1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link href="coqdoc.css" rel="stylesheet" type="text/css" />
<title>mathcomp.ssreflect.tuple</title>
</head>
<body>
<div id="page">
<div id="header">
</div>
<div id="main">
<table>
<tr>
<td>Global Index</td>
<td><a href="index_global_A.html">A</a></td>
<td><a href="index_global_B.html">B</a></td>
<td><a href="index_global_C.html">C</a></td>
<td><a href="index_global_D.html">D</a></td>
<td><a href="index_global_E.html">E</a></td>
<td><a href="index_global_F.html">F</a></td>
<td><a href="index_global_G.html">G</a></td>
<td><a href="index_global_H.html">H</a></td>
<td><a href="index_global_I.html">I</a></td>
<td><a href="index_global_J.html">J</a></td>
<td><a href="index_global_K.html">K</a></td>
<td><a href="index_global_L.html">L</a></td>
<td><a href="index_global_M.html">M</a></td>
<td><a href="index_global_N.html">N</a></td>
<td><a href="index_global_O.html">O</a></td>
<td><a href="index_global_P.html">P</a></td>
<td><a href="index_global_Q.html">Q</a></td>
<td><a href="index_global_R.html">R</a></td>
<td><a href="index_global_S.html">S</a></td>
<td><a href="index_global_T.html">T</a></td>
<td><a href="index_global_U.html">U</a></td>
<td><a href="index_global_V.html">V</a></td>
<td><a href="index_global_W.html">W</a></td>
<td><a href="index_global_X.html">X</a></td>
<td>Y</td>
<td><a href="index_global_Z.html">Z</a></td>
<td>_</td>
<td><a href="index_global_*.html">other</a></td>
<td>(23233 entries)</td>
</tr>
<tr>
<td>Notation Index</td>
<td><a href="index_notation_A.html">A</a></td>
<td><a href="index_notation_B.html">B</a></td>
<td><a href="index_notation_C.html">C</a></td>
<td><a href="index_notation_D.html">D</a></td>
<td><a href="index_notation_E.html">E</a></td>
<td><a href="index_notation_F.html">F</a></td>
<td><a href="index_notation_G.html">G</a></td>
<td>H</td>
<td><a href="index_notation_I.html">I</a></td>
<td>J</td>
<td><a href="index_notation_K.html">K</a></td>
<td><a href="index_notation_L.html">L</a></td>
<td><a href="index_notation_M.html">M</a></td>
<td><a href="index_notation_N.html">N</a></td>
<td>O</td>
<td><a href="index_notation_P.html">P</a></td>
<td><a href="index_notation_Q.html">Q</a></td>
<td><a href="index_notation_R.html">R</a></td>
<td><a href="index_notation_S.html">S</a></td>
<td>T</td>
<td><a href="index_notation_U.html">U</a></td>
<td><a href="index_notation_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_notation_Z.html">Z</a></td>
<td>_</td>
<td><a href="index_notation_*.html">other</a></td>
<td>(1373 entries)</td>
</tr>
<tr>
<td>Module Index</td>
<td><a href="index_module_A.html">A</a></td>
<td><a href="index_module_B.html">B</a></td>
<td><a href="index_module_C.html">C</a></td>
<td>D</td>
<td><a href="index_module_E.html">E</a></td>
<td><a href="index_module_F.html">F</a></td>
<td><a href="index_module_G.html">G</a></td>
<td>H</td>
<td><a href="index_module_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td><a href="index_module_M.html">M</a></td>
<td><a href="index_module_N.html">N</a></td>
<td>O</td>
<td><a href="index_module_P.html">P</a></td>
<td><a href="index_module_Q.html">Q</a></td>
<td><a href="index_module_R.html">R</a></td>
<td><a href="index_module_S.html">S</a></td>
<td>T</td>
<td><a href="index_module_U.html">U</a></td>
<td><a href="index_module_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>_</td>
<td>other</td>
<td>(213 entries)</td>
</tr>
<tr>
<td>Variable Index</td>
<td><a href="index_variable_A.html">A</a></td>
<td><a href="index_variable_B.html">B</a></td>
<td><a href="index_variable_C.html">C</a></td>
<td><a href="index_variable_D.html">D</a></td>
<td><a href="index_variable_E.html">E</a></td>
<td><a href="index_variable_F.html">F</a></td>
<td><a href="index_variable_G.html">G</a></td>
<td><a href="index_variable_H.html">H</a></td>
<td><a href="index_variable_I.html">I</a></td>
<td>J</td>
<td><a href="index_variable_K.html">K</a></td>
<td><a href="index_variable_L.html">L</a></td>
<td><a href="index_variable_M.html">M</a></td>
<td><a href="index_variable_N.html">N</a></td>
<td><a href="index_variable_O.html">O</a></td>
<td><a href="index_variable_P.html">P</a></td>
<td><a href="index_variable_Q.html">Q</a></td>
<td><a href="index_variable_R.html">R</a></td>
<td><a href="index_variable_S.html">S</a></td>
<td><a href="index_variable_T.html">T</a></td>
<td><a href="index_variable_U.html">U</a></td>
<td><a href="index_variable_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_variable_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(3475 entries)</td>
</tr>
<tr>
<td>Library Index</td>
<td><a href="index_library_A.html">A</a></td>
<td><a href="index_library_B.html">B</a></td>
<td><a href="index_library_C.html">C</a></td>
<td><a href="index_library_D.html">D</a></td>
<td><a href="index_library_E.html">E</a></td>
<td><a href="index_library_F.html">F</a></td>
<td><a href="index_library_G.html">G</a></td>
<td><a href="index_library_H.html">H</a></td>
<td><a href="index_library_I.html">I</a></td>
<td><a href="index_library_J.html">J</a></td>
<td>K</td>
<td>L</td>
<td><a href="index_library_M.html">M</a></td>
<td><a href="index_library_N.html">N</a></td>
<td>O</td>
<td><a href="index_library_P.html">P</a></td>
<td><a href="index_library_Q.html">Q</a></td>
<td><a href="index_library_R.html">R</a></td>
<td><a href="index_library_S.html">S</a></td>
<td><a href="index_library_T.html">T</a></td>
<td>U</td>
<td><a href="index_library_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_library_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(89 entries)</td>
</tr>
<tr>
<td>Lemma Index</td>
<td><a href="index_lemma_A.html">A</a></td>
<td><a href="index_lemma_B.html">B</a></td>
<td><a href="index_lemma_C.html">C</a></td>
<td><a href="index_lemma_D.html">D</a></td>
<td><a href="index_lemma_E.html">E</a></td>
<td><a href="index_lemma_F.html">F</a></td>
<td><a href="index_lemma_G.html">G</a></td>
<td><a href="index_lemma_H.html">H</a></td>
<td><a href="index_lemma_I.html">I</a></td>
<td><a href="index_lemma_J.html">J</a></td>
<td><a href="index_lemma_K.html">K</a></td>
<td><a href="index_lemma_L.html">L</a></td>
<td><a href="index_lemma_M.html">M</a></td>
<td><a href="index_lemma_N.html">N</a></td>
<td><a href="index_lemma_O.html">O</a></td>
<td><a href="index_lemma_P.html">P</a></td>
<td><a href="index_lemma_Q.html">Q</a></td>
<td><a href="index_lemma_R.html">R</a></td>
<td><a href="index_lemma_S.html">S</a></td>
<td><a href="index_lemma_T.html">T</a></td>
<td><a href="index_lemma_U.html">U</a></td>
<td><a href="index_lemma_V.html">V</a></td>
<td><a href="index_lemma_W.html">W</a></td>
<td><a href="index_lemma_X.html">X</a></td>
<td>Y</td>
<td><a href="index_lemma_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(11853 entries)</td>
</tr>
<tr>
<td>Constructor Index</td>
<td><a href="index_constructor_A.html">A</a></td>
<td><a href="index_constructor_B.html">B</a></td>
<td><a href="index_constructor_C.html">C</a></td>
<td><a href="index_constructor_D.html">D</a></td>
<td><a href="index_constructor_E.html">E</a></td>
<td><a href="index_constructor_F.html">F</a></td>
<td><a href="index_constructor_G.html">G</a></td>
<td><a href="index_constructor_H.html">H</a></td>
<td><a href="index_constructor_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td><a href="index_constructor_L.html">L</a></td>
<td><a href="index_constructor_M.html">M</a></td>
<td><a href="index_constructor_N.html">N</a></td>
<td><a href="index_constructor_O.html">O</a></td>
<td><a href="index_constructor_P.html">P</a></td>
<td><a href="index_constructor_Q.html">Q</a></td>
<td><a href="index_constructor_R.html">R</a></td>
<td><a href="index_constructor_S.html">S</a></td>
<td><a href="index_constructor_T.html">T</a></td>
<td><a href="index_constructor_U.html">U</a></td>
<td><a href="index_constructor_V.html">V</a></td>
<td>W</td>
<td><a href="index_constructor_X.html">X</a></td>
<td>Y</td>
<td><a href="index_constructor_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(359 entries)</td>
</tr>
<tr>
<td>Axiom Index</td>
<td><a href="index_axiom_A.html">A</a></td>
<td><a href="index_axiom_B.html">B</a></td>
<td><a href="index_axiom_C.html">C</a></td>
<td>D</td>
<td><a href="index_axiom_E.html">E</a></td>
<td><a href="index_axiom_F.html">F</a></td>
<td>G</td>
<td>H</td>
<td><a href="index_axiom_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td><a href="index_axiom_P.html">P</a></td>
<td>Q</td>
<td><a href="index_axiom_R.html">R</a></td>
<td><a href="index_axiom_S.html">S</a></td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>_</td>
<td>other</td>
<td>(47 entries)</td>
</tr>
<tr>
<td>Inductive Index</td>
<td><a href="index_inductive_A.html">A</a></td>
<td><a href="index_inductive_B.html">B</a></td>
<td><a href="index_inductive_C.html">C</a></td>
<td><a href="index_inductive_D.html">D</a></td>
<td><a href="index_inductive_E.html">E</a></td>
<td><a href="index_inductive_F.html">F</a></td>
<td><a href="index_inductive_G.html">G</a></td>
<td><a href="index_inductive_H.html">H</a></td>
<td><a href="index_inductive_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td><a href="index_inductive_L.html">L</a></td>
<td><a href="index_inductive_M.html">M</a></td>
<td><a href="index_inductive_N.html">N</a></td>
<td><a href="index_inductive_O.html">O</a></td>
<td><a href="index_inductive_P.html">P</a></td>
<td>Q</td>
<td><a href="index_inductive_R.html">R</a></td>
<td><a href="index_inductive_S.html">S</a></td>
<td><a href="index_inductive_T.html">T</a></td>
<td><a href="index_inductive_U.html">U</a></td>
<td><a href="index_inductive_V.html">V</a></td>
<td>W</td>
<td><a href="index_inductive_X.html">X</a></td>
<td>Y</td>
<td>Z</td>
<td>_</td>
<td>other</td>
<td>(103 entries)</td>
</tr>
<tr>
<td>Projection Index</td>
<td><a href="index_projection_A.html">A</a></td>
<td><a href="index_projection_B.html">B</a></td>
<td><a href="index_projection_C.html">C</a></td>
<td>D</td>
<td><a href="index_projection_E.html">E</a></td>
<td><a href="index_projection_F.html">F</a></td>
<td><a href="index_projection_G.html">G</a></td>
<td>H</td>
<td><a href="index_projection_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td><a href="index_projection_M.html">M</a></td>
<td><a href="index_projection_N.html">N</a></td>
<td>O</td>
<td><a href="index_projection_P.html">P</a></td>
<td><a href="index_projection_Q.html">Q</a></td>
<td><a href="index_projection_R.html">R</a></td>
<td><a href="index_projection_S.html">S</a></td>
<td><a href="index_projection_T.html">T</a></td>
<td><a href="index_projection_U.html">U</a></td>
<td><a href="index_projection_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_projection_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(266 entries)</td>
</tr>
<tr>
<td>Section Index</td>
<td><a href="index_section_A.html">A</a></td>
<td><a href="index_section_B.html">B</a></td>
<td><a href="index_section_C.html">C</a></td>
<td><a href="index_section_D.html">D</a></td>
<td><a href="index_section_E.html">E</a></td>
<td><a href="index_section_F.html">F</a></td>
<td><a href="index_section_G.html">G</a></td>
<td><a href="index_section_H.html">H</a></td>
<td><a href="index_section_I.html">I</a></td>
<td>J</td>
<td><a href="index_section_K.html">K</a></td>
<td><a href="index_section_L.html">L</a></td>
<td><a href="index_section_M.html">M</a></td>
<td><a href="index_section_N.html">N</a></td>
<td><a href="index_section_O.html">O</a></td>
<td><a href="index_section_P.html">P</a></td>
<td><a href="index_section_Q.html">Q</a></td>
<td><a href="index_section_R.html">R</a></td>
<td><a href="index_section_S.html">S</a></td>
<td><a href="index_section_T.html">T</a></td>
<td><a href="index_section_U.html">U</a></td>
<td><a href="index_section_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_section_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(1118 entries)</td>
</tr>
<tr>
<td>Abbreviation Index</td>
<td><a href="index_abbreviation_A.html">A</a></td>
<td><a href="index_abbreviation_B.html">B</a></td>
<td><a href="index_abbreviation_C.html">C</a></td>
<td><a href="index_abbreviation_D.html">D</a></td>
<td><a href="index_abbreviation_E.html">E</a></td>
<td><a href="index_abbreviation_F.html">F</a></td>
<td><a href="index_abbreviation_G.html">G</a></td>
<td><a href="index_abbreviation_H.html">H</a></td>
<td><a href="index_abbreviation_I.html">I</a></td>
<td><a href="index_abbreviation_J.html">J</a></td>
<td><a href="index_abbreviation_K.html">K</a></td>
<td><a href="index_abbreviation_L.html">L</a></td>
<td><a href="index_abbreviation_M.html">M</a></td>
<td><a href="index_abbreviation_N.html">N</a></td>
<td><a href="index_abbreviation_O.html">O</a></td>
<td><a href="index_abbreviation_P.html">P</a></td>
<td><a href="index_abbreviation_Q.html">Q</a></td>
<td><a href="index_abbreviation_R.html">R</a></td>
<td><a href="index_abbreviation_S.html">S</a></td>
<td><a href="index_abbreviation_T.html">T</a></td>
<td><a href="index_abbreviation_U.html">U</a></td>
<td><a href="index_abbreviation_V.html">V</a></td>
<td><a href="index_abbreviation_W.html">W</a></td>
<td><a href="index_abbreviation_X.html">X</a></td>
<td>Y</td>
<td><a href="index_abbreviation_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(691 entries)</td>
</tr>
<tr>
<td>Definition Index</td>
<td><a href="index_definition_A.html">A</a></td>
<td><a href="index_definition_B.html">B</a></td>
<td><a href="index_definition_C.html">C</a></td>
<td><a href="index_definition_D.html">D</a></td>
<td><a href="index_definition_E.html">E</a></td>
<td><a href="index_definition_F.html">F</a></td>
<td><a href="index_definition_G.html">G</a></td>
<td><a href="index_definition_H.html">H</a></td>
<td><a href="index_definition_I.html">I</a></td>
<td><a href="index_definition_J.html">J</a></td>
<td><a href="index_definition_K.html">K</a></td>
<td><a href="index_definition_L.html">L</a></td>
<td><a href="index_definition_M.html">M</a></td>
<td><a href="index_definition_N.html">N</a></td>
<td><a href="index_definition_O.html">O</a></td>
<td><a href="index_definition_P.html">P</a></td>
<td><a href="index_definition_Q.html">Q</a></td>
<td><a href="index_definition_R.html">R</a></td>
<td><a href="index_definition_S.html">S</a></td>
<td><a href="index_definition_T.html">T</a></td>
<td><a href="index_definition_U.html">U</a></td>
<td><a href="index_definition_V.html">V</a></td>
<td><a href="index_definition_W.html">W</a></td>
<td><a href="index_definition_X.html">X</a></td>
<td>Y</td>
<td><a href="index_definition_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(3461 entries)</td>
</tr>
<tr>
<td>Record Index</td>
<td><a href="index_record_A.html">A</a></td>
<td>B</td>
<td><a href="index_record_C.html">C</a></td>
<td>D</td>
<td><a href="index_record_E.html">E</a></td>
<td><a href="index_record_F.html">F</a></td>
<td><a href="index_record_G.html">G</a></td>
<td>H</td>
<td><a href="index_record_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td><a href="index_record_M.html">M</a></td>
<td><a href="index_record_N.html">N</a></td>
<td>O</td>
<td><a href="index_record_P.html">P</a></td>
<td><a href="index_record_Q.html">Q</a></td>
<td><a href="index_record_R.html">R</a></td>
<td><a href="index_record_S.html">S</a></td>
<td><a href="index_record_T.html">T</a></td>
<td><a href="index_record_U.html">U</a></td>
<td><a href="index_record_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_record_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(185 entries)</td>
</tr>
</table>
<hr/><a name="global_N"></a><h2>N </h2>
<a href="mathcomp.field.fieldext.html#n">n</a> [abbreviation, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.field.fieldext.html#n">n</a> [abbreviation, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#n">n</a> [abbreviation, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#n">n</a> [abbreviation, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.algebra.matrix.html#n">n</a> [abbreviation, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#n">n</a> [abbreviation, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#n">n</a> [abbreviation, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.mxpoly.html#n">n</a> [abbreviation, in <a href="mathcomp.algebra.mxpoly.html">mathcomp.algebra.mxpoly</a>]<br/>
<a href="mathcomp.algebra.mxpoly.html#n">n</a> [abbreviation, in <a href="mathcomp.algebra.mxpoly.html">mathcomp.algebra.mxpoly</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#n">n</a> [abbreviation, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.character.mxabelem.html#n">n</a> [abbreviation, in <a href="mathcomp.character.mxabelem.html">mathcomp.character.mxabelem</a>]<br/>
<a href="mathcomp.character.mxabelem.html#n">n</a> [abbreviation, in <a href="mathcomp.character.mxabelem.html">mathcomp.character.mxabelem</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NactionDef">NactionDef</a> [section, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NactionDef.gT">NactionDef.gT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NactionDef.n">NactionDef.n</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NactionDef.sT">NactionDef.sT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NactionDef.to">NactionDef.to</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.algebra.vector.html#nary_addv_subproof">nary_addv_subproof</a> [lemma, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#nary_mxsum_proof">nary_mxsum_proof</a> [lemma, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.field.algC.html#natCK">natCK</a> [lemma, in <a href="mathcomp.field.algC.html">mathcomp.field.algC</a>]<br/>
<a href="mathcomp.ssreflect.bigop.html#NatConst">NatConst</a> [section, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/>
<a href="mathcomp.ssreflect.bigop.html#NatConst.A">NatConst.A</a> [variable, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/>
<a href="mathcomp.ssreflect.bigop.html#NatConst.I">NatConst.I</a> [variable, in <a href="mathcomp.ssreflect.bigop.html">mathcomp.ssreflect.bigop</a>]<br/>
<a href="mathcomp.field.closed_field.html#natmulpT">natmulpT</a> [definition, in <a href="mathcomp.field.closed_field.html">mathcomp.field.closed_field</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#natnseq0P">natnseq0P</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#NatPreds">NatPreds</a> [section, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#NatPreds.n">NatPreds.n</a> [variable, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#NatPreds.pi">NatPreds.pi</a> [variable, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.algebra.rat.html#natq_div">natq_div</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.zmodp.html#natr_negZp">natr_negZp</a> [lemma, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/>
<a href="mathcomp.algebra.zmodp.html#natr_Zp">natr_Zp</a> [lemma, in <a href="mathcomp.algebra.zmodp.html">mathcomp.algebra.zmodp</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#natsum_of_intK">natsum_of_intK</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#natsum_of_int">natsum_of_int</a> [definition, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec">NatTrec</a> [module, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#natTrecE">natTrecE</a> [abbreviation, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.add">NatTrec.add</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.addE">NatTrec.addE</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.add_mulE">NatTrec.add_mulE</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.add_mul">NatTrec.add_mul</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.double">NatTrec.double</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.doubleE">NatTrec.doubleE</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.doublen">NatTrec.doublen</a> [abbreviation, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.exp">NatTrec.exp</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.expE">NatTrec.expE</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.mul">NatTrec.mul</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.mulE">NatTrec.mulE</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.mul_expE">NatTrec.mul_expE</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.mul_exp">NatTrec.mul_exp</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.odd">NatTrec.odd</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.oddE">NatTrec.oddE</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.oddn">NatTrec.oddn</a> [abbreviation, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NatTrec.trecE">NatTrec.trecE</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#9ea91de45bbac2f7bc67d6bfcbe695b2">_ .*2 (nat_scope)</a> [notation, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#5324a05440e2ec11a1246af1f549ecf5">_ ^ _ (nat_scope)</a> [notation, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#db68ec9399320f6b1e74e6c173769d9a">_ * _ (nat_scope)</a> [notation, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#c50bd965cea0fa974be322ff7c9fa45b">_ + _ (nat_scope)</a> [notation, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#natz">natz</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#nat_pred">nat_pred</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#nat_countMixin">nat_countMixin</a> [definition, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#nat_pickleK">nat_pickleK</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.choice.html#nat_choiceMixin">nat_choiceMixin</a> [lemma, in <a href="mathcomp.ssreflect.choice.html">mathcomp.ssreflect.choice</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#nat_power_theory">nat_power_theory</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#nat_semi_morph">nat_semi_morph</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#nat_semi_ring">nat_semi_ring</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#nat_of_exp_bin">nat_of_exp_bin</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#nat_of_mul_bin">nat_of_mul_bin</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#nat_of_add_bin">nat_of_add_bin</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#nat_of_addn_gt0">nat_of_addn_gt0</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#nat_of_succ_gt0">nat_of_succ_gt0</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#nat_of_binK">nat_of_binK</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#nat_of_pos">nat_of_pos</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#nat_AGM2">nat_AGM2</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#nat_Cauchy">nat_Cauchy</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#nat_irrelevance">nat_irrelevance</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.fingroup.morphism.html#nclasses_isog">nclasses_isog</a> [lemma, in <a href="mathcomp.fingroup.morphism.html">mathcomp.fingroup.morphism</a>]<br/>
