 0.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="big_ord1_cond"><span class="id" title="lemma">big_ord1_cond</span></a> <span class="id" title="var">R</span> <span class="id" title="var">idx</span> (<span class="id" title="var">op</span> : @<a class="idref" href="mathcomp.ssreflect.bigop.html#Monoid.law"><span class="id" title="record">Monoid.law</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#idx"><span class="id" title="variable">idx</span></a>) <span class="id" title="var">P</span> <span class="id" title="var">F</span> :<br/>
<a class="idref" href="mathcomp.ssreflect.bigop.html#dc42c7ad0ea9096c0f795649807315df"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#dc42c7ad0ea9096c0f795649807315df"><span class="id" title="notation">big</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#dc42c7ad0ea9096c0f795649807315df"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#op"><span class="id" title="variable">op</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#dc42c7ad0ea9096c0f795649807315df"><span class="id" title="notation">/</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#idx"><span class="id" title="variable">idx</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#dc42c7ad0ea9096c0f795649807315df"><span class="id" title="notation">]</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#dc42c7ad0ea9096c0f795649807315df"><span class="id" title="notation">_</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#dc42c7ad0ea9096c0f795649807315df"><span class="id" title="notation">(</span></a><span class="id" title="var">i</span> <a class="idref" href="mathcomp.ssreflect.bigop.html#dc42c7ad0ea9096c0f795649807315df"><span class="id" title="notation"><</span></a> 1 <a class="idref" href="mathcomp.ssreflect.bigop.html#dc42c7ad0ea9096c0f795649807315df"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#P"><span class="id" title="variable">P</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#i"><span class="id" title="variable">i</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#dc42c7ad0ea9096c0f795649807315df"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#i"><span class="id" title="variable">i</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#0348819abaa88c2cd747e8fa60dde7ae"><span class="id" title="notation">if</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#P"><span class="id" title="variable">P</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#0348819abaa88c2cd747e8fa60dde7ae"><span class="id" title="notation">then</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#F"><span class="id" title="variable">F</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#0348819abaa88c2cd747e8fa60dde7ae"><span class="id" title="notation">else</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#idx"><span class="id" title="variable">idx</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="ZpRing"><span class="id" title="section">ZpRing</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="ZpRing.p'"><span class="id" title="variable">p'</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_nontrivial"><span class="id" title="lemma">Zp_nontrivial</span></a> : <a class="idref" href="mathcomp.algebra.zmodp.html#Zp1"><span class="id" title="definition">Zp1</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#9e45f909d1732d6d9e153b650829bccf"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="mathcomp.ssreflect.eqtype.html#9e45f909d1732d6d9e153b650829bccf"><span class="id" title="notation">:></span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a>. <br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="Zp_ringMixin"><span class="id" title="definition">Zp_ringMixin</span></a> :=<br/>
<a class="idref" href="mathcomp.algebra.ssralg.html#GRing.ComRing.Exports.ComRingMixin"><span class="id" title="abbreviation">ComRingMixin</span></a> (@<a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mulA"><span class="id" title="lemma">Zp_mulA</span></a> <span class="id" title="var">_</span>) (@<a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mulC"><span class="id" title="lemma">Zp_mulC</span></a> <span class="id" title="var">_</span>) (@<a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mul1z"><span class="id" title="lemma">Zp_mul1z</span></a> <span class="id" title="var">_</span>) (@<a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mul_addl"><span class="id" title="lemma">Zp_mul_addl</span></a> <span class="id" title="var">_</span>)<br/>
<a class="idref" href="mathcomp.algebra.zmodp.html#Zp_nontrivial"><span class="id" title="lemma">Zp_nontrivial</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Zp_ringType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Ring.Exports.RingType"><span class="id" title="abbreviation">RingType</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_ringMixin"><span class="id" title="definition">Zp_ringMixin</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Zp_finRingType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">finRingType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a><a class="idref" href="mathcomp.algebra.finalg.html#cf58bd711195f609ec57107fc402496c"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Zp_comRingType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.ComRing.Exports.ComRingType"><span class="id" title="abbreviation">ComRingType</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a> (@<a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mulC"><span class="id" title="lemma">Zp_mulC</span></a> <span class="id" title="var">_</span>).