aboutsummaryrefslogtreecommitdiff
path: root/docs/htmldoc/mathcomp.algebra.polyXY.html
blob: 5506005f5463a96ccf6c8fda859ff8425064f636 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link href="coqdoc.css" rel="stylesheet" type="text/css" />
<title>mathcomp.algebra.polyXY</title>
</head>

<body>

<div id="page">

<div id="header">
</div>

<div id="main">

<h1 class="libtitle">Library mathcomp.algebra.polyXY</h1>

<div class="code">
<span class="comment">(*&nbsp;(c)&nbsp;Copyright&nbsp;2006-2016&nbsp;Microsoft&nbsp;Corporation&nbsp;and&nbsp;Inria.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<br/>
&nbsp;Distributed&nbsp;under&nbsp;the&nbsp;terms&nbsp;of&nbsp;CeCILL-B.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;*)</span><br/>
<span class="id" title="keyword">Require</span> <span class="id" title="keyword">Import</span> <a class="idref" href="mathcomp.ssreflect.ssreflect.html#"><span class="id" title="library">mathcomp.ssreflect.ssreflect</span></a>.<br/>

<br/>
</div>

<div class="doc">
 This file provides additional primitives and theory for bivariate          
 polynomials (polynomials of two variables), represented as polynomials     
 with (univariate) polynomial coefficients :                                
            'Y == the (generic) second variable (:= 'X%:P).                 
          p^:P == the bivariate polynomial p['X], for p univariate.         
               := map_poly polyC p (this notation is defined in poly.v).    
      u. [x, y] == the bivariate polynomial u evaluated at 'X = x, 'Y = y.   
               := u. [x%:P]. [y].                                             
       sizeY u == the size of u in 'Y (1 + the 'Y-degree of u, if u != 0).  
               := \max</i>(i &lt; size u) size u`<i>i.                              
      swapXY u == the bivariate polynomial u['Y, 'X], for u bivariate.      
    poly_XaY p == the bivariate polynomial p['X + 'Y], for p univariate.    
               := p^:P \Po ('X + 'Y).                                       
    poly_XmY p == the bivariate polynomial p['X * 'Y], for p univariate.    
               := P^:P \Po ('X * 'Y).                                       
 sub_annihilant p q == for univariate p, q != 0, a nonzero polynomial whose 
                  roots include all the differences of roots of p and q, in 
                  all field extensions (:= resultant (poly_XaY p) q^:P).    
 div_annihilant p q == for polynomials p != 0, q with q. [0] != 0, a nonzero 
                  polynomial whose roots include all the quotients of roots 
                  of p by roots of q, in all field extensions               
                  (:= resultant (poly_XmY p) q^:P).                         
 The latter two "annhilants" provide uniform witnesses for an alternative   
 proof of the closure of the algebraicOver predicate (see mxpoly.v). The    
 fact that the annhilant does not depend on the particular choice of roots  
 of p and q is crucial for the proof of the Primitive Element Theorem (file 
 separable.v).                                                               
</div>
<div class="code">

<br/>
<span class="id" title="keyword">Set Implicit Arguments</span>.<br/>

<br/>
<span class="id" title="keyword">Local Open</span> <span class="id" title="keyword">Scope</span> <span class="id" title="var">ring_scope</span>.<br/>
<span class="id" title="keyword">Import</span> <span class="id" title="var">GRing.Theory</span>.<br/>

<br/>

<br/>
<span class="id" title="keyword">Notation</span> <a name="123da97e9d81425c68e579737576ac03"><span class="id" title="notation">&quot;</span></a>'Y" := <a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">X</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">P</span></a> : <span class="id" title="var">ring_scope</span>.<br/>
<span class="id" title="keyword">Notation</span> <a name="f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">&quot;</span></a>p ^:P" := (<span class="id" title="var">p</span> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.poly.html#polyC"><span class="id" title="definition">polyC</span></a>) (<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 2, <span class="id" title="var">format</span> "p ^:P") : <span class="id" title="var">ring_scope</span>.<br/>
<span class="id" title="keyword">Notation</span> <a name="7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">&quot;</span></a>p .[ x , y ]" := (<span class="id" title="var">p</span><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">.[</span></a><span class="id" title="var">x</span><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">P</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">].[</span></a><span class="id" title="var">y</span><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a>)<br/>
&nbsp;&nbsp;(<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 2, <span class="id" title="tactic">left</span> <span class="id" title="keyword">associativity</span>, <span class="id" title="var">format</span> "p .[ x ,  y ]") : <span class="id" title="var">ring_scope</span>.<br/>

