1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link href="coqdoc.css" rel="stylesheet" type="text/css" />
<title>mathcomp.ssreflect.tuple</title>
</head>
<body>
<div id="page">
<div id="header">
</div>
<div id="main">
<table>
<tr>
<td>Global Index</td>
<td><a href="index_global_A.html">A</a></td>
<td><a href="index_global_B.html">B</a></td>
<td><a href="index_global_C.html">C</a></td>
<td><a href="index_global_D.html">D</a></td>
<td><a href="index_global_E.html">E</a></td>
<td><a href="index_global_F.html">F</a></td>
<td><a href="index_global_G.html">G</a></td>
<td><a href="index_global_H.html">H</a></td>
<td><a href="index_global_I.html">I</a></td>
<td><a href="index_global_J.html">J</a></td>
<td><a href="index_global_K.html">K</a></td>
<td><a href="index_global_L.html">L</a></td>
<td><a href="index_global_M.html">M</a></td>
<td><a href="index_global_N.html">N</a></td>
<td><a href="index_global_O.html">O</a></td>
<td><a href="index_global_P.html">P</a></td>
<td><a href="index_global_Q.html">Q</a></td>
<td><a href="index_global_R.html">R</a></td>
<td><a href="index_global_S.html">S</a></td>
<td><a href="index_global_T.html">T</a></td>
<td><a href="index_global_U.html">U</a></td>
<td><a href="index_global_V.html">V</a></td>
<td><a href="index_global_W.html">W</a></td>
<td><a href="index_global_X.html">X</a></td>
<td>Y</td>
<td><a href="index_global_Z.html">Z</a></td>
<td>_</td>
<td><a href="index_global_*.html">other</a></td>
<td>(23233 entries)</td>
</tr>
<tr>
<td>Notation Index</td>
<td><a href="index_notation_A.html">A</a></td>
<td><a href="index_notation_B.html">B</a></td>
<td><a href="index_notation_C.html">C</a></td>
<td><a href="index_notation_D.html">D</a></td>
<td><a href="index_notation_E.html">E</a></td>
<td><a href="index_notation_F.html">F</a></td>
<td><a href="index_notation_G.html">G</a></td>
<td>H</td>
<td><a href="index_notation_I.html">I</a></td>
<td>J</td>
<td><a href="index_notation_K.html">K</a></td>
<td><a href="index_notation_L.html">L</a></td>
<td><a href="index_notation_M.html">M</a></td>
<td><a href="index_notation_N.html">N</a></td>
<td>O</td>
<td><a href="index_notation_P.html">P</a></td>
<td><a href="index_notation_Q.html">Q</a></td>
<td><a href="index_notation_R.html">R</a></td>
<td><a href="index_notation_S.html">S</a></td>
<td>T</td>
<td><a href="index_notation_U.html">U</a></td>
<td><a href="index_notation_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_notation_Z.html">Z</a></td>
<td>_</td>
<td><a href="index_notation_*.html">other</a></td>
<td>(1373 entries)</td>
</tr>
<tr>
<td>Module Index</td>
<td><a href="index_module_A.html">A</a></td>
<td><a href="index_module_B.html">B</a></td>
<td><a href="index_module_C.html">C</a></td>
<td>D</td>
<td><a href="index_module_E.html">E</a></td>
<td><a href="index_module_F.html">F</a></td>
<td><a href="index_module_G.html">G</a></td>
<td>H</td>
<td><a href="index_module_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td><a href="index_module_M.html">M</a></td>
<td><a href="index_module_N.html">N</a></td>
<td>O</td>
<td><a href="index_module_P.html">P</a></td>
<td><a href="index_module_Q.html">Q</a></td>
<td><a href="index_module_R.html">R</a></td>
<td><a href="index_module_S.html">S</a></td>
<td>T</td>
<td><a href="index_module_U.html">U</a></td>
<td><a href="index_module_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>_</td>
<td>other</td>
<td>(213 entries)</td>
</tr>
<tr>
<td>Variable Index</td>
<td><a href="index_variable_A.html">A</a></td>
<td><a href="index_variable_B.html">B</a></td>
<td><a href="index_variable_C.html">C</a></td>
<td><a href="index_variable_D.html">D</a></td>
<td><a href="index_variable_E.html">E</a></td>
<td><a href="index_variable_F.html">F</a></td>
<td><a href="index_variable_G.html">G</a></td>
<td><a href="index_variable_H.html">H</a></td>
<td><a href="index_variable_I.html">I</a></td>
<td>J</td>
<td><a href="index_variable_K.html">K</a></td>
<td><a href="index_variable_L.html">L</a></td>
<td><a href="index_variable_M.html">M</a></td>
<td><a href="index_variable_N.html">N</a></td>
<td><a href="index_variable_O.html">O</a></td>
<td><a href="index_variable_P.html">P</a></td>
<td><a href="index_variable_Q.html">Q</a></td>
<td><a href="index_variable_R.html">R</a></td>
<td><a href="index_variable_S.html">S</a></td>
<td><a href="index_variable_T.html">T</a></td>
<td><a href="index_variable_U.html">U</a></td>
<td><a href="index_variable_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_variable_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(3475 entries)</td>
</tr>
<tr>
<td>Library Index</td>
<td><a href="index_library_A.html">A</a></td>
<td><a href="index_library_B.html">B</a></td>
<td><a href="index_library_C.html">C</a></td>
<td><a href="index_library_D.html">D</a></td>
<td><a href="index_library_E.html">E</a></td>
<td><a href="index_library_F.html">F</a></td>
<td><a href="index_library_G.html">G</a></td>
<td><a href="index_library_H.html">H</a></td>
<td><a href="index_library_I.html">I</a></td>
<td><a href="index_library_J.html">J</a></td>
<td>K</td>
<td>L</td>
<td><a href="index_library_M.html">M</a></td>
<td><a href="index_library_N.html">N</a></td>
<td>O</td>
<td><a href="index_library_P.html">P</a></td>
<td><a href="index_library_Q.html">Q</a></td>
<td><a href="index_library_R.html">R</a></td>
<td><a href="index_library_S.html">S</a></td>
<td><a href="index_library_T.html">T</a></td>
<td>U</td>
<td><a href="index_library_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_library_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(89 entries)</td>
</tr>
<tr>
<td>Lemma Index</td>
<td><a href="index_lemma_A.html">A</a></td>
<td><a href="index_lemma_B.html">B</a></td>
<td><a href="index_lemma_C.html">C</a></td>
<td><a href="index_lemma_D.html">D</a></td>
<td><a href="index_lemma_E.html">E</a></td>
<td><a href="index_lemma_F.html">F</a></td>
<td><a href="index_lemma_G.html">G</a></td>
<td><a href="index_lemma_H.html">H</a></td>
<td><a href="index_lemma_I.html">I</a></td>
<td><a href="index_lemma_J.html">J</a></td>
<td><a href="index_lemma_K.html">K</a></td>
<td><a href="index_lemma_L.html">L</a></td>
<td><a href="index_lemma_M.html">M</a></td>
<td><a href="index_lemma_N.html">N</a></td>
<td><a href="index_lemma_O.html">O</a></td>
<td><a href="index_lemma_P.html">P</a></td>
<td><a href="index_lemma_Q.html">Q</a></td>
<td><a href="index_lemma_R.html">R</a></td>
<td><a href="index_lemma_S.html">S</a></td>
<td><a href="index_lemma_T.html">T</a></td>
<td><a href="index_lemma_U.html">U</a></td>
<td><a href="index_lemma_V.html">V</a></td>
<td><a href="index_lemma_W.html">W</a></td>
<td><a href="index_lemma_X.html">X</a></td>
<td>Y</td>
<td><a href="index_lemma_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(11853 entries)</td>
</tr>
<tr>
<td>Constructor Index</td>
<td><a href="index_constructor_A.html">A</a></td>
<td><a href="index_constructor_B.html">B</a></td>
<td><a href="index_constructor_C.html">C</a></td>
<td><a href="index_constructor_D.html">D</a></td>
<td><a href="index_constructor_E.html">E</a></td>
<td><a href="index_constructor_F.html">F</a></td>
<td><a href="index_constructor_G.html">G</a></td>
<td><a href="index_constructor_H.html">H</a></td>
<td><a href="index_constructor_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td><a href="index_constructor_L.html">L</a></td>
<td><a href="index_constructor_M.html">M</a></td>
<td><a href="index_constructor_N.html">N</a></td>
<td><a href="index_constructor_O.html">O</a></td>
<td><a href="index_constructor_P.html">P</a></td>
<td><a href="index_constructor_Q.html">Q</a></td>
<td><a href="index_constructor_R.html">R</a></td>
<td><a href="index_constructor_S.html">S</a></td>
<td><a href="index_constructor_T.html">T</a></td>
<td><a href="index_constructor_U.html">U</a></td>
<td><a href="index_constructor_V.html">V</a></td>
<td>W</td>
<td><a href="index_constructor_X.html">X</a></td>
<td>Y</td>
<td><a href="index_constructor_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(359 entries)</td>
</tr>
<tr>
<td>Axiom Index</td>
<td><a href="index_axiom_A.html">A</a></td>
<td><a href="index_axiom_B.html">B</a></td>
<td><a href="index_axiom_C.html">C</a></td>
<td>D</td>
<td><a href="index_axiom_E.html">E</a></td>
<td><a href="index_axiom_F.html">F</a></td>
<td>G</td>
<td>H</td>
<td><a href="index_axiom_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td><a href="index_axiom_P.html">P</a></td>
<td>Q</td>
<td><a href="index_axiom_R.html">R</a></td>
<td><a href="index_axiom_S.html">S</a></td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>_</td>
<td>other</td>
<td>(47 entries)</td>
</tr>
<tr>
<td>Inductive Index</td>
<td><a href="index_inductive_A.html">A</a></td>
<td><a href="index_inductive_B.html">B</a></td>
<td><a href="index_inductive_C.html">C</a></td>
<td><a href="index_inductive_D.html">D</a></td>
<td><a href="index_inductive_E.html">E</a></td>
<td><a href="index_inductive_F.html">F</a></td>
<td><a href="index_inductive_G.html">G</a></td>
<td><a href="index_inductive_H.html">H</a></td>
<td><a href="index_inductive_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td><a href="index_inductive_L.html">L</a></td>
<td><a href="index_inductive_M.html">M</a></td>
<td><a href="index_inductive_N.html">N</a></td>
<td><a href="index_inductive_O.html">O</a></td>
<td><a href="index_inductive_P.html">P</a></td>
<td>Q</td>
<td><a href="index_inductive_R.html">R</a></td>
<td><a href="index_inductive_S.html">S</a></td>
<td><a href="index_inductive_T.html">T</a></td>
<td><a href="index_inductive_U.html">U</a></td>
<td><a href="index_inductive_V.html">V</a></td>
<td>W</td>
<td><a href="index_inductive_X.html">X</a></td>
<td>Y</td>
<td>Z</td>
<td>_</td>
<td>other</td>
<td>(103 entries)</td>
</tr>
<tr>
<td>Projection Index</td>
<td><a href="index_projection_A.html">A</a></td>
<td><a href="index_projection_B.html">B</a></td>
<td><a href="index_projection_C.html">C</a></td>
<td>D</td>
<td><a href="index_projection_E.html">E</a></td>
<td><a href="index_projection_F.html">F</a></td>
<td><a href="index_projection_G.html">G</a></td>
<td>H</td>
<td><a href="index_projection_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td><a href="index_projection_M.html">M</a></td>
<td><a href="index_projection_N.html">N</a></td>
<td>O</td>
<td><a href="index_projection_P.html">P</a></td>
<td><a href="index_projection_Q.html">Q</a></td>
<td><a href="index_projection_R.html">R</a></td>
<td><a href="index_projection_S.html">S</a></td>
<td><a href="index_projection_T.html">T</a></td>
<td><a href="index_projection_U.html">U</a></td>
<td><a href="index_projection_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_projection_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(266 entries)</td>
</tr>
<tr>
<td>Section Index</td>
<td><a href="index_section_A.html">A</a></td>
<td><a href="index_section_B.html">B</a></td>
<td><a href="index_section_C.html">C</a></td>
<td><a href="index_section_D.html">D</a></td>
<td><a href="index_section_E.html">E</a></td>
<td><a href="index_section_F.html">F</a></td>
<td><a href="index_section_G.html">G</a></td>
<td><a href="index_section_H.html">H</a></td>
<td><a href="index_section_I.html">I</a></td>
<td>J</td>
<td><a href="index_section_K.html">K</a></td>
<td><a href="index_section_L.html">L</a></td>
<td><a href="index_section_M.html">M</a></td>
<td><a href="index_section_N.html">N</a></td>
<td><a href="index_section_O.html">O</a></td>
<td><a href="index_section_P.html">P</a></td>
<td><a href="index_section_Q.html">Q</a></td>
<td><a href="index_section_R.html">R</a></td>
<td><a href="index_section_S.html">S</a></td>
<td><a href="index_section_T.html">T</a></td>
<td><a href="index_section_U.html">U</a></td>
<td><a href="index_section_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_section_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(1118 entries)</td>
</tr>
<tr>
<td>Abbreviation Index</td>
<td><a href="index_abbreviation_A.html">A</a></td>
<td><a href="index_abbreviation_B.html">B</a></td>
<td><a href="index_abbreviation_C.html">C</a></td>
<td><a href="index_abbreviation_D.html">D</a></td>
<td><a href="index_abbreviation_E.html">E</a></td>
<td><a href="index_abbreviation_F.html">F</a></td>
<td><a href="index_abbreviation_G.html">G</a></td>
<td><a href="index_abbreviation_H.html">H</a></td>
<td><a href="index_abbreviation_I.html">I</a></td>
<td><a href="index_abbreviation_J.html">J</a></td>
<td><a href="index_abbreviation_K.html">K</a></td>
<td><a href="index_abbreviation_L.html">L</a></td>
<td><a href="index_abbreviation_M.html">M</a></td>
<td><a href="index_abbreviation_N.html">N</a></td>
<td><a href="index_abbreviation_O.html">O</a></td>
<td><a href="index_abbreviation_P.html">P</a></td>
<td><a href="index_abbreviation_Q.html">Q</a></td>
<td><a href="index_abbreviation_R.html">R</a></td>
<td><a href="index_abbreviation_S.html">S</a></td>
<td><a href="index_abbreviation_T.html">T</a></td>
<td><a href="index_abbreviation_U.html">U</a></td>
<td><a href="index_abbreviation_V.html">V</a></td>
<td><a href="index_abbreviation_W.html">W</a></td>
<td><a href="index_abbreviation_X.html">X</a></td>
<td>Y</td>
<td><a href="index_abbreviation_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(691 entries)</td>
</tr>
<tr>
<td>Definition Index</td>
<td><a href="index_definition_A.html">A</a></td>
<td><a href="index_definition_B.html">B</a></td>
<td><a href="index_definition_C.html">C</a></td>
<td><a href="index_definition_D.html">D</a></td>
<td><a href="index_definition_E.html">E</a></td>
<td><a href="index_definition_F.html">F</a></td>
<td><a href="index_definition_G.html">G</a></td>
<td><a href="index_definition_H.html">H</a></td>
<td><a href="index_definition_I.html">I</a></td>
<td><a href="index_definition_J.html">J</a></td>
<td><a href="index_definition_K.html">K</a></td>
<td><a href="index_definition_L.html">L</a></td>
<td><a href="index_definition_M.html">M</a></td>
<td><a href="index_definition_N.html">N</a></td>
<td><a href="index_definition_O.html">O</a></td>
<td><a href="index_definition_P.html">P</a></td>
<td><a href="index_definition_Q.html">Q</a></td>
<td><a href="index_definition_R.html">R</a></td>
<td><a href="index_definition_S.html">S</a></td>
<td><a href="index_definition_T.html">T</a></td>
<td><a href="index_definition_U.html">U</a></td>
<td><a href="index_definition_V.html">V</a></td>
<td><a href="index_definition_W.html">W</a></td>
<td><a href="index_definition_X.html">X</a></td>
<td>Y</td>
<td><a href="index_definition_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(3461 entries)</td>
</tr>
<tr>
<td>Record Index</td>
<td><a href="index_record_A.html">A</a></td>
<td>B</td>
<td><a href="index_record_C.html">C</a></td>
<td>D</td>
<td><a href="index_record_E.html">E</a></td>
<td><a href="index_record_F.html">F</a></td>
<td><a href="index_record_G.html">G</a></td>
<td>H</td>
<td><a href="index_record_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td><a href="index_record_M.html">M</a></td>
<td><a href="index_record_N.html">N</a></td>
<td>O</td>
<td><a href="index_record_P.html">P</a></td>
<td><a href="index_record_Q.html">Q</a></td>
<td><a href="index_record_R.html">R</a></td>
<td><a href="index_record_S.html">S</a></td>
<td><a href="index_record_T.html">T</a></td>
<td><a href="index_record_U.html">U</a></td>
<td><a href="index_record_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_record_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(185 entries)</td>
</tr>
</table>
<hr/><a name="global_P"></a><h2>P </h2>
<a href="mathcomp.algebra.zmodp.html#p">p</a> [abbreviation, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/>
<a href="mathcomp.algebra.zmodp.html#p">p</a> [abbreviation, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#P">P</a> [abbreviation, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#PackSocle">PackSocle</a> [constructor, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#PackSocleK">PackSocleK</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#pack_subCountType">pack_subCountType</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#pack_subFinType">pack_subFinType</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairAlg">PairAlg</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairAlg.A1">PairAlg.A1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairAlg.A2">PairAlg.A2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairAlg.R">PairAlg.R</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairComRing">PairComRing</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairComRing.R1">PairComRing.R1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairComRing.R2">PairComRing.R2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pairg1">pairg1</a> [definition, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pairg1_morphM">pairg1_morphM</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairLalg">PairLalg</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairLalg.A1">PairLalg.A1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairLalg.A2">PairLalg.A2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairLalg.R">PairLalg.R</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairLmod">PairLmod</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairLmod.R">PairLmod.R</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairLmod.V1">PairLmod.V1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairLmod.V2">PairLmod.V2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#pairmap">pairmap</a> [definition, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#pairmapK">pairmapK</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.tuple.html#pairmap_tupleP">pairmap_tupleP</a> [lemma, in <a href="mathcomp.ssreflect.tuple.html">mathcomp.ssreflect.tuple</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#pairmap_cat">pairmap_cat</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairRing">PairRing</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairRing.R1">PairRing.R1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairRing.R2">PairRing.R2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairUnitRing">PairUnitRing</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairUnitRing.R1">PairUnitRing.R1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairUnitRing.R2">PairUnitRing.R2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.character.classfun.html#pairwise_orthogonal_cat">pairwise_orthogonal_cat</a> [lemma, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.character.classfun.html#pairwise_orthogonalP">pairwise_orthogonalP</a> [lemma, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.character.classfun.html#pairwise_orthogonal">pairwise_orthogonal</a> [definition, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairZmod">PairZmod</a> [section, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairZmod.M1">PairZmod.M1</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#PairZmod.M2">PairZmod.M2</a> [variable, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_unitRingMixin">pair_unitRingMixin</a> [definition, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_invr_out">pair_invr_out</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_unitP">pair_unitP</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_mulVr">pair_mulVr</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_mulVl">pair_mulVl</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_invr">pair_invr</a> [definition, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_unitr">pair_unitr</a> [definition, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_scaleAr">pair_scaleAr</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_scaleAl">pair_scaleAl</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_lmodMixin">pair_lmodMixin</a> [definition, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_scaleDl">pair_scaleDl</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_scaleDr">pair_scaleDr</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_scale1">pair_scale1</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_scaleA">pair_scaleA</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_mulC">pair_mulC</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_ringMixin">pair_ringMixin</a> [definition, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_one_neq0">pair_one_neq0</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_mulDr">pair_mulDr</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_mulDl">pair_mulDl</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_mul1r">pair_mul1r</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_mul1l">pair_mul1l</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_mulA">pair_mulA</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_zmodMixin">pair_zmodMixin</a> [definition, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_addN">pair_addN</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_add0">pair_add0</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_addC">pair_addC</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.ssralg.html#pair_addA">pair_addA</a> [lemma, in <a href="mathcomp.algebra.ssralg.html">mathcomp.algebra.ssralg</a>]<br/>
<a href="mathcomp.algebra.vector.html#pair_vectMixin">pair_vectMixin</a> [definition, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#pair_vect_iso">pair_vect_iso</a> [lemma, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#pair_of_tagK">pair_of_tagK</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#pair_of_tag">pair_of_tag</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.character.classfun.html#pair_ortho_rec">pair_ortho_rec</a> [definition, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.ssreflect.bigop.html#pair_bigA">pair_bigA</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/>
<a href="mathcomp.ssreflect.bigop.html#pair_big">pair_big</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/>
<a href="mathcomp.ssreflect.bigop.html#pair_big_dep">pair_big_dep</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#pair_eq2">pair_eq2</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#pair_eq1">pair_eq1</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#pair_eqE">pair_eqE</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#pair_eqP">pair_eqP</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#pair_eq">pair_eq</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pair1g">pair1g</a> [definition, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pair1g_morphM">pair1g_morphM</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#partG_eq1">partG_eq1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.fingroup.action.html#PartialAction">PartialAction</a> [section, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.action.html#PartialAction.aT">PartialAction.aT</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.action.html#PartialAction.D">PartialAction.D</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.action.html#PartialAction.OrbitStabilizer">PartialAction.OrbitStabilizer</a> [section, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.action.html#PartialAction.OrbitStabilizer.G">PartialAction.OrbitStabilizer.G</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.action.html#PartialAction.OrbitStabilizer.sGD">PartialAction.OrbitStabilizer.sGD</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.action.html#PartialAction.OrbitStabilizer.ssGD">PartialAction.OrbitStabilizer.ssGD</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.action.html#PartialAction.OrbitStabilizer.x">PartialAction.OrbitStabilizer.x</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.action.html#PartialAction.rT">PartialAction.rT</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.action.html#PartialAction.to">PartialAction.to</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory">PartialFunctorTheory</a> [section, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/>