<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Zp_finComRingType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.finalg.html#381777e14bce98b548cb274563c7fc56"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#381777e14bce98b548cb274563c7fc56"><span class="id" title="notation">finComRingType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#381777e14bce98b548cb274563c7fc56"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a><a class="idref" href="mathcomp.algebra.finalg.html#381777e14bce98b548cb274563c7fc56"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="Zp_unitRingMixin"><span class="id" title="definition">Zp_unitRingMixin</span></a> :=<br/>
<a class="idref" href="mathcomp.algebra.ssralg.html#GRing.ComUnitRing.Exports.ComUnitRingMixin"><span class="id" title="abbreviation">ComUnitRingMixin</span></a> (@<a class="idref" href="mathcomp.algebra.zmodp.html#Zp_mulVz"><span class="id" title="lemma">Zp_mulVz</span></a> <span class="id" title="var">_</span>) (@<a class="idref" href="mathcomp.algebra.zmodp.html#Zp_intro_unit"><span class="id" title="lemma">Zp_intro_unit</span></a> <span class="id" title="var">_</span>) (@<a class="idref" href="mathcomp.algebra.zmodp.html#Zp_inv_out"><span class="id" title="lemma">Zp_inv_out</span></a> <span class="id" title="var">_</span>).<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Zp_unitRingType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.UnitRing.Exports.UnitRingType"><span class="id" title="abbreviation">UnitRingType</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_unitRingMixin"><span class="id" title="definition">Zp_unitRingMixin</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Zp_finUnitRingType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.finalg.html#7f21453830587186138043335ab91dd1"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#7f21453830587186138043335ab91dd1"><span class="id" title="notation">finUnitRingType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#7f21453830587186138043335ab91dd1"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a><a class="idref" href="mathcomp.algebra.finalg.html#7f21453830587186138043335ab91dd1"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Zp_comUnitRingType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.ssralg.html#e3ee791c903b0283e51d52d0692558ec"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#e3ee791c903b0283e51d52d0692558ec"><span class="id" title="notation">comUnitRingType</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#e3ee791c903b0283e51d52d0692558ec"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#e3ee791c903b0283e51d52d0692558ec"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Zp_finComUnitRingType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.finalg.html#f0aa4fcf143660f4378ecfead8f3fdda"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f0aa4fcf143660f4378ecfead8f3fdda"><span class="id" title="notation">finComUnitRingType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#f0aa4fcf143660f4378ecfead8f3fdda"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f0aa4fcf143660f4378ecfead8f3fdda"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_nat"><span class="id" title="lemma">Zp_nat</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#inZp"><span class="id" title="definition">inZp</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">:></span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="natr_Zp"><span class="id" title="lemma">natr_Zp</span></a> (<span class="id" title="var">x</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a>) : <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="natr_negZp"><span class="id" title="lemma">natr_negZp</span></a> (<span class="id" title="var">x</span> : <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a>) : <a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#941c6d086004545bd62614d0213e75e5"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#941c6d086004545bd62614d0213e75e5"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a>.<br/>
<br/>
<span class="id" title="keyword">Import</span> <span class="id" title="var">GroupScope</span>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="unit_Zp_mulgC"><span class="id" title="lemma">unit_Zp_mulgC</span></a> : @<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#commutative"><span class="id" title="definition">commutative</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#f7c6b2be51cd10aae4ae8951352903f1"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f7c6b2be51cd10aae4ae8951352903f1"><span class="id" title="notation">unit</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f7c6b2be51cd10aae4ae8951352903f1"><span class="id" title="notation">}</span></a> <span class="id" title="var">_</span> <a class="idref" href="mathcomp.fingroup.fingroup.html#mulg"><span class="id" title="definition">mulg</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="unit_Zp_expg"><span class="id" title="lemma">unit_Zp_expg</span></a> (<span class="id" title="var">u</span> : <a class="idref" href="mathcomp.algebra.finalg.html#f7c6b2be51cd10aae4ae8951352903f1"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f7c6b2be51cd10aae4ae8951352903f1"><span class="id" title="notation">unit</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f7c6b2be51cd10aae4ae8951352903f1"><span class="id" title="notation">}</span></a>) <span class="id" title="var">n</span> :<br/>