<a href="mathcomp.fingroup.morphism.html#nclasses_injm">nclasses_injm</a> [lemma, in <a href="mathcomp.fingroup.morphism.html">mathcomp.fingroup.morphism</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#ncons">ncons</a> [definition, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nconsK">nconsK</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.solvable.center.html#ncprod">ncprod</a> [definition, in <a href="mathcomp.solvable.center.html">mathcomp.solvable.center</a>]<br/>
<a href="mathcomp.solvable.center.html#ncprodS">ncprodS</a> [lemma, in <a href="mathcomp.solvable.center.html">mathcomp.solvable.center</a>]<br/>
<a href="mathcomp.solvable.center.html#ncprod_key">ncprod_key</a> [lemma, in <a href="mathcomp.solvable.center.html">mathcomp.solvable.center</a>]<br/>
<a href="mathcomp.solvable.center.html#ncprod_def">ncprod_def</a> [definition, in <a href="mathcomp.solvable.center.html">mathcomp.solvable.center</a>]<br/>
<a href="mathcomp.solvable.center.html#ncprod0">ncprod0</a> [lemma, in <a href="mathcomp.solvable.center.html">mathcomp.solvable.center</a>]<br/>
<a href="mathcomp.solvable.center.html#ncprod1">ncprod1</a> [lemma, in <a href="mathcomp.solvable.center.html">mathcomp.solvable.center</a>]<br/>
<a href="mathcomp.fingroup.perm.html#ncycles_mul_tperm">ncycles_mul_tperm</a> [lemma, in <a href="mathcomp.fingroup.perm.html">mathcomp.fingroup.perm</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivn">nderivn</a> [definition, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivnB">nderivnB</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivnC">nderivnC</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivnD">nderivnD</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivnMn">nderivnMn</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivnMNn">nderivnMNn</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivnMXaddC">nderivnMXaddC</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivnN">nderivnN</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivnXn">nderivnXn</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivnZ">nderivnZ</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivn_map">nderivn_map</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivn_poly0">nderivn_poly0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivn_is_linear">nderivn_is_linear</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivn_def">nderivn_def</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivn0">nderivn0</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderivn1">nderivn1</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderiv_taylor_wide">nderiv_taylor_wide</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.algebra.poly.html#nderiv_taylor">nderiv_taylor</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.character.vcharacter.html#ndirr">ndirr</a> [definition, in <a href="mathcomp.character.vcharacter.html">mathcomp.character.vcharacter</a>]<br/>
<a href="mathcomp.character.vcharacter.html#ndirrK">ndirrK</a> [lemma, in <a href="mathcomp.character.vcharacter.html">mathcomp.character.vcharacter</a>]<br/>
<a href="mathcomp.character.vcharacter.html#ndirr_inj">ndirr_inj</a> [lemma, in <a href="mathcomp.character.vcharacter.html">mathcomp.character.vcharacter</a>]<br/>
<a href="mathcomp.character.vcharacter.html#ndirr_diff">ndirr_diff</a> [lemma, in <a href="mathcomp.character.vcharacter.html">mathcomp.character.vcharacter</a>]<br/>
<a href="mathcomp.solvable.burnside_app.html#ndir_s0p">ndir_s0p</a> [lemma, in <a href="mathcomp.solvable.burnside_app.html">mathcomp.solvable.burnside_app</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#negb_exists_in">negb_exists_in</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#negb_exists">negb_exists</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#negb_forall_in">negb_forall_in</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#negb_forall">negb_forall</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#negb_eqb">negb_eqb</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#negb_add">negb_add</a> [lemma, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#negn">negn</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#negnK">negnK</a> [lemma, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#Negz">Negz</a> [constructor, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#NegzE">NegzE</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.solvable.abelian.html#nElem">nElem</a> [definition, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#nElemI">nElemI</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#nElemP">nElemP</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#nElemS">nElemS</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#nElem0">nElem0</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.abelian.html#nElem1P">nElem1P</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#neq_lift">neq_lift</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#neq_bump">neq_bump</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#neq_ltn">neq_ltn</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.character.classfun.html#neq0CG">neq0CG</a> [lemma, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.character.classfun.html#neq0CiG">neq0CiG</a> [lemma, in <a href="mathcomp.character.classfun.html">mathcomp.character.classfun</a>]<br/>
<a href="mathcomp.character.character.html#neq0_has_constt">neq0_has_constt</a> [lemma, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#neq0_lt0n">neq0_lt0n</a> [lemma, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.eqtype.html#NewType">NewType</a> [definition, in <a href="mathcomp.ssreflect.eqtype.html">mathcomp.ssreflect.eqtype</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#nexpIrz">nexpIrz</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.ssreflect.path.html#next">next</a> [definition, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#next_map">next_map</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#next_rev">next_rev</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#next_rotr">next_rotr</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#next_rot">next_rot</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#next_prev">next_prev</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#next_cycle">next_cycle</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#next_nth">next_nth</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.path.html#next_at">next_at</a> [definition, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#nG">nG</a> [abbreviation, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#nG">nG</a> [abbreviation, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#Nil">Nil</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nilP">nilP</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nilp">nilp</a> [definition, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.solvable.sylow.html#NilPGroups">NilPGroups</a> [section, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.sylow.html#NilPGroups.gT">NilPGroups.gT</a> [variable, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.sylow.html#NilPGroups.p">NilPGroups.p</a> [variable, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nilpotent">nilpotent</a> [definition, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.sylow.html#Nilpotent">Nilpotent</a> [section, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html">nilpotent</a> [library]<br/>
<a href="mathcomp.solvable.nilpotent.html#NilpotentProps">NilpotentProps</a> [section, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#NilpotentProps.gT">NilpotentProps.gT</a> [variable, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nilpotentS">nilpotentS</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.maximal.html#nilpotent_Fitting">nilpotent_Fitting</a> [lemma, in <a href="mathcomp.solvable.maximal.html">mathcomp.solvable.maximal</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nilpotent_sol">nilpotent_sol</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nilpotent_subnormal">nilpotent_subnormal</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nilpotent_proper_norm">nilpotent_proper_norm</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nilpotent_sub_norm">nilpotent_sub_norm</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nilpotent_class">nilpotent_class</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.sylow.html#nilpotent_pcoreC">nilpotent_pcoreC</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.sylow.html#nilpotent_pcore_Hall">nilpotent_pcore_Hall</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.sylow.html#nilpotent_Hall_pcore">nilpotent_Hall_pcore</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.sylow.html#nilpotent_maxp_normal">nilpotent_maxp_normal</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.sylow.html#Nilpotent.gT">Nilpotent.gT</a> [variable, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nilpotent1">nilpotent1</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.algebra.vector.html#nil_basis">nil_basis</a> [lemma, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.vector.html#nil_free">nil_free</a> [lemma, in <a href="mathcomp.algebra.vector.html">mathcomp.algebra.vector</a>]<br/>
<a href="mathcomp.algebra.poly.html#nil_poly">nil_poly</a> [lemma, in <a href="mathcomp.algebra.poly.html">mathcomp.algebra.poly</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nil_class_quotient_center">nil_class_quotient_center</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nil_class_injm">nil_class_injm</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nil_class_morphim">nil_class_morphim</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nil_class_ucn">nil_class_ucn</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nil_class1">nil_class1</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nil_class0">nil_class0</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nil_comm_properr">nil_comm_properr</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nil_comm_properl">nil_comm_properl</a> [lemma, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.nilpotent.html#nil_class">nil_class</a> [definition, in <a href="mathcomp.solvable.nilpotent.html">mathcomp.solvable.nilpotent</a>]<br/>
<a href="mathcomp.solvable.sylow.html#nil_Zgroup_cyclic">nil_Zgroup_cyclic</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.sylow.html#nil_class_pgroup">nil_class_pgroup</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.sylow.html#nil_class3">nil_class3</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.sylow.html#nil_class2">nil_class2</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.character.character.html#Nirr">Nirr</a> [abbreviation, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/>
<a href="mathcomp.character.character.html#NirrE">NirrE</a> [lemma, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#nmulrn">nmulrn</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#nmulrz_rle0">nmulrz_rle0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#nmulrz_rge0">nmulrz_rge0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#nmulrz_rlt0">nmulrz_rlt0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#nmulrz_rgt0">nmulrz_rgt0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#nmulrz_lle0">nmulrz_lle0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#nmulrz_lge0">nmulrz_lge0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#nmulrz_llt0">nmulrz_llt0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#nmulrz_lgt0">nmulrz_lgt0</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.matrix.html#nonconform_mx">nonconform_mx</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.character.integral_char.html#nonlinear_irr_vanish">nonlinear_irr_vanish</a> [lemma, in <a href="mathcomp.character.integral_char.html">mathcomp.character.integral_char</a>]<br/>
<a href="mathcomp.solvable.sylow.html#nontrivial_gacent_pgroup">nontrivial_gacent_pgroup</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.field.fieldext.html#nonzero1fx">nonzero1fx</a> [lemma, in <a href="mathcomp.field.fieldext.html">mathcomp.field.fieldext</a>]<br/>
<a href="mathcomp.algebra.rat.html#nonzero1q">nonzero1q</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#Nopick">Nopick</a> [constructor, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normal">normal</a> [definition, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normalD1">normalD1</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.field.galois.html#normalField">normalField</a> [definition, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalFieldf">normalFieldf</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalFieldP">normalFieldP</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalFieldS">normalFieldS</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalField_isog">normalField_isog</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalField_isom">normalField_isom</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalField_img">normalField_img</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalField_normal">normalField_normal</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalField_ker">normalField_ker</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalField_castM">normalField_castM</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalField_cast_eq">normalField_cast_eq</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalField_cast">normalField_cast</a> [definition, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalField_galois">normalField_galois</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalField_factors">normalField_factors</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalField_root_minPoly">normalField_root_minPoly</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normalField_kAut">normalField_kAut</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normalG">normalG</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normalGI">normalGI</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#NormalHall">NormalHall</a> [section, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#NormalHall.gT">NormalHall.gT</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#NormalHall.pi">NormalHall.pi</a> [variable, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normalI">normalI</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normalised">normalised</a> [definition, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser">Normaliser</a> [section, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normaliser">normaliser</a> [definition, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser.gT">Normaliser.gT</a> [variable, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser.norm_trans.nCA">Normaliser.norm_trans.nCA</a> [variable, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser.norm_trans.nBA">Normaliser.norm_trans.nBA</a> [variable, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser.norm_trans.D">Normaliser.norm_trans.D</a> [variable, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser.norm_trans.C">Normaliser.norm_trans.C</a> [variable, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser.norm_trans.B">Normaliser.norm_trans.B</a> [variable, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser.norm_trans.A">Normaliser.norm_trans.A</a> [variable, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser.norm_trans">Normaliser.norm_trans</a> [section, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser.SubAbelian">Normaliser.SubAbelian</a> [section, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser.SubAbelian.A">Normaliser.SubAbelian.A</a> [variable, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser.SubAbelian.B">Normaliser.SubAbelian.B</a> [variable, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser.SubAbelian.C">Normaliser.SubAbelian.C</a> [variable, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#Normaliser.SubAbelian.cAA">Normaliser.SubAbelian.cAA</a> [variable, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normalJ">normalJ</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normalM">normalM</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normalP">normalP</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normalS">normalS</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normalSG">normalSG</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normalY">normalY</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normalYl">normalYl</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normalYr">normalYr</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.field.galois.html#normal_fixedField_galois">normal_fixedField_galois</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.field.galois.html#normal_field_splitting">normal_field_splitting</a> [lemma, in <a href="mathcomp.field.galois.html">mathcomp.field.galois</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#normal_Hall_pcore">normal_Hall_pcore</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#normal_max_pgroup_Hall">normal_max_pgroup_Hall</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#normal_sub_max_pgroup">normal_sub_max_pgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.fingroup.quotient.html#normal_cosetpre">normal_cosetpre</a> [lemma, in <a href="mathcomp.fingroup.quotient.html">mathcomp.fingroup.quotient</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#normal_rfix_mx_module">normal_rfix_mx_module</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.solvable.extremal.html#normal_rank1_structure">normal_rank1_structure</a> [lemma, in <a href="mathcomp.solvable.extremal.html">mathcomp.solvable.extremal</a>]<br/>
<a href="mathcomp.character.inertia.html#normal_Inertia">normal_Inertia</a> [lemma, in <a href="mathcomp.character.inertia.html">mathcomp.character.inertia</a>]<br/>
<a href="mathcomp.character.inertia.html#normal_inertia">normal_inertia</a> [lemma, in <a href="mathcomp.character.inertia.html">mathcomp.character.inertia</a>]<br/>
<a href="mathcomp.solvable.gseries.html#normal_subnormal">normal_subnormal</a> [lemma, in <a href="mathcomp.solvable.gseries.html">mathcomp.solvable.gseries</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normal_subnorm">normal_subnorm</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normal_refl">normal_refl</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normal_norm">normal_norm</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normal_sub">normal_sub</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.solvable.sylow.html#normal_pgroup">normal_pgroup</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.solvable.sylow.html#normal_sylowP">normal_sylowP</a> [lemma, in <a href="mathcomp.solvable.sylow.html">mathcomp.solvable.sylow</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normal1">normal1</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normC">normC</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normCs">normCs</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.character.character.html#normC_lin_char">normC_lin_char</a> [lemma, in <a href="mathcomp.character.character.html">mathcomp.character.character</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normD1">normD1</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.solvable.frobenius.html#normedTI">normedTI</a> [definition, in <a href="mathcomp.solvable.frobenius.html">mathcomp.solvable.frobenius</a>]<br/>
<a href="mathcomp.solvable.frobenius.html#normedTI_J">normedTI_J</a> [lemma, in <a href="mathcomp.solvable.frobenius.html">mathcomp.solvable.frobenius</a>]<br/>
<a href="mathcomp.solvable.frobenius.html#normedTI_S">normedTI_S</a> [lemma, in <a href="mathcomp.solvable.frobenius.html">mathcomp.solvable.frobenius</a>]<br/>
<a href="mathcomp.solvable.frobenius.html#normedTI_memJ_P">normedTI_memJ_P</a> [lemma, in <a href="mathcomp.solvable.frobenius.html">mathcomp.solvable.frobenius</a>]<br/>
<a href="mathcomp.solvable.frobenius.html#normedTI_P">normedTI_P</a> [lemma, in <a href="mathcomp.solvable.frobenius.html">mathcomp.solvable.frobenius</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normG">normG</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#NormInt">NormInt</a> [section, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#NormInt.R">NormInt.R</a> [variable, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normJ">normJ</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normP">normP</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.algebra.rat.html#normq">normq</a> [definition, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#normrMz">normrMz</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.rat.html#normr_num_div">normr_num_div</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.rat.html#normr_denq">normr_denq</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#normr_sg">normr_sg</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.algebra.ssrint.html#normr_sgz">normr_sgz</a> [lemma, in <a href="mathcomp.algebra.ssrint.html">mathcomp.algebra.ssrint</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normsD">normsD</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normsD1">normsD1</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normsG">normsG</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normsGI">normsGI</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normsI">normsI</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normsIG">normsIG</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normsIs">normsIs</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normsM">normsM</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normsP">normsP</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normsR">normsR</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.solvable.commutator.html#normsRl">normsRl</a> [lemma, in <a href="mathcomp.solvable.commutator.html">mathcomp.solvable.commutator</a>]<br/>