<br/>
<span class="id" title="keyword">Section</span> <a name="PolyXY_Ring"><span class="id" title="section">PolyXY_Ring</span></a>.<br/>

<br/>
<span class="id" title="keyword">Variable</span> <a name="PolyXY_Ring.R"><span class="id" title="variable">R</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Ring.Exports.ringType"><span class="id" title="abbreviation">ringType</span></a>.<br/>
<span class="id" title="keyword">Implicit</span> <span class="id" title="keyword">Types</span> (<span class="id" title="var">u</span> : <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Ring.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}}</span></a>) (<span class="id" title="var">p</span> <span class="id" title="var">q</span> : <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Ring.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}</span></a>) (<span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Ring.R"><span class="id" title="variable">R</span></a>).<br/>

<br/>
<span class="id" title="keyword">Fact</span> <a name="swapXY_key"><span class="id" title="lemma">swapXY_key</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#unit"><span class="id" title="inductive">unit</span></a>.  <br/>
<span class="id" title="keyword">Definition</span> <a name="swapXY_def"><span class="id" title="definition">swapXY_def</span></a> <span class="id" title="var">u</span> : <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Ring.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}}</span></a> := <a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.poly.html#map_poly"><span class="id" title="definition">map_poly</span></a> <a class="idref" href="mathcomp.algebra.poly.html#polyC"><span class="id" title="definition">polyC</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#123da97e9d81425c68e579737576ac03"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#123da97e9d81425c68e579737576ac03"><span class="id" title="notation">Y</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a>.<br/>
<span class="id" title="keyword">Definition</span> <a name="swapXY"><span class="id" title="definition">swapXY</span></a> := <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#locked_with"><span class="id" title="definition">locked_with</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY_key"><span class="id" title="lemma">swapXY_key</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY_def"><span class="id" title="definition">swapXY_def</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">swapXY_unlockable</span> := <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#58f94351327943cd874eb55da8e0ca14"><span class="id" title="notation">[</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#58f94351327943cd874eb55da8e0ca14"><span class="id" title="notation">unlockable</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#58f94351327943cd874eb55da8e0ca14"><span class="id" title="notation">fun</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssreflect.html#58f94351327943cd874eb55da8e0ca14"><span class="id" title="notation">]</span></a>.<br/>