<a class="idref" href="mathcomp.ssreflect.eqtype.html#val"><span class="id" title="projection">val</span></a> (<a class="idref" href="mathcomp.algebra.zmodp.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#86a04fb564fb97d388cad84a3a204260"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#inZp"><span class="id" title="definition">inZp</span></a> (<a class="idref" href="mathcomp.ssreflect.eqtype.html#val"><span class="id" title="projection">val</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#4c362bcf0e947e2792a2e6989b44aeb0"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">:></span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_p</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.zmodp.html#ZpRing"><span class="id" title="section">ZpRing</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="Zp_trunc"><span class="id" title="definition">Zp_trunc</span></a> <span class="id" title="var">p</span> := <a class="idref" href="mathcomp.algebra.zmodp.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#b870774a3786e6850cf468108b4e1ee5"><span class="id" title="notation">.-2</span></a>.<br/>
<br/>
<span class="id" title="keyword">Notation</span> <a name="9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">"</span></a>''Z_' p" := <a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#9de6d53cccc27f521f3ab56b38159140"><span class="id" title="notation">I_</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#793e3499c36e4c6595d810e871a5acdd"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#Zp_trunc"><span class="id" title="definition">Zp_trunc</span></a> <span class="id" title="var">p</span><a class="idref" href="mathcomp.ssreflect.ssrnat.html#793e3499c36e4c6595d810e871a5acdd"><span class="id" title="notation">).+2</span></a><br/>
(<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 8, <span class="id" title="var">p</span> <span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 2, <span class="id" title="var">format</span> "''Z_' p") : <span class="id" title="var">type_scope</span>.<br/>
<span class="id" title="keyword">Notation</span> <a name="ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">"</span></a>''F_' p" := <a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">Z_</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.ssreflect.prime.html#pdiv"><span class="id" title="definition">pdiv</span></a> <span class="id" title="var">p</span><a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">)</span></a><br/>
(<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 8, <span class="id" title="var">p</span> <span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 2, <span class="id" title="var">format</span> "''F_' p") : <span class="id" title="var">type_scope</span>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="Groups"><span class="id" title="section">Groups</span></a>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="Groups.p"><span class="id" title="variable">p</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="Zp"><span class="id" title="definition">Zp</span></a> := <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#0348819abaa88c2cd747e8fa60dde7ae"><span class="id" title="notation">if</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#19ab5cfd7e4f60fa14f22b576013bd96"><span class="id" title="notation">></span></a> 1 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#0348819abaa88c2cd747e8fa60dde7ae"><span class="id" title="notation">then</span></a> <a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">Z_p</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#0348819abaa88c2cd747e8fa60dde7ae"><span class="id" title="notation">else</span></a> 1%<span class="id" title="var">g</span>.<br/>
<span class="id" title="keyword">Definition</span> <a name="units_Zp"><span class="id" title="definition">units_Zp</span></a> := <a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">set</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#f7c6b2be51cd10aae4ae8951352903f1"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f7c6b2be51cd10aae4ae8951352903f1"><span class="id" title="notation">unit</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">Z_p</span></a><a class="idref" href="mathcomp.algebra.finalg.html#f7c6b2be51cd10aae4ae8951352903f1"><span class="id" title="notation">}</span></a><a class="idref" href="mathcomp.ssreflect.finset.html#26c09fa7b21f5311d68f07b2527cd1eb"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_cast"><span class="id" title="lemma">Zp_cast</span></a> : <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#19ab5cfd7e4f60fa14f22b576013bd96"><span class="id" title="notation">></span></a> 1 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#793e3499c36e4c6595d810e871a5acdd"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#Zp_trunc"><span class="id" title="definition">Zp_trunc</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#793e3499c36e4c6595d810e871a5acdd"><span class="id" title="notation">).