<a href="mathcomp.solvable.commutator.html#normsRr">normsRr</a> [lemma, in <a href="mathcomp.solvable.commutator.html">mathcomp.solvable.commutator</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normsU">normsU</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normsY">normsY</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norms_cent">norms_cent</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norms_bigcup">norms_bigcup</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norms_bigcap">norms_bigcap</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norms_class_support">norms_class_support</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norms_norm">norms_norm</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norms_gen">norms_gen</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norms_cycle">norms_cycle</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norms1">norms1</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#normT">normT</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.algebra.rat.html#norm_ratN">norm_ratN</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.solvable.hall.html#norm_conj_cent">norm_conj_cent</a> [lemma, in <a href="mathcomp.solvable.hall.html">mathcomp.solvable.hall</a>]<br/>
<a href="mathcomp.field.algC.html#norm_Cint_ge1">norm_Cint_ge1</a> [lemma, in <a href="mathcomp.field.algC.html">mathcomp.field.algC</a>]<br/>
<a href="mathcomp.field.algC.html#norm_Cnat">norm_Cnat</a> [lemma, in <a href="mathcomp.field.algC.html">mathcomp.field.algC</a>]<br/>
<a href="mathcomp.solvable.pgroup.html#norm_sub_max_pgroup">norm_sub_max_pgroup</a> [lemma, in <a href="mathcomp.solvable.pgroup.html">mathcomp.solvable.pgroup</a>]<br/>
<a href="mathcomp.fingroup.quotient.html#norm_quotient_pre">norm_quotient_pre</a> [lemma, in <a href="mathcomp.fingroup.quotient.html">mathcomp.fingroup.quotient</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#norm_sub_rstabs_rfix_mx">norm_sub_rstabs_rfix_mx</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#norm_conj_autE">norm_conj_autE</a> [lemma, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#norm_conj_isom">norm_conj_isom</a> [lemma, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.fingroup.automorphism.html#norm_conjg_im">norm_conjg_im</a> [lemma, in <a href="mathcomp.fingroup.automorphism.html">mathcomp.fingroup.automorphism</a>]<br/>
<a href="mathcomp.character.inertia.html#norm_Inertia">norm_Inertia</a> [lemma, in <a href="mathcomp.character.inertia.html">mathcomp.character.inertia</a>]<br/>
<a href="mathcomp.character.inertia.html#norm_inertia">norm_inertia</a> [lemma, in <a href="mathcomp.character.inertia.html">mathcomp.character.inertia</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norm_normalI">norm_normalI</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norm_gen">norm_gen</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norm_conj_norm">norm_conj_norm</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norm_rlcoset">norm_rlcoset</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norm_joinEr">norm_joinEr</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norm_joinEl">norm_joinEl</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.fingroup.fingroup.html#norm1">norm1</a> [lemma, in <a href="mathcomp.fingroup.fingroup.html">mathcomp.fingroup.fingroup</a>]<br/>
<a href="mathcomp.character.vcharacter.html#Norm1vchar">Norm1vchar</a> [section, in <a href="mathcomp.character.vcharacter.html">mathcomp.character.vcharacter</a>]<br/>
<a href="mathcomp.character.vcharacter.html#Norm1vchar.G">Norm1vchar.G</a> [variable, in <a href="mathcomp.character.vcharacter.html">mathcomp.character.vcharacter</a>]<br/>
<a href="mathcomp.character.vcharacter.html#Norm1vchar.gT">Norm1vchar.gT</a> [variable, in <a href="mathcomp.character.vcharacter.html">mathcomp.character.vcharacter</a>]<br/>
<a href="mathcomp.solvable.extremal.html#NotExtremal">NotExtremal</a> [constructor, in <a href="mathcomp.solvable.extremal.html">mathcomp.solvable.extremal</a>]<br/>
<a href="mathcomp.solvable.alt.html#not_simple_Alt_4">not_simple_Alt_4</a> [lemma, in <a href="mathcomp.solvable.alt.html">mathcomp.solvable.alt</a>]<br/>
<a href="mathcomp.solvable.extraspecial.html#not_isog_Dn_DnQ">not_isog_Dn_DnQ</a> [lemma, in <a href="mathcomp.solvable.extraspecial.html">mathcomp.solvable.extraspecial</a>]<br/>
<a href="mathcomp.field.falgebra.html#not_asubv0">not_asubv0</a> [lemma, in <a href="mathcomp.field.falgebra.html">mathcomp.field.falgebra</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nseq">nseq</a> [definition, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nseqP">nseqP</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.tuple.html#nseq_tupleP">nseq_tupleP</a> [lemma, in <a href="mathcomp.ssreflect.tuple.html">mathcomp.ssreflect.tuple</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth">nth</a> [abbreviation, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth">nth</a> [definition, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nthP">nthP</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#NthTheory">NthTheory</a> [section, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#NthTheory.T">NthTheory.T</a> [variable, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.path.html#nth_traject">nth_traject</a> [lemma, in <a href="mathcomp.ssreflect.path.html">mathcomp.ssreflect.path</a>]<br/>
<a href="mathcomp.ssreflect.tuple.html#nth_mktuple">nth_mktuple</a> [lemma, in <a href="mathcomp.ssreflect.tuple.html">mathcomp.ssreflect.tuple</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_flatten">nth_flatten</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_shape">nth_shape</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_reshape">nth_reshape</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_zip_cond">nth_zip_cond</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_zip">nth_zip</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_scanl">nth_scanl</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_pairmap">nth_pairmap</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_mkseq">nth_mkseq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_iota">nth_iota</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_index_map">nth_index_map</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_map">nth_map</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_incr_nth">nth_incr_nth</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_uniq">nth_uniq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_index">nth_index</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_rev">nth_rev</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_take">nth_take</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_drop">nth_drop</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_find">nth_find</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_set_nth">nth_set_nth</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_nseq">nth_nseq</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_ncons">nth_ncons</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_rcons">nth_rcons</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_cat">nth_cat</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_behead">nth_behead</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_last">nth_last</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_nil">nth_nil</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth_default">nth_default</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#nth_enum_rank">nth_enum_rank</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#nth_enum_rank_in">nth_enum_rank_in</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#nth_codom">nth_codom</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#nth_image">nth_image</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#nth_ord_enum">nth_ord_enum</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.fintype.html#nth_enum_ord">nth_enum_ord</a> [lemma, in <a href="mathcomp.ssreflect.fintype.html">mathcomp.ssreflect.fintype</a>]<br/>
<a href="mathcomp.ssreflect.finfun.html#nth_fgraph_ord">nth_fgraph_ord</a> [lemma, in <a href="mathcomp.ssreflect.finfun.html">mathcomp.ssreflect.finfun</a>]<br/>
<a href="mathcomp.ssreflect.seq.html#nth0">nth0</a> [lemma, in <a href="mathcomp.ssreflect.seq.html">mathcomp.ssreflect.seq</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#ntransitive">ntransitive</a> [definition, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitive">NTransitive</a> [section, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#ntransitive_primitive">ntransitive_primitive</a> [lemma, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#ntransitive_weak">ntransitive_weak</a> [lemma, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitive.A">NTransitive.A</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitive.gT">NTransitive.gT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitive.n">NTransitive.n</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitive.S">NTransitive.S</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitive.sT">NTransitive.sT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitive.to">NTransitive.to</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#ntransitive0">ntransitive0</a> [lemma, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#ntransitive1">ntransitive1</a> [lemma, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitveProp">NTransitveProp</a> [section, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitveProp.G">NTransitveProp.G</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitveProp.gT">NTransitveProp.gT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitveProp.S">NTransitveProp.S</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitveProp.sT">NTransitveProp.sT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitveProp.to">NTransitveProp.to</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitveProp1">NTransitveProp1</a> [section, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitveProp1.G">NTransitveProp1.G</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitveProp1.gT">NTransitveProp1.gT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitveProp1.S">NTransitveProp1.S</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitveProp1.sT">NTransitveProp1.sT</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#NTransitveProp1.to">NTransitveProp1.to</a> [variable, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.abelian.html#nt_pnElem">nt_pnElem</a> [lemma, in <a href="mathcomp.solvable.abelian.html">mathcomp.solvable.abelian</a>]<br/>
<a href="mathcomp.solvable.cyclic.html#nt_prime_order">nt_prime_order</a> [lemma, in <a href="mathcomp.solvable.cyclic.html">mathcomp.solvable.cyclic</a>]<br/>
<a href="mathcomp.solvable.cyclic.html#nt_gen_prime">nt_gen_prime</a> [lemma, in <a href="mathcomp.solvable.cyclic.html">mathcomp.solvable.cyclic</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#Num">Num</a> [constructor, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num">Num</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#number">number</a> [record, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NumberInterpretation">NumberInterpretation</a> [section, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#NumberInterpretation.Trec">NumberInterpretation.Trec</a> [section, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.ssreflect.ssrnat.html#number_eqMixin">number_eqMixin</a> [definition, in <a href="mathcomp.ssreflect.ssrnat.html">mathcomp.ssreflect.ssrnat</a>]<br/>
<a href="mathcomp.algebra.fraction.html#numden_Ratio">numden_Ratio</a> [definition, in <a href="mathcomp.algebra.fraction.html">mathcomp.algebra.fraction</a>]<br/>
<a href="mathcomp.algebra.fraction.html#numer_Ratio">numer_Ratio</a> [lemma, in <a href="mathcomp.algebra.fraction.html">mathcomp.algebra.fraction</a>]<br/>
<a href="mathcomp.ssreflect.prime.html#NumFactor">NumFactor</a> [definition, in <a href="mathcomp.ssreflect.prime.html">mathcomp.ssreflect.prime</a>]<br/>
<a href="mathcomp.field.algnum.html#NumFieldProj">NumFieldProj</a> [section, in <a href="mathcomp.field.algnum.html">mathcomp.field.algnum</a>]<br/>
<a href="mathcomp.field.algnum.html#NumFieldProj.Qn">NumFieldProj.Qn</a> [variable, in <a href="mathcomp.field.algnum.html">mathcomp.field.algnum</a>]<br/>
<a href="mathcomp.field.algnum.html#NumFieldProj.QnC">NumFieldProj.QnC</a> [variable, in <a href="mathcomp.field.algnum.html">mathcomp.field.algnum</a>]<br/>
<a href="mathcomp.field.algnum.html#NumLRmorphism">NumLRmorphism</a> [definition, in <a href="mathcomp.field.algnum.html">mathcomp.field.algnum</a>]<br/>
<a href="mathcomp.algebra.rat.html#numq">numq</a> [definition, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.rat.html#numqE">numqE</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.rat.html#numqK">numqK</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.rat.html#numqN">numqN</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.rat.html#numq_lt0">numq_lt0</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.rat.html#numq_gt0">numq_gt0</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.rat.html#numq_le0">numq_le0</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.rat.html#numq_ge0">numq_ge0</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.rat.html#numq_div_lt0">numq_div_lt0</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.rat.html#numq_sign_mul">numq_sign_mul</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.rat.html#numq_int">numq_int</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.algebra.rat.html#numq_eq0">numq_eq0</a> [lemma, in <a href="mathcomp.algebra.rat.html">mathcomp.algebra.rat</a>]<br/>
<a href="mathcomp.field.algnum.html#num_field_proj">num_field_proj</a> [lemma, in <a href="mathcomp.field.algnum.html">mathcomp.field.algnum</a>]<br/>
<a href="mathcomp.field.algnum.html#num_field_exists">num_field_exists</a> [lemma, in <a href="mathcomp.field.algnum.html">mathcomp.field.algnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField">Num.ArchimedeanField</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.base">Num.ArchimedeanField.base</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.choiceType">Num.ArchimedeanField.choiceType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.class">Num.ArchimedeanField.class</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.Class">Num.ArchimedeanField.Class</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.ClassDef">Num.ArchimedeanField.ClassDef</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.ClassDef.cT">Num.ArchimedeanField.ClassDef.cT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.ClassDef.T">Num.ArchimedeanField.ClassDef.T</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.ClassDef.xT">Num.ArchimedeanField.ClassDef.xT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.class_of">Num.ArchimedeanField.class_of</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.clone">Num.ArchimedeanField.clone</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.comRingType">Num.ArchimedeanField.comRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.comUnitRingType">Num.ArchimedeanField.comUnitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.eqType">Num.ArchimedeanField.eqType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.Exports">Num.ArchimedeanField.Exports</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.Exports.ArchiFieldType">Num.ArchimedeanField.Exports.ArchiFieldType</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.Exports.archiFieldType">Num.ArchimedeanField.Exports.archiFieldType</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#a58841a2b4844911030c30bfa80595e1">[ archiFieldType of _ ] (form_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#d70ca3cc0dfddd155fdca7bda79af694">[ archiFieldType of _ for _ ] (form_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.fieldType">Num.ArchimedeanField.fieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.idomainType">Num.ArchimedeanField.idomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.numDomainType">Num.ArchimedeanField.numDomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.numFieldType">Num.ArchimedeanField.numFieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.pack">Num.ArchimedeanField.pack</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.Pack">Num.ArchimedeanField.Pack</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.realDomainType">Num.ArchimedeanField.realDomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.realFieldType">Num.ArchimedeanField.realFieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.ringType">Num.ArchimedeanField.ringType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.sort">Num.ArchimedeanField.sort</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.type">Num.ArchimedeanField.type</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.unitRingType">Num.ArchimedeanField.unitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.xclass">Num.ArchimedeanField.xclass</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.zmodType">Num.ArchimedeanField.zmodType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.archimedean_axiom">Num.archimedean_axiom</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.bound">Num.bound</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField">Num.ClosedField</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.base">Num.ClosedField.base</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.base2">Num.ClosedField.base2</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.choiceType">Num.ClosedField.choiceType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.class">Num.ClosedField.class</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.Class">Num.ClosedField.Class</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.ClassDef">Num.ClosedField.ClassDef</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.ClassDef.cT">Num.ClosedField.ClassDef.cT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.ClassDef.T">Num.ClosedField.ClassDef.T</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.ClassDef.xT">Num.ClosedField.ClassDef.xT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.class_of">Num.ClosedField.class_of</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.clone">Num.ClosedField.clone</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.closedFieldType">Num.ClosedField.closedFieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.comRingType">Num.ClosedField.comRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.comUnitRingType">Num.ClosedField.comUnitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.conj_mixin">Num.ClosedField.conj_mixin</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.conj_op">Num.ClosedField.conj_op</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.decFieldType">Num.ClosedField.decFieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.eqType">Num.ClosedField.eqType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.Exports">Num.ClosedField.Exports</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.Exports.NumClosedFieldType">Num.ClosedField.Exports.NumClosedFieldType</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.Exports.numClosedFieldType">Num.ClosedField.Exports.numClosedFieldType</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#f35f0142f80d163945beb05160d401d5">[ numClosedFieldType of _ ] (form_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#53405ca907938fed833c1fec5ac3d770">[ numClosedFieldType of _ for _ ] (form_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.fieldType">Num.ClosedField.fieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.idomainType">Num.ClosedField.idomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.imaginary">Num.ClosedField.imaginary</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.ImaginaryMixin">Num.ClosedField.ImaginaryMixin</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.imaginary_mixin_of">Num.ClosedField.imaginary_mixin_of</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.join_numFieldType">Num.ClosedField.join_numFieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.join_numDomainType">Num.ClosedField.join_numDomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.join_dec_numFieldType">Num.ClosedField.join_dec_numFieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.join_dec_numDomainType">Num.ClosedField.join_dec_numDomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.mixin">Num.ClosedField.mixin</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.numDomainType">Num.ClosedField.numDomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.numFieldType">Num.ClosedField.numFieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.pack">Num.ClosedField.pack</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.Pack">Num.ClosedField.Pack</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.ringType">Num.ClosedField.ringType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.sort">Num.ClosedField.sort</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.type">Num.ClosedField.type</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.unitRingType">Num.ClosedField.unitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.xclass">Num.ClosedField.xclass</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ClosedField.zmodType">Num.ClosedField.zmodType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def">Num.Def</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.Def">Num.Def.Def</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#e24e94b919f2f836c2c853c0a739656b">_ < _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#2038926f673d4ab3e13573d88721ef3c">_ <= _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.ger">Num.Def.ger</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.gtr">Num.Def.gtr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.ler">Num.Def.ler</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.lerif">Num.Def.lerif</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.ltr">Num.Def.ltr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.maxr">Num.Def.maxr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.minr">Num.Def.minr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.normr">Num.Def.normr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.Rneg">Num.Def.Rneg</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.Rnneg">Num.Def.Rnneg</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.Rpos">Num.Def.Rpos</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.Rreal">Num.Def.Rreal</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Def.sgr">Num.Def.sgr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ExtensionAxioms">Num.ExtensionAxioms</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ExtensionAxioms.R">Num.ExtensionAxioms.