<br/>
<span class="id" title="keyword">Definition</span> <a name="sizeY"><span class="id" title="definition">sizeY</span></a> <span class="id" title="var">u</span> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a> := <a class="idref" href="mathcomp.ssreflect.bigop.html#2e8f487d341e1ab4c6af2ac15a318eda"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#2e8f487d341e1ab4c6af2ac15a318eda"><span class="id" title="notation">max_</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#2e8f487d341e1ab4c6af2ac15a318eda"><span class="id" title="notation">(</span></a><span class="id" title="var">i</span> <a class="idref" href="mathcomp.ssreflect.bigop.html#2e8f487d341e1ab4c6af2ac15a318eda"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#2e8f487d341e1ab4c6af2ac15a318eda"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.ssreflect.bigop.html#2e8f487d341e1ab4c6af2ac15a318eda"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9625b440a0052f6dbfd015f5bb8b5125"><span class="id" title="notation">`</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9625b440a0052f6dbfd015f5bb8b5125"><span class="id" title="notation">_i</span></a><a class="idref" href="mathcomp.ssreflect.bigop.html#2e8f487d341e1ab4c6af2ac15a318eda"><span class="id" title="notation">)</span></a>.<br/>
<span class="id" title="keyword">Definition</span> <a name="poly_XaY"><span class="id" title="definition">poly_XaY</span></a> <span class="id" title="var">p</span> : <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Ring.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}}</span></a> := <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">^:</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">P</span></a> <a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">Po</span></a> <a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">X</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#ae4d81913e6239182a9ac7467ffde8cd"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#123da97e9d81425c68e579737576ac03"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#123da97e9d81425c68e579737576ac03"><span class="id" title="notation">Y</span></a><a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">)</span></a>.<br/>
<span class="id" title="keyword">Definition</span> <a name="poly_XmY"><span class="id" title="definition">poly_XmY</span></a> <span class="id" title="var">p</span> : <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Ring.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}}</span></a> := <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">^:</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">P</span></a> <a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">Po</span></a> <a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">X</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#123da97e9d81425c68e579737576ac03"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#123da97e9d81425c68e579737576ac03"><span class="id" title="notation">Y</span></a><a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">)</span></a>.<br/>
<span class="id" title="keyword">Definition</span> <a name="sub_annihilant"><span class="id" title="definition">sub_annihilant</span></a> <span class="id" title="var">p</span> <span class="id" title="var">q</span> := <a class="idref" href="mathcomp.algebra.mxpoly.html#resultant"><span class="id" title="definition">resultant</span></a> (<a class="idref" href="mathcomp.algebra.polyXY.html#poly_XaY"><span class="id" title="definition">poly_XaY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a>) <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">^:</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">P</span></a>.<br/>
<span class="id" title="keyword">Definition</span> <a name="div_annihilant"><span class="id" title="definition">div_annihilant</span></a> <span class="id" title="var">p</span> <span class="id" title="var">q</span> := <a class="idref" href="mathcomp.algebra.mxpoly.html#resultant"><span class="id" title="definition">resultant</span></a> (<a class="idref" href="mathcomp.algebra.polyXY.html#poly_XmY"><span class="id" title="definition">poly_XmY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a>) <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">^:</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">P</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="swapXY_polyC"><span class="id" title="lemma">swapXY_polyC</span></a> <span class="id" title="var">p</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">P</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">^:</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">P</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="swapXY_X"><span class="id" title="lemma">swapXY_X</span></a> : <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> <a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">X</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#123da97e9d81425c68e579737576ac03"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#123da97e9d81425c68e579737576ac03"><span class="id" title="notation">Y</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="swapXY_Y"><span class="id" title="lemma">swapXY_Y</span></a> : <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#123da97e9d81425c68e579737576ac03"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#123da97e9d81425c68e579737576ac03"><span class="id" title="notation">Y</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">X</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="swapXY_is_additive"><span class="id" title="lemma">swapXY_is_additive</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Additive.Exports.additive"><span class="id" title="abbreviation">additive</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a>.<br/>
 <span class="id" title="keyword">Canonical</span> <span class="id" title="var">swapXY_addf</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Additive.Exports.Additive"><span class="id" title="abbreviation">Additive</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY_is_additive"><span class="id" title="lemma">swapXY_is_additive</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="coef_swapXY"><span class="id" title="lemma">coef_swapXY</span></a> <span class="id" title="var">u</span> <span class="id" title="var">i</span> <span class="id" title="var">j</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#9625b440a0052f6dbfd015f5bb8b5125"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9625b440a0052f6dbfd015f5bb8b5125"><span class="id" title="notation">)`</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9625b440a0052f6dbfd015f5bb8b5125"><span class="id" title="notation">_i</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9625b440a0052f6dbfd015f5bb8b5125"><span class="id" title="notation">`</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9625b440a0052f6dbfd015f5bb8b5125"><span class="id" title="notation">_j</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9625b440a0052f6dbfd015f5bb8b5125"><span class="id" title="notation">`</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9625b440a0052f6dbfd015f5bb8b5125"><span class="id" title="notation">_j</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9625b440a0052f6dbfd015f5bb8b5125"><span class="id" title="notation">`</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9625b440a0052f6dbfd015f5bb8b5125"><span class="id" title="notation">_i</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="swapXYK"><span class="id" title="lemma">swapXYK</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#involutive"><span class="id" title="definition">involutive</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="swapXY_map_polyC"><span class="id" title="lemma">swapXY_map_polyC</span></a> <span class="id" title="var">p</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">^:</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">P</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">P</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="swapXY_eq0"><span class="id" title="lemma">swapXY_eq0</span></a> <span class="id" title="var">u</span> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#17d28d004d0863cb022d4ce832ddaaae"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#17d28d004d0863cb022d4ce832ddaaae"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">)</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="swapXY_is_multiplicative"><span