<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.BasicTheory">PartialFunctorTheory.BasicTheory</a> [section, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/>
<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.BasicTheory.F">PartialFunctorTheory.BasicTheory.F</a> [variable, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/>
<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.F1">PartialFunctorTheory.F1</a> [variable, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/>
<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.F2">PartialFunctorTheory.F2</a> [variable, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/>
<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.Modulo">PartialFunctorTheory.Modulo</a> [section, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/>
<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.Modulo.F1">PartialFunctorTheory.Modulo.F1</a> [variable, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/>
<a href="mathcomp.solvable.gfunctor.html#PartialFunctorTheory.Modulo.F2">PartialFunctorTheory.Modulo.F2</a> [variable, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#partial_product">partial_product</a> [definition, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#partition">partition</a> [definition, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions">Partitions</a> [section, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.BigOps">Partitions.BigOps</a> [section, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.BigOps.idx">Partitions.BigOps.idx</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.BigOps.op">Partitions.BigOps.op</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.BigOps.R">Partitions.BigOps.R</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.BigOps.rhs">Partitions.BigOps.rhs</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.BigOps.rhs_cond">Partitions.BigOps.rhs_cond</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence">Partitions.Equivalence</a> [section, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence.D">Partitions.Equivalence.D</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence.eqiR">Partitions.Equivalence.eqiR</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence.PPx">Partitions.Equivalence.PPx</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence.Px">Partitions.Equivalence.Px</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence.Pxx">Partitions.Equivalence.Pxx</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Equivalence.R">Partitions.Equivalence.R</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.I">Partitions.I</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Preim">Partitions.Preim</a> [section, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Preim.f">Partitions.Preim.f</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Preim.rT">Partitions.Preim.rT</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.T">Partitions.T</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals">Partitions.Transversals</a> [section, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.D">Partitions.Transversals.D</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.P">Partitions.Transversals.P</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.sXP">Partitions.Transversals.sXP</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.tiP">Partitions.Transversals.tiP</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.trPX">Partitions.Transversals.trPX</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.trX">Partitions.Transversals.trX</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#Partitions.Transversals.X">Partitions.Transversals.X</a> [variable, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.solvable.frobenius.html#partition_normedTI">partition_normedTI</a> [lemma, in <a href="mathcomp.solvable.frobenius.html">mathcomp.solvable.frobenius</a>]<br/>
<a href="mathcomp.solvable.frobenius.html#partition_class_support">partition_class_support</a> [lemma, in <a href="mathcomp.solvable.frobenius.html">mathcomp.solvable.frobenius</a>]<br/>
<a href="mathcomp.ssreflect.bigop.html#partition_big">partition_big</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#partition_partition">partition_partition</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#partition_disjoint_bigcup">partition_disjoint_bigcup</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#partition_big_imset">partition_big_imset</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partn">partn</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partnC">partnC</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partnI">partnI</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partnM">partnM</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partnNK">partnNK</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partnT">partnT</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partnX">partnX</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partn_part">partn_part</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partn_eq1">partn_eq1</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partn_biggcd">partn_biggcd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partn_biglcm">partn_biglcm</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partn_gcd">partn_gcd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partn_lcm">partn_lcm</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partn_pi">partn_pi</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partn_dvd">partn_dvd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.solvable.abelian.html#partn_exponentS">partn_exponentS</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partn0">partn0</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#partn1">partn1</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#part_p'nat">part_p'nat</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#part_pnat_id">part_pnat_id</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#part_pnat">part_pnat</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#part_gt0">part_gt0</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.binomial.html#Pascal">Pascal</a> [lemma, in <a href="mathcomp.ssreflect.binomial.html">mathcomp.ssreflect.binomial</a>]<br/>
<a href="mathcomp.ssreflect.path.html#path">path</a> [definition, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html">path</a> [library]<br/>
<a href="mathcomp.ssreflect.path.html#pathP">pathP</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#Paths">Paths</a> [section, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#Paths.n0">Paths.n0</a> [variable, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#Paths.Path">Paths.Path</a> [section, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#Paths.Path.e">Paths.Path.e</a> [variable, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#Paths.Path.x0_cycle">Paths.Path.x0_cycle</a> [variable, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#Paths.T">Paths.T</a> [variable, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#path_min_sorted">path_min_sorted</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#path_sorted">path_sorted</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.fingraph.html#path_connect">path_connect</a> [lemma, in <a href="mathcomp.ssreflect.fingraph.html">mathcomp.ssreflect.fingraph</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#pblock">pblock</a> [definition, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#pblockK">pblockK</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#pblock_transversal">pblock_transversal</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#pblock_inj">pblock_inj</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#pblock_equivalence">pblock_equivalence</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#pblock_equivalence_partition">pblock_equivalence_partition</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#pblock_mem">pblock_mem</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#PcanChoiceMixin">PcanChoiceMixin</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#PcanCountMixin">PcanCountMixin</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#PcanEqMixin">PcanEqMixin</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#PcanFinMixin">PcanFinMixin</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#pcan_pickleK">pcan_pickleK</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#pcan_enumP">pcan_enumP</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore">pcore</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PcoreDef">PcoreDef</a> [section, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PcoreDef.A">PcoreDef.A</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PcoreDef.gT">PcoreDef.gT</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PcoreDef.pi">PcoreDef.pi</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcoreI">pcoreI</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcoreJ">pcoreJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcoreNK">pcoreNK</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PCoreProps">PCoreProps</a> [section, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PCoreProps.gT">PCoreProps.gT</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PCoreProps.pi">PCoreProps.pi</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcoreS">pcoreS</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_setI_normal">pcore_setI_normal</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_modp">pcore_modp</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_mod1">pcore_mod1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_mod_res">pcore_mod_res</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_mod_sub">pcore_mod_sub</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_char">pcore_char</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_normal">pcore_normal</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_pgroup_id">pcore_pgroup_id</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_max">pcore_max</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_sub_Hall">pcore_sub_Hall</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_sub">pcore_sub</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_pgroup">pcore_pgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_psubgroup">pcore_psubgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pcore_mod">pcore_mod</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.maximal.html#pcore_Fitting">pcore_Fitting</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.character.mxabelem.html#pcore_faithful_mx_irr">pcore_faithful_mx_irr</a> [lemma, in <a href="mathcomp.character.mxabelem.html">mathcomp.character.mxabelem</a>]<br/>
<a href="mathcomp.character.mxabelem.html#pcore_sub_rker_mx_irr">pcore_sub_rker_mx_irr</a> [lemma, in <a href="mathcomp.character.mxabelem.html">mathcomp.character.mxabelem</a>]<br/>
<a href="mathcomp.character.mxabelem.html#pcore_sub_rstab_mxsimple">pcore_sub_rstab_mxsimple</a> [lemma, in <a href="mathcomp.character.mxabelem.html">mathcomp.character.mxabelem</a>]<br/>
<a href="mathcomp.solvable.sylow.html#pcore_faithful_irr_act">pcore_faithful_irr_act</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.sylow.html#pcore_sub_astab_irr">pcore_sub_astab_irr</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.fingroup.perm.html#pcycle">pcycle</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.action.html#pcycleE">pcycleE</a> [lemma, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.perm.html#pcycles">pcycles</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#pcycle_perm">pcycle_perm</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#pcycle_sym">pcycle_sym</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#pcycle_traject">pcycle_traject</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#pcycle_id">pcycle_id</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.action.html#pcycle_actperm">pcycle_actperm</a> [lemma, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pdiv">pdiv</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv">Pdiv</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pdivP">pdivP</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pdiv_pfactor">pdiv_pfactor</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pdiv_id">pdiv_id</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pdiv_min_dvd">pdiv_min_dvd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pdiv_gt0">pdiv_gt0</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pdiv_leq">pdiv_leq</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pdiv_dvd">pdiv_dvd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pdiv_prime">pdiv_prime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pdiv_p_elt">pdiv_p_elt</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ClosedField">Pdiv.ClosedField</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ClosedField.closed">Pdiv.ClosedField.closed</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ClosedField.closed.F">Pdiv.ClosedField.closed.F</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ClosedField.coprimepP">Pdiv.ClosedField.coprimepP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ClosedField.root_coprimep">Pdiv.ClosedField.root_coprimep</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain">Pdiv.CommonIdomain</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.apply_irredp">Pdiv.CommonIdomain.apply_irredp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Bezoutp">Pdiv.CommonIdomain.Bezoutp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Bezout_coprimepPn">Pdiv.CommonIdomain.Bezout_coprimepPn</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Bezout_coprimepP">Pdiv.CommonIdomain.Bezout_coprimepP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep">Pdiv.CommonIdomain.coprimep</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimepP">Pdiv.CommonIdomain.coprimepP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimepp">Pdiv.CommonIdomain.coprimepp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimepPn">Pdiv.CommonIdomain.coprimepPn</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimepX">Pdiv.CommonIdomain.coprimepX</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_XsubC">Pdiv.CommonIdomain.coprimep_XsubC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_addl_mul">Pdiv.CommonIdomain.coprimep_addl_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_comp_poly">Pdiv.CommonIdomain.coprimep_comp_poly</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_gdco">Pdiv.CommonIdomain.coprimep_gdco</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_div_gcd">Pdiv.CommonIdomain.coprimep_div_gcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_expr">Pdiv.CommonIdomain.coprimep_expr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_expl">Pdiv.CommonIdomain.coprimep_expl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_pexpr">Pdiv.CommonIdomain.coprimep_pexpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_pexpl">Pdiv.CommonIdomain.coprimep_pexpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_mull">Pdiv.CommonIdomain.coprimep_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_mulr">Pdiv.CommonIdomain.coprimep_mulr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_root">Pdiv.CommonIdomain.coprimep_root</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_modr">Pdiv.CommonIdomain.coprimep_modr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_modl">Pdiv.CommonIdomain.coprimep_modl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_dvdr">Pdiv.CommonIdomain.coprimep_dvdr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_dvdl">Pdiv.CommonIdomain.coprimep_dvdl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_sym">Pdiv.CommonIdomain.coprimep_sym</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_scaler">Pdiv.CommonIdomain.coprimep_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_scalel">Pdiv.CommonIdomain.coprimep_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_def">Pdiv.CommonIdomain.coprimep_def</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep_size_gcd">Pdiv.CommonIdomain.coprimep_size_gcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep0">Pdiv.CommonIdomain.coprimep0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprimep1">Pdiv.CommonIdomain.coprimep1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprime0p">Pdiv.CommonIdomain.coprime0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.coprime1p">Pdiv.CommonIdomain.coprime1p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.divpN0">Pdiv.CommonIdomain.divpN0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.divp_eq0">Pdiv.CommonIdomain.divp_eq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.divp_dvd">Pdiv.CommonIdomain.divp_dvd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.divp_small">Pdiv.CommonIdomain.divp_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.divp0">Pdiv.CommonIdomain.divp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.divp1">Pdiv.CommonIdomain.divp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.div0p">Pdiv.CommonIdomain.div0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdpN0">Pdiv.CommonIdomain.dvdpN0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdpp">Pdiv.CommonIdomain.dvdpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_prod_XsubC">Pdiv.CommonIdomain.dvdp_prod_XsubC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mul_XsubC">Pdiv.CommonIdomain.dvdp_mul_XsubC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_comp_poly">Pdiv.CommonIdomain.dvdp_comp_poly</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gdco">Pdiv.CommonIdomain.dvdp_gdco</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_pexp2r">Pdiv.CommonIdomain.dvdp_pexp2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_div_eq0">Pdiv.CommonIdomain.dvdp_div_eq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gcd_idr">Pdiv.CommonIdomain.dvdp_gcd_idr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gcd_idl">Pdiv.CommonIdomain.dvdp_gcd_idl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gcd">Pdiv.CommonIdomain.dvdp_gcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gcdr">Pdiv.CommonIdomain.dvdp_gcdr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gcdl">Pdiv.CommonIdomain.dvdp_gcdl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_gcdlr">Pdiv.CommonIdomain.dvdp_gcdlr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_size_eqp">Pdiv.CommonIdomain.dvdp_size_eqp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_opp">Pdiv.CommonIdomain.dvdp_opp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_scalel">Pdiv.CommonIdomain.dvdp_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_scaler">Pdiv.CommonIdomain.dvdp_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_eqp1">Pdiv.CommonIdomain.dvdp_eqp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_XsubCl">Pdiv.CommonIdomain.dvdp_XsubCl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_exp_sub">Pdiv.CommonIdomain.dvdp_exp_sub</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_exp2r">Pdiv.CommonIdomain.dvdp_exp2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_Pexp2l">Pdiv.CommonIdomain.dvdp_Pexp2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_exp2l">Pdiv.CommonIdomain.dvdp_exp2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_exp">Pdiv.CommonIdomain.dvdp_exp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mul2l">Pdiv.CommonIdomain.dvdp_mul2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mul2r">Pdiv.CommonIdomain.dvdp_mul2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mulIr">Pdiv.CommonIdomain.dvdp_mulIr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mulIl">Pdiv.CommonIdomain.dvdp_mulIl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_trans">Pdiv.CommonIdomain.dvdp_trans</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mod">Pdiv.CommonIdomain.dvdp_mod</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_sub">Pdiv.CommonIdomain.dvdp_sub</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_subl">Pdiv.CommonIdomain.dvdp_subl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_subr">Pdiv.CommonIdomain.dvdp_subr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_add_eq">Pdiv.CommonIdomain.dvdp_add_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_add">Pdiv.CommonIdomain.dvdp_add</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_addl">Pdiv.CommonIdomain.dvdp_addl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_addr">Pdiv.CommonIdomain.dvdp_addr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mul">Pdiv.CommonIdomain.dvdp_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mulr">Pdiv.CommonIdomain.dvdp_mulr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_mull">Pdiv.CommonIdomain.dvdp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp_leq">Pdiv.CommonIdomain.dvdp_leq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp0">Pdiv.CommonIdomain.dvdp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdp1">Pdiv.CommonIdomain.dvdp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvdUp">Pdiv.CommonIdomain.dvdUp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvd_eqp_divl">Pdiv.CommonIdomain.dvd_eqp_divl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvd0p">Pdiv.CommonIdomain.dvd0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvd0pP">Pdiv.CommonIdomain.dvd0pP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.dvd1p">Pdiv.CommonIdomain.dvd1p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.egcdp">Pdiv.CommonIdomain.egcdp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.egcdpE">Pdiv.CommonIdomain.egcdpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.egcdpP">Pdiv.CommonIdomain.egcdpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.egcdp_recP">Pdiv.CommonIdomain.egcdp_recP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.egcdp_rec">Pdiv.CommonIdomain.egcdp_rec</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.egcdp0">Pdiv.CommonIdomain.egcdp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqpP">Pdiv.CommonIdomain.eqpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqpxx">Pdiv.CommonIdomain.eqpxx</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_monic">Pdiv.CommonIdomain.eqp_monic</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_coprimepl">Pdiv.CommonIdomain.eqp_coprimepl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_coprimepr">Pdiv.CommonIdomain.eqp_coprimepr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_rgcd_gcd">Pdiv.CommonIdomain.eqp_rgcd_gcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_gcd">Pdiv.CommonIdomain.eqp_gcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_gcdl">Pdiv.CommonIdomain.eqp_gcdl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_gcdr">Pdiv.CommonIdomain.eqp_gcdr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_rdiv_div">Pdiv.CommonIdomain.eqp_rdiv_div</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_rmod_mod">Pdiv.CommonIdomain.eqp_rmod_mod</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_root">Pdiv.CommonIdomain.eqp_root</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_exp">Pdiv.CommonIdomain.eqp_exp