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ExtraDef">Num.ExtraDef</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ExtraDef.archi_bound">Num.ExtraDef.archi_bound</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ExtraDef.sqrtr">Num.ExtraDef.sqrtr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ge">Num.ge</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.gt">Num.gt</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals">Num.Internals</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.addr_ge0">Num.Internals.addr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.addr_gt0">Num.Internals.addr_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.archi_bound_subproof">Num.Internals.archi_bound_subproof</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.Domain">Num.Internals.Domain</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.Domain.R">Num.Internals.Domain.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.ger_leVge">Num.Internals.ger_leVge</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.ger0_def">Num.Internals.ger0_def</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.lerr">Num.Internals.lerr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.ler_def">Num.Internals.ler_def</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.ler_norm_add">Num.Internals.ler_norm_add</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.ler01">Num.Internals.ler01</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.le0r">Num.Internals.le0r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.ltrW">Num.Internals.ltrW</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.ltr_def">Num.Internals.ltr_def</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.ltr01">Num.Internals.ltr01</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.nnegrE">Num.Internals.nnegrE</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.nneg_addr_closed">Num.Internals.nneg_addr_closed</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.nneg_divr_closed">Num.Internals.nneg_divr_closed</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.normrM">Num.Internals.normrM</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.normr0_eq0">Num.Internals.normr0_eq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.num_real">Num.Internals.num_real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.oppr_ge0">Num.Internals.oppr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.pmulr_rgt0">Num.Internals.pmulr_rgt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.poly_ivt">Num.Internals.poly_ivt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.posrE">Num.Internals.posrE</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.pos_divr_closed">Num.Internals.pos_divr_closed</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.RealClosed">Num.Internals.RealClosed</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.RealClosed.R">Num.Internals.RealClosed.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.realE">Num.Internals.realE</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.real_divr_closed">Num.Internals.real_divr_closed</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.real_addr_closed">Num.Internals.real_addr_closed</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.real_oppr_closed">Num.Internals.real_oppr_closed</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.sqrtr_subproof">Num.Internals.sqrtr_subproof</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Internals.subr_ge0">Num.Internals.subr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Keys">Num.Keys</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Keys.Keys">Num.Keys.Keys</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Keys.Keys.R">Num.Keys.Keys.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Keys.ler_of_leif">Num.Keys.ler_of_leif</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Keys.Rneg_keyed">Num.Keys.Rneg_keyed</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Keys.Rneg_key">Num.Keys.Rneg_key</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Keys.Rnneg_keyed">Num.Keys.Rnneg_keyed</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Keys.Rnneg_key">Num.Keys.Rnneg_key</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Keys.Rpos_keyed">Num.Keys.Rpos_keyed</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Keys.Rpos_key">Num.Keys.Rpos_key</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Keys.Rreal_keyed">Num.Keys.Rreal_keyed</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Keys.Rreal_key">Num.Keys.Rreal_key</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.le">Num.le</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.le_op">Num.le_op</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.lt">Num.lt</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.lt_op">Num.lt_op</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.max">Num.max</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.min">Num.min</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Mixin">Num.Mixin</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.mixin_of">Num.mixin_of</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.neg">Num.neg</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.nneg">Num.nneg</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.norm">Num.norm</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.norm_op">Num.norm_op</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain">Num.NumDomain</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.base">Num.NumDomain.base</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.choiceType">Num.NumDomain.choiceType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.class">Num.NumDomain.class</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.Class">Num.NumDomain.Class</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.ClassDef">Num.NumDomain.ClassDef</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.ClassDef.cT">Num.NumDomain.ClassDef.cT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.ClassDef.T">Num.NumDomain.ClassDef.T</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.ClassDef.xT">Num.NumDomain.ClassDef.xT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.class_of">Num.NumDomain.class_of</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.clone">Num.NumDomain.clone</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.comRingType">Num.NumDomain.comRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.comUnitRingType">Num.NumDomain.comUnitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.eqType">Num.NumDomain.eqType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.Exports">Num.NumDomain.Exports</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.Exports.NumDomainType">Num.NumDomain.Exports.NumDomainType</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.Exports.numDomainType">Num.NumDomain.Exports.numDomainType</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.Exports.NumMixin">Num.NumDomain.Exports.NumMixin</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#faa7b03f15fa8c0b383b6f3802b37e9e">[ numDomainType of _ ] (form_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#dfa3a41435329603f4a41bbb73d70957">[ numDomainType of _ for _ ] (form_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.idomainType">Num.NumDomain.idomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.mixin">Num.NumDomain.mixin</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.pack">Num.NumDomain.pack</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.Pack">Num.NumDomain.Pack</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.ringType">Num.NumDomain.ringType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.sort">Num.NumDomain.sort</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.type">Num.NumDomain.type</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.unitRingType">Num.NumDomain.unitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.xclass">Num.NumDomain.xclass</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumDomain.zmodType">Num.NumDomain.zmodType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField">Num.NumField</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.base">Num.NumField.base</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.base2">Num.NumField.base2</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.choiceType">Num.NumField.choiceType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.class">Num.NumField.class</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.Class">Num.NumField.Class</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.ClassDef">Num.NumField.ClassDef</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.ClassDef.cT">Num.NumField.ClassDef.cT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.ClassDef.T">Num.NumField.ClassDef.T</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.ClassDef.xT">Num.NumField.ClassDef.xT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.class_of">Num.NumField.class_of</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.comRingType">Num.NumField.comRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.comUnitRingType">Num.NumField.comUnitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.eqType">Num.NumField.eqType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.Exports">Num.NumField.Exports</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.Exports.numFieldType">Num.NumField.Exports.numFieldType</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#a7441f0a0e6a98d4d20f782d49891896">[ numFieldType of _ ] (form_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.fieldType">Num.NumField.fieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.idomainType">Num.NumField.idomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.join_numDomainType">Num.NumField.join_numDomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.mixin">Num.NumField.mixin</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.numDomainType">Num.NumField.numDomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.pack">Num.NumField.pack</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.Pack">Num.NumField.Pack</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.ringType">Num.NumField.ringType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.sort">Num.NumField.sort</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.type">Num.NumField.type</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.unitRingType">Num.NumField.unitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.xclass">Num.NumField.xclass</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.NumField.zmodType">Num.NumField.zmodType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.num_for">Num.num_for</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.pos">Num.pos</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.PredInstances">Num.PredInstances</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.real">Num.real</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField">Num.RealClosedField</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.base">Num.RealClosedField.base</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.choiceType">Num.RealClosedField.choiceType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.class">Num.RealClosedField.class</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.Class">Num.RealClosedField.Class</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.ClassDef">Num.RealClosedField.ClassDef</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.ClassDef.cT">Num.RealClosedField.ClassDef.cT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.ClassDef.T">Num.RealClosedField.ClassDef.T</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.ClassDef.xT">Num.RealClosedField.ClassDef.xT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.class_of">Num.RealClosedField.class_of</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.clone">Num.RealClosedField.clone</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.comRingType">Num.RealClosedField.comRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.comUnitRingType">Num.RealClosedField.comUnitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.eqType">Num.RealClosedField.eqType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.Exports">Num.RealClosedField.Exports</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.Exports.RcfType">Num.RealClosedField.Exports.RcfType</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.Exports.rcfType">Num.RealClosedField.Exports.rcfType</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#489355e4822051a37f16f0d65e2778f8">[ rcfType of _ ] (form_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#d55f7ab3d406a321aadc0a2e4311d80c">[ rcfType of _ for _ ] (form_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.fieldType">Num.RealClosedField.fieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.idomainType">Num.RealClosedField.idomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.numDomainType">Num.RealClosedField.numDomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.numFieldType">Num.RealClosedField.numFieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.pack">Num.RealClosedField.pack</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.Pack">Num.RealClosedField.Pack</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.realDomainType">Num.RealClosedField.realDomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.realFieldType">Num.RealClosedField.realFieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.ringType">Num.RealClosedField.ringType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.sort">Num.RealClosedField.sort</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.type">Num.RealClosedField.type</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.unitRingType">Num.RealClosedField.unitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.xclass">Num.RealClosedField.xclass</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealClosedField.zmodType">Num.RealClosedField.zmodType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain">Num.RealDomain</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.base">Num.RealDomain.base</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.choiceType">Num.RealDomain.choiceType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.class">Num.RealDomain.class</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.Class">Num.RealDomain.Class</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.ClassDef">Num.RealDomain.ClassDef</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.ClassDef.cT">Num.RealDomain.ClassDef.cT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.ClassDef.T">Num.RealDomain.ClassDef.T</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.ClassDef.xT">Num.RealDomain.ClassDef.xT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.class_of">Num.RealDomain.class_of</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.clone">Num.RealDomain.clone</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.comRingType">Num.RealDomain.comRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.comUnitRingType">Num.RealDomain.comUnitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.eqType">Num.RealDomain.eqType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.Exports">Num.RealDomain.Exports</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.Exports.RealDomainType">Num.RealDomain.Exports.RealDomainType</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.Exports.realDomainType">Num.RealDomain.Exports.realDomainType</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#0df319535c5b2c7df349bac58e95e96c">[ realDomainType of _ ] (form_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#97348e7f29e06cbe2672c3f0899ae4cb">[ realDomainType of _ for _ ] (form_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.idomainType">Num.RealDomain.idomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.numDomainType">Num.RealDomain.numDomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.pack">Num.RealDomain.pack</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.Pack">Num.RealDomain.Pack</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.ringType">Num.RealDomain.ringType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.sort">Num.RealDomain.sort</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.type">Num.RealDomain.type</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.unitRingType">Num.RealDomain.unitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.xclass">Num.RealDomain.xclass</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealDomain.zmodType">Num.RealDomain.zmodType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField">Num.RealField</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.base">Num.RealField.base</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.base2">Num.RealField.base2</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.choiceType">Num.RealField.choiceType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.class">Num.RealField.class</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.Class">Num.RealField.Class</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.ClassDef">Num.RealField.ClassDef</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.ClassDef.cT">Num.RealField.ClassDef.cT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.ClassDef.T">Num.RealField.ClassDef.T</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.ClassDef.xT">Num.RealField.ClassDef.xT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.class_of">Num.RealField.class_of</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.comRingType">Num.RealField.comRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.comUnitRingType">Num.RealField.comUnitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.eqType">Num.RealField.eqType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.Exports">Num.RealField.Exports</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.Exports.realFieldType">Num.RealField.Exports.realFieldType</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#9bd0f21dc8f37cb47d141588c0e6729b">[ realFieldType of _ ] (form_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.fieldType">Num.RealField.fieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.idomainType">Num.RealField.idomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.join_realDomainType">Num.RealField.join_realDomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.mixin">Num.RealField.mixin</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.numDomainType">Num.RealField.numDomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.numFieldType">Num.RealField.numFieldType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.pack">Num.RealField.pack</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.Pack">Num.RealField.Pack</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.realDomainType">Num.RealField.realDomainType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.ringType">Num.RealField.ringType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.sort">Num.RealField.sort</a> [projection, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.type">Num.RealField.type</a> [record, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.unitRingType">Num.RealField.unitRingType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.xclass">Num.RealField.xclass</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealField.zmodType">Num.RealField.zmodType</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin">Num.RealMixin</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.eq0_norm">Num.RealMixin.eq0_norm</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.Le">Num.RealMixin.Le</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.le_total">Num.RealMixin.le_total</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.le_normD">Num.RealMixin.le_normD</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.le_def">Num.RealMixin.le_def</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.le0_total">Num.RealMixin.le0_total</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.le0_anti">Num.RealMixin.le0_anti</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.le0_mul">Num.RealMixin.le0_mul</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.le0_add">Num.RealMixin.le0_add</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.Lt">Num.RealMixin.Lt</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.lt_def">Num.RealMixin.lt_def</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.lt0_add">Num.RealMixin.lt0_add</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.normM">Num.RealMixin.normM</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.Real">Num.RealMixin.Real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins">Num.RealMixin.RealMixins</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.le">Num.RealMixin.RealMixins.le</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LeMixin">Num.RealMixin.RealMixins.LeMixin</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LeMixin.ge0_norm">Num.RealMixin.RealMixins.LeMixin.ge0_norm</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LeMixin.leN_total">Num.RealMixin.RealMixins.LeMixin.leN_total</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LeMixin.le0N">Num.RealMixin.RealMixins.LeMixin.le0N</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LeMixin.le0_total">Num.RealMixin.RealMixins.LeMixin.le0_total</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LeMixin.le0_anti">Num.RealMixin.RealMixins.LeMixin.le0_anti</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LeMixin.le0_mul">Num.RealMixin.RealMixins.LeMixin.le0_mul</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LeMixin.le0_add">Num.RealMixin.RealMixins.LeMixin.le0_add</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LeMixin.le00">Num.RealMixin.RealMixins.LeMixin.le00</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LeMixin.le01">Num.RealMixin.RealMixins.LeMixin.le01</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LeMixin.lt_def">Num.RealMixin.RealMixins.LeMixin.lt_def</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LeMixin.normN">Num.RealMixin.RealMixins.LeMixin.normN</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LeMixin.sub_ge0">Num.RealMixin.RealMixins.LeMixin.sub_ge0</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.lt">Num.RealMixin.RealMixins.lt</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LtMixin">Num.RealMixin.RealMixins.LtMixin</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LtMixin.ge0_norm">Num.RealMixin.RealMixins.LtMixin.ge0_norm</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LtMixin.le_def">Num.RealMixin.RealMixins.LtMixin.le_def</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LtMixin.lt0_total">Num.RealMixin.RealMixins.LtMixin.lt0_total</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LtMixin.lt0_ngt0">Num.RealMixin.RealMixins.LtMixin.lt0_ngt0</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LtMixin.lt0_mul">Num.RealMixin.RealMixins.LtMixin.lt0_mul</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LtMixin.lt0_add">Num.RealMixin.RealMixins.LtMixin.lt0_add</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LtMixin.normN">Num.RealMixin.RealMixins.LtMixin.normN</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.LtMixin.sub_gt0">Num.RealMixin.RealMixins.LtMixin.sub_gt0</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.norm">Num.RealMixin.RealMixins.norm</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.RealMixins.R">Num.RealMixin.RealMixins.