class="id" title="lemma">swapXY_is_multiplicative</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.RMorphism.Exports.multiplicative"><span class="id" title="abbreviation">multiplicative</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">swapXY_rmorphism</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.RMorphism.Exports.AddRMorphism"><span class="id" title="abbreviation">AddRMorphism</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY_is_multiplicative"><span class="id" title="lemma">swapXY_is_multiplicative</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="swapXY_is_scalable"><span class="id" title="lemma">swapXY_is_scalable</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Linear.Exports.scalable_for"><span class="id" title="abbreviation">scalable_for</span></a> (<a class="idref" href="mathcomp.algebra.poly.html#map_poly"><span class="id" title="definition">map_poly</span></a> <a class="idref" href="mathcomp.algebra.poly.html#polyC"><span class="id" title="definition">polyC</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#c42c5cb909c30537f9f6acfcf01cf7e1"><span class="id" title="notation">\;</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#d5d4e2467843f67554f1a8a22d125de9"><span class="id" title="notation">*%</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#d5d4e2467843f67554f1a8a22d125de9"><span class="id" title="notation">R</span></a>) <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a>.<br/>
 <span class="id" title="keyword">Canonical</span> <span class="id" title="var">swapXY_linear</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Linear.Exports.AddLinear"><span class="id" title="abbreviation">AddLinear</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY_is_scalable"><span class="id" title="lemma">swapXY_is_scalable</span></a>.<br/>
<span class="id" title="keyword">Canonical</span> <span class="id" title="var">swapXY_lrmorphism</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#8900f6ae77a86586561e15965d5870c7"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#8900f6ae77a86586561e15965d5870c7"><span class="id" title="notation">lrmorphism</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#8900f6ae77a86586561e15965d5870c7"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#8900f6ae77a86586561e15965d5870c7"><span class="id" title="notation">]</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="swapXY_comp_poly"><span class="id" title="lemma">swapXY_comp_poly</span></a> <span class="id" title="var">p</span> <span class="id" title="var">u</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> (<a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">^:</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">P</span></a> <a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">Po</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">^:</span></a><a class="idref" href="mathcomp.algebra.poly.html#f734b1360ed3aede5055701a3bc465fd"><span class="id" title="notation">P</span></a> <a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">Po</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="max_size_coefXY"><span class="id" title="lemma">max_size_coefXY</span></a> <span class="id" title="var">u</span> <span class="id" title="var">i</span> : <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9625b440a0052f6dbfd015f5bb8b5125"><span class="id" title="notation">`</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#9625b440a0052f6dbfd015f5bb8b5125"><span class="id" title="notation">_i</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#9b077c369e19739ef880736ba34623ff"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#sizeY"><span class="id" title="definition">sizeY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="max_size_lead_coefXY"><span class="id" title="lemma">max_size_lead_coefXY</span></a> <span class="id" title="var">u</span> : <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> (<a class="idref" href="mathcomp.algebra.poly.html#lead_coef"><span class="id" title="definition">lead_coef</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a>) <a class="idref" href="mathcomp.ssreflect.ssrnat.html#9b077c369e19739ef880736ba34623ff"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#sizeY"><span class="id" title="definition">sizeY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="max_size_evalX"><span class="id" title="lemma">max_size_evalX</span></a> <span class="id" title="var">u</span> : <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">X</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#9b077c369e19739ef880736ba34623ff"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#sizeY"><span class="id" title="definition">sizeY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#b3eea360671e1b32b18a26e15b3aace3"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#1d63841e595f2805afd872744cbb1cce"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#1d63841e595f2805afd872744cbb1cce"><span class="id" title="notation">).-1</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="max_size_evalC"><span class="id" title="lemma">max_size_evalC</span></a> <span class="id" title="var">u</span> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">P</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#9b077c369e19739ef880736ba34623ff"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#sizeY"><span class="id" title="definition">sizeY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="sizeYE"><span class="id" title="lemma">sizeYE</span></a> <span class="id" title="var">u</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#sizeY"><span class="id" title="definition">sizeY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> (<a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a>).<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="sizeY_eq0"><span class="id" title="lemma">sizeY_eq0</span></a> <span class="id" title="var">u</span> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#sizeY"><span class="id" title="definition">sizeY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#17d28d004d0863cb022d4ce832ddaaae"><span class="id" title="notation">==</span></a> 0%<span class="id" title="var">N</span><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#17d28d004d0863cb022d4ce832ddaaae"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">)</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="sizeY_mulX"><span class="id" title="lemma">sizeY_mulX</span></a> <span class="id" title="var">u</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#sizeY"><span class="id" title="definition">sizeY</span></a> (<a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">X</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#sizeY"><span class="id" title="definition">sizeY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="swapXY_poly_XaY"><span class="id" title="lemma">swapXY_poly_XaY</span></a> <span class="id" title="var">p</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> (<a class="idref" href="mathcomp.algebra.polyXY.html#poly_XaY"><span class="id" title="definition">poly_XaY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#poly_XaY"><span class="id" title="definition">poly_XaY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="swapXY_poly_XmY"><span class="id" title="lemma">swapXY_poly_XmY</span></a> <span class="id" title="var">p</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> (<a class="idref" href="mathcomp.algebra.polyXY.html#poly_XmY"><span class="id" title="definition">poly_XmY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#poly_XmY"><span class="id" title="definition">poly_XmY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="poly_XaY0"><span class="id" title="lemma">poly_XaY0</span></a> : <a class="idref" href="mathcomp.algebra.polyXY.html#poly_XaY"><span class="id" title="definition">poly_XaY</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="poly_XmY0"><span class="id" title="lemma">poly_XmY0</span></a> : <a class="idref" href="mathcomp.algebra.polyXY.html#poly_XmY"><span class="id" title="definition">poly_XmY</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0.<br/>
 