+2</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="val_Zp_nat"><span class="id" title="lemma">val_Zp_nat</span></a> (<span class="id" title="var">p_gt1</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#19ab5cfd7e4f60fa14f22b576013bd96"><span class="id" title="notation">></span></a> 1) <span class="id" title="var">n</span> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#4509b22bf26e3d6d771897e22bd8bc8f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">Z_p</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#2179ac53e82aa7c0b2f2f5a16b5510ea"><span class="id" title="notation">%%</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a>)%<span class="id" title="var">N</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">:></span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_nat_mod"><span class="id" title="lemma">Zp_nat_mod</span></a> (<span class="id" title="var">p_gt1</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#19ab5cfd7e4f60fa14f22b576013bd96"><span class="id" title="notation">></span></a> 1)<span class="id" title="var">m</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#m"><span class="id" title="variable">m</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#2179ac53e82aa7c0b2f2f5a16b5510ea"><span class="id" title="notation">%%</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">:></span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">Z_p</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="char_Zp"><span class="id" title="lemma">char_Zp</span></a> : <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#19ab5cfd7e4f60fa14f22b576013bd96"><span class="id" title="notation">></span></a> 1 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">:></span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">Z_p</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="unitZpE"><span class="id" title="lemma">unitZpE</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#19ab5cfd7e4f60fa14f22b576013bd96"><span class="id" title="notation">></span></a> 1 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">(</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#4509b22bf26e3d6d771897e22bd8bc8f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#9daeb9ead3dc7cfd1f9338b8de9c8c09"><span class="id" title="notation">Z_p</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">is</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">a</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.unit"><span class="id" title="definition">GRing.unit</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Zp_group_set"><span class="id" title="lemma">Zp_group_set</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#group_set"><span class="id" title="definition">group_set</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp"><span class="id" title="definition">Zp</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Zp_group</span> := <a class="idref" href="mathcomp.fingroup.fingroup.html#Group"><span class="id" title="constructor">Group</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp_group_set"><span class="id" title="lemma">Zp_group_set</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="card_Zp"><span class="id" title="lemma">card_Zp</span></a> : <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#19ab5cfd7e4f60fa14f22b576013bd96"><span class="id" title="notation">></span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#Zp"><span class="id" title="definition">Zp</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="mem_Zp"><span class="id" title="lemma">mem_Zp</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#19ab5cfd7e4f60fa14f22b576013bd96"><span class="id" title="notation">></span></a> 1 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Zp"><span class="id" title="definition">Zp</span></a>. <br/>
<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">units_Zp_group</span> := <a class="idref" href="mathcomp.fingroup.fingroup.html#ccb763a84253e971fd106aeeb9cd3cb0"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ccb763a84253e971fd106aeeb9cd3cb0"><span class="id" title="notation">group</span></a> <a class="idref" href="mathcomp.fingroup.fingroup.html#ccb763a84253e971fd106aeeb9cd3cb0"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#units_Zp"><span class="id" title="definition">units_Zp</span></a><a class="idref" href="mathcomp.fingroup.fingroup.html#ccb763a84253e971fd106aeeb9cd3cb0"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="card_units_Zp"><span class="id" title="lemma">card_units_Zp</span></a> : <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#19ab5cfd7e4f60fa14f22b576013bd96"><span class="id" title="notation">></span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#units_Zp"><span class="id" title="definition">units_Zp</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.prime.html#totient"><span class="id" title="definition">totient</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Groups.p"><span class="id" title="variable">p</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="units_Zp_abelian"><span class="id" title="lemma">units_Zp_abelian</span></a> : <a class="idref" href="mathcomp.fingroup.fingroup.html#abelian"><span class="id" title="definition">abelian</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#units_Zp"><span class="id" title="definition">units_Zp</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.zmodp.html#Groups"><span class="id" title="section">Groups</span></a>.<br/>
<br/>
</div>
<div class="doc">
Field structure for primes.