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_mulr">Pdiv.CommonIdomain.eqp_mulr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_mull">Pdiv.CommonIdomain.eqp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_mul2l">Pdiv.CommonIdomain.eqp_mul2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_mul2r">Pdiv.CommonIdomain.eqp_mul2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_dvdl">Pdiv.CommonIdomain.eqp_dvdl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_dvdr">Pdiv.CommonIdomain.eqp_dvdr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_size">Pdiv.CommonIdomain.eqp_size</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_scale">Pdiv.CommonIdomain.eqp_scale</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_rtrans">Pdiv.CommonIdomain.eqp_rtrans</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_ltrans">Pdiv.CommonIdomain.eqp_ltrans</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_trans">Pdiv.CommonIdomain.eqp_trans</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_sym">Pdiv.CommonIdomain.eqp_sym</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_eq">Pdiv.CommonIdomain.eqp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp_div_XsubC">Pdiv.CommonIdomain.eqp_div_XsubC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp0">Pdiv.CommonIdomain.eqp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eqp01">Pdiv.CommonIdomain.eqp01</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.eq_dvdp">Pdiv.CommonIdomain.eq_dvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Gauss_gcdpl">Pdiv.CommonIdomain.Gauss_gcdpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Gauss_gcdpr">Pdiv.CommonIdomain.Gauss_gcdpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Gauss_dvdp">Pdiv.CommonIdomain.Gauss_dvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Gauss_dvdpr">Pdiv.CommonIdomain.Gauss_dvdpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.Gauss_dvdpl">Pdiv.CommonIdomain.Gauss_dvdpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp">Pdiv.CommonIdomain.gcdp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdpC">Pdiv.CommonIdomain.gcdpC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdpE">Pdiv.CommonIdomain.gcdpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdpp">Pdiv.CommonIdomain.gcdpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_comp_poly">Pdiv.CommonIdomain.gcdp_comp_poly</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_mul2r">Pdiv.CommonIdomain.gcdp_mul2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_mul2l">Pdiv.CommonIdomain.gcdp_mul2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_eqp1">Pdiv.CommonIdomain.gcdp_eqp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_def">Pdiv.CommonIdomain.gcdp_def</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_modl">Pdiv.CommonIdomain.gcdp_modl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_modr">Pdiv.CommonIdomain.gcdp_modr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_eq0">Pdiv.CommonIdomain.gcdp_eq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_exp">Pdiv.CommonIdomain.gcdp_exp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_scaler">Pdiv.CommonIdomain.gcdp_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_scalel">Pdiv.CommonIdomain.gcdp_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_mulr">Pdiv.CommonIdomain.gcdp_mulr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_mull">Pdiv.CommonIdomain.gcdp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_addr">Pdiv.CommonIdomain.gcdp_addr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_addl">Pdiv.CommonIdomain.gcdp_addl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_addl_mul">Pdiv.CommonIdomain.gcdp_addl_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp_rec">Pdiv.CommonIdomain.gcdp_rec</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp0">Pdiv.CommonIdomain.gcdp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcdp1">Pdiv.CommonIdomain.gcdp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcd0p">Pdiv.CommonIdomain.gcd0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gcd1p">Pdiv.CommonIdomain.gcd1p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gdcop">Pdiv.CommonIdomain.gdcop</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gdcopP">Pdiv.CommonIdomain.gdcopP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.GdcopSpec">Pdiv.CommonIdomain.GdcopSpec</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gdcop_recP">Pdiv.CommonIdomain.gdcop_recP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gdcop_spec">Pdiv.CommonIdomain.gdcop_spec</a> [inductive, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gdcop_rec">Pdiv.CommonIdomain.gdcop_rec</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gdcop0">Pdiv.CommonIdomain.gdcop0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.gtNdvdp">Pdiv.CommonIdomain.gtNdvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.IDomainPseudoDivision">Pdiv.CommonIdomain.IDomainPseudoDivision</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.IDomainPseudoDivision.R">Pdiv.CommonIdomain.IDomainPseudoDivision.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.irredp_XsubCP">Pdiv.CommonIdomain.irredp_XsubCP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.irredp_XsubC">Pdiv.CommonIdomain.irredp_XsubC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.irredp_neq0">Pdiv.CommonIdomain.irredp_neq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.irreducible_poly">Pdiv.CommonIdomain.irreducible_poly</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.leq_gcdpr">Pdiv.CommonIdomain.leq_gcdpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.leq_gcdpl">Pdiv.CommonIdomain.leq_gcdpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.leq_divpl">Pdiv.CommonIdomain.leq_divpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.leq_modp">Pdiv.CommonIdomain.leq_modp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.leq_divpr">Pdiv.CommonIdomain.leq_divpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.leq_divp">Pdiv.CommonIdomain.leq_divp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.ltn_divpr">Pdiv.CommonIdomain.ltn_divpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.ltn_modpN0">Pdiv.CommonIdomain.ltn_modpN0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.ltn_divpl">Pdiv.CommonIdomain.ltn_divpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.ltn_modp">Pdiv.CommonIdomain.ltn_modp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modpC">Pdiv.CommonIdomain.modpC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modpp">Pdiv.CommonIdomain.modpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_XsubC">Pdiv.CommonIdomain.modp_XsubC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_coprime">Pdiv.CommonIdomain.modp_coprime</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_eq0">Pdiv.CommonIdomain.modp_eq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_eq0P">Pdiv.CommonIdomain.modp_eq0P</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_mod">Pdiv.CommonIdomain.modp_mod</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_mulr">Pdiv.CommonIdomain.modp_mulr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_mull">Pdiv.CommonIdomain.modp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp_small">Pdiv.CommonIdomain.modp_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp0">Pdiv.CommonIdomain.modp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.modp1">Pdiv.CommonIdomain.modp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.mod0p">Pdiv.CommonIdomain.mod0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.mulp_gcdl">Pdiv.CommonIdomain.mulp_gcdl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.mulp_gcdr">Pdiv.CommonIdomain.mulp_gcdr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.polyC_eqp1">Pdiv.CommonIdomain.polyC_eqp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.polyXsubCP">Pdiv.CommonIdomain.polyXsubCP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.polyXsubC_eqp1">Pdiv.CommonIdomain.polyXsubC_eqp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.rcoprimep_coprimep">Pdiv.CommonIdomain.rcoprimep_coprimep</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.root_gdco">Pdiv.CommonIdomain.root_gdco</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.root_biggcd">Pdiv.CommonIdomain.root_biggcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.root_gcd">Pdiv.CommonIdomain.root_gcd</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.root_bigmul">Pdiv.CommonIdomain.root_bigmul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.root_factor_theorem">Pdiv.CommonIdomain.root_factor_theorem</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.scalp0">Pdiv.CommonIdomain.scalp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.size_gcdp1">Pdiv.CommonIdomain.size_gcdp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.size_gcd1p">Pdiv.CommonIdomain.size_gcd1p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.size_poly_eq1">Pdiv.CommonIdomain.size_poly_eq1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.size_divp">Pdiv.CommonIdomain.size_divp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.size2_dvdp_gdco">Pdiv.CommonIdomain.size2_dvdp_gdco</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonIdomain.uniq_roots_dvdp">Pdiv.CommonIdomain.uniq_roots_dvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing">Pdiv.CommonRing</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.ComEdivnSpec">Pdiv.CommonRing.ComEdivnSpec</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.comm_redivpP">Pdiv.CommonRing.comm_redivpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.comm_redivp_spec">Pdiv.CommonRing.comm_redivp_spec</a> [inductive, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.leq_rmodp">Pdiv.CommonRing.leq_rmodp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.leq_rdivp">Pdiv.CommonRing.leq_rdivp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.ltn_rmodpN0">Pdiv.CommonRing.ltn_rmodpN0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.ltn_rmodp">Pdiv.CommonRing.ltn_rmodp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.Nrdvdp_small">Pdiv.CommonRing.Nrdvdp_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rcoprimep">Pdiv.CommonRing.rcoprimep</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdivp">Pdiv.CommonRing.rdivp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdivp_small">Pdiv.CommonRing.rdivp_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdivp0">Pdiv.CommonRing.rdivp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdiv0p">Pdiv.CommonRing.rdiv0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvdp">Pdiv.CommonRing.rdvdp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvdpN0">Pdiv.CommonRing.rdvdpN0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvdp_leq">Pdiv.CommonRing.rdvdp_leq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvdp0">Pdiv.CommonRing.rdvdp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvdp1">Pdiv.CommonRing.rdvdp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvd0p">Pdiv.CommonRing.rdvd0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvd0pP">Pdiv.CommonRing.rdvd0pP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rdvd1p">Pdiv.CommonRing.rdvd1p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.redivp">Pdiv.CommonRing.redivp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.redivp_def">Pdiv.CommonRing.redivp_def</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.redivp_key">Pdiv.CommonRing.redivp_key</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.redivp_expanded_def">Pdiv.CommonRing.redivp_expanded_def</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.redivp_rec">Pdiv.CommonRing.redivp_rec</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgcdp">Pdiv.CommonRing.rgcdp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgcdpE">Pdiv.CommonRing.rgcdpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgcdp0">Pdiv.CommonRing.rgcdp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgcd0p">Pdiv.CommonRing.rgcd0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgdcop">Pdiv.CommonRing.rgdcop</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgdcop_rec">Pdiv.CommonRing.rgdcop_rec</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rgdcop0">Pdiv.CommonRing.rgdcop0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.RingPseudoDivision">Pdiv.CommonRing.RingPseudoDivision</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.RingPseudoDivision.R">Pdiv.CommonRing.RingPseudoDivision.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodp">Pdiv.CommonRing.rmodp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodpC">Pdiv.CommonRing.rmodpC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodpp">Pdiv.CommonRing.rmodpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodp_eq0">Pdiv.CommonRing.rmodp_eq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodp_eq0P">Pdiv.CommonRing.rmodp_eq0P</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodp_small">Pdiv.CommonRing.rmodp_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodp0">Pdiv.CommonRing.rmodp0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmodp1">Pdiv.CommonRing.rmodp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rmod0p">Pdiv.CommonRing.rmod0p</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rscalp">Pdiv.CommonRing.rscalp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.CommonRing.rscalp_small">Pdiv.CommonRing.rscalp_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing">Pdiv.ComRing</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.CommutativeRingPseudoDivision">Pdiv.ComRing.CommutativeRingPseudoDivision</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.CommutativeRingPseudoDivision.R">Pdiv.ComRing.CommutativeRingPseudoDivision.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.EdivnSpec">Pdiv.ComRing.EdivnSpec</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.rdivp_eq">Pdiv.ComRing.rdivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.rdvdp_eq">Pdiv.ComRing.rdvdp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.rdvdp_eqP">Pdiv.ComRing.rdvdp_eqP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.redivpP">Pdiv.ComRing.redivpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.ComRing.redivp_spec">Pdiv.ComRing.redivp_spec</a> [inductive, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field">Pdiv.Field</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.Bezout_eq1_coprimepP">Pdiv.Field.Bezout_eq1_coprimepP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.coprimep_map">Pdiv.Field.coprimep_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.cubic_irreducible">Pdiv.Field.cubic_irreducible</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divpAC">Pdiv.Field.divpAC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divpE">Pdiv.Field.divpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divpK">Pdiv.Field.divpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divpKC">Pdiv.Field.divpKC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divpp">Pdiv.Field.divpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divpP">Pdiv.Field.divpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_divl">Pdiv.Field.divp_divl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_pmul2r">Pdiv.Field.divp_pmul2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_pmul2l">Pdiv.Field.divp_pmul2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_mulCA">Pdiv.Field.divp_mulCA</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_mulAC">Pdiv.Field.divp_mulAC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_mulA">Pdiv.Field.divp_mulA</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_addl_mul">Pdiv.Field.divp_addl_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_addl_mul_small">Pdiv.Field.divp_addl_mul_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_add">Pdiv.Field.divp_add</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_opp">Pdiv.Field.divp_opp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_scaler">Pdiv.Field.divp_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_scalel">Pdiv.Field.divp_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_modpP">Pdiv.Field.divp_modpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.divp_eq">Pdiv.Field.divp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdpE">Pdiv.Field.dvdpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdpP">Pdiv.Field.dvdpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdp_map">Pdiv.Field.dvdp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdp_gdcor">Pdiv.Field.dvdp_gdcor</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdp_eq_mul">Pdiv.Field.dvdp_eq_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdp_eq_div">Pdiv.Field.dvdp_eq_div</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.dvdp_eq">Pdiv.Field.dvdp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.edivpP">Pdiv.Field.edivpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.EdivpSpec">Pdiv.Field.EdivpSpec</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.edivp_map">Pdiv.Field.edivp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.edivp_eq">Pdiv.Field.edivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.edivp_spec">Pdiv.Field.edivp_spec</a> [inductive, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.edivp_def">Pdiv.Field.edivp_def</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.egcdp_map">Pdiv.Field.egcdp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqpfP">Pdiv.Field.eqpfP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqpf_eq">Pdiv.Field.eqpf_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_map">Pdiv.Field.eqp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_rgdco_gdco">Pdiv.Field.eqp_rgdco_gdco</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_gdcol">Pdiv.Field.eqp_gdcol</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_gdcor">Pdiv.Field.eqp_gdcor</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_div">Pdiv.Field.eqp_div</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_divr">Pdiv.Field.eqp_divr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_mod">Pdiv.Field.eqp_mod</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_modpr">Pdiv.Field.eqp_modpr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_divl">Pdiv.Field.eqp_divl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.eqp_modpl">Pdiv.Field.eqp_modpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.expp_sub">Pdiv.Field.expp_sub</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision">Pdiv.Field.FieldDivision</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.F">Pdiv.Field.FieldDivision.F</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.FieldMap">Pdiv.Field.FieldDivision.FieldMap</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.FieldMap.f">Pdiv.Field.FieldDivision.FieldMap.f</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.FieldMap.rR">Pdiv.Field.FieldDivision.FieldMap.rR</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#34b65849dab7adb22098517124e67650">_ ^f (ring_scope)</a> [notation, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.FieldRingMap">Pdiv.Field.FieldDivision.FieldRingMap</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.FieldRingMap.f">Pdiv.Field.FieldDivision.FieldRingMap.f</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.FieldDivision.FieldRingMap.rR">Pdiv.Field.FieldDivision.FieldRingMap.rR</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#67d6f029332878db8c6f4efc5c9b26ee">_ ^f (ring_scope)</a> [notation, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.gcdp_map">Pdiv.Field.gcdp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.gdcop_map">Pdiv.Field.gdcop_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.gdcop_rec_map">Pdiv.Field.gdcop_rec_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.leq_trunc_divp">Pdiv.Field.leq_trunc_divp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.map_modp">Pdiv.Field.map_modp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.map_divp">Pdiv.Field.map_divp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modNp">Pdiv.Field.modNp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modpE">Pdiv.Field.modpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modpP">Pdiv.Field.modpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modp_mul">Pdiv.Field.modp_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modp_addl_mul_small">Pdiv.Field.modp_addl_mul_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modp_add">Pdiv.Field.modp_add</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modp_opp">Pdiv.Field.modp_opp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modp_scaler">Pdiv.Field.modp_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.modp_scalel">Pdiv.Field.modp_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.mulKp">Pdiv.Field.mulKp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.mulpK">Pdiv.Field.mulpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.redivp_map">Pdiv.Field.redivp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.reducible_cubic_root">Pdiv.Field.reducible_cubic_root</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.scalpE">Pdiv.Field.scalpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Field.scalp_map">Pdiv.Field.scalp_map</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Idomain">Pdiv.Idomain</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs">Pdiv.IdomainDefs</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.divp">Pdiv.IdomainDefs.divp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.dvdp">Pdiv.IdomainDefs.dvdp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.edivp">Pdiv.IdomainDefs.edivp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.edivp_key">Pdiv.IdomainDefs.edivp_key</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.edivp_expanded_def">Pdiv.IdomainDefs.edivp_expanded_def</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.eqp">Pdiv.IdomainDefs.eqp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.IDomainPseudoDivisionDefs">Pdiv.IdomainDefs.IDomainPseudoDivisionDefs</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.IDomainPseudoDivisionDefs.R">Pdiv.IdomainDefs.IDomainPseudoDivisionDefs.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.modp">Pdiv.IdomainDefs.modp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainDefs.scalp">Pdiv.IdomainDefs.scalp</a> [definition, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#9c1ccd33b816bf809c7479082caaf63e">_ %= _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#8d02531a91f8648b92789372c052c0ad">_ %| _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#538b21ac9fb9938cd88200e5780e8f9d">_ %% _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#6a276cc55c6f28b3ec69a3618ce07a9c">_ %/ _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic">Pdiv.IdomainMonic</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.divpE">Pdiv.IdomainMonic.divpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.divpp">Pdiv.IdomainMonic.divpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.divp_eq">Pdiv.IdomainMonic.divp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.dvdpP">Pdiv.IdomainMonic.dvdpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.dvdp_eq">Pdiv.IdomainMonic.dvdp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.modpE">Pdiv.IdomainMonic.modpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.MonicDivisor">Pdiv.IdomainMonic.MonicDivisor</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.MonicDivisor.monq">Pdiv.IdomainMonic.MonicDivisor.monq</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.MonicDivisor.q">Pdiv.IdomainMonic.MonicDivisor.q</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.MonicDivisor.R">Pdiv.IdomainMonic.MonicDivisor.