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Ring"><span class="id" title="section">PolyXY_Ring</span></a>.<br/>

<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="swapXY_map"><span class="id" title="lemma">swapXY_map</span></a> (<span class="id" title="var">R</span> <span class="id" title="var">S</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Ring.Exports.ringType"><span class="id" title="abbreviation">ringType</span></a>) (<span class="id" title="var">f</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#6566b94c06c342b0768c3d2d73badf6e"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6566b94c06c342b0768c3d2d73badf6e"><span class="id" title="notation">additive</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#R"><span class="id" title="variable">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#S"><span class="id" title="variable">S</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6566b94c06c342b0768c3d2d73badf6e"><span class="id" title="notation">}</span></a>) <span class="id" title="var">u</span> :<br/>
&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> (<a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.poly.html#map_poly"><span class="id" title="definition">map_poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#f"><span class="id" title="variable">f</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.poly.html#map_poly"><span class="id" title="definition">map_poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#f"><span class="id" title="variable">f</span></a>.<br/>

<br/>
<span class="id" title="keyword">Section</span> <a name="PolyXY_ComRing"><span class="id" title="section">PolyXY_ComRing</span></a>.<br/>

<br/>
<span class="id" title="keyword">Variable</span> <a name="PolyXY_ComRing.R"><span class="id" title="variable">R</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.ComRing.Exports.comRingType"><span class="id" title="abbreviation">comRingType</span></a>.<br/>
<span class="id" title="keyword">Implicit</span> <span class="id" title="keyword">Types</span> (<span class="id" title="var">u</span> : <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_ComRing.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}}</span></a>) (<span class="id" title="var">p</span> : <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_ComRing.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}</span></a>) (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_ComRing.R"><span class="id" title="variable">R</span></a>).<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="horner_swapXY"><span class="id" title="lemma">horner_swapXY</span></a> <span class="id" title="var">u</span> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">P</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#eval"><span class="id" title="abbreviation">eval</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="horner_polyC"><span class="id" title="lemma">horner_polyC</span></a> <span class="id" title="var">u</span> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">P</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#eval"><span class="id" title="abbreviation">eval</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="horner2_swapXY"><span class="id" title="lemma">horner2_swapXY</span></a> <span class="id" title="var">u</span> <span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#swapXY"><span class="id" title="definition">swapXY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#u"><span class="id" title="variable">u</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">]</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="horner_poly_XaY"><span class="id" title="lemma">horner_poly_XaY</span></a> <span class="id" title="var">p</span> <span class="id" title="var">v</span> : <a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#poly_XaY"><span class="id" title="definition">poly_XaY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#v"><span class="id" title="variable">v</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">Po</span></a> <a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#v"><span class="id" title="variable">v</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#ae4d81913e6239182a9ac7467ffde8cd"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">X</span></a><a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">)</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="horner_poly_XmY"><span class="id" title="lemma">horner_poly_XmY</span></a> <span class="id" title="var">p</span> <span class="id" title="var">v</span> : <a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#poly_XmY"><span class="id" title="definition">poly_XmY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#v"><span class="id" title="variable">v</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">\</span></a><a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">Po</span></a> <a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#v"><span class="id" title="variable">v</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">'</span></a><a class="idref" href="mathcomp.algebra.poly.html#ffd3fc7e3c529f4febe87040923e7332"><span class="id" title="notation">X</span></a><a class="idref" href="mathcomp.algebra.poly.html#cad3d28b9cdd7490720002e244568365"><span class="id" title="notation">)</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_ComRing"><span class="id" title="section">PolyXY_ComRing</span></a>.<br/>

<br/>
<span class="id" title="keyword">Section</span> <a name="PolyXY_Idomain"><span class="id" title="section">PolyXY_Idomain</span></a>.<br/>