</div>
<div class="code">
<br/>
<span class="id" title="keyword">Section</span> <a name="PrimeField"><span class="id" title="section">PrimeField</span></a>.<br/>
<br/>
<span class="id" title="keyword">Open</span> <span class="id" title="keyword">Scope</span> <span class="id" title="var">ring_scope</span>.<br/>
<br/>
<span class="id" title="keyword">Variable</span> <a name="PrimeField.p"><span class="id" title="variable">p</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/>
<br/>
<span class="id" title="keyword">Section</span> <a name="PrimeField.F_prime"><span class="id" title="section">F_prime</span></a>.<br/>
<br/>
<span class="id" title="keyword">Hypothesis</span> <a name="PrimeField.F_prime.p_pr"><span class="id" title="variable">p_pr</span></a> : <a class="idref" href="mathcomp.ssreflect.prime.html#prime"><span class="id" title="definition">prime</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#PrimeField.p"><span class="id" title="variable">p</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Fp_Zcast"><span class="id" title="lemma">Fp_Zcast</span></a> : <a class="idref" href="mathcomp.ssreflect.ssrnat.html#793e3499c36e4c6595d810e871a5acdd"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#Zp_trunc"><span class="id" title="definition">Zp_trunc</span></a> (<a class="idref" href="mathcomp.ssreflect.prime.html#pdiv"><span class="id" title="definition">pdiv</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#PrimeField.p"><span class="id" title="variable">p</span></a>)<a class="idref" href="mathcomp.ssreflect.ssrnat.html#793e3499c36e4c6595d810e871a5acdd"><span class="id" title="notation">).+2</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#793e3499c36e4c6595d810e871a5acdd"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#Zp_trunc"><span class="id" title="definition">Zp_trunc</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#PrimeField.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#793e3499c36e4c6595d810e871a5acdd"><span class="id" title="notation">).+2</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Fp_cast"><span class="id" title="lemma">Fp_cast</span></a> : <a class="idref" href="mathcomp.ssreflect.ssrnat.html#793e3499c36e4c6595d810e871a5acdd"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#Zp_trunc"><span class="id" title="definition">Zp_trunc</span></a> (<a class="idref" href="mathcomp.ssreflect.prime.html#pdiv"><span class="id" title="definition">pdiv</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#PrimeField.p"><span class="id" title="variable">p</span></a>)<a class="idref" href="mathcomp.ssreflect.ssrnat.html#793e3499c36e4c6595d810e871a5acdd"><span class="id" title="notation">).+2</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#PrimeField.p"><span class="id" title="variable">p</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="card_Fp"><span class="id" title="lemma">card_Fp</span></a> : <a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">#|</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a><a class="idref" href="mathcomp.ssreflect.fintype.html#f01714bb99e6c7abc6cfb2e43eff7f6e"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#PrimeField.p"><span class="id" title="variable">p</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="val_Fp_nat"><span class="id" title="lemma">val_Fp_nat</span></a> <span class="id" title="var">n</span> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#4509b22bf26e3d6d771897e22bd8bc8f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.algebra.zmodp.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#2179ac53e82aa7c0b2f2f5a16b5510ea"><span class="id" title="notation">%%</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#PrimeField.p"><span class="id" title="variable">p</span></a>)%<span class="id" title="var">N</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">:></span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Fp_nat_mod"><span class="id" title="lemma">Fp_nat_mod</span></a> <span class="id" title="var">m</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#m"><span class="id" title="variable">m</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#2179ac53e82aa7c0b2f2f5a16b5510ea"><span class="id" title="notation">%%</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#PrimeField.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">:></span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="char_Fp"><span class="id" title="lemma">char_Fp</span></a> : <a class="idref" href="mathcomp.algebra.zmodp.html#PrimeField.p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#46c9e8232fa09401e24f1934bb65029f"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">char</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#b8d1051ec5bf038cb2a33edc541359f8"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="char_Fp_0"><span class="id" title="lemma">char_Fp_0</span></a> : <a class="idref" href="mathcomp.algebra.zmodp.html#PrimeField.p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#8f9364556521ebb498093f28eea2240f"><span class="id" title="notation">:></span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="unitFpE"><span