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#de7043ea17a224ebc5072aadb91ca5c8">`| _ | (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#6742b89c3f5ac60b756597eec71a6ec6">_ < _</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#982e7680c015af99a74da7cd6b581a82">_ <= _</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.RealMixin.sub_ge0">Num.RealMixin.sub_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.real_closed_axiom">Num.real_closed_axiom</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.real_axiom">Num.real_axiom</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.ring_for">Num.ring_for</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.sg">Num.sg</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.sqrt">Num.sqrt</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Syntax">Num.Syntax</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#6019ab7c51b05c9f67093b53d0c48454">_ <= _ ?= iff _ :> _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#79bf01a504ffcda65f8e3d816a5515cd">_ <= _ ?= iff _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#7cd47ea66f219bc403cc6631c817f8b3">_ < _ < _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#93a29a58d1f90b8a91702885cf86161e">_ <= _ < _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#cbae941009021cd5693066355a023dd1">_ < _ <= _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#ff736a21b738c796d1200c3222013b46">_ <= _ <= _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#3975356ead321cf4577de4738f745485">_ >= _ :> _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#4a55c8439dfd5912be472b2910ab4015">_ >= _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#d6cd0798ccf4decf11598a746ae90abf">_ <= _ :> _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#1065783963a393d1eafa2137291f2495">_ <= _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#f54d2e0a46f272d0295ade87cec65608">_ > _ :> _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#07bcd9d86ae6b6828fbc17b15193853f">_ > _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#3c0e77197870a42e4951057d43bba909">_ < _ :> _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#388c172bf8d34ef0bf11898cd56f8d7b">_ < _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#6f89ccb02a8f0a5ad1eea6160e3c21ef">>= _ :> _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#23c398dbba06a0aa4819b2d9e2ed5abb">>= _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#13d5330a4568f6ceffcf63013bcd1f20"><= _ :> _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#e1cffdfd4384e2a91d841324fdf3cf74"><= _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#cbbb7fa9128771701eefac0819f9b044">> _ :> _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#a5bfa1108ca863ae15611f2aac402243">> _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#59d3ae83284e7d320c78efee96f330f6">< _ :> _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#a8f34bc5e467f7971380049ef258ede0">< _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#6fd1556fdb6e0b11ebd82189f1bfb36f"><?=%R (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#186aaf7909c11e850d63c2993181ccc7">>=%R (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#81937a94685a0487cf97a240746fb002"><=%R (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#4f222b0e87b56a0bb524cc002c4daf40">>%R (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#1d9613d915748583958d042a98aee792"><%R (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#c536f9a86d3c053391521360ac3f5a61">`| _ | (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory">Num.Theory</a> [module, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.addC_rect">Num.Theory.addC_rect</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.addr_maxr">Num.Theory.addr_maxr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.addr_maxl">Num.Theory.addr_maxl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.addr_minr">Num.Theory.addr_minr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.addr_minl">Num.Theory.addr_minl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.addr_max_min">Num.Theory.addr_max_min</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.addr_min_max">Num.Theory.addr_min_max</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.addr_ss_eq0">Num.Theory.addr_ss_eq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.addr_ge0">Num.Theory.addr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.addr_gt0">Num.Theory.addr_gt0</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ArchimedeanFieldTheory">Num.Theory.ArchimedeanFieldTheory</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ArchimedeanFieldTheory.F">Num.Theory.ArchimedeanFieldTheory.F</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ArchimedeanFieldTheory.x">Num.Theory.ArchimedeanFieldTheory.x</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.archi_boundP">Num.Theory.archi_boundP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.argCle">Num.Theory.argCle</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Cauchy_root_bound">Num.Theory.Cauchy_root_bound</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.char_num">Num.Theory.char_num</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ClosedFieldTheory">Num.Theory.ClosedFieldTheory</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ClosedFieldTheory.argCleP">Num.Theory.ClosedFieldTheory.argCleP</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ClosedFieldTheory.C">Num.Theory.ClosedFieldTheory.C</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ClosedFieldTheory.neg_unity_root">Num.Theory.ClosedFieldTheory.neg_unity_root</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ClosedFieldTheory.nz2">Num.Theory.ClosedFieldTheory.nz2</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ClosedFieldTheory.Re2">Num.Theory.ClosedFieldTheory.Re2</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#03c300d501fea655f6f62a3c297714e9">'Im _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#dcb39ac1261bac8232156a37fb17d31c">'Re _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#27eefe7225317752adf12d2ec6054502">_ .-root (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#faffc7ebdc59e33c8506558c91f1ae94">_ .-root (ring_core_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.comparer">Num.Theory.comparer</a> [inductive, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ComparerEq">Num.Theory.ComparerEq</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ComparerEq0">Num.Theory.ComparerEq0</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ComparerGt">Num.Theory.ComparerGt</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ComparerGt0">Num.Theory.ComparerGt0</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ComparerLt">Num.Theory.ComparerLt</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ComparerLt0">Num.Theory.ComparerLt0</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.comparer0">Num.Theory.comparer0</a> [inductive, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.conjC">Num.Theory.conjC</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.conjCi">Num.Theory.conjCi</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.conjCK">Num.Theory.conjCK</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.conjC_rect">Num.Theory.conjC_rect</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.conjC_eq0">Num.Theory.conjC_eq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.conjC_nat">Num.Theory.conjC_nat</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.conjC_ge0">Num.Theory.conjC_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.conjC0">Num.Theory.conjC0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.conjC1">Num.Theory.conjC1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.conj_normC">Num.Theory.conj_normC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.conj_Creal">Num.Theory.conj_Creal</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.cpr_add">Num.Theory.cpr_add</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.CrealE">Num.Theory.CrealE</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.CrealP">Num.Theory.CrealP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Creal_ReP">Num.Theory.Creal_ReP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Creal_ImP">Num.Theory.Creal_ImP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Creal_Im">Num.Theory.Creal_Im</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Creal_Re">Num.Theory.Creal_Re</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Crect">Num.Theory.Crect</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.distrC">Num.Theory.distrC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.divr_gt0">Num.Theory.divr_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.divr_ge0">Num.Theory.divr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqC_semipolar">Num.Theory.eqC_semipolar</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_sqrtC">Num.Theory.eqr_sqrtC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_rootC">Num.Theory.eqr_rootC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_sqrt">Num.Theory.eqr_sqrt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_maxr">Num.Theory.eqr_maxr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_maxl">Num.Theory.eqr_maxl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_minr">Num.Theory.eqr_minr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_minl">Num.Theory.eqr_minl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_norm2">Num.Theory.eqr_norm2</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_norml">Num.Theory.eqr_norml</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_ltRL">Num.Theory.eqr_ltRL</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_ltLR">Num.Theory.eqr_ltLR</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_leRL">Num.Theory.eqr_leRL</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_leLR">Num.Theory.eqr_leLR</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_norm_idVN">Num.Theory.eqr_norm_idVN</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_normN">Num.Theory.eqr_normN</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_norm_id">Num.Theory.eqr_norm_id</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_expn2">Num.Theory.eqr_expn2</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_nat">Num.Theory.eqr_nat</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_muln2r">Num.Theory.eqr_muln2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_pmuln2r">Num.Theory.eqr_pmuln2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.eqr_le">Num.Theory.eqr_le</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprCK">Num.Theory.exprCK</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_odd_lt0">Num.Theory.exprn_odd_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_odd_le0">Num.Theory.exprn_odd_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_odd_gt0">Num.Theory.exprn_odd_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_odd_ge0">Num.Theory.exprn_odd_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_even_lt0">Num.Theory.exprn_even_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_even_le0">Num.Theory.exprn_even_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_even_gt0">Num.Theory.exprn_even_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_even_ge0">Num.Theory.exprn_even_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_cp1">Num.Theory.exprn_cp1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_egte1">Num.Theory.exprn_egte1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_egt1">Num.Theory.exprn_egt1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_ege1">Num.Theory.exprn_ege1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_ilte1">Num.Theory.exprn_ilte1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_ilt1">Num.Theory.exprn_ilt1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_ile1">Num.Theory.exprn_ile1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_gte0">Num.Theory.exprn_gte0</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_gt0">Num.Theory.exprn_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.exprn_ge0">Num.Theory.exprn_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.expr_gte1">Num.Theory.expr_gte1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.expr_gt1">Num.Theory.expr_gt1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.expr_ge1">Num.Theory.expr_ge1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.expr_lte1">Num.Theory.expr_lte1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.expr_lt1">Num.Theory.expr_lt1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.expr_le1">Num.Theory.expr_le1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.FinGroup">Num.Theory.FinGroup</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.FinGroup.gT">Num.Theory.FinGroup.gT</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.FinGroup.R">Num.Theory.FinGroup.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.geC0_unit_exp">Num.Theory.geC0_unit_exp</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.geC0_conj">Num.Theory.geC0_conj</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.gerE">Num.Theory.gerE</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.GerNotLt">Num.Theory.GerNotLt</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger_lerif">Num.Theory.ger_lerif</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger_nmulr">Num.Theory.ger_nmulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger_nmull">Num.Theory.ger_nmull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger_pmulr">Num.Theory.ger_pmulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger_pmull">Num.Theory.ger_pmull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger_addr">Num.Theory.ger_addr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger_addl">Num.Theory.ger_addl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger_real">Num.Theory.ger_real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger_sub_real">Num.Theory.ger_sub_real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger_leVge">Num.Theory.ger_leVge</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Ger0NotLt0">Num.Theory.Ger0NotLt0</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger0P">Num.Theory.ger0P</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger0_xor_lt0">Num.Theory.ger0_xor_lt0</a> [inductive, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger0_real">Num.Theory.ger0_real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger0_norm">Num.Theory.ger0_norm</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger0_def">Num.Theory.ger0_def</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ger1_real">Num.Theory.ger1_real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ge0_cp">Num.Theory.ge0_cp</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.gtrE">Num.Theory.gtrE</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.GtrNotLe">Num.Theory.GtrNotLe</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.gtr_nmulr">Num.Theory.gtr_nmulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.gtr_nmull">Num.Theory.gtr_nmull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.gtr_pmulr">Num.Theory.gtr_pmulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.gtr_pmull">Num.Theory.gtr_pmull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.gtr_addr">Num.Theory.gtr_addr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.gtr_addl">Num.Theory.gtr_addl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.gtr_eqF">Num.Theory.gtr_eqF</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Gtr0NotGt0">Num.Theory.Gtr0NotGt0</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.gtr0_sg">Num.Theory.gtr0_sg</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.gtr0_real">Num.Theory.gtr0_real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.gtr0_norm">Num.Theory.gtr0_norm</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.gt0_cp">Num.Theory.gt0_cp</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.homo_mono_in">Num.Theory.homo_mono_in</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.homo_mono">Num.Theory.homo_mono</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.homo_leq_mono">Num.Theory.homo_leq_mono</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.homo_inj_ltn_lt">Num.Theory.homo_inj_ltn_lt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.homo_inj_in_lt">Num.Theory.homo_inj_in_lt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.homo_inj_lt">Num.Theory.homo_inj_lt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ieexprIn">Num.Theory.ieexprIn</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ieexprn_weq1">Num.Theory.ieexprn_weq1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Im">Num.Theory.Im</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.imaginaryC">Num.Theory.imaginaryC</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.imaginaryCE">Num.Theory.imaginaryCE</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ImMl">Num.Theory.ImMl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ImMr">Num.Theory.ImMr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Im_rootC_ge0">Num.Theory.Im_rootC_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Im_rect">Num.Theory.Im_rect</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Im_conj">Num.Theory.Im_conj</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Im_i">Num.Theory.Im_i</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Im_is_additive">Num.Theory.Im_is_additive</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invCi">Num.Theory.invCi</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invC_rect">Num.Theory.invC_rect</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invC_norm">Num.Theory.invC_norm</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invf_cp1">Num.Theory.invf_cp1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invf_lte1">Num.Theory.invf_lte1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invf_lt1">Num.Theory.invf_lt1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invf_le1">Num.Theory.invf_le1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invf_gte1">Num.Theory.invf_gte1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invf_ge1">Num.Theory.invf_ge1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invf_gt1">Num.Theory.invf_gt1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_sg">Num.Theory.invr_sg</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_cp1">Num.Theory.invr_cp1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_lte1">Num.Theory.invr_lte1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_lt1">Num.Theory.invr_lt1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_le1">Num.Theory.invr_le1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_gte1">Num.Theory.invr_gte1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_ge1">Num.Theory.invr_ge1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_gt1">Num.Theory.invr_gt1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_lte0">Num.Theory.invr_lte0</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_gte0">Num.Theory.invr_gte0</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_le0">Num.Theory.invr_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_lt0">Num.Theory.invr_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_ge0">Num.Theory.invr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.invr