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.mulKp">Pdiv.IdomainMonic.mulKp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.mulpK">Pdiv.IdomainMonic.mulpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainMonic.scalpE">Pdiv.IdomainMonic.scalpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit">Pdiv.IdomainUnit</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divpAC">Pdiv.IdomainUnit.divpAC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divpK">Pdiv.IdomainUnit.divpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divpKC">Pdiv.IdomainUnit.divpKC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divpp">Pdiv.IdomainUnit.divpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divpP">Pdiv.IdomainUnit.divpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_scaler">Pdiv.IdomainUnit.divp_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_divl">Pdiv.IdomainUnit.divp_divl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_pmul2r">Pdiv.IdomainUnit.divp_pmul2r</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_pmul2l">Pdiv.IdomainUnit.divp_pmul2l</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_mulCA">Pdiv.IdomainUnit.divp_mulCA</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_mulAC">Pdiv.IdomainUnit.divp_mulAC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_mulA">Pdiv.IdomainUnit.divp_mulA</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_addl_mul">Pdiv.IdomainUnit.divp_addl_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_addl_mul_small">Pdiv.IdomainUnit.divp_addl_mul_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_add">Pdiv.IdomainUnit.divp_add</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_opp">Pdiv.IdomainUnit.divp_opp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_scalel">Pdiv.IdomainUnit.divp_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.divp_eq">Pdiv.IdomainUnit.divp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.dvdpP">Pdiv.IdomainUnit.dvdpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.dvdp_eq_mul">Pdiv.IdomainUnit.dvdp_eq_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.dvdp_eq_div">Pdiv.IdomainUnit.dvdp_eq_div</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.dvdp_eq">Pdiv.IdomainUnit.dvdp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.edivpP">Pdiv.IdomainUnit.edivpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.eqp_divl">Pdiv.IdomainUnit.eqp_divl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.eqp_modpl">Pdiv.IdomainUnit.eqp_modpl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.expp_sub">Pdiv.IdomainUnit.expp_sub</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.leq_trunc_divp">Pdiv.IdomainUnit.leq_trunc_divp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modpP">Pdiv.IdomainUnit.modpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modp_scaler">Pdiv.IdomainUnit.modp_scaler</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modp_mul">Pdiv.IdomainUnit.modp_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modp_addl_mul_small">Pdiv.IdomainUnit.modp_addl_mul_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modp_add">Pdiv.IdomainUnit.modp_add</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modp_opp">Pdiv.IdomainUnit.modp_opp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.modp_scalel">Pdiv.IdomainUnit.modp_scalel</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.MoreUnitDivisor">Pdiv.IdomainUnit.MoreUnitDivisor</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.MoreUnitDivisor.d">Pdiv.IdomainUnit.MoreUnitDivisor.d</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.MoreUnitDivisor.R">Pdiv.IdomainUnit.MoreUnitDivisor.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.MoreUnitDivisor.ulcd">Pdiv.IdomainUnit.MoreUnitDivisor.ulcd</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.mulKp">Pdiv.IdomainUnit.mulKp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.mulpK">Pdiv.IdomainUnit.mulpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.ucl_eqp_eq">Pdiv.IdomainUnit.ucl_eqp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.ulc_eqpP">Pdiv.IdomainUnit.ulc_eqpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.UnitDivisor">Pdiv.IdomainUnit.UnitDivisor</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.UnitDivisor.d">Pdiv.IdomainUnit.UnitDivisor.d</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.UnitDivisor.R">Pdiv.IdomainUnit.UnitDivisor.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.IdomainUnit.UnitDivisor.ulcd">Pdiv.IdomainUnit.UnitDivisor.ulcd</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring">Pdiv.Ring</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg">Pdiv.RingComRreg</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.ComRegDivisor">Pdiv.RingComRreg.ComRegDivisor</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.ComRegDivisor.Cdl">Pdiv.RingComRreg.ComRegDivisor.Cdl</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.ComRegDivisor.d">Pdiv.RingComRreg.ComRegDivisor.d</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.ComRegDivisor.R">Pdiv.RingComRreg.ComRegDivisor.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.ComRegDivisor.Rreg">Pdiv.RingComRreg.ComRegDivisor.Rreg</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.eq_rdvdp">Pdiv.RingComRreg.eq_rdvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdivpK">Pdiv.RingComRreg.rdivpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdivpp">Pdiv.RingComRreg.rdivpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdivp_eq">Pdiv.RingComRreg.rdivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.Rdvdp">Pdiv.RingComRreg.Rdvdp</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.RdvdpN">Pdiv.RingComRreg.RdvdpN</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdvdpp">Pdiv.RingComRreg.rdvdpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdvdp_mull">Pdiv.RingComRreg.rdvdp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdvdp_eqP">Pdiv.RingComRreg.rdvdp_eqP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rdvdp_spec">Pdiv.RingComRreg.rdvdp_spec</a> [inductive, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.redivp_eq">Pdiv.RingComRreg.redivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rmodpp">Pdiv.RingComRreg.rmodpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingComRreg.rmodp_mull">Pdiv.RingComRreg.rmodp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic">Pdiv.RingMonic</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.eq_rdvdp">Pdiv.RingMonic.eq_rdvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.MonicDivisor">Pdiv.RingMonic.MonicDivisor</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.MonicDivisor.d">Pdiv.RingMonic.MonicDivisor.d</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.MonicDivisor.mond">Pdiv.RingMonic.MonicDivisor.mond</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.MonicDivisor.R">Pdiv.RingMonic.MonicDivisor.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivpK">Pdiv.RingMonic.rdivpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivpp">Pdiv.RingMonic.rdivpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivp_mull">Pdiv.RingMonic.rdivp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivp_addr">Pdiv.RingMonic.rdivp_addr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivp_addl">Pdiv.RingMonic.rdivp_addl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivp_addl_mul">Pdiv.RingMonic.rdivp_addl_mul</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivp_addl_mul_small">Pdiv.RingMonic.rdivp_addl_mul_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdivp_eq">Pdiv.RingMonic.rdivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdvdpP">Pdiv.RingMonic.rdvdpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdvdpp">Pdiv.RingMonic.rdvdpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rdvdp_mull">Pdiv.RingMonic.rdvdp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.redivp_eq">Pdiv.RingMonic.redivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rmodpp">Pdiv.RingMonic.rmodpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rmodp_mulmr">Pdiv.RingMonic.rmodp_mulmr</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rmodp_add">Pdiv.RingMonic.rmodp_add</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rmodp_addl_mul_small">Pdiv.RingMonic.rmodp_addl_mul_small</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.RingMonic.rmodp_mull">Pdiv.RingMonic.rmodp_mull</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring.ExtraMonicDivisor">Pdiv.Ring.ExtraMonicDivisor</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring.ExtraMonicDivisor.R">Pdiv.Ring.ExtraMonicDivisor.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring.polyXsubCP">Pdiv.Ring.polyXsubCP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring.rdivp1">Pdiv.Ring.rdivp1</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring.rdvdp_XsubCl">Pdiv.Ring.rdvdp_XsubCl</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.Ring.root_factor_theorem">Pdiv.Ring.root_factor_theorem</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.UnitRing">Pdiv.UnitRing</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.UnitRing.uniq_roots_rdvdp">Pdiv.UnitRing.uniq_roots_rdvdp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.UnitRing.UnitRingPseudoDivision">Pdiv.UnitRing.UnitRingPseudoDivision</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.UnitRing.UnitRingPseudoDivision.R">Pdiv.UnitRing.UnitRingPseudoDivision.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain">Pdiv.WeakIdomain</a> [module, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.divpE">Pdiv.WeakIdomain.divpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.divpK">Pdiv.WeakIdomain.divpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.divpKC">Pdiv.WeakIdomain.divpKC</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.divpp">Pdiv.WeakIdomain.divpp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.divp_eq">Pdiv.WeakIdomain.divp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.dvdpE">Pdiv.WeakIdomain.dvdpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.dvdpP">Pdiv.WeakIdomain.dvdpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.dvdp_eq">Pdiv.WeakIdomain.dvdp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.edivpP">Pdiv.WeakIdomain.edivpP</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.edivp_eq">Pdiv.WeakIdomain.edivp_eq</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.edivp_spec">Pdiv.WeakIdomain.edivp_spec</a> [inductive, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.edivp_redivp">Pdiv.WeakIdomain.edivp_redivp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.edivp_def">Pdiv.WeakIdomain.edivp_def</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.Fedivp_spec">Pdiv.WeakIdomain.Fedivp_spec</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.lc_expn_scalp_neq0">Pdiv.WeakIdomain.lc_expn_scalp_neq0</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.modpE">Pdiv.WeakIdomain.modpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.mulKp">Pdiv.WeakIdomain.mulKp</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.mulpK">Pdiv.WeakIdomain.mulpK</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.Redivp_spec">Pdiv.WeakIdomain.Redivp_spec</a> [constructor, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.scalpE">Pdiv.WeakIdomain.scalpE</a> [lemma, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.WeakTheoryForIDomainPseudoDivision">Pdiv.WeakIdomain.WeakTheoryForIDomainPseudoDivision</a> [section, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.algebra.polydiv.html#Pdiv.WeakIdomain.WeakTheoryForIDomainPseudoDivision.R">Pdiv.WeakIdomain.WeakTheoryForIDomainPseudoDivision.R</a> [variable, in <a href="mathcomp.algebra.polydiv.html">mathcomp.algebra.polydiv</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pElem">pElem</a> [definition, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pElemI">pElemI</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pElemJ">pElemJ</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pElemP">pElemP</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pElemS">pElemS</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm">perm</a> [abbreviation, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#Perm">Perm</a> [constructor, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html">perm</a> [library]<br/>
<a href="mathcomp.fingroup.action.html#PermAction">PermAction</a> [section, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.action.html#PermAction.rT">PermAction.rT</a> [variable, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermDef">PermDef</a> [module, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermDefSection">PermDefSection</a> [section, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermDefSection.T">PermDefSection.T</a> [variable, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermDefSig">PermDefSig</a> [module, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermDefSig.fun_of_permE">PermDefSig.fun_of_permE</a> [axiom, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermDefSig.fun_of_perm">PermDefSig.fun_of_perm</a> [axiom, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermDefSig.perm">PermDefSig.perm</a> [axiom, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermDefSig.permE">PermDefSig.permE</a> [axiom, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermDef.fun_of_permE">PermDef.fun_of_permE</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermDef.fun_of_perm">PermDef.fun_of_perm</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermDef.perm">PermDef.perm</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermDef.permE">PermDef.permE</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#permE">permE</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#PermIn">PermIn</a> [section, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#PermIn.A">PermIn.A</a> [variable, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#PermIn.f">PermIn.f</a> [variable, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#PermIn.injf">PermIn.injf</a> [variable, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#PermIn.sBf">PermIn.sBf</a> [variable, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#PermIn.T">PermIn.T</a> [variable, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.fingroup.perm.html#permJ">permJ</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#permK">permK</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#permKV">permKV</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#permM">permM</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#permP">permP</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#PermSeq">PermSeq</a> [section, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#PermSeq.T">PermSeq.T</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermutationParity">PermutationParity</a> [section, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#PermutationParity.T">PermutationParity.T</a> [variable, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#permX">permX</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.ssreflect.path.html#perm_sortP">perm_sortP</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#perm_sort">perm_sort</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#perm_merge">perm_merge</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_onM">perm_onM</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_on1">perm_on1</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_closed">perm_closed</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_on">perm_on</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_of_baseFinGroupMixin">perm_of_baseFinGroupMixin</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_mulP">perm_mulP</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_invP">perm_invP</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_oneP">perm_oneP</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_mul">perm_mul</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_inv">perm_inv</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_invK">perm_invK</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_one">perm_one</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_onto">perm_onto</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_inj">perm_inj</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_def">perm_def</a> [abbreviation, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_proof">perm_proof</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_finMixin">perm_finMixin</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_countMixin">perm_countMixin</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_choiceMixin">perm_choiceMixin</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_eqMixin">perm_eqMixin</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_of">perm_of</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm_type">perm_type</a> [inductive, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#perm_bigcprod">perm_bigcprod</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.algebra.vector.html#perm_basis">perm_basis</a> [lemma, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#perm_free">perm_free</a> [lemma, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.matrix.html#perm_mxV">perm_mxV</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#perm_mx_is_perm">perm_mx_is_perm</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#perm_mxM">perm_mxM</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#perm_mx1">perm_mx1</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#perm_mx">perm_mx</a> [definition, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#perm_inE">perm_inE</a> [lemma, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#perm_in_on">perm_in_on</a> [lemma, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#perm_in">perm_in</a> [definition, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#perm_in_inj">perm_in_inj</a> [lemma, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_undup_count">perm_undup_count</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eq_iotaP">perm_eq_iotaP</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_map">perm_map</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_to_subseq">perm_to_subseq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_to_rem">perm_to_rem</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eqr">perm_eqr</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eql">perm_eql</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eq_uniq">perm_eq_uniq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_uniq">perm_uniq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eq_small">perm_eq_small</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eq_size">perm_eq_size</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eq_all">perm_eq_all</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eq_mem">perm_eq_mem</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_filterC">perm_filterC</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_filter">perm_filter</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eq_rev">perm_eq_rev</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_rotr">perm_rotr</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_rot">perm_rot</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_rcons">perm_rcons</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_catCA">perm_catCA</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_catAC">perm_catAC</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_cat2r">perm_cat2r</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_cons">perm_cons</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_cat2l">perm_cat2l</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_catC">perm_catC</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eqrP">perm_eqrP</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eqlP">perm_eqlP</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eqlE">perm_eqlE</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eqr">perm_eqr</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eql">perm_eql</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eq_trans">perm_eq_trans</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eq_sym">perm_eq_sym</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eq_refl">perm_eq_refl</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eqP">perm_eqP</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#perm_eq">perm_eq</a> [definition, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.solvable.abelian.html#perm_eq_abelian_type">perm_eq_abelian_type</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.fingroup.action.html#perm_faithful">perm_faithful</a> [lemma, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.action.html#perm_act1P">perm_act1P</a> [lemma, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.action.html#perm_mact">perm_mact</a> [lemma, in <a href="mathcomp.fingroup.action.html">mathcomp.fingroup.action</a>]<br/>
<a href="mathcomp.fingroup.perm.html#perm1">perm1</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.ssreflect.bigop.html#PervasiveMonoids">PervasiveMonoids</a> [section, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#pexpIrz">pexpIrz</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#pexprz_eq1">pexprz_eq1</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#Pextraspecial">Pextraspecial</a> [module, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.act">Pextraspecial.act</a> [definition, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.actP">Pextraspecial.actP</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.Construction">Pextraspecial.Construction</a> [section, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.Construction.p">Pextraspecial.Construction.p</a> [variable, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.gactP">Pextraspecial.gactP</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.groupAction">Pextraspecial.groupAction</a> [definition, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.gtype">Pextraspecial.gtype</a> [definition, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.gtype_key">Pextraspecial.gtype_key</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.ngtype">Pextraspecial.ngtype</a> [definition, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#Pextraspecial.ngtypeQ">Pextraspecial.ngtypeQ</a> [definition, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pfactor">pfactor</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pfactorK">pfactorK</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pfactorKpdiv">pfactorKpdiv</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pfactor_coprime">pfactor_coprime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pfactor_dvdnn">pfactor_dvdnn</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pfactor_dvdn">pfactor_dvdn</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pfactor_gt0">pfactor_gt0</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.finfun.html#pfamily">pfamily</a> [abbreviation, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/>
<a href="mathcomp.ssreflect.finfun.html#pfamilyP">pfamilyP</a> [lemma, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/>