class="id" title="lemma">unitFpE</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">(</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#af5c1d7e13410a0a6c3dff5441ac8477"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#4509b22bf26e3d6d771897e22bd8bc8f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">is</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrbool.html#1e40fee506a85b20590ef299005b003d"><span class="id" title="notation">a</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.unit"><span class="id" title="definition">GRing.unit</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#PrimeField.p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#x"><span class="id" title="variable">x</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.zmodp.html#PrimeField.F_prime"><span class="id" title="section">F_prime</span></a>.<br/>
<br/>
<span class="id" title="keyword">Lemma</span> <a name="Fp_fieldMixin"><span class="id" title="lemma">Fp_fieldMixin</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.mixin_of"><span class="id" title="definition">GRing.Field.mixin_of</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#582a1127c53482b5000949a35912f7c9"><span class="id" title="notation">[</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#582a1127c53482b5000949a35912f7c9"><span class="id" title="notation">the</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.UnitRing.Exports.unitRingType"><span class="id" title="abbreviation">unitRingType</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#582a1127c53482b5000949a35912f7c9"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#582a1127c53482b5000949a35912f7c9"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">Definition</span> <a name="Fp_idomainMixin"><span class="id" title="definition">Fp_idomainMixin</span></a> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Exports.FieldIdomainMixin"><span class="id" title="abbreviation">FieldIdomainMixin</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Fp_fieldMixin"><span class="id" title="lemma">Fp_fieldMixin</span></a>.<br/>
<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Fp_idomainType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.IntegralDomain.Exports.IdomainType"><span class="id" title="abbreviation">IdomainType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Fp_idomainMixin"><span class="id" title="definition">Fp_idomainMixin</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Fp_finIdomainType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.finalg.html#6c49b73b4d6aa1a932fafe7684bba39c"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#6c49b73b4d6aa1a932fafe7684bba39c"><span class="id" title="notation">finIdomainType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#6c49b73b4d6aa1a932fafe7684bba39c"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a><a class="idref" href="mathcomp.algebra.finalg.html#6c49b73b4d6aa1a932fafe7684bba39c"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Fp_fieldType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Exports.FieldType"><span class="id" title="abbreviation">FieldType</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Fp_fieldMixin"><span class="id" title="lemma">Fp_fieldMixin</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Fp_finFieldType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.finalg.html#07fdfbae2c02044f4dae6b5dbeb0c7c7"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.finalg.html#07fdfbae2c02044f4dae6b5dbeb0c7c7"><span class="id" title="notation">finFieldType</span></a> <a class="idref" href="mathcomp.algebra.finalg.html#07fdfbae2c02044f4dae6b5dbeb0c7c7"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a><a class="idref" href="mathcomp.algebra.finalg.html#07fdfbae2c02044f4dae6b5dbeb0c7c7"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Fp_decFieldType</span> :=<br/>
<span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.ssralg.html#571e046df0f3cfb95cda10363e01c19e"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#571e046df0f3cfb95cda10363e01c19e"><span class="id" title="notation">decFieldType</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#571e046df0f3cfb95cda10363e01c19e"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.zmodp.html#ac70144de8117a1d767eef28420399d1"><span class="id" title="notation">F_p</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#571e046df0f3cfb95cda10363e01c19e"><span class="id" title="notation">for</span></a> <a class="idref" href="mathcomp.algebra.zmodp.html#Fp_finFieldType"><span class="id" title="definition">Fp_finFieldType</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#571e046df0f3cfb95cda10363e01c19e"><span class="id" title="notation">]</span></a>.<br/>
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.zmodp.html#PrimeField"><span class="id" title="section">PrimeField</span></a>.<br/>
</div>
</div>
<div id="footer">
<hr/><a href="index.html">Index</a><hr/>This page has been generated by <a href="http://coq.inria.fr/">coqdoc</a>
</div>
</div>
</body>
</html>
|