_gt0">Num.Theory.invr_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.IsNoSqrtr">Num.Theory.IsNoSqrtr</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.IsSqrtr">Num.Theory.IsSqrtr</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lef_ninv">Num.Theory.lef_ninv</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lef_pinv">Num.Theory.lef_pinv</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.leq_lerW_nmono">Num.Theory.leq_lerW_nmono</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.leq_lerW_mono">Num.Theory.leq_lerW_mono</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.leq_nmono_inj">Num.Theory.leq_nmono_inj</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.leq_mono_inj">Num.Theory.leq_mono_inj</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerifP">Num.Theory.lerifP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_rootC_AGM">Num.Theory.lerif_rootC_AGM</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_Re_Creal">Num.Theory.lerif_Re_Creal</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_normC_Re_Creal">Num.Theory.lerif_normC_Re_Creal</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_AGM2">Num.Theory.lerif_AGM2</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_mean_square">Num.Theory.lerif_mean_square</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_AGM2_scaled">Num.Theory.lerif_AGM2_scaled</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_mean_square_scaled">Num.Theory.lerif_mean_square_scaled</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_AGM">Num.Theory.lerif_AGM</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_AGM_scaled">Num.Theory.lerif_AGM_scaled</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_pprod">Num.Theory.lerif_pprod</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_nmul">Num.Theory.lerif_nmul</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_pmul">Num.Theory.lerif_pmul</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_0_sum">Num.Theory.lerif_0_sum</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_sum">Num.Theory.lerif_sum</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_add">Num.Theory.lerif_add</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_subRL">Num.Theory.lerif_subRL</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_subLR">Num.Theory.lerif_subLR</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_nat">Num.Theory.lerif_nat</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_eq">Num.Theory.lerif_eq</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_le">Num.Theory.lerif_le</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_trans">Num.Theory.lerif_trans</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerif_refl">Num.Theory.lerif_refl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerNgt">Num.Theory.lerNgt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.LerNotGt">Num.Theory.LerNotGt</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lern0">Num.Theory.lern0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lern1">Num.Theory.lern1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerN10">Num.Theory.lerN10</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerP">Num.Theory.lerP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerr">Num.Theory.lerr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerW_nmono_in">Num.Theory.lerW_nmono_in</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerW_mono_in">Num.Theory.lerW_mono_in</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerW_nmono">Num.Theory.lerW_nmono</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lerW_mono">Num.Theory.lerW_mono</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_sqrtC">Num.Theory.ler_sqrtC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_rootC">Num.Theory.ler_rootC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_rootCl">Num.Theory.ler_rootCl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_sqrt">Num.Theory.ler_sqrt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_psqrt">Num.Theory.ler_psqrt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_wsqrtr">Num.Theory.ler_wsqrtr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_maxl">Num.Theory.ler_maxl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_maxr">Num.Theory.ler_maxr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_minl">Num.Theory.ler_minl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_minr">Num.Theory.ler_minr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_distl">Num.Theory.ler_distl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_normr">Num.Theory.ler_normr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_normlP">Num.Theory.ler_normlP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_norml">Num.Theory.ler_norml</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_norm">Num.Theory.ler_norm</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_total">Num.Theory.ler_total</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_ndivr_mull">Num.Theory.ler_ndivr_mull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_ndivl_mull">Num.Theory.ler_ndivl_mull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_ndivr_mulr">Num.Theory.ler_ndivr_mulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_ndivl_mulr">Num.Theory.ler_ndivl_mulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pdivr_mull">Num.Theory.ler_pdivr_mull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pdivl_mull">Num.Theory.ler_pdivl_mull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pdivr_mulr">Num.Theory.ler_pdivr_mulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pdivl_mulr">Num.Theory.ler_pdivl_mulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_nnorml">Num.Theory.ler_nnorml</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_dist_norm_add">Num.Theory.ler_dist_norm_add</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_dist_dist">Num.Theory.ler_dist_dist</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_sub_dist">Num.Theory.ler_sub_dist</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_sub_norm_add">Num.Theory.ler_sub_norm_add</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_dist_add">Num.Theory.ler_dist_add</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_norm_sub">Num.Theory.ler_norm_sub</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_norm_sum">Num.Theory.ler_norm_sum</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_ninv">Num.Theory.ler_ninv</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pinv">Num.Theory.ler_pinv</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_sqr">Num.Theory.ler_sqr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pexpn2r">Num.Theory.ler_pexpn2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_expn2r">Num.Theory.ler_expn2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_eexpn2l">Num.Theory.ler_eexpn2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_iexpn2l">Num.Theory.ler_iexpn2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_weexpn2l">Num.Theory.ler_weexpn2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_wiexpn2l">Num.Theory.ler_wiexpn2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_eexpr">Num.Theory.ler_eexpr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_iexpr">Num.Theory.ler_iexpr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_nimulr">Num.Theory.ler_nimulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pimulr">Num.Theory.ler_pimulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_nimull">Num.Theory.ler_nimull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pimull">Num.Theory.ler_pimull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_nemulr">Num.Theory.ler_nemulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pemulr">Num.Theory.ler_pemulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_nemull">Num.Theory.ler_nemull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pemull">Num.Theory.ler_pemull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_nmulr">Num.Theory.ler_nmulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_nmull">Num.Theory.ler_nmull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pmulr">Num.Theory.ler_pmulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pmull">Num.Theory.ler_pmull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_prod">Num.Theory.ler_prod</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_nat">Num.Theory.ler_nat</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_nmuln2l">Num.Theory.ler_nmuln2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pmuln2l">Num.Theory.ler_pmuln2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_wnmuln2l">Num.Theory.ler_wnmuln2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_wpmuln2l">Num.Theory.ler_wpmuln2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_muln2r">Num.Theory.ler_muln2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_wmuln2r">Num.Theory.ler_wmuln2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pmuln2r">Num.Theory.ler_pmuln2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pmul">Num.Theory.ler_pmul</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_wnmul2r">Num.Theory.ler_wnmul2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_wnmul2l">Num.Theory.ler_wnmul2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_wpmul2r">Num.Theory.ler_wpmul2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_wpmul2l">Num.Theory.ler_wpmul2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_nmul2r">Num.Theory.ler_nmul2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_nmul2l">Num.Theory.ler_nmul2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pmul2r">Num.Theory.ler_pmul2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_pmul2l">Num.Theory.ler_pmul2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_sum">Num.Theory.ler_sum</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_naddr">Num.Theory.ler_naddr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_paddr">Num.Theory.ler_paddr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_naddl">Num.Theory.ler_naddl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_paddl">Num.Theory.ler_paddl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_addr">Num.Theory.ler_addr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_addl">Num.Theory.ler_addl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_sub_addl">Num.Theory.ler_sub_addl</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_subr_addl">Num.Theory.ler_subr_addl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_subl_addl">Num.Theory.ler_subl_addl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_sub_addr">Num.Theory.ler_sub_addr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_subr_addr">Num.Theory.ler_subr_addr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_subl_addr">Num.Theory.ler_subl_addr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_lt_sub">Num.Theory.ler_lt_sub</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_sub">Num.Theory.ler_sub</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_lt_add">Num.Theory.ler_lt_add</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_add">Num.Theory.ler_add</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_add2">Num.Theory.ler_add2</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_add2r">Num.Theory.ler_add2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_add2l">Num.Theory.ler_add2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_real">Num.Theory.ler_real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_sub_real">Num.Theory.ler_sub_real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_xor_gt">Num.Theory.ler_xor_gt</a> [inductive, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_leVge">Num.Theory.ler_leVge</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_oppl">Num.Theory.ler_oppl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_oppr">Num.Theory.ler_oppr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_opp2">Num.Theory.ler_opp2</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_gtF">Num.Theory.ler_gtF</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_lt_asym">Num.Theory.ler_lt_asym</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_anti">Num.Theory.ler_anti</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_trans">Num.Theory.ler_trans</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_lt_trans">Num.Theory.ler_lt_trans</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_asym">Num.Theory.ler_asym</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_eqVlt">Num.Theory.ler_eqVlt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_def">Num.Theory.ler_def</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler_norm_add">Num.Theory.ler_norm_add</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler0n">Num.Theory.ler0n</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Ler0NotLe0">Num.Theory.Ler0NotLe0</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler0N1">Num.Theory.ler0N1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler0P">Num.Theory.ler0P</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler0_sqrtr">Num.Theory.ler0_sqrtr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler0_xor_gt0">Num.Theory.ler0_xor_gt0</a> [inductive, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler0_real">Num.Theory.ler0_real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler0_norm">Num.Theory.ler0_norm</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler0_def">Num.Theory.ler0_def</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler01">Num.Theory.ler01</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler1n">Num.Theory.ler1n</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler1_real">Num.Theory.ler1_real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ler10">Num.Theory.ler10</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.le0r">Num.Theory.le0r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.le0_cp">Num.Theory.le0_cp</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltef_ninv">Num.Theory.ltef_ninv</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltef_pinv">Num.Theory.ltef_pinv</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lterr">Num.Theory.lterr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_maxl">Num.Theory.lter_maxl</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_maxr">Num.Theory.lter_maxr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_minl">Num.Theory.lter_minl</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_minr">Num.Theory.lter_minr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_distl">Num.Theory.lter_distl</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_normr">Num.Theory.lter_normr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_norml">Num.Theory.lter_norml</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_ndivr_mull">Num.Theory.lter_ndivr_mull</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_ndivl_mull">Num.Theory.lter_ndivl_mull</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_ndivr_mulr">Num.Theory.lter_ndivr_mulr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_ndivl_mulr">Num.Theory.lter_ndivl_mulr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_pdivr_mull">Num.Theory.lter_pdivr_mull</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_pdivl_mull">Num.Theory.lter_pdivl_mull</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_pdivr_mulr">Num.Theory.lter_pdivr_mulr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_pdivl_mulr">Num.Theory.lter_pdivl_mulr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_nnormr">Num.Theory.lter_nnormr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_pexpn2r">Num.Theory.lter_pexpn2r</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_expn2r">Num.Theory.lter_expn2r</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_eexpn2l">Num.Theory.lter_eexpn2l</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_iexpn2l">Num.Theory.lter_iexpn2l</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_expr">Num.Theory.lter_expr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_eexpr">Num.Theory.lter_eexpr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_iexpr">Num.Theory.lter_iexpr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_nmul2r">Num.Theory.lter_nmul2r</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_nmul2l">Num.Theory.lter_nmul2l</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_pmul2r">Num.Theory.lter_pmul2r</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_pmul2l">Num.Theory.lter_pmul2l</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_sub_addl">Num.Theory.lter_sub_addl</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_sub_addr">Num.Theory.lter_sub_addr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_add2">Num.Theory.lter_add2</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_oppE">Num.Theory.lter_oppE</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_oppl">Num.Theory.lter_oppl</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_oppr">Num.Theory.lter_oppr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_opp2">Num.Theory.lter_opp2</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter_anti">Num.Theory.lter_anti</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lter01">Num.Theory.lter01</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltf_ninv">Num.Theory.ltf_ninv</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltf_pinv">Num.Theory.ltf_pinv</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltn_ltrW_nhomo">Num.Theory.ltn_ltrW_nhomo</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltn_ltrW_homo">Num.Theory.ltn_ltrW_homo</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrgtP">Num.Theory.ltrgtP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrgt0P">Num.Theory.ltrgt0P</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrNge">Num.Theory.ltrNge</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.LtrNotGe">Num.Theory.LtrNotGe</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrn0">Num.Theory.ltrn0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrn1">Num.Theory.ltrn1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrN10">Num.Theory.ltrN10</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrP">Num.Theory.ltrP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrr">Num.Theory.ltrr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrW">Num.Theory.ltrW</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrW_nhomo_in">Num.Theory.ltrW_nhomo_in</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrW_homo_in">Num.Theory.ltrW_homo_in</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrW_nhomo">Num.Theory.ltrW_nhomo</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrW_homo">Num.Theory.ltrW_homo</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_sqrtC">Num.Theory.ltr_sqrtC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_rootC">Num.Theory.ltr_rootC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_rootCl">Num.Theory.ltr_rootCl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_sqrt">Num.Theory.ltr_sqrt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_maxl">Num.Theory.ltr_maxl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_maxr">Num.Theory.ltr_maxr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_minl">Num.Theory.ltr_minl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_minr">Num.Theory.ltr_minr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_distl">Num.Theory.ltr_distl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_normr">Num.Theory.ltr_normr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_normlP">Num.Theory.ltr_normlP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_norml">Num.Theory.ltr_norml</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_total">Num.Theory.ltr_total</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_ndivr_mull">Num.Theory.ltr_ndivr_mull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_ndivl_mull">Num.Theory.ltr_ndivl_mull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_ndivr_mulr">Num.Theory.ltr_ndivr_mulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_ndivl_mulr">Num.Theory.ltr_ndivl_mulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_pdivr_mull">Num.Theory.ltr_pdivr_mull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_pdivl_mull">Num.Theory.ltr_pdivl_mull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_pdivr_mulr">Num.Theory.ltr_pdivr_mulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_pdivl_mulr">Num.Theory.ltr_pdivl_mulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_lerif">Num.Theory.ltr_lerif</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_nnorml">Num.Theory.ltr_nnorml</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_ninv">Num.Theory.ltr_ninv</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_pinv">Num.Theory.ltr_pinv</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_sqr">Num.Theory.ltr_sqr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_pexpn2r">Num.Theory.ltr_pexpn2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_wpexpn2r">Num.Theory.ltr_wpexpn2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_expn2r">Num.Theory.ltr_expn2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_eexpn2l">Num.Theory.ltr_eexpn2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_iexpn2l">Num.Theory.ltr_iexpn2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_eexpr">Num.Theory.ltr_eexpr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_iexpr">Num.Theory.ltr_iexpr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_nmulr">Num.Theory.ltr_nmulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_nmull">Num.Theory.ltr_nmull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_pmulr">Num.Theory.ltr_pmulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_pmull">Num.Theory.ltr_pmull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_prod_nat">Num.Theory.ltr_prod_nat</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_prod">Num.Theory.ltr_prod</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_nat">Num.Theory.ltr_nat</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_nmuln2l">Num.