<a href="mathcomp.ssreflect.finfun.html#pfamily_mem">pfamily_mem</a> [definition, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/>
<a href="mathcomp.ssreflect.finfun.html#pffun_on">pffun_on</a> [abbreviation, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/>
<a href="mathcomp.ssreflect.finfun.html#pffun_onP">pffun_onP</a> [lemma, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/>
<a href="mathcomp.ssreflect.finfun.html#pffun_on_mem">pffun_on_mem</a> [definition, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#pFtoE">pFtoE</a> [abbreviation, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pgroup">pgroup</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html">pgroup</a> [library]<br/>
<a href="mathcomp.solvable.pgroup.html#PgroupDefs">PgroupDefs</a> [section, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PgroupDefs.gT">PgroupDefs.gT</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pgroupE">pgroupE</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pgroupJ">pgroupJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pgroupM">pgroupM</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pgroupNK">pgroupNK</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pgroupP">pgroupP</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PgroupProps">PgroupProps</a> [section, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PgroupProps.gT">PgroupProps.gT</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pgroupS">pgroupS</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pgroup_pdiv">pgroup_pdiv</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pgroup_p">pgroup_p</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pgroup_pi">pgroup_pi</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.character.character.html#pgroup_cyclic_faithful">pgroup_cyclic_faithful</a> [lemma, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/>
<a href="mathcomp.solvable.sylow.html#pgroup_sol">pgroup_sol</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.sylow.html#pgroup_nil">pgroup_nil</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.sylow.html#pgroup_fix_mod">pgroup_fix_mod</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pgroup1">pgroup1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pHall">pHall</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pHallE">pHallE</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pHallJ">pHallJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pHallJnorm">pHallJnorm</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pHallJ2">pHallJ2</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pHallNK">pHallNK</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pHallP">pHallP</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pHall_id">pHall_id</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pHall_subl">pHall_subl</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pHall_Hall">pHall_Hall</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pHall_pgroup">pHall_pgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pHall_sub">pHall_sub</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.maximal.html#PhiJ">PhiJ</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#PhiS">PhiS</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_mulg">Phi_mulg</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_cprod">Phi_cprod</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_min">Phi_min</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_Mho">Phi_Mho</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_joing">Phi_joing</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_quotient_abelem">Phi_quotient_abelem</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_quotient_cyclic">Phi_quotient_cyclic</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_quotient_id">Phi_quotient_id</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_normal">Phi_normal</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_char">Phi_char</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_nongen">Phi_nongen</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_proper">Phi_proper</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_sub_max">Phi_sub_max</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#Phi_sub">Phi_sub</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#Pi">Pi</a> [module, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#PiAdditive">PiAdditive</a> [section, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#PiAdditive.equivV">PiAdditive.equivV</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#PiAdditive.Q">PiAdditive.Q</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#PiAdditive.V">PiAdditive.V</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#PiAdditive.zeroV">PiAdditive.zeroV</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#Pick">Pick</a> [constructor, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#pick">pick</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#pickle">pickle</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#pickleK">pickleK</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#pickleK_inv">pickleK_inv</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#pickle_taggedK">pickle_taggedK</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#pickle_tagged">pickle_tagged</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#pickle_seqK">pickle_seqK</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#pickle_seq">pickle_seq</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#pickle_invK">pickle_invK</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#pickle_inv">pickle_inv</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#pickP">pickP</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#pick_spec">pick_spec</a> [inductive, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#pick_true">pick_true</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#PiConst">PiConst</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.algebra.matrix.html#pid_mx_id">pid_mx_id</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#pid_mx_minh">pid_mx_minh</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#pid_mx_minv">pid_mx_minv</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#pid_mx_block">pid_mx_block</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#pid_mx_col">pid_mx_col</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#pid_mx_row">pid_mx_row</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#pid_mx_1">pid_mx_1</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#pid_mx_0">pid_mx_0</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#pid_mx">pid_mx</a> [definition, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#pid_mx_key">pid_mx_key</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#piE">piE</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#PiEmbed">PiEmbed</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#PiMono1">PiMono1</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#PiMono2">PiMono2</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#PiMorph">PiMorph</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#PiMorph1">PiMorph1</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#PiMorph11">PiMorph11</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#PiMorph2">PiMorph2</a> [abbreviation, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#pinvmx">pinvmx</a> [definition, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.solvable.abelian.html#piOhm1">piOhm1</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#piP">piP</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#PiRMorphism">PiRMorphism</a> [section, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#PiRMorphism.equivR">PiRMorphism.equivR</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#PiRMorphism.Q">PiRMorphism.Q</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#PiRMorphism.R">PiRMorphism.R</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#PiRMorphism.zeroR">PiRMorphism.zeroR</a> [variable, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#piSg">piSg</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#PiSig">PiSig</a> [module, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#PiSig.E">PiSig.E</a> [axiom, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#PiSig.f">PiSig.f</a> [axiom, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#PiSpec">PiSpec</a> [constructor, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pi_p'group">pi_p'group</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pi_pgroup">pi_pgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.field.fieldext.html#pi_subfext_inv">pi_subfext_inv</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.field.fieldext.html#pi_subfext_mul">pi_subfext_mul</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.field.fieldext.html#pi_subfext_opp">pi_subfext_opp</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.field.fieldext.html#pi_subfext_add">pi_subfext_add</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.field.fieldext.html#pi_subfx_inj">pi_subfx_inj</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pi_p'nat">pi_p'nat</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pi_pnat">pi_pnat</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pi_of_prime">pi_of_prime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pi_of_exp">pi_of_exp</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pi_of_part">pi_of_part</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pi_ofM">pi_ofM</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pi_of_dvd">pi_of_dvd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pi_max_pdiv">pi_max_pdiv</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pi_pdiv">pi_pdiv</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pi_of">pi_of</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pi_wrapped_arg">pi_wrapped_arg</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pi_unwrapped_arg">pi_unwrapped_arg</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#pi_invr">pi_invr</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#pi_unitr">pi_unitr</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#pi_is_multiplicative">pi_is_multiplicative</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#pi_mulr">pi_mulr</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#pi_oner">pi_oner</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#pi_is_additive">pi_is_additive</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#pi_addr">pi_addr</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#pi_oppr">pi_oppr</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#pi_zeror">pi_zeror</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#pi_eq_quot">pi_eq_quot</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#pi_eq_quot_mixin">pi_eq_quot_mixin</a> [projection, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#pi_morph11">pi_morph11</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#pi_mono2">pi_mono2</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#pi_mono1">pi_mono1</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#pi_morph2">pi_morph2</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#pi_morph1">pi_morph1</a> [lemma, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#pi_spec">pi_spec</a> [inductive, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#pi_phant">pi_phant</a> [definition, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pi_of_exponent">pi_of_exponent</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.sylow.html#pi_center_nilpotent">pi_center_nilpotent</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pi'_p'group">pi'_p'group</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pi'_p'nat">pi'_p'nat</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#Pi.E">Pi.E</a> [definition, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.generic_quotient.html#Pi.f">Pi.f</a> [definition, in <a href="mathcomp.ssreflect.generic_quotient.html">mathcomp.ssreflect.generic_quotient</a>]<br/>
<a href="mathcomp.ssreflect.finfun.html#PlainTheory">PlainTheory</a> [section, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/>
<a href="mathcomp.ssreflect.finfun.html#PlainTheory.aT">PlainTheory.aT</a> [variable, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/>
<a href="mathcomp.ssreflect.finfun.html#PlainTheory.rT">PlainTheory.rT</a> [variable, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#plusE">plusE</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#pmap">pmap</a> [definition, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#Pmap">Pmap</a> [section, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#PmapSub">PmapSub</a> [section, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#PmapSub.p">PmapSub.p</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#PmapSub.sT">PmapSub.sT</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#PmapSub.T">PmapSub.T</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#pmapS_filter">pmapS_filter</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#pmap_sub_uniq">pmap_sub_uniq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#pmap_uniq">pmap_uniq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#pmap_filter">pmap_filter</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#Pmap.aT">Pmap.aT</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#Pmap.f">Pmap.f</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#Pmap.fK">Pmap.fK</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#Pmap.g">Pmap.g</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#Pmap.rT">Pmap.rT</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.solvable.maximal.html#PMax">PMax</a> [section, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pmaxElem">pmaxElem</a> [definition, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pmaxElemJ">pmaxElemJ</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pmaxElemP">pmaxElemP</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pmaxElemS">pmaxElemS</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pmaxElem_LdivP">pmaxElem_LdivP</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pmaxElem_exists">pmaxElem_exists</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.maximal.html#pmaxElem_extraspecial">pmaxElem_extraspecial</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#PMax.gT">PMax.gT</a> [variable, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#PMax.M">PMax.M</a> [variable, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#PMax.P">PMax.P</a> [variable, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#PMax.p">PMax.p</a> [variable, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#PMax.pP">PMax.pP</a> [variable, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.gfunctor.html#pmorphimF">pmorphimF</a> [lemma, in <a href="mathcomp.solvable.gfunctor.html">mathcomp.solvable.gfunctor</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pmorphim_pHall">pmorphim_pHall</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pmorphim_pgroup">pmorphim_pgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#pmulrn">pmulrn</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#pmulrz_rle0">pmulrz_rle0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#pmulrz_rge0">pmulrz_rge0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#pmulrz_rlt0">pmulrz_rlt0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#pmulrz_rgt0">pmulrz_rgt0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#pmulrz_lle0">pmulrz_lle0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#pmulrz_lge0">pmulrz_lge0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#pmulrz_llt0">pmulrz_llt0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#pmulrz_lgt0">pmulrz_lgt0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnat">pnat</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnatE">pnatE</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnatI">pnatI</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnatNK">pnatNK</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnatP">pnatP</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnatPpi">pnatPpi</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#PnatTheory">PnatTheory</a> [section, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnat_1">pnat_1</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnat_coprime">pnat_coprime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnat_div">pnat_div</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnat_dvd">pnat_dvd</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnat_pi">pnat_pi</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnat_id">pnat_id</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnat_exp">pnat_exp</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#pnat_mul">pnat_mul</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pnat_exponent">pnat_exponent</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pnElem">pnElem</a> [definition, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pnElemE">pnElemE</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pnElemI">pnElemI</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pnElemJ">pnElemJ</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pnElemP">pnElemP</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pnElemPcard">pnElemPcard</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pnElemS">pnElemS</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pnElem_prime">pnElem_prime</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#pnElem0">pnElem0</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly">poly</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#Poly">Poly</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html">poly</a> [library]<br/>
<a href="mathcomp.algebra.poly.html#polyC">polyC</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyCK">polyCK</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolyCompose">PolyCompose</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolyCompose.R">PolyCompose.R</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#3963cf6cfb5e8b54483fc37af1a6db2d">_ \Po _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyC_inv">polyC_inv</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyC_exp">polyC_exp</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyC_multiplicative">polyC_multiplicative</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyC_mul">polyC_mul</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyC_muln">polyC_muln</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyC_sub">polyC_sub</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyC_opp">polyC_opp</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyC_add">polyC_add</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyC_eq0">polyC_eq0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyC_inj">polyC_inj</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#polyC_mulrz">polyC_mulrz</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyC0">polyC0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyC1">polyC1</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.polydiv.html">polydiv</a> [library]<br/>
<a href="mathcomp.field.closed_field.html#polyF">polyF</a> [definition, in <a href="mathcomp.field.closed_field.html">mathcomp.field.closed_field</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolyK">PolyK</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polynomial">polynomial</a> [record, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#Polynomial">Polynomial</a> [constructor, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#Polynomial">Polynomial</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialComRing">PolynomialComRing</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialComRing.R">PolynomialComRing.R</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialIdomain">PolynomialIdomain</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialIdomain.R">PolynomialIdomain.R</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialTheory">PolynomialTheory</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialTheory.OnePrimitive">PolynomialTheory.OnePrimitive</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialTheory.OnePrimitive.n">PolynomialTheory.OnePrimitive.n</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialTheory.OnePrimitive.n_gt0">PolynomialTheory.OnePrimitive.n_gt0</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialTheory.OnePrimitive.prim_z">PolynomialTheory.OnePrimitive.prim_z</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialTheory.OnePrimitive.z">PolynomialTheory.OnePrimitive.z</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverAdd">PolynomialTheory.PolyOverAdd</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverAdd.addS">PolynomialTheory.PolyOverAdd.addS</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverAdd.kS">PolynomialTheory.PolyOverAdd.kS</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverAdd.S">PolynomialTheory.PolyOverAdd.S</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverRing">PolynomialTheory.PolyOverRing</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialTheory.PolyOverSemiring">PolynomialTheory.PolyOverSemiring</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PolynomialTheory.R">PolynomialTheory.R</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#a942f71ef6e79d81ec1823e85631f18b">_ ^`N ( _ ) (ring_scope)</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#d70b9939cc44180cb082f293ad21429e">_ ^` ( _ ) (ring_scope)</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#2bd58b7fc104e5befe2ca1fecac7c623">_ .-primitive_root (ring_scope)</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#7f47f838360ae58c7843275633f83d07">_ .-unity_root (ring_scope)</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#baba25a9b511327d163a4abdecb45e2a">_ .[ _ ] (ring_scope)</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#9caef92b6a6aef95cfbc4574952f8622">_ ^`</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#4a33fe2dad4a62417624cbe36418a1fe">_ %:P</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#a1cd5f9ec97ed6af469b2ab6da5bc5f9">'X</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#5342abeecce868539daa879464131e00">'X^ _</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#b1bd1c5077c681a8a37f97ae835f4bf6">\poly_ ( _ < _ ) _</a> [notation, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polynomial_choiceMixin">polynomial_choiceMixin</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polynomial_eqMixin">polynomial_eqMixin</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#Polynomial.R">Polynomial.R</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOver">polyOver</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOverC">polyOverC</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOverNr">polyOverNr</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOverP">polyOverP</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOverS">polyOverS</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.field.fieldext.html#polyOverSv">polyOverSv</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOverX">polyOverX</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOverXsubC">polyOverXsubC</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOverZ">polyOverZ</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.field.fieldext.html#polyOver_subvs">polyOver_subvs</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.algebra.intdiv.html#polyOver_dvdzP">polyOver_dvdzP</a> [lemma, in <a href="mathcomp.algebra.intdiv.html">mathcomp.algebra.intdiv</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOver_comp">polyOver_comp</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOver_nderivn">polyOver_nderivn</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOver_derivn">polyOver_derivn</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOver_deriv">polyOver_deriv</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOver_mulr_closed">polyOver_mulr_closed</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOver_addr_closed">polyOver_addr_closed</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOver_poly">polyOver_poly</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOver_key">polyOver_key</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyOver0">polyOver0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.field.falgebra.html#polyOver1P">polyOver1P</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyP">polyP</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyseq">polyseq</a> [projection, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyseqC">polyseqC</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyseqK">polyseqK</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyseqMX">polyseqMX</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyseqMXn">polyseqMXn</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyseqX">polyseqX</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyseqXn">polyseqXn</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyseqXsubC">polyseqXsubC</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyseq_poly">polyseq_poly</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyseq_cons">polyseq_cons</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyseq0">polyseq0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyseq1">polyseq1</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polySpred">polySpred</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyX">polyX</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyXsubC_eq0">polyXsubC_eq0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.polyXY.html">polyXY</a> [library]<br/>