<br/>
<span class="id" title="keyword">Variable</span> <a name="PolyXY_Idomain.R"><span class="id" title="variable">R</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.IntegralDomain.Exports.idomainType"><span class="id" title="abbreviation">idomainType</span></a>.<br/>
<span class="id" title="keyword">Implicit</span> <span class="id" title="keyword">Types</span> (<span class="id" title="var">p</span> <span class="id" title="var">q</span> : <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Idomain.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}</span></a>) (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Idomain.R"><span class="id" title="variable">R</span></a>).<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="size_poly_XaY"><span class="id" title="lemma">size_poly_XaY</span></a> <span class="id" title="var">p</span> : <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> (<a class="idref" href="mathcomp.algebra.polyXY.html#poly_XaY"><span class="id" title="definition">poly_XaY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="poly_XaY_eq0"><span class="id" title="lemma">poly_XaY_eq0</span></a> <span class="id" title="var">p</span> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#poly_XaY"><span class="id" title="definition">poly_XaY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#17d28d004d0863cb022d4ce832ddaaae"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#17d28d004d0863cb022d4ce832ddaaae"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">)</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="size_poly_XmY"><span class="id" title="lemma">size_poly_XmY</span></a> <span class="id" title="var">p</span> : <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> (<a class="idref" href="mathcomp.algebra.polyXY.html#poly_XmY"><span class="id" title="definition">poly_XmY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="poly_XmY_eq0"><span class="id" title="lemma">poly_XmY_eq0</span></a> <span class="id" title="var">p</span> : <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#poly_XmY"><span class="id" title="definition">poly_XmY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#17d28d004d0863cb022d4ce832ddaaae"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#17d28d004d0863cb022d4ce832ddaaae"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">)</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">Lemma</span> <a name="lead_coef_poly_XaY"><span class="id" title="lemma">lead_coef_poly_XaY</span></a> <span class="id" title="var">p</span> : <a class="idref" href="mathcomp.algebra.poly.html#lead_coef"><span class="id" title="definition">lead_coef</span></a> (<a class="idref" href="mathcomp.algebra.polyXY.html#poly_XaY"><span class="id" title="definition">poly_XaY</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.poly.html#lead_coef"><span class="id" title="definition">lead_coef</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">P</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="sub_annihilant_in_ideal"><span class="id" title="lemma">sub_annihilant_in_ideal</span></a> <span class="id" title="var">p</span> <span class="id" title="var">q</span> :<br/>
&nbsp;&nbsp;&nbsp;&nbsp;1 <a class="idref" href="mathcomp.ssreflect.ssrnat.html#989c98e7ddd65d5bf37c334ff2076de8"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> 1 <a class="idref" href="mathcomp.ssreflect.ssrnat.html#989c98e7ddd65d5bf37c334ff2076de8"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a><br/>
&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">{</span></a><span class="id" title="var">uv</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Idomain.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}}</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#d19c7eafd0e2d195d10df94b392087b5"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Idomain.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}}</span></a><br/>
&nbsp;&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#uv"><span class="id" title="variable">uv</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#c4877bbfe60d8f22b47ac99ace86216a"><span class="id" title="notation">.1</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#989c98e7ddd65d5bf37c334ff2076de8"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d82a7d96d3659d805ffe732283716822"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#uv"><span class="id" title="variable">uv</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#f4827404159513e7fd691b60b7877737"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#989c98e7ddd65d5bf37c334ff2076de8"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><br/>