Theory.ltr_nmuln2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_pmuln2l">Num.Theory.ltr_pmuln2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_muln2r">Num.Theory.ltr_muln2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_wpmuln2r">Num.Theory.ltr_wpmuln2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_wmuln2r">Num.Theory.ltr_wmuln2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_pmuln2r">Num.Theory.ltr_pmuln2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_pmul">Num.Theory.ltr_pmul</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_nmul2r">Num.Theory.ltr_nmul2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_nmul2l">Num.Theory.ltr_nmul2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_pmul2r">Num.Theory.ltr_pmul2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_pmul2l">Num.Theory.ltr_pmul2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_snsaddr">Num.Theory.ltr_snsaddr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_snaddr">Num.Theory.ltr_snaddr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_naddr">Num.Theory.ltr_naddr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_spsaddr">Num.Theory.ltr_spsaddr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_spaddr">Num.Theory.ltr_spaddr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_paddr">Num.Theory.ltr_paddr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_snsaddl">Num.Theory.ltr_snsaddl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_snaddl">Num.Theory.ltr_snaddl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_naddl">Num.Theory.ltr_naddl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_spsaddl">Num.Theory.ltr_spsaddl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_spaddl">Num.Theory.ltr_spaddl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_paddl">Num.Theory.ltr_paddl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_addr">Num.Theory.ltr_addr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_addl">Num.Theory.ltr_addl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_sub_addl">Num.Theory.ltr_sub_addl</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_subr_addl">Num.Theory.ltr_subr_addl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_subl_addl">Num.Theory.ltr_subl_addl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_sub_addr">Num.Theory.ltr_sub_addr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_subr_addr">Num.Theory.ltr_subr_addr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_subl_addr">Num.Theory.ltr_subl_addr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_sub">Num.Theory.ltr_sub</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_le_sub">Num.Theory.ltr_le_sub</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_add">Num.Theory.ltr_add</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_le_add">Num.Theory.ltr_le_add</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_add2">Num.Theory.ltr_add2</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_add2l">Num.Theory.ltr_add2l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_add2r">Num.Theory.ltr_add2r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_xor_ge">Num.Theory.ltr_xor_ge</a> [inductive, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_oppl">Num.Theory.ltr_oppl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_oppr">Num.Theory.ltr_oppr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_opp2">Num.Theory.ltr_opp2</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_gtF">Num.Theory.ltr_gtF</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_geF">Num.Theory.ltr_geF</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_le_asym">Num.Theory.ltr_le_asym</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_asym">Num.Theory.ltr_asym</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_le_trans">Num.Theory.ltr_le_trans</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_trans">Num.Theory.ltr_trans</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_eqF">Num.Theory.ltr_eqF</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_neqAle">Num.Theory.ltr_neqAle</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr_def">Num.Theory.ltr_def</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr0n">Num.Theory.ltr0n</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Ltr0NotGe0">Num.Theory.Ltr0NotGe0</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr0N1">Num.Theory.ltr0N1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr0Sn">Num.Theory.ltr0Sn</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr0_sqrtr">Num.Theory.ltr0_sqrtr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr0_sg">Num.Theory.ltr0_sg</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr0_real">Num.Theory.ltr0_real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr0_norm">Num.Theory.ltr0_norm</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr0_neq0">Num.Theory.ltr0_neq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr01">Num.Theory.ltr01</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr1n">Num.Theory.ltr1n</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ltr10">Num.Theory.ltr10</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lt0r">Num.Theory.lt0r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lt0r_neq0">Num.Theory.lt0r_neq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.lt0_cp">Num.Theory.lt0_cp</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxNr">Num.Theory.maxNr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxrA">Num.Theory.maxrA</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxrAC">Num.Theory.maxrAC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxrC">Num.Theory.maxrC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxrCA">Num.Theory.maxrCA</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxrN">Num.Theory.maxrN</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxrP">Num.Theory.maxrP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxrr">Num.Theory.maxrr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxr_nmull">Num.Theory.maxr_nmull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxr_pmull">Num.Theory.maxr_pmull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxr_nmulr">Num.Theory.maxr_nmulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxr_pmulr">Num.Theory.maxr_pmulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxr_minr">Num.Theory.maxr_minr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxr_minl">Num.Theory.maxr_minl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Maxr_l">Num.Theory.Maxr_l</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Maxr_r">Num.Theory.Maxr_r</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxr_spec">Num.Theory.maxr_spec</a> [inductive, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxr_to_min">Num.Theory.maxr_to_min</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxr_r">Num.Theory.maxr_r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.maxr_l">Num.Theory.maxr_l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mid">Num.Theory.mid</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.midf_lte">Num.Theory.midf_lte</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.midf_lt">Num.Theory.midf_lt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.midf_le">Num.Theory.midf_le</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minKr">Num.Theory.minKr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minNr">Num.Theory.minNr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minrA">Num.Theory.minrA</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minrAC">Num.Theory.minrAC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minrC">Num.Theory.minrC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minrCA">Num.Theory.minrCA</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minrK">Num.Theory.minrK</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minrN">Num.Theory.minrN</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minrP">Num.Theory.minrP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minrr">Num.Theory.minrr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minr_nmull">Num.Theory.minr_nmull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minr_pmull">Num.Theory.minr_pmull</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minr_nmulr">Num.Theory.minr_nmulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minr_pmulr">Num.Theory.minr_pmulr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minr_maxr">Num.Theory.minr_maxr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minr_maxl">Num.Theory.minr_maxl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Minr_l">Num.Theory.Minr_l</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Minr_r">Num.Theory.Minr_r</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minr_spec">Num.Theory.minr_spec</a> [inductive, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minr_to_max">Num.Theory.minr_to_max</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minr_r">Num.Theory.minr_r</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.minr_l">Num.Theory.minr_l</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.monic_Cauchy_bound">Num.Theory.monic_Cauchy_bound</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mono_lerif">Num.Theory.mono_lerif</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mono_in_lerif">Num.Theory.mono_in_lerif</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mono_inj_in">Num.Theory.mono_inj_in</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mono_inj">Num.Theory.mono_inj</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulC_rect">Num.Theory.mulC_rect</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulrIn">Num.Theory.mulrIn</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulrn_wlt0">Num.Theory.mulrn_wlt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulrn_wgt0">Num.Theory.mulrn_wgt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulrn_eq0">Num.Theory.mulrn_eq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulrn_wle0">Num.Theory.mulrn_wle0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulrn_wge0">Num.Theory.mulrn_wge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_sg_norm">Num.Theory.mulr_sg_norm</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_Nsign_norm">Num.Theory.mulr_Nsign_norm</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_sign_norm">Num.Theory.mulr_sign_norm</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_sign_lt0">Num.Theory.mulr_sign_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_lt0">Num.Theory.mulr_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_sg_eqN1">Num.Theory.mulr_sg_eqN1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_sg_eq1">Num.Theory.mulr_sg_eq1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_cp1">Num.Theory.mulr_cp1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_egte1">Num.Theory.mulr_egte1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_egt1">Num.Theory.mulr_egt1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_ege1">Num.Theory.mulr_ege1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_ilte1">Num.Theory.mulr_ilte1</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_ilt1">Num.Theory.mulr_ilt1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_ile1">Num.Theory.mulr_ile1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_gt0">Num.Theory.mulr_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_le0_ge0">Num.Theory.mulr_le0_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_ge0_le0">Num.Theory.mulr_ge0_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_le0">Num.Theory.mulr_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mulr_ge0">Num.Theory.mulr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mul_conjC_eq0">Num.Theory.mul_conjC_eq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mul_conjC_gt0">Num.Theory.mul_conjC_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.mul_conjC_ge0">Num.Theory.mul_conjC_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.naddr_eq0">Num.Theory.naddr_eq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.natf_indexg">Num.Theory.natf_indexg</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.natf_div">Num.Theory.natf_div</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.natrG_neq0">Num.Theory.natrG_neq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.natrG_gt0">Num.Theory.natrG_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.natr_indexg_neq0">Num.Theory.natr_indexg_neq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.natr_indexg_gt0">Num.Theory.natr_indexg_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.negrE">Num.Theory.negrE</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.neqr_lt">Num.Theory.neqr_lt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.neqr0_sign">Num.Theory.neqr0_sign</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.neq0Ci">Num.Theory.neq0Ci</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.neq0_mulr_lt0">Num.Theory.neq0_mulr_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nhomo_mono_in">Num.Theory.nhomo_mono_in</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nhomo_mono">Num.Theory.nhomo_mono</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nhomo_leq_mono">Num.Theory.nhomo_leq_mono</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nhomo_inj_ltn_lt">Num.Theory.nhomo_inj_ltn_lt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nhomo_inj_in_lt">Num.Theory.nhomo_inj_in_lt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nhomo_inj_lt">Num.Theory.nhomo_inj_lt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmono_lerif">Num.Theory.nmono_lerif</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmono_in_lerif">Num.Theory.nmono_in_lerif</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmono_inj_in">Num.Theory.nmono_inj_in</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmono_inj">Num.Theory.nmono_inj</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmulrn_rle0">Num.Theory.nmulrn_rle0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmulrn_rge0">Num.Theory.nmulrn_rge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmulrn_rgt0">Num.Theory.nmulrn_rgt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmulr_lle0">Num.Theory.nmulr_lle0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmulr_llt0">Num.Theory.nmulr_llt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmulr_lge0">Num.Theory.nmulr_lge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmulr_lgt0">Num.Theory.nmulr_lgt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmulr_rle0">Num.Theory.nmulr_rle0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmulr_rlt0">Num.Theory.nmulr_rlt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmulr_rge0">Num.Theory.nmulr_rge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nmulr_rgt0">Num.Theory.nmulr_rgt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nnegIm">Num.Theory.nnegIm</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nnegrE">Num.Theory.nnegrE</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nonRealCi">Num.Theory.nonRealCi</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normCi">Num.Theory.normCi</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normCK">Num.Theory.normCK</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normCKC">Num.Theory.normCKC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normC_sub_eq">Num.Theory.normC_sub_eq</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normC_sum_upper">Num.Theory.normC_sum_upper</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normC_sum_eq1">Num.Theory.normC_sum_eq1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normC_sum_eq">Num.Theory.normC_sum_eq</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normC_add_eq">Num.Theory.normC_add_eq</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normC_Re_Im">Num.Theory.normC_Re_Im</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normC_rect">Num.Theory.normC_rect</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normC_def">Num.Theory.normC_def</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normC2_Re_Im">Num.Theory.normC2_Re_Im</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normC2_rect">Num.Theory.normC2_rect</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normfV">Num.Theory.normfV</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normf_div">Num.Theory.normf_div</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normrE">Num.Theory.normrE</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normrEsg">Num.Theory.normrEsg</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normrEsign">Num.Theory.normrEsign</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normrM">Num.Theory.normrM</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normrMn">Num.Theory.normrMn</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normrMsign">Num.Theory.normrMsign</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normrN">Num.Theory.normrN</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normrN1">Num.Theory.normrN1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normrV">Num.Theory.normrV</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normrX">Num.Theory.normrX</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr_sg">Num.Theory.normr_sg</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr_sign">Num.Theory.normr_sign</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr_real">Num.Theory.normr_real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr_gt0">Num.Theory.normr_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr_lt0">Num.Theory.normr_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr_le0">Num.Theory.normr_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr_ge0">Num.Theory.normr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr_id">Num.Theory.normr_id</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr_eq0">Num.Theory.normr_eq0</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr_unit">Num.Theory.normr_unit</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr_prod">Num.Theory.normr_prod</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr_nat">Num.Theory.normr_nat</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr_idP">Num.Theory.normr_idP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr0">Num.Theory.normr0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr0P">Num.Theory.normr0P</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr0_eq0">Num.Theory.normr0_eq0</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.normr1">Num.Theory.normr1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.norm_conjC">Num.Theory.norm_conjC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.norm_rootC">Num.Theory.norm_rootC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Nreal_gtF">Num.Theory.Nreal_gtF</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Nreal_ltF">Num.Theory.Nreal_ltF</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Nreal_geF">Num.Theory.Nreal_geF</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Nreal_leF">Num.Theory.Nreal_leF</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.nthroot">Num.Theory.nthroot</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumDomainMonotonyTheoryForReals">Num.Theory.NumDomainMonotonyTheoryForReals</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumDomainMonotonyTheoryForReals.D">Num.Theory.NumDomainMonotonyTheoryForReals.D</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumDomainMonotonyTheoryForReals.f">Num.Theory.NumDomainMonotonyTheoryForReals.f</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumDomainMonotonyTheoryForReals.R">Num.Theory.NumDomainMonotonyTheoryForReals.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumDomainMonotonyTheoryForReals.R'">Num.Theory.NumDomainMonotonyTheoryForReals.R'</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumDomainOperationTheory">Num.Theory.NumDomainOperationTheory</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumDomainOperationTheory.R">Num.Theory.NumDomainOperationTheory.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.numEsg">Num.Theory.numEsg</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.numEsign">Num.Theory.numEsign</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumFieldTheory">Num.Theory.NumFieldTheory</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumFieldTheory.F">Num.Theory.NumFieldTheory.F</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumIntegralDomainMonotonyTheory">Num.Theory.NumIntegralDomainMonotonyTheory</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumIntegralDomainMonotonyTheory.AcrossTypes">Num.Theory.NumIntegralDomainMonotonyTheory.AcrossTypes</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumIntegralDomainMonotonyTheory.AcrossTypes.D">Num.Theory.NumIntegralDomainMonotonyTheory.AcrossTypes.D</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumIntegralDomainMonotonyTheory.AcrossTypes.D'">Num.Theory.NumIntegralDomainMonotonyTheory.AcrossTypes.D'</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumIntegralDomainMonotonyTheory.AcrossTypes.f">Num.Theory.NumIntegralDomainMonotonyTheory.AcrossTypes.f</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumIntegralDomainMonotonyTheory.NatToR">Num.Theory.NumIntegralDomainMonotonyTheory.NatToR</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumIntegralDomainMonotonyTheory.NatToR.f">Num.Theory.NumIntegralDomainMonotonyTheory.NatToR.f</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumIntegralDomainMonotonyTheory.R">Num.Theory.NumIntegralDomainMonotonyTheory.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumIntegralDomainMonotonyTheory.R'">Num.Theory.NumIntegralDomainMonotonyTheory.R'</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumIntegralDomainTheory">Num.Theory.NumIntegralDomainTheory</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.NumIntegralDomainTheory.R">Num.Theory.NumIntegralDomainTheory.