<a href="mathcomp.algebra.polyXY.html#PolyXY_Field.FtoE">PolyXY_Field.FtoE</a> [variable, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#PolyXY_Field.E">PolyXY_Field.E</a> [variable, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#PolyXY_Field.F">PolyXY_Field.F</a> [variable, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#PolyXY_Field">PolyXY_Field</a> [section, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#PolyXY_Idomain.R">PolyXY_Idomain.R</a> [variable, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#PolyXY_Idomain">PolyXY_Idomain</a> [section, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#PolyXY_ComRing.R">PolyXY_ComRing.R</a> [variable, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#PolyXY_ComRing">PolyXY_ComRing</a> [section, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#PolyXY_Ring.R">PolyXY_Ring.R</a> [variable, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#PolyXY_Ring">PolyXY_Ring</a> [section, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyX_eq0">polyX_eq0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyX_key">polyX_key</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#polyX_def">polyX_def</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#PolyZintOIdom">PolyZintOIdom</a> [section, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#PolyZintOIdom.R">PolyZintOIdom.R</a> [variable, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#PolyZintRing">PolyZintRing</a> [section, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#PolyZintRing.R">PolyZintRing.R</a> [variable, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.field.separable.html#poly_square_freeP">poly_square_freeP</a> [lemma, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/>
<a href="mathcomp.field.countalg.html#poly_countMixin">poly_countMixin</a> [definition, in <a href="mathcomp.field.countalg.html">mathcomp.field.countalg</a>]<br/>
<a href="mathcomp.algebra.mxpoly.html#poly_rV_is_linear">poly_rV_is_linear</a> [lemma, in <a href="mathcomp.algebra.mxpoly.html">mathcomp.algebra.mxpoly</a>]<br/>
<a href="mathcomp.algebra.mxpoly.html#poly_rV_K">poly_rV_K</a> [lemma, in <a href="mathcomp.algebra.mxpoly.html">mathcomp.algebra.mxpoly</a>]<br/>
<a href="mathcomp.algebra.mxpoly.html#poly_rV">poly_rV</a> [definition, in <a href="mathcomp.algebra.mxpoly.html">mathcomp.algebra.mxpoly</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#poly_XmY_eq0">poly_XmY_eq0</a> [lemma, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#poly_XaY_eq0">poly_XaY_eq0</a> [lemma, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#poly_XmY0">poly_XmY0</a> [lemma, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#poly_XaY0">poly_XaY0</a> [lemma, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#poly_XmY">poly_XmY</a> [definition, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.polyXY.html#poly_XaY">poly_XaY</a> [definition, in <a href="mathcomp.algebra.polyXY.html">mathcomp.algebra.polyXY</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_invE">poly_invE</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_unitE">poly_unitE</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_comUnitMixin">poly_comUnitMixin</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_inv_out">poly_inv_out</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_intro_unit">poly_intro_unit</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_mulVp">poly_mulVp</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_inv">poly_inv</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_unit">poly_unit</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_idomainAxiom">poly_idomainAxiom</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_mul_comm">poly_mul_comm</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_initial">poly_initial</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_morphX_comm">poly_morphX_comm</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_def">poly_def</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_ind">poly_ind</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_lmodMixin">poly_lmodMixin</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_ringMixin">poly_ringMixin</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_zmodMixin">poly_zmodMixin</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_key">poly_key</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_expanded_def">poly_expanded_def</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_nil">poly_nil</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_of">poly_of</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly_inj">poly_inj</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly0Vpos">poly0Vpos</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly1_neq0">poly1_neq0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#poly2_root">poly2_root</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#pop_succn">pop_succn</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#PosNotEq0">PosNotEq0</a> [constructor, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#posnP">posnP</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#Posz">Posz</a> [constructor, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#PoszD">PoszD</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#PoszM">PoszM</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#pos_of_nat">pos_of_nat</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#powerset">powerset</a> [definition, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#powersetCE">powersetCE</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#powersetE">powersetE</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#powersetI">powersetI</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#powersetS">powersetS</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#powersetT">powersetT</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#powerset0">powerset0</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#powerset1">powerset1</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.algebra.mxpoly.html#powers_mx">powers_mx</a> [definition, in <a href="mathcomp.algebra.mxpoly.html">mathcomp.algebra.mxpoly</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprod">pprod</a> [abbreviation, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprod">pprod</a> [abbreviation, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprodE">pprodE</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprodEY">pprodEY</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprodg1">pprodg1</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprodJ">pprodJ</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprodm">pprodm</a> [definition, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprodmE">pprodmE</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprodmEl">pprodmEl</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprodmEr">pprodmEr</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprodmM">pprodmM</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprodP">pprodP</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprodW">pprodW</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprodWC">pprodWC</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprodWY">pprodWY</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#pprod1g">pprod1g</a> [lemma, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.field.algC.html#pQtoC">pQtoC</a> [abbreviation, in <a href="mathcomp.field.algC.html">mathcomp.field.algC</a>]<br/>
<a href="mathcomp.field.cyclotomic.html#pQtoC">pQtoC</a> [abbreviation, in <a href="mathcomp.field.cyclotomic.html">mathcomp.field.cyclotomic</a>]<br/>
<a href="mathcomp.field.algnum.html#pQtoC">pQtoC</a> [abbreviation, in <a href="mathcomp.field.algnum.html">mathcomp.field.algnum</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#Pquotient">Pquotient</a> [section, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pquotient_pcore">pquotient_pcore</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pquotient_pHall">pquotient_pHall</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pquotient_pgroup">pquotient_pgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#Pquotient.G">Pquotient.G</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#Pquotient.gT">Pquotient.gT</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#Pquotient.H">Pquotient.H</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#Pquotient.K">Pquotient.K</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#Pquotient.p">Pquotient.p</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#Pquotient.pi">Pquotient.pi</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#Pquotient.piK">Pquotient.piK</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.algebra.poly.html#PreClosedField">PreClosedField</a> [module, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PreClosedField.closed_nonrootP">PreClosedField.closed_nonrootP</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PreClosedField.closed_rootP">PreClosedField.closed_rootP</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PreClosedField.UseAxiom">PreClosedField.UseAxiom</a> [section, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PreClosedField.UseAxiom.closedF">PreClosedField.UseAxiom.closedF</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#PreClosedField.UseAxiom.F">PreClosedField.UseAxiom.F</a> [variable, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.ssreflect.fingraph.html#predC_closed">predC_closed</a> [lemma, in <a href="mathcomp.ssreflect.fingraph.html">mathcomp.ssreflect.fingraph</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#predC1">predC1</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#predD1">predD1</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#predD1P">predD1P</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.character.classfun.html#Predicates">Predicates</a> [section, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.character.classfun.html#Predicates.D">Predicates.D</a> [variable, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.character.classfun.html#Predicates.gT">Predicates.gT</a> [variable, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.character.classfun.html#Predicates.R">Predicates.R</a> [variable, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.character.classfun.html#Predicates.rT">Predicates.rT</a> [variable, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#predn">predn</a> [abbreviation, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#prednK">prednK</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.binomial.html#predn_exp">predn_exp</a> [lemma, in <a href="mathcomp.ssreflect.binomial.html">mathcomp.ssreflect.binomial</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#predn_int">predn_int</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#predOfType">predOfType</a> [abbreviation, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#predT_subset">predT_subset</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#predU1">predU1</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#predU1l">predU1l</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#predU1P">predU1P</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#predU1r">predU1r</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#predX">predX</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#predX_prod_enum">predX_prod_enum</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.algebra.vector.html#pred_of_vspace">pred_of_vspace</a> [definition, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.interval.html#pred_of_itv">pred_of_itv</a> [definition, in <a href="mathcomp.algebra.interval.html">mathcomp.algebra.interval</a>]<br/>
<a href="mathcomp.character.character.html#pred_Nirr">pred_Nirr</a> [definition, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#pred_of_set">pred_of_set</a> [abbreviation, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#pred_of_set_def">pred_of_set_def</a> [abbreviation, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#pred0b">pred0b</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#pred0P">pred0P</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#pred0Pn">pred0Pn</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#pred1">pred1</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#pred1E">pred1E</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#pred2">pred2</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#pred2P">pred2P</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#pred3">pred3</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#pred4">pred4</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#prefix_subseq">prefix_subseq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#PreGroupIdentities">PreGroupIdentities</a> [section, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#PreGroupIdentities.T">PreGroupIdentities.T</a> [variable, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#preimset">preimset</a> [definition, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#preimsetC">preimsetC</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#preimsetD">preimsetD</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#preimsetI">preimsetI</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#preimsetS">preimsetS</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#preimsetT">preimsetT</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#preimsetU">preimsetU</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#preimset_proper">preimset_proper</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#preimset0">preimset0</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.fingroup.perm.html#preim_permV">preim_permV</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#preim_autE">preim_autE</a> [lemma, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#preim_seq">preim_seq</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#preim_iinv">preim_iinv</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#preim_partition_pblock">preim_partition_pblock</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#preim_partitionP">preim_partitionP</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#preim_partition">preim_partition</a> [definition, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation">Presentation</a> [module, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html">presentation</a> [library]<br/>
<a href="mathcomp.fingroup.presentation.html#PresentationTheory">PresentationTheory</a> [section, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.And">Presentation.And</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.and_rel">Presentation.and_rel</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.bool_of_rel">Presentation.bool_of_rel</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Cast">Presentation.Cast</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Comm">Presentation.Comm</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Conj">Presentation.Conj</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Cst">Presentation.Cst</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Env">Presentation.Env</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.env">Presentation.env</a> [inductive, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.env1">Presentation.env1</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Eq1">Presentation.Eq1</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Eq2">Presentation.Eq2</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Eq3">Presentation.Eq3</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.eval">Presentation.eval</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Exp">Presentation.Exp</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Formula">Presentation.Formula</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.formula">Presentation.formula</a> [inductive, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Generator">Presentation.Generator</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.hom">Presentation.hom</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Idx">Presentation.Idx</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Inv">Presentation.Inv</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.iso">Presentation.iso</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Mul">Presentation.Mul</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.NoRel">Presentation.NoRel</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Presentation">Presentation.Presentation</a> [section, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.rel">Presentation.rel</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.Rel">Presentation.Rel</a> [constructor, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.rel_type">Presentation.rel_type</a> [inductive, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.sat">Presentation.sat</a> [definition, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.term">Presentation.term</a> [inductive, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.fingroup.presentation.html#Presentation.type">Presentation.type</a> [inductive, in <a href="mathcomp.fingroup.presentation.html">mathcomp.fingroup.presentation</a>]<br/>
<a href="mathcomp.ssreflect.path.html#prev">prev</a> [definition, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#prev_map">prev_map</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#prev_rev">prev_rev</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#prev_rotr">prev_rotr</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#prev_rot">prev_rot</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#prev_next">prev_next</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#prev_cycle">prev_cycle</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#prev_nth">prev_nth</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#prev_at">prev_at</a> [definition, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#pre_image">pre_image</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#prime">prime</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html">prime</a> [library]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar">PrimeChar</a> [section, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeCharType">PrimeCharType</a> [definition, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#primeChar_dimf">primeChar_dimf</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#primeChar_vectMixin">primeChar_vectMixin</a> [definition, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#primeChar_vectAxiom">primeChar_vectAxiom</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#primeChar_pgroup">primeChar_pgroup</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#primeChar_abelem">primeChar_abelem</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#primeChar_scaleAr">primeChar_scaleAr</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#primeChar_scaleAl">primeChar_scaleAl</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#primeChar_lmodMixin">primeChar_lmodMixin</a> [definition, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#primeChar_scaleDl">primeChar_scaleDl</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#primeChar_scaleDr">primeChar_scaleDr</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#primeChar_scale1">primeChar_scale1</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#primeChar_scaleA">primeChar_scaleA</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#primeChar_scale">primeChar_scale</a> [definition, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar.FinField">PrimeChar.FinField</a> [section, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar.FinField.charFp">PrimeChar.FinField.charFp</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar.FinField.F0">PrimeChar.FinField.F0</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar.FinRing">PrimeChar.FinRing</a> [section, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar.FinRing.charRp">PrimeChar.FinRing.charRp</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar.FinRing.n">PrimeChar.FinRing.n</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar.FinRing.pr_p">PrimeChar.FinRing.pr_p</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar.FinRing.R0">PrimeChar.FinRing.R0</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar.p">PrimeChar.p</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar.PrimeCharRing">PrimeChar.PrimeCharRing</a> [section, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar.PrimeCharRing.charRp">PrimeChar.PrimeCharRing.charRp</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar.PrimeCharRing.natrFp">PrimeChar.PrimeCharRing.natrFp</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimeChar.PrimeCharRing.R0">PrimeChar.PrimeCharRing.R0</a> [variable, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.field.finfield.html#5f6f59b8095d2eaa0b5a55ed9129580f">_ *p: _</a> [notation, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.algebra.zmodp.html#PrimeField">PrimeField</a> [section, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/>
<a href="mathcomp.algebra.zmodp.html#PrimeField.F_prime.p_pr">PrimeField.F_prime.p_pr</a> [variable, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/>