&nbsp;&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">&amp;</span></a> <span class="id" title="keyword"></span> <span class="id" title="var">x</span> <span class="id" title="var">y</span>,<br/>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#sub_annihilant"><span class="id" title="definition">sub_annihilant</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#uv"><span class="id" title="variable">uv</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#c4877bbfe60d8f22b47ac99ace86216a"><span class="id" title="notation">.1</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#ae4d81913e6239182a9ac7467ffde8cd"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#ae4d81913e6239182a9ac7467ffde8cd"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#uv"><span class="id" title="variable">uv</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#f4827404159513e7fd691b60b7877737"><span class="id" title="notation">.2</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">}</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="sub_annihilantP"><span class="id" title="lemma">sub_annihilantP</span></a> <span class="id" title="var">p</span> <span class="id" title="var">q</span> <span class="id" title="var">x</span> <span class="id" title="var">y</span> :<br/>
&nbsp;&nbsp;&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a><br/>
&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#sub_annihilant"><span class="id" title="definition">sub_annihilant</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#d70623330b2787db6b196e37db7d8f45"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="sub_annihilant_neq0"><span class="id" title="lemma">sub_annihilant_neq0</span></a> <span class="id" title="var">p</span> <span class="id" title="var">q</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#sub_annihilant"><span class="id" title="definition">sub_annihilant</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="div_annihilant_in_ideal"><span class="id" title="lemma">div_annihilant_in_ideal</span></a> <span class="id" title="var">p</span> <span class="id" title="var">q</span> :<br/>
&nbsp;&nbsp;&nbsp;&nbsp;1 <a class="idref" href="mathcomp.ssreflect.ssrnat.html#989c98e7ddd65d5bf37c334ff2076de8"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> 1 <a class="idref" href="mathcomp.ssreflect.ssrnat.html#989c98e7ddd65d5bf37c334ff2076de8"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a><br/>
&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">{</span></a><span class="id" title="var">uv</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Idomain.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}}</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Datatypes.html#d19c7eafd0e2d195d10df94b392087b5"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Idomain.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}}</span></a><br/>
&nbsp;&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#uv"><span class="id" title="variable">uv</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#c4877bbfe60d8f22b47ac99ace86216a"><span class="id" title="notation">.1</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#989c98e7ddd65d5bf37c334ff2076de8"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d82a7d96d3659d805ffe732283716822"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#uv"><span class="id" title="variable">uv</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#f4827404159513e7fd691b60b7877737"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.ssrnat.html#989c98e7ddd65d5bf37c334ff2076de8"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.ssreflect.seq.html#size"><span class="id" title="definition">size</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><br/>
&nbsp;&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">&amp;</span></a> <span class="id" title="keyword"></span> <span class="id" title="var">x</span> <span class="id" title="var">y</span>,<br/>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#div_annihilant"><span class="id" title="definition">div_annihilant</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#uv"><span class="id" title="variable">uv</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#c4877bbfe60d8f22b47ac99ace86216a"><span class="id" title="notation">.1</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#ae4d81913e6239182a9ac7467ffde8cd"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#uv"><span class="id" title="variable">uv</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.ssr.ssrfun.html#f4827404159513e7fd691b60b7877737"><span class="id" title="notation">.2</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#7fe0b4b004984abb7cb175c362f61dea"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#22058a36a53dac65c94ca403bc62650a"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Specif.html#602b9943a639fb973abed6e2c7854421"><span class="id" title="notation">}</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="div_annihilant_neq0"><span class="id" title="lemma">div_annihilant_neq0</span></a> <span class="id" title="var">p</span> <span class="id" title="var">q</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">.[</span></a>0<a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#div_annihilant"><span class="id" title="definition">div_annihilant</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0.<br/>