<a href="mathcomp.algebra.zmodp.html#PrimeField.F_prime">PrimeField.F_prime</a> [section, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/>
<a href="mathcomp.algebra.zmodp.html#PrimeField.p">PrimeField.p</a> [variable, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#primeP">primeP</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#primePn">primePn</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#primePns">primePns</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.field.finfield.html#PrimePowerField">PrimePowerField</a> [lemma, in <a href="mathcomp.field.finfield.html">mathcomp.field.finfield</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#primes">primes</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.character.integral_char.html#primes_class_simple_gt1">primes_class_simple_gt1</a> [lemma, in <a href="mathcomp.character.integral_char.html">mathcomp.character.integral_char</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#primes_part">primes_part</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#primes_prime">primes_prime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#primes_exp">primes_exp</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#primes_mul">primes_mul</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#primes_uniq">primes_uniq</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.solvable.abelian.html#primes_exponent">primes_exponent</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#prime_subgroupVti">prime_subgroupVti</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.ssreflect.binomial.html#prime_dvd_bin">prime_dvd_bin</a> [lemma, in <a href="mathcomp.ssreflect.binomial.html">mathcomp.ssreflect.binomial</a>]<br/>
<a href="mathcomp.solvable.frobenius.html#prime_FrobeniusP">prime_FrobeniusP</a> [lemma, in <a href="mathcomp.solvable.frobenius.html">mathcomp.solvable.frobenius</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#prime_decompE">prime_decompE</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#prime_above">prime_above</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#prime_coprime">prime_coprime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#prime_oddPn">prime_oddPn</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#prime_gt0">prime_gt0</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#prime_gt1">prime_gt1</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#prime_nt_dvdP">prime_nt_dvdP</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#prime_decomp_correct">prime_decomp_correct</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#prime_decomp">prime_decomp</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#07e1474be9be12fc282844ac903c103e">[ rec _ , _ , _ , _ , _ , _ ]</a> [notation, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#prime_decomp_rec">prime_decomp_rec</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#prime_decomp">prime_decomp</a> [section, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#prime_idealrM">prime_idealrM</a> [lemma, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#prime_idealr_zmod">prime_idealr_zmod</a> [projection, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#prime_idealr">prime_idealr</a> [record, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#prime_idealr_closed">prime_idealr_closed</a> [definition, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.solvable.extremal.html#prime_Ohm1P">prime_Ohm1P</a> [lemma, in <a href="mathcomp.solvable.extremal.html">mathcomp.solvable.extremal</a>]<br/>
<a href="mathcomp.character.inertia.html#prime_invariant_irr_extendible">prime_invariant_irr_extendible</a> [lemma, in <a href="mathcomp.character.inertia.html">mathcomp.character.inertia</a>]<br/>
<a href="mathcomp.solvable.abelian.html#prime_abelem">prime_abelem</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#prime_meetG">prime_meetG</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#prime_TIg">prime_TIg</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.solvable.cyclic.html#prime_cyclic">prime_cyclic</a> [lemma, in <a href="mathcomp.solvable.cyclic.html">mathcomp.solvable.cyclic</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#Primitive">Primitive</a> [section, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#primitive">primitive</a> [definition, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#PrimitiveDef">PrimitiveDef</a> [section, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#PrimitiveDef.A">PrimitiveDef.A</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#PrimitiveDef.aT">PrimitiveDef.aT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#PrimitiveDef.S">PrimitiveDef.S</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#PrimitiveDef.sT">PrimitiveDef.sT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#PrimitiveDef.to">PrimitiveDef.to</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.cyclic.html#PrimitiveRoots">PrimitiveRoots</a> [section, in <a href="mathcomp.solvable.cyclic.html">mathcomp.solvable.cyclic</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#primitive_root_splitting_abelian">primitive_root_splitting_abelian</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.field.separable.html#Primitive_Element_Theorem">Primitive_Element_Theorem</a> [lemma, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/>
<a href="mathcomp.algebra.poly.html#primitive_root_of_unity">primitive_root_of_unity</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html">primitive_action</a> [library]<br/>
<a href="mathcomp.solvable.primitive_action.html#Primitive.aT">Primitive.aT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#Primitive.G">Primitive.G</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#Primitive.S">Primitive.S</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#Primitive.sT">Primitive.sT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#Primitive.to">Primitive.to</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#prim_trans_norm">prim_trans_norm</a> [lemma, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.algebra.poly.html#prim_rootP">prim_rootP</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#prim_root_exp_coprime">prim_root_exp_coprime</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#prim_order_dvd">prim_order_dvd</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#prim_expr_mod">prim_expr_mod</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#prim_expr_order">prim_expr_order</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#prim_order_gt0">prim_order_gt0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#prim_order_exists">prim_order_exists</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#principal_comp">principal_comp</a> [definition, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#principal_comp_def">principal_comp_def</a> [definition, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#principal_comp_key">principal_comp_key</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#principal_comp_subproof">principal_comp_subproof</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#ProdEqType">ProdEqType</a> [section, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#ProdEqType.T1">ProdEqType.T1</a> [variable, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#ProdEqType.T2">ProdEqType.T2</a> [variable, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#ProdFinType">ProdFinType</a> [section, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#ProdFinType.T1">ProdFinType.T1</a> [variable, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#ProdFinType.T2">ProdFinType.T2</a> [variable, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph">ProdMorph</a> [section, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm">ProdMorph.Cprodm</a> [section, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.cfHK">ProdMorph.Cprodm.cfHK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.eqfHK">ProdMorph.Cprodm.eqfHK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.eqHK_G">ProdMorph.Cprodm.eqHK_G</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.fH">ProdMorph.Cprodm.fH</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.fK">ProdMorph.Cprodm.fK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.G">ProdMorph.Cprodm.G</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.H">ProdMorph.Cprodm.H</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Cprodm.K">ProdMorph.Cprodm.K</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.defs">ProdMorph.defs</a> [section, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.defs.A">ProdMorph.defs.A</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.defs.B">ProdMorph.defs.B</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.defs.fA">ProdMorph.defs.fA</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.defs.fB">ProdMorph.defs.fB</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm">ProdMorph.Dprodm</a> [section, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.cfHK">ProdMorph.Dprodm.cfHK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.eqHK_G">ProdMorph.Dprodm.eqHK_G</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.fH">ProdMorph.Dprodm.fH</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.fK">ProdMorph.Dprodm.fK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.G">ProdMorph.Dprodm.G</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.H">ProdMorph.Dprodm.H</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Dprodm.K">ProdMorph.Dprodm.K</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.gT">ProdMorph.gT</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props">ProdMorph.Props</a> [section, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.actf">ProdMorph.Props.actf</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.eqfHK">ProdMorph.Props.eqfHK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.fH">ProdMorph.Props.fH</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.fK">ProdMorph.Props.fK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.H">ProdMorph.Props.H</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.K">ProdMorph.Props.K</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Props.nHK">ProdMorph.Props.nHK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.rT">ProdMorph.rT</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm">ProdMorph.Sdprodm</a> [section, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.actf">ProdMorph.Sdprodm.actf</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.eqHK_G">ProdMorph.Sdprodm.eqHK_G</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.fH">ProdMorph.Sdprodm.fH</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.fK">ProdMorph.Sdprodm.fK</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.G">ProdMorph.Sdprodm.G</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.H">ProdMorph.Sdprodm.H</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.fingroup.gproduct.html#ProdMorph.Sdprodm.K">ProdMorph.Sdprodm.K</a> [variable, in <a href="mathcomp.fingroup.gproduct.html">mathcomp.fingroup.gproduct</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#prodMz">prodMz</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.ssreflect.bigop.html#prodn_gt0">prodn_gt0</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/>
<a href="mathcomp.ssreflect.bigop.html#prodn_cond_gt0">prodn_cond_gt0</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#prodsgP">prodsgP</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.character.classfun.html#Product">Product</a> [section, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.solvable.center.html#Product">Product</a> [section, in <a href="mathcomp.solvable.center.html">mathcomp.solvable.center</a>]<br/>
<a href="mathcomp.character.classfun.html#Product.G">Product.G</a> [variable, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.character.classfun.html#Product.gT">Product.gT</a> [variable, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.solvable.center.html#Product.gT">Product.gT</a> [variable, in <a href="mathcomp.solvable.center.html">mathcomp.solvable.center</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodv">prodv</a> [definition, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodvA">prodvA</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.fieldext.html#prodvAC">prodvAC</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.field.fieldext.html#prodvC">prodvC</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.field.fieldext.html#prodvCA">prodvCA</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodvDl">prodvDl</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodvDr">prodvDr</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.algebra.vector.html#ProdVector">ProdVector</a> [section, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#ProdVector.R">ProdVector.R</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#ProdVector.vT1">ProdVector.vT1</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#ProdVector.vT2">ProdVector.vT2</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodvP">prodvP</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodvS">prodvS</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodvSl">prodvSl</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodvSr">prodvSr</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.fieldext.html#prodv_is_aspace">prodv_is_aspace</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodv_sub">prodv_sub</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodv_id">prodv_id</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodv_line">prodv_line</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodv_key">prodv_key</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodv0">prodv0</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.falgebra.html#prodv1">prodv1</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#prod_constt">prod_constt</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.fingroup.perm.html#prod_tpermP">prod_tpermP</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#prod_prime_decomp">prod_prime_decomp</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.field.cyclotomic.html#prod_Cyclotomic">prod_Cyclotomic</a> [lemma, in <a href="mathcomp.field.cyclotomic.html">mathcomp.field.cyclotomic</a>]<br/>
<a href="mathcomp.field.cyclotomic.html#prod_cyclotomic">prod_cyclotomic</a> [lemma, in <a href="mathcomp.field.cyclotomic.html">mathcomp.field.cyclotomic</a>]<br/>
<a href="mathcomp.character.character.html#prod_repr_lin">prod_repr_lin</a> [lemma, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/>
<a href="mathcomp.character.character.html#prod_repr">prod_repr</a> [definition, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/>
<a href="mathcomp.character.character.html#prod_mx_repr">prod_mx_repr</a> [lemma, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#prod_countMixin">prod_countMixin</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#prod_choiceMixin">prod_choiceMixin</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#prod_finMixin">prod_finMixin</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#prod_enumP">prod_enumP</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#prod_enum">prod_enum</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.character.classfun.html#prod_cfunE">prod_cfunE</a> [lemma, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.ssreflect.bigop.html#prod_nat_const_nat">prod_nat_const_nat</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/>
<a href="mathcomp.ssreflect.bigop.html#prod_nat_const">prod_nat_const</a> [lemma, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#prod_eqMixin">prod_eqMixin</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.solvable.burnside_app.html#prod_t_correct">prod_t_correct</a> [lemma, in <a href="mathcomp.solvable.burnside_app.html">mathcomp.solvable.burnside_app</a>]<br/>
<a href="mathcomp.solvable.burnside_app.html#prod_tuple">prod_tuple</a> [definition, in <a href="mathcomp.solvable.burnside_app.html">mathcomp.solvable.burnside_app</a>]<br/>
<a href="mathcomp.field.falgebra.html#prod0v">prod0v</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.falgebra.html#prod1v">prod1v</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.algebra.vector.html#Projection">Projection</a> [section, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#Projection.K">Projection.K</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.defV">Projection.Sumv_Pi.defV</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.V">Projection.Sumv_Pi.V</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.sumv_pi_rec">Projection.Sumv_Pi.sumv_pi_rec</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.Vs">Projection.Sumv_Pi.Vs</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.P">Projection.Sumv_Pi.P</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.r0">Projection.Sumv_Pi.r0</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi.I">Projection.Sumv_Pi.I</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#Projection.Sumv_Pi">Projection.Sumv_Pi</a> [section, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#Projection.vT">Projection.vT</a> [variable, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#projv">projv</a> [definition, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#projv_proj">projv_proj</a> [lemma, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#projv_id">projv_id</a> [lemma, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#proj_mx_hom">proj_mx_hom</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#proj_factmodS">proj_factmodS</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#proj_mx_proj">proj_mx_proj</a> [lemma, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#proj_mx_0">proj_mx_0</a> [lemma, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#proj_mx_id">proj_mx_id</a> [lemma, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#proj_mx_compl_sub">proj_mx_compl_sub</a> [lemma, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#proj_mx_sub">proj_mx_sub</a> [lemma, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#proj_mx">proj_mx</a> [definition, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#proper">proper</a> [definition, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.field.falgebra.html#Proper">Proper</a> [section, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#properD">properD</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#properD1">properD1</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#properE">properE</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#properEcard">properEcard</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#properEneq">properEneq</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#properG_ltn_log">properG_ltn_log</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#properI">properI</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#properIl">properIl</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#properIr">properIr</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#properIset">properIset</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#properJ">properJ</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#ProperMxsum">ProperMxsum</a> [constructor, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#ProperMxsumExpr">ProperMxsumExpr</a> [constructor, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#properP">properP</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.algebra.vector.html#ProperSumvExpr">ProperSumvExpr</a> [constructor, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#properT">properT</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#PropertiesDefs">PropertiesDefs</a> [section, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#PropertiesDefs.A">PropertiesDefs.A</a> [variable, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#PropertiesDefs.gT">PropertiesDefs.gT</a> [variable, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#properU">properU</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#properUl">properUl</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#properUr">properUr</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#properxx">properxx</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.algebra.vector.html#proper_addvP">proper_addvP</a> [definition, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#proper_addv_dim">proper_addv_dim</a> [projection, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#proper_addv_val">proper_addv_val</a> [projection, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#proper_addv_expr">proper_addv_expr</a> [record, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.ring_quotient.html#proper_ideal">proper_ideal</a> [definition, in <a href="mathcomp.algebra.ring_quotient.html">mathcomp.algebra.ring_quotient</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#proper_irrefl">proper_irrefl</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#proper_card">proper_card</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#proper_sub_trans">proper_sub_trans</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#proper_trans">proper_trans</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#proper_subn">proper_subn</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#proper_sub">proper_sub</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#proper_mxsumP">proper_mxsumP</a> [definition, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#proper_mxsum_rank">proper_mxsum_rank</a> [projection, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#proper_mxsum_val">proper_mxsum_val</a> [projection, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#proper_mxsum_expr">proper_mxsum_expr</a> [record, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#proper_neq">proper_neq</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.field.falgebra.html#Proper.aT">Proper.aT</a> [variable, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.field.falgebra.html#Proper.R">Proper.R</a> [variable, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#proper0">proper0</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#proper1G">proper1G</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.ssreflect.finset.html#proper1set">proper1set</a> [lemma, in <a href="mathcomp.ssreflect.finset.html">mathcomp.ssreflect.finset</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries">pseries</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PseriesDefs">PseriesDefs</a> [section, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PseriesDefs.A">PseriesDefs.A</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PseriesDefs.gT">PseriesDefs.gT</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#PseriesDefs.pis">PseriesDefs.pis</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseriesJ">pseriesJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseriesS">pseriesS</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_rcons_id">pseries_rcons_id</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_char_catr">pseries_char_catr</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_catr_id">pseries_catr_id</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_char_catl">pseries_char_catl</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_catl_id">pseries_catl_id</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_sub_catr">pseries_sub_catr</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_norm2">pseries_norm2</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_sub_catl">pseries_sub_catl</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_pop2">pseries_pop2</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_pop">pseries_pop</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_normal">pseries_normal</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_char">pseries_char</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_sub">pseries_sub</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_subfun">pseries_subfun</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_rcons">pseries_rcons</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries_group_set">pseries_group_set</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#pseries1">pseries1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#psubgroup">psubgroup</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#psubgroupJ">psubgroupJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#psubgroup1">psubgroup1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.fingroup.perm.html#pT">pT</a> [abbreviation, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.field.separable.html#purely_inseparable_trans">purely_inseparable_trans</a> [lemma, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/>