<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Idomain"><span class="id" title="section">PolyXY_Idomain</span></a>.<br/>

<br/>
<span class="id" title="keyword">Section</span> <a name="PolyXY_Field"><span class="id" title="section">PolyXY_Field</span></a>.<br/>

<br/>
<span class="id" title="keyword">Variables</span> (<a name="PolyXY_Field.F"><span class="id" title="variable">F</span></a> <a name="PolyXY_Field.E"><span class="id" title="variable">E</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Exports.fieldType"><span class="id" title="abbreviation">fieldType</span></a>) (<a name="PolyXY_Field.FtoE"><span class="id" title="variable">FtoE</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#0c709ebe43ddbd7719f75250a7b916d9"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#0c709ebe43ddbd7719f75250a7b916d9"><span class="id" title="notation">rmorphism</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#F"><span class="id" title="variable">F</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#E"><span class="id" title="variable">E</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#0c709ebe43ddbd7719f75250a7b916d9"><span class="id" title="notation">}</span></a>).<br/>

<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="div_annihilantP"><span class="id" title="lemma">div_annihilantP</span></a> (<span class="id" title="var">p</span> <span class="id" title="var">q</span> : <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.E"><span class="id" title="variable">E</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}</span></a>) (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.E"><span class="id" title="variable">E</span></a>) :<br/>
&nbsp;&nbsp;&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">.[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a><br/>
&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#div_annihilant"><span class="id" title="definition">div_annihilant</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#4fa85b0aa898c2a7e18c3b076438c2e7"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="map_sub_annihilantP"><span class="id" title="lemma">map_sub_annihilantP</span></a> (<span class="id" title="var">p</span> <span class="id" title="var">q</span> : <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}</span></a>) (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.E"><span class="id" title="variable">E</span></a>) :<br/>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.FtoE"><span class="id" title="variable">FtoE</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.FtoE"><span class="id" title="variable">FtoE</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a><br/>
&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#sub_annihilant"><span class="id" title="definition">sub_annihilant</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.FtoE"><span class="id" title="variable">FtoE</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#d70623330b2787db6b196e37db7d8f45"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="map_div_annihilantP"><span class="id" title="lemma">map_div_annihilantP</span></a> (<span class="id" title="var">p</span> <span class="id" title="var">q</span> : <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}</span></a>) (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.E"><span class="id" title="variable">E</span></a>) :<br/>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.FtoE"><span class="id" title="variable">FtoE</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.FtoE"><span class="id" title="variable">FtoE</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a><br/>
&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#div_annihilant"><span class="id" title="definition">div_annihilant</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#q"><span class="id" title="variable">q</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.FtoE"><span class="id" title="variable">FtoE</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#4fa85b0aa898c2a7e18c3b076438c2e7"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#1c39bf18749e5cc609e83c0a0ba5a372"><span class="id" title="notation">=</span></a> 0.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="root_annihilant"><span class="id" title="lemma">root_annihilant</span></a> <span class="id" title="var">x</span> <span class="id" title="var">p</span> (<span class="id" title="var">pEx</span> := <a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#pFtoE"><span class="id" title="abbreviation">pFtoE</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">P</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a>) :<br/>
&nbsp;&nbsp;&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.polyXY.html#pEx"><span class="id" title="variable">pEx</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.mxpoly.html#algebraicOver"><span class="id" title="definition">algebraicOver</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.FtoE"><span class="id" title="variable">FtoE</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a><br/>
&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#fe60c20831f772c0c3c288abf68cc42a"><span class="id" title="notation">exists2</span></a> <span class="id" title="var">r</span> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#fe60c20831f772c0c3c288abf68cc42a"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.F"><span class="id" title="variable">F</span></a><a class="idref" href="mathcomp.algebra.poly.html#699040ddc0986f520cece215f531d947"><span class="id" title="notation">}</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#fe60c20831f772c0c3c288abf68cc42a"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#r"><span class="id" title="variable">r</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#fe60c20831f772c0c3c288abf68cc42a"><span class="id" title="notation">&amp;</span></a> <span class="id" title="keyword"></span> <span class="id" title="var">y</span>, <a class="idref" href="mathcomp.algebra.poly.html#root"><span class="id" title="definition">root</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#pEx"><span class="id" title="variable">pEx</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.poly.html#root"><span class="id" title="definition">root</span></a> (<a class="idref" href="mathcomp.algebra.polyXY.html#r"><span class="id" title="variable">r</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.FtoE"><span class="id" title="variable">FtoE</span></a>) <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a>.<br/>

<br/>
<span class="id" title="keyword">Lemma</span> <a name="algebraic_root_polyXY"><span class="id" title="lemma">algebraic_root_polyXY</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> :<br/>
&nbsp;&nbsp;&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">(</span></a><span class="id" title="keyword">let</span> <span class="id" title="var">pEx</span> <span class="id" title="var">p</span> := <a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#b033a3d34e421a2439563f5ffdab0b9b"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.poly.html#map_poly"><span class="id" title="definition">map_poly</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.FtoE"><span class="id" title="variable">FtoE</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">).[</span></a><a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.poly.html#5d46c3ff21505243f65fdae89313c246"><span class="id" title="notation">P</span></a><a class="idref" href="mathcomp.algebra.poly.html#9956cd3926e9966aa6979e465e39d037"><span class="id" title="notation">]</span></a> <span class="id" title="tactic">in</span><br/>
&nbsp;&nbsp;&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#28b18e493f7cb0bd8447607bdc385ff8"><span class="id" title="notation">exists2</span></a> <span class="id" title="var">p</span><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#28b18e493f7cb0bd8447607bdc385ff8"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#pEx"><span class="id" title="variable">pEx</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b1eeadc2feabc7422252baa895418c7b"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#28b18e493f7cb0bd8447607bdc385ff8"><span class="id" title="notation">&amp;</span></a> <a class="idref" href="mathcomp.algebra.poly.html#root"><span class="id" title="definition">root</span></a> (<a class="idref" href="mathcomp.algebra.polyXY.html#pEx"><span class="id" title="variable">pEx</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#p"><span class="id" title="variable">p</span></a>) <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a><br/>
&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.mxpoly.html#algebraicOver"><span class="id" title="definition">algebraicOver</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.FtoE"><span class="id" title="variable">FtoE</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/8.8.0/stdlib//Coq.Init.Logic.html#d43e996736952df71ebeeae74d10a287"><span class="id" title="notation"></span></a> <a class="idref" href="mathcomp.algebra.mxpoly.html#algebraicOver"><span class="id" title="definition">algebraicOver</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field.FtoE"><span class="id" title="variable">FtoE</span></a> <a class="idref" href="mathcomp.algebra.polyXY.html#y"><span class="id" title="variable">y</span></a>.<br/>
 
<br/>
<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.polyXY.html#PolyXY_Field"><span class="id" title="section">PolyXY_Field</span></a>.<br/>
</div>
</div>

<div id="footer">
<hr/><a href="index.html">Index</a><hr/>This page has been generated by <a href="http://coq.inria.fr/">coqdoc</a>
</div>

</div>

</body>
</html>