<a href="mathcomp.field.separable.html#purely_inseparable_refl">purely_inseparable_refl</a> [lemma, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/>
<a href="mathcomp.field.separable.html#purely_inseparableP">purely_inseparableP</a> [lemma, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/>
<a href="mathcomp.field.separable.html#purely_inseparable">purely_inseparable</a> [definition, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/>
<a href="mathcomp.field.separable.html#purely_inseparable_elementP">purely_inseparable_elementP</a> [lemma, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/>
<a href="mathcomp.field.separable.html#purely_inseparable_element">purely_inseparable_element</a> [definition, in <a href="mathcomp.field.separable.html">mathcomp.field.separable</a>]<br/>
<a href="mathcomp.fingroup.perm.html#pval">pval</a> [definition, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.fingroup.perm.html#pvalE">pvalE</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.field.galois.html#Px">Px</a> [abbreviation, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#pX1p2id">pX1p2id</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#pX1p2n_extraspecial">pX1p2n_extraspecial</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#pX1p2n_pgroup">pX1p2n_pgroup</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#pX1p2S">pX1p2S</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#pX1p2_extraspecial">pX1p2_extraspecial</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#pX1p2_pgroup">pX1p2_pgroup</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.field.algC.html#pZtoC">pZtoC</a> [abbreviation, in <a href="mathcomp.field.algC.html">mathcomp.field.algC</a>]<br/>
<a href="mathcomp.field.cyclotomic.html#pZtoC">pZtoC</a> [abbreviation, in <a href="mathcomp.field.cyclotomic.html">mathcomp.field.cyclotomic</a>]<br/>
<a href="mathcomp.field.algnum.html#pZtoC">pZtoC</a> [abbreviation, in <a href="mathcomp.field.algnum.html">mathcomp.field.algnum</a>]<br/>
<a href="mathcomp.field.algC.html#pZtoQ">pZtoQ</a> [abbreviation, in <a href="mathcomp.field.algC.html">mathcomp.field.algC</a>]<br/>
<a href="mathcomp.algebra.intdiv.html#pZtoQ">pZtoQ</a> [abbreviation, in <a href="mathcomp.algebra.intdiv.html">mathcomp.algebra.intdiv</a>]<br/>
<a href="mathcomp.field.cyclotomic.html#pZtoQ">pZtoQ</a> [abbreviation, in <a href="mathcomp.field.cyclotomic.html">mathcomp.field.cyclotomic</a>]<br/>
<a href="mathcomp.field.algnum.html#pZtoQ">pZtoQ</a> [abbreviation, in <a href="mathcomp.field.algnum.html">mathcomp.field.algnum</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_elt_constt">p_elt_constt</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_eltNK">p_eltNK</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_eltJ">p_eltJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_eltX">p_eltX</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_eltV">p_eltV</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_elt1">p_elt1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_eltM">p_eltM</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_eltM_norm">p_eltM_norm</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_elt_exp">p_elt_exp</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_group1">p_group1</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_Sylow">p_Sylow</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_groupJ">p_groupJ</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_groupP">p_groupP</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_elt">p_elt</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p_group">p_group</a> [definition, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#p_natP">p_natP</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#p_part_gt1">p_part_gt1</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#p_part_eq1">p_part_eq1</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#p_part">p_part</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.algebra.mxpoly.html#p_A">p_A</a> [abbreviation, in <a href="mathcomp.algebra.mxpoly.html">mathcomp.algebra.mxpoly</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_abelian">p_rank_abelian</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_Ohm1">p_rank_Ohm1</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_p'quotient">p_rank_p'quotient</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_dprod">p_rank_dprod</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_quotient">p_rank_quotient</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_le_rank">p_rank_le_rank</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_pmaxElem_exists">p_rank_pmaxElem_exists</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_Hall">p_rank_Hall</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_Sylow">p_rank_Sylow</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rankJ">p_rankJ</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rankElem_max">p_rankElem_max</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rankS">p_rankS</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_abelem">p_rank_abelem</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_le_logn">p_rank_le_logn</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank1">p_rank1</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_gt0">p_rank_gt0</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_geP">p_rank_geP</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank_witness">p_rank_witness</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p_rank">p_rank</a> [definition, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.maximal.html#p_abelem_split1">p_abelem_split1</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#p_core_Fitting">p_core_Fitting</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#p_index_maximal">p_index_maximal</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#p_maximal_index">p_maximal_index</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.maximal.html#p_maximal_normal">p_maximal_normal</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p'groupEpi">p'groupEpi</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p'group_quotient_cent_prime">p'group_quotient_cent_prime</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#p'natE">p'natE</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#p'natEpi">p'natEpi</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#p'nat_coprime">p'nat_coprime</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#p'_elt_constt">p'_elt_constt</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p1ElemE">p1ElemE</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#p2Elem_dprodP">p2Elem_dprodP</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.sylow.html#p2group_abelian">p2group_abelian</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.maximal.html#p3group_extraspecial">p3group_extraspecial</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<br/><br/><hr/><table>
<tr>
<td>Global Index</td>
<td><a href="index_global_A.html">A</a></td>
<td><a href="index_global_B.html">B</a></td>
<td><a href="index_global_C.html">C</a></td>
<td><a href="index_global_D.html">D</a></td>
<td><a href="index_global_E.html">E</a></td>
<td><a href="index_global_F.html">F</a></td>
<td><a href="index_global_G.html">G</a></td>
<td><a href="index_global_H.html">H</a></td>
<td><a href="index_global_I.html">I</a></td>
<td><a href="index_global_J.html">J</a></td>
<td><a href="index_global_K.html">K</a></td>
<td><a href="index_global_L.html">L</a></td>
<td><a href="index_global_M.html">M</a></td>
<td><a href="index_global_N.html">N</a></td>
<td><a href="index_global_O.html">O</a></td>
<td><a href="index_global_P.html">P</a></td>
<td><a href="index_global_Q.html">Q</a></td>
<td><a href="index_global_R.html">R</a></td>
<td><a href="index_global_S.html">S</a></td>
<td><a href="index_global_T.html">T</a></td>
<td><a href="index_global_U.html">U</a></td>
<td><a href="index_global_V.html">V</a></td>
<td><a href="index_global_W.html">W</a></td>
<td><a href="index_global_X.html">X</a></td>
<td>Y</td>
<td><a href="index_global_Z.html">Z</a></td>
<td>_</td>
<td><a href="index_global_*.html">other</a></td>
<td>(23233 entries)</td>
</tr>
<tr>
<td>Notation Index</td>
<td><a href="index_notation_A.html">A</a></td>
<td><a href="index_notation_B.html">B</a></td>
<td><a href="index_notation_C.html">C</a></td>
<td><a href="index_notation_D.html">D</a></td>
<td><a href="index_notation_E.html">E</a></td>
<td><a href="index_notation_F.html">F</a></td>
<td><a href="index_notation_G.html">G</a></td>
<td>H</td>
<td><a href="index_notation_I.html">I</a></td>
<td>J</td>
<td><a href="index_notation_K.html">K</a></td>
<td><a href="index_notation_L.html">L</a></td>
<td><a href="index_notation_M.html">M</a></td>
<td><a href="index_notation_N.html">N</a></td>
<td>O</td>
<td><a href="index_notation_P.html">P</a></td>
<td><a href="index_notation_Q.html">Q</a></td>
<td><a href="index_notation_R.html">R</a></td>
<td><a href="index_notation_S.html">S</a></td>
<td>T</td>
<td><a href="index_notation_U.html">U</a></td>
<td><a href="index_notation_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_notation_Z.html">Z</a></td>
<td>_</td>
<td><a href="index_notation_*.html">other</a></td>
<td>(1373 entries)</td>
</tr>
<tr>
<td>Module Index</td>
<td><a href="index_module_A.html">A</a></td>
<td><a href="index_module_B.html">B</a></td>
<td><a href="index_module_C.html">C</a></td>
<td>D</td>
<td><a href="index_module_E.html">E</a></td>
<td><a href="index_module_F.html">F</a></td>
<td><a href="index_module_G.html">G</a></td>
<td>H</td>
<td><a href="index_module_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td><a href="index_module_M.html">M</a></td>
<td><a href="index_module_N.html">N</a></td>
<td>O</td>
<td><a href="index_module_P.html">P</a></td>
<td><a href="index_module_Q.html">Q</a></td>
<td><a href="index_module_R.html">R</a></td>
<td><a href="index_module_S.html">S</a></td>
<td>T</td>
<td><a href="index_module_U.html">U</a></td>
<td><a href="index_module_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>_</td>
<td>other</td>
<td>(213 entries)</td>
</tr>
<tr>
<td>Variable Index</td>
<td><a href="index_variable_A.html">A</a></td>
<td><a href="index_variable_B.html">B</a></td>
<td><a href="index_variable_C.html">C</a></td>
<td><a href="index_variable_D.html">D</a></td>
<td><a href="index_variable_E.html">E</a></td>
<td><a href="index_variable_F.html">F</a></td>
<td><a href="index_variable_G.html">G</a></td>
<td><a href="index_variable_H.html">H</a></td>
<td><a href="index_variable_I.html">I</a></td>
<td>J</td>
<td><a href="index_variable_K.html">K</a></td>
<td><a href="index_variable_L.html">L</a></td>
<td><a href="index_variable_M.html">M</a></td>
<td><a href="index_variable_N.html">N</a></td>
<td><a href="index_variable_O.html">O</a></td>
<td><a href="index_variable_P.html">P</a></td>
<td><a href="index_variable_Q.html">Q</a></td>
<td><a href="index_variable_R.html">R</a></td>
<td><a href="index_variable_S.html">S</a></td>
<td><a href="index_variable_T.html">T</a></td>
<td><a href="index_variable_U.html">U</a></td>
<td><a href="index_variable_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_variable_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(3475 entries)</td>
</tr>
<tr>
<td>Library Index</td>
<td><a href="index_library_A.html">A</a></td>
<td><a href="index_library_B.html">B</a></td>
<td><a href="index_library_C.html">C</a></td>
<td><a href="index_library_D.html">D</a></td>
<td><a href="index_library_E.html">E</a></td>
<td><a href="index_library_F.html">F</a></td>
<td><a href="index_library_G.html">G</a></td>
<td><a href="index_library_H.html">H</a></td>
<td><a href="index_library_I.html">I</a></td>
<td><a href="index_library_J.html">J</a></td>
<td>K</td>
<td>L</td>
<td><a href="index_library_M.html">M</a></td>
<td><a href="index_library_N.html">N</a></td>
<td>O</td>
<td><a href="index_library_P.html">P</a></td>
<td><a href="index_library_Q.html">Q</a></td>
<td><a href="index_library_R.html">R</a></td>
<td><a href="index_library_S.html">S</a></td>
<td><a href="index_library_T.html">T</a></td>
<td>U</td>
<td><a href="index_library_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_library_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(89 entries)</td>
</tr>
<tr>
<td>Lemma Index</td>
<td><a href="index_lemma_A.html">A</a></td>
<td><a href="index_lemma_B.html">B</a></td>
<td><a href="index_lemma_C.html">C</a></td>
<td><a href="index_lemma_D.html">D</a></td>
<td><a href="index_lemma_E.html">E</a></td>
<td><a href="index_lemma_F.html">F</a></td>
<td><a href="index_lemma_G.html">G</a></td>
<td><a href="index_lemma_H.html">H</a></td>
<td><a href="index_lemma_I.html">I</a></td>
<td><a href="index_lemma_J.html">J</a></td>
<td><a href="index_lemma_K.html">K</a></td>
<td><a href="index_lemma_L.html">L</a></td>
<td><a href="index_lemma_M.html">M</a></td>
<td><a href="index_lemma_N.html">N</a></td>
<td><a href="index_lemma_O.html">O</a></td>
<td><a href="index_lemma_P.html">P</a></td>
<td><a href="index_lemma_Q.html">Q</a></td>
<td><a href="index_lemma_R.html">R</a></td>
<td><a href="index_lemma_S.html">S</a></td>
<td><a href="index_lemma_T.html">T</a></td>
<td><a href="index_lemma_U.html">U</a></td>
<td><a href="index_lemma_V.html">V</a></td>
<td><a href="index_lemma_W.html">W</a></td>
<td><a href="index_lemma_X.html">X</a></td>
<td>Y</td>
<td><a href="index_lemma_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(11853 entries)</td>
</tr>
<tr>
<td>Constructor Index</td>
<td><a href="index_constructor_A.html">A</a></td>
<td><a href="index_constructor_B.html">B</a></td>
<td><a href="index_constructor_C.html">C</a></td>
<td><a href="index_constructor_D.html">D</a></td>
<td><a href="index_constructor_E.html">E</a></td>
<td><a href="index_constructor_F.html">F</a></td>
<td><a href="index_constructor_G.html">G</a></td>
<td><a href="index_constructor_H.html">H</a></td>
<td><a href="index_constructor_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td><a href="index_constructor_L.html">L</a></td>
<td><a href="index_constructor_M.html">M</a></td>
<td><a href="index_constructor_N.html">N</a></td>
<td><a href="index_constructor_O.html">O</a></td>
<td><a href="index_constructor_P.html">P</a></td>
<td><a href="index_constructor_Q.html">Q</a></td>
<td><a href="index_constructor_R.html">R</a></td>
<td><a href="index_constructor_S.html">S</a></td>
<td><a href="index_constructor_T.html">T</a></td>
<td><a href="index_constructor_U.html">U</a></td>
<td><a href="index_constructor_V.html">V</a></td>
<td>W</td>
<td><a href="index_constructor_X.html">X</a></td>
<td>Y</td>
<td><a href="index_constructor_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(359 entries)</td>
</tr>
<tr>
<td>Axiom Index</td>
<td><a href="index_axiom_A.html">A</a></td>
<td><a href="index_axiom_B.html">B</a></td>
<td><a href="index_axiom_C.html">C</a></td>
<td>D</td>
<td><a href="index_axiom_E.html">E</a></td>
<td><a href="index_axiom_F.html">F</a></td>
<td>G</td>
<td>H</td>
<td><a href="index_axiom_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td><a href="index_axiom_P.html">P</a></td>
<td>Q</td>
<td><a href="index_axiom_R.html">R</a></td>
<td><a href="index_axiom_S.html">S</a></td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>_</td>
<td>other</td>
<td>(47 entries)</td>
</tr>
<tr>
<td>Inductive Index</td>
<td><a href="index_inductive_A.html">A</a></td>
<td><a href="index_inductive_B.html">B</a></td>
<td><a href="index_inductive_C.html">C</a></td>
<td><a href="index_inductive_D.html">D</a></td>
<td><a href="index_inductive_E.html">E</a></td>
<td><a href="index_inductive_F.html">F</a></td>
<td><a href="index_inductive_G.html">G</a></td>
<td><a href="index_inductive_H.html">H</a></td>
<td><a href="index_inductive_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td><a href="index_inductive_L.html">L</a></td>
<td><a href="index_inductive_M.html">M</a></td>
<td><a href="index_inductive_N.html">N</a></td>
<td><a href="index_inductive_O.html">O</a></td>
<td><a href="index_inductive_P.html">P</a></td>
<td>Q</td>
<td><a href="index_inductive_R.html">R</a></td>
<td><a href="index_inductive_S.html">S</a></td>
<td><a href="index_inductive_T.html">T</a></td>
<td><a href="index_inductive_U.html">U</a></td>
<td><a href="index_inductive_V.html">V</a></td>
<td>W</td>
<td><a href="index_inductive_X.html">X</a></td>
<td>Y</td>
<td>Z</td>
<td>_</td>
<td>other</td>
<td>(103 entries)</td>
</tr>
<tr>
<td>Projection Index</td>
<td><a href="index_projection_A.html">A</a></td>
<td><a href="index_projection_B.html">B</a></td>
<td><a href="index_projection_C.html">C</a></td>
<td>D</td>
<td><a href="index_projection_E.html">E</a></td>
<td><a href="index_projection_F.html">F</a></td>
<td><a href="index_projection_G.html">G</a></td>
<td>H</td>
<td><a href="index_projection_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td><a href="index_projection_M.html">M</a></td>
<td><a href="index_projection_N.html">N</a></td>
<td>O</td>
<td><a href="index_projection_P.html">P</a></td>
<td><a href="index_projection_Q.html">Q</a></td>
<td><a href="index_projection_R.html">R</a></td>
<td><a href="index_projection_S.html">S</a></td>
<td><a href="index_projection_T.html">T</a></td>
<td><a href="index_projection_U.html">U</a></td>
<td><a href="index_projection_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_projection_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(266 entries)</td>
</tr>
<tr>
<td>Section Index</td>
<td><a href="index_section_A.html">A</a></td>
<td><a href="index_section_B.html">B</a></td>
<td><a href="index_section_C.html">C</a></td>
<td><a href="index_section_D.html">D</a></td>
<td><a href="index_section_E.html">E</a></td>
<td><a href="index_section_F.html">F</a></td>
<td><a href="index_section_G.html">G</a></td>
<td><a href="index_section_H.html">H</a></td>
<td><a href="index_section_I.html">I</a></td>
<td>J</td>
<td><a href="index_section_K.html">K</a></td>
<td><a href="index_section_L.html">L</a></td>
<td><a href="index_section_M.html">M</a></td>
<td><a href="index_section_N.html">N</a></td>
<td><a href="index_section_O.html">O</a></td>
<td><a href="index_section_P.html">P</a></td>
<td><a href="index_section_Q.html">Q</a></td>
<td><a href="index_section_R.html">R</a></td>
<td><a href="index_section_S.html">S</a></td>
<td><a href="index_section_T.html">T</a></td>
<td><a href="index_section_U.html">U</a></td>
<td><a href="index_section_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_section_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(1118 entries)</td>
</tr>
<tr>
<td>Abbreviation Index</td>
<td><a href="index_abbreviation_A.html">A</a></td>
<td><a href="index_abbreviation_B.html">B</a></td>
<td><a href="index_abbreviation_C.html">C</a></td>
<td><a href="index_abbreviation_D.html">D</a></td>
<td><a href="index_abbreviation_E.html">E</a></td>
<td><a href="index_abbreviation_F.html">F</a></td>
<td><a href="index_abbreviation_G.html">G</a></td>
<td><a href="index_abbreviation_H.html">H</a></td>
<td><a href="index_abbreviation_I.html">I</a></td>
<td><a href="index_abbreviation_J.html">J</a></td>
<td><a href="index_abbreviation_K.html">K</a></td>
<td><a href="index_abbreviation_L.html">L</a></td>
<td><a href="index_abbreviation_M.html">M</a></td>
<td><a href="index_abbreviation_N.html">N</a></td>
<td><a href="index_abbreviation_O.html">O</a></td>
<td><a href="index_abbreviation_P.html">P</a></td>
<td><a href="index_abbreviation_Q.html">Q</a></td>
<td><a href="index_abbreviation_R.html">R</a></td>
<td><a href="index_abbreviation_S.html">S</a></td>
<td><a href="index_abbreviation_T.html">T</a></td>
<td><a href="index_abbreviation_U.html">U</a></td>
<td><a href="index_abbreviation_V.html">V</a></td>
<td><a href="index_abbreviation_W.html">W</a></td>
<td><a href="index_abbreviation_X.html">X</a></td>
<td>Y</td>
<td><a href="index_abbreviation_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(691 entries)</td>
</tr>
<tr>
<td>Definition Index</td>
<td><a href="index_definition_A.html">A</a></td>
<td><a href="index_definition_B.html">B</a></td>
<td><a href="index_definition_C.html">C</a></td>
<td><a href="index_definition_D.html">D</a></td>
<td><a href="index_definition_E.html">E</a></td>
<td><a href="index_definition_F.html">F</a></td>
<td><a href="index_definition_G.html">G</a></td>
<td><a href="index_definition_H.html">H</a></td>
<td><a href="index_definition_I.html">I</a></td>
<td><a href="index_definition_J.html">J</a></td>
<td><a href="index_definition_K.html">K</a></td>
<td><a href="index_definition_L.html">L</a></td>
<td><a href="index_definition_M.html">M</a></td>
<td><a href="index_definition_N.html">N</a></td>
<td><a href="index_definition_O.html">O</a></td>
<td><a href="index_definition_P.html">P</a></td>
<td><a href="index_definition_Q.html">Q</a></td>
<td><a href="index_definition_R.html">R</a></td>
<td><a href="index_definition_S.html">S</a></td>
<td><a href="index_definition_T.html">T</a></td>
<td><a href="index_definition_U.html">U</a></td>
<td><a href="index_definition_V.html">V</a></td>
<td><a href="index_definition_W.html">W</a></td>
<td><a href="index_definition_X.html">X</a></td>
<td>Y</td>
<td><a href="index_definition_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(3461 entries)</td>
</tr>
<tr>
<td>Record Index</td>
<td><a href="index_record_A.html">A</a></td>
<td>B</td>
<td><a href="index_record_C.html">C</a></td>
<td>D</td>
<td><a href="index_record_E.html">E</a></td>
<td><a href="index_record_F.html">F</a></td>
<td><a href="index_record_G.html">G</a></td>
<td>H</td>
<td><a href="index_record_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td><a href="index_record_M.html">M</a></td>
<td><a href="index_record_N.html">N</a></td>
<td>O</td>
<td><a href="index_record_P.html">P</a></td>
<td><a href="index_record_Q.html">Q</a></td>
<td><a href="index_record_R.html">R</a></td>
<td><a href="index_record_S.html">S</a></td>
<td><a href="index_record_T.html">T</a></td>
<td><a href="index_record_U.html">U</a></td>
<td><a href="index_record_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_record_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(185 entries)</td>
</tr>
</table>
</div>
<div id="footer">
<hr/><a href="index.html">Index</a><hr/>This page has been generated by <a href="http://coq.inria.fr/">coqdoc</a>
</div>
</div>
</body>
</html>
|