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.numNEsign">Num.Theory.numNEsign</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.num_real">Num.Theory.num_real</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.oppC_rect">Num.Theory.oppC_rect</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.oppr_min">Num.Theory.oppr_min</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.oppr_max">Num.Theory.oppr_max</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.oppr_cp0">Num.Theory.oppr_cp0</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.oppr_lte0">Num.Theory.oppr_lte0</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.oppr_lt0">Num.Theory.oppr_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.oppr_le0">Num.Theory.oppr_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.oppr_gte0">Num.Theory.oppr_gte0</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.oppr_gt0">Num.Theory.oppr_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.oppr_ge0">Num.Theory.oppr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.paddr_eq0">Num.Theory.paddr_eq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pexpIrn">Num.Theory.pexpIrn</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pexprn_eq1">Num.Theory.pexprn_eq1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pexpr_eq1">Num.Theory.pexpr_eq1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulrnI">Num.Theory.pmulrnI</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulrn_rle0">Num.Theory.pmulrn_rle0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulrn_rge0">Num.Theory.pmulrn_rge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulrn_rlt0">Num.Theory.pmulrn_rlt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulrn_rgt0">Num.Theory.pmulrn_rgt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulrn_lle0">Num.Theory.pmulrn_lle0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulrn_lge0">Num.Theory.pmulrn_lge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulrn_llt0">Num.Theory.pmulrn_llt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulrn_lgt0">Num.Theory.pmulrn_lgt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulr_lle0">Num.Theory.pmulr_lle0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulr_llt0">Num.Theory.pmulr_llt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulr_lge0">Num.Theory.pmulr_lge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulr_lgt0">Num.Theory.pmulr_lgt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulr_rle0">Num.Theory.pmulr_rle0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulr_rlt0">Num.Theory.pmulr_rlt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulr_rge0">Num.Theory.pmulr_rge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pmulr_rgt0">Num.Theory.pmulr_rgt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pnatr_eq1">Num.Theory.pnatr_eq1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.pnatr_eq0">Num.Theory.pnatr_eq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.poly_ivt">Num.Theory.poly_ivt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.poly_itv_bound">Num.Theory.poly_itv_bound</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.poly_disk_bound">Num.Theory.poly_disk_bound</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.posrE">Num.Theory.posrE</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.prodr_gt0">Num.Theory.prodr_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.prodr_ge0">Num.Theory.prodr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.psumr_eq0P">Num.Theory.psumr_eq0P</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.psumr_eq0">Num.Theory.psumr_eq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Re">Num.Theory.Re</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realB">Num.Theory.realB</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realBC">Num.Theory.realBC</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealClosedFieldTheory">Num.Theory.RealClosedFieldTheory</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealClosedFieldTheory.R">Num.Theory.RealClosedFieldTheory.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realD">Num.Theory.realD</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealDomainMonotony">Num.Theory.RealDomainMonotony</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealDomainMonotony.D">Num.Theory.RealDomainMonotony.D</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealDomainMonotony.f">Num.Theory.RealDomainMonotony.f</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealDomainMonotony.R">Num.Theory.RealDomainMonotony.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealDomainMonotony.R'">Num.Theory.RealDomainMonotony.R'</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealDomainOperations">Num.Theory.RealDomainOperations</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealDomainOperations.MinMax">Num.Theory.RealDomainOperations.MinMax</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealDomainOperations.PolyBounds">Num.Theory.RealDomainOperations.PolyBounds</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealDomainOperations.PolyBounds.p">Num.Theory.RealDomainOperations.PolyBounds.p</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealDomainOperations.R">Num.Theory.RealDomainOperations.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealDomainTheory">Num.Theory.RealDomainTheory</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealDomainTheory.R">Num.Theory.RealDomainTheory.R</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realE">Num.Theory.realE</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realEsg">Num.Theory.realEsg</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realEsign">Num.Theory.realEsign</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realEsqr">Num.Theory.realEsqr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealField">Num.Theory.RealField</a> [section, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealField.F">Num.Theory.RealField.F</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealField.x">Num.Theory.RealField.x</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RealField.y">Num.Theory.RealField.y</a> [variable, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realM">Num.Theory.realM</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realMr">Num.Theory.realMr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realN">Num.Theory.realN</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realn">Num.Theory.realn</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realNEsign">Num.Theory.realNEsign</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realrM">Num.Theory.realrM</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realrMn">Num.Theory.realrMn</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realV">Num.Theory.realV</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.realX">Num.Theory.realX</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_lerif_AGM2">Num.Theory.real_lerif_AGM2</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_lerif_mean_square">Num.Theory.real_lerif_mean_square</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_nmono_in">Num.Theory.real_nmono_in</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_mono_in">Num.Theory.real_mono_in</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_nmono">Num.Theory.real_nmono</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_mono">Num.Theory.real_mono</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_lerif_AGM2_scaled">Num.Theory.real_lerif_AGM2_scaled</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_lerif_mean_square_scaled">Num.Theory.real_lerif_mean_square_scaled</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_lerif_norm">Num.Theory.real_lerif_norm</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_mulr_Nsign_norm">Num.Theory.real_mulr_Nsign_norm</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_mulr_sign_norm">Num.Theory.real_mulr_sign_norm</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_normrEsign">Num.Theory.real_normrEsign</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_normK">Num.Theory.real_normK</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_exprn_odd_lt0">Num.Theory.real_exprn_odd_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_exprn_odd_le0">Num.Theory.real_exprn_odd_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_exprn_odd_gt0">Num.Theory.real_exprn_odd_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_exprn_odd_ge0">Num.Theory.real_exprn_odd_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_exprn_even_lt0">Num.Theory.real_exprn_even_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_exprn_even_le0">Num.Theory.real_exprn_even_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_exprn_even_gt0">Num.Theory.real_exprn_even_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_exprn_even_ge0">Num.Theory.real_exprn_even_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_lter_distl">Num.Theory.real_lter_distl</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ltr_distl">Num.Theory.real_ltr_distl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ler_distl">Num.Theory.real_ler_distl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_lter_normr">Num.Theory.real_lter_normr</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ltr_normr">Num.Theory.real_ltr_normr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ler_normr">Num.Theory.real_ler_normr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ltr_normlP">Num.Theory.real_ltr_normlP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_lter_norml">Num.Theory.real_lter_norml</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ltr_norml">Num.Theory.real_ltr_norml</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_eqr_norm2">Num.Theory.real_eqr_norm2</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_eqr_norml">Num.Theory.real_eqr_norml</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ler_normlP">Num.Theory.real_ler_normlP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ler_norml">Num.Theory.real_ler_norml</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ler_norm">Num.Theory.real_ler_norm</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_wlog_ltr">Num.Theory.real_wlog_ltr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_wlog_ler">Num.Theory.real_wlog_ler</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_neqr_lt">Num.Theory.real_neqr_lt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ltrgt0P">Num.Theory.real_ltrgt0P</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ler0P">Num.Theory.real_ler0P</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ger0P">Num.Theory.real_ger0P</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ltrgtP">Num.Theory.real_ltrgtP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_lerNgt">Num.Theory.real_lerNgt</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ltrNge">Num.Theory.real_ltrNge</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_ltrP">Num.Theory.real_ltrP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_lerP">Num.Theory.real_lerP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real_leVge">Num.Theory.real_leVge</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real0">Num.Theory.real0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.real1">Num.Theory.real1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ReMl">Num.Theory.ReMl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.ReMr">Num.Theory.ReMr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Re_rect">Num.Theory.Re_rect</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Re_conj">Num.Theory.Re_conj</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Re_i">Num.Theory.Re_i</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.Re_is_additive">Num.Theory.Re_is_additive</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootCK">Num.Theory.rootCK</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootCMl">Num.Theory.rootCMl</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootCMr">Num.Theory.rootCMr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootCpX">Num.Theory.rootCpX</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.RootCspec">Num.Theory.RootCspec</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootCV">Num.Theory.rootCV</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootCX">Num.Theory.rootCX</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_lt1">Num.Theory.rootC_lt1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_le1">Num.Theory.rootC_le1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_gt1">Num.Theory.rootC_gt1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_ge1">Num.Theory.rootC_ge1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_eq1">Num.Theory.rootC_eq1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_le0">Num.Theory.rootC_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_gt0">Num.Theory.rootC_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_ge0">Num.Theory.rootC_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_lt0">Num.Theory.rootC_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_Re_max">Num.Theory.rootC_Re_max</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_eq0">Num.Theory.rootC_eq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_inj">Num.Theory.rootC_inj</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_subproof">Num.Theory.rootC_subproof</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC_spec">Num.Theory.rootC_spec</a> [inductive, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC0">Num.Theory.rootC0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.rootC1">Num.Theory.rootC1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.root0C">Num.Theory.root0C</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.root1C">Num.Theory.root1C</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgrE">Num.Theory.sgrE</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgrM">Num.Theory.sgrM</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgrMn">Num.Theory.sgrMn</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgrN">Num.Theory.sgrN</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.SgrNeg">Num.Theory.SgrNeg</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.SgrNull">Num.Theory.SgrNull</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgrN1">Num.Theory.sgrN1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgrP">Num.Theory.sgrP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.SgrPos">Num.Theory.SgrPos</a> [constructor, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgrV">Num.Theory.sgrV</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgrX">Num.Theory.sgrX</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr_ge0">Num.Theory.sgr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr_gt0">Num.Theory.sgr_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr_smul">Num.Theory.sgr_smul</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr_val">Num.Theory.sgr_val</a> [inductive, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr_cp0">Num.Theory.sgr_cp0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr_norm">Num.Theory.sgr_norm</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr_le0">Num.Theory.sgr_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr_lt0">Num.Theory.sgr_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr_id">Num.Theory.sgr_id</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr_nat">Num.Theory.sgr_nat</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr_odd">Num.Theory.sgr_odd</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr_eq0">Num.Theory.sgr_eq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr_def">Num.Theory.sgr_def</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr0">Num.Theory.sgr0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sgr1">Num.Theory.sgr1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.signr_inj">Num.Theory.signr_inj</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.signr_le0">Num.Theory.signr_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.signr_ge0">Num.Theory.signr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.signr_lt0">Num.Theory.signr_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.signr_gt0">Num.Theory.signr_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrCi">Num.Theory.sqrCi</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrCK">Num.Theory.sqrCK</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrCK_P">Num.Theory.sqrCK_P</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrn_eq1">Num.Theory.sqrn_eq1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrp_eq1">Num.Theory.sqrp_eq1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtC">Num.Theory.sqrtC</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtC">Num.Theory.sqrtC</a> [abbreviation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtCK">Num.Theory.sqrtCK</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtCM">Num.Theory.sqrtCM</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtC_inj">Num.Theory.sqrtC_inj</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtC_le0">Num.Theory.sqrtC_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtC_lt0">Num.Theory.sqrtC_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtC_gt0">Num.Theory.sqrtC_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtC_eq0">Num.Theory.sqrtC_eq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtC_ge0">Num.Theory.sqrtC_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtC0">Num.Theory.sqrtC0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtC1">Num.Theory.sqrtC1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtrM">Num.Theory.sqrtrM</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtrP">Num.Theory.sqrtrP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtr_gt0">Num.Theory.sqrtr_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtr_eq0">Num.Theory.sqrtr_eq0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtr_sqr">Num.Theory.sqrtr_sqr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtr_spec">Num.Theory.sqrtr_spec</a> [inductive, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtr_ge0">Num.Theory.sqrtr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtr0">Num.Theory.sqrtr0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqrtr1">Num.Theory.sqrtr1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqr_sqrtr">Num.Theory.sqr_sqrtr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqr_norm_eq1">Num.Theory.sqr_norm_eq1</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqr_ge0">Num.Theory.sqr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sqr_sg">Num.Theory.sqr_sg</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.subC_rect">Num.Theory.subC_rect</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.subr_cp0">Num.Theory.subr_cp0</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.subr_gte0">Num.Theory.subr_gte0</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.subr_lte0">Num.Theory.subr_lte0</a> [definition, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.subr_lt0">Num.Theory.subr_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.subr_le0">Num.Theory.subr_le0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.subr_gt0">Num.Theory.subr_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.subr_ge0">Num.Theory.subr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.sumr_ge0">Num.Theory.sumr_ge0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.unitf_lt0">Num.Theory.unitf_lt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.unitf_gt0">Num.Theory.unitf_gt0</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.upper_nthrootP">Num.Theory.upper_nthrootP</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.wlog_ltr">Num.Theory.wlog_ltr</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#Num.Theory.wlog_ler">Num.Theory.wlog_ler</a> [lemma, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#581a18ced675f8f9c5eb585ba4ae312b">'Im _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#9153b7cf9b84603850c08e5131d1133a">'Re _ (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#f2048b82a608311baf565ccc9caefe54">'i (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#04479a6ff05539b339540fbd2eba4ebf">_ .-root (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#f2048b82a608311baf565ccc9caefe54">'i (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.algebra.ssrnum.html#b07d6e6599ef6e468ce182ffe6029532">_ ^* (ring_scope)</a> [notation, in <a href="mathcomp.algebra.ssrnum.html">mathcomp.algebra.ssrnum</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#nz_socle">nz_socle</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.character.mxrepresentation.html#nz_row_mxsimple">nz_row_mxsimple</a> [lemma, in <a href="mathcomp.character.mxrepresentation.html">mathcomp.character.mxrepresentation</a>]<br/>
<a href="mathcomp.algebra.matrix.html#nz_row_eq0">nz_row_eq0</a> [lemma, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.matrix.html#nz_row">nz_row</a> [definition, in <a href="mathcomp.algebra.matrix.html">mathcomp.algebra.matrix</a>]<br/>
<a href="mathcomp.algebra.mxalgebra.html#nz_row_sub">nz_row_sub</a> [lemma, in <a href="mathcomp.algebra.mxalgebra.html">mathcomp.algebra.mxalgebra</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#n_act_add">n_act_add</a> [lemma, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#n_act0">n_act0</a> [lemma, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#n_act_dtuple">n_act_dtuple</a> [lemma, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#n_act_is_action">n_act_is_action</a> [lemma, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.solvable.primitive_action.html#n_act">n_act</a> [definition, in <a href="mathcomp.solvable.primitive_action.html">mathcomp.solvable.primitive_action</a>]<br/>
<a href="mathcomp.ssreflect.fingraph.html#n_comp_connect">n_comp_connect</a> [lemma, in <a href="mathcomp.ssreflect.fingraph.html">mathcomp.ssreflect.fingraph</a>]<br/>
<a href="mathcomp.ssreflect.fingraph.html#n_comp_closure2">n_comp_closure2</a> [lemma, in <a href="mathcomp.ssreflect.fingraph.html">mathcomp.ssreflect.fingraph</a>]<br/>
<a href="mathcomp.ssreflect.fingraph.html#n_compC">n_compC</a> [lemma, in <a href="mathcomp.ssreflect.fingraph.html">mathcomp.ssreflect.fingraph</a>]<br/>
<a href="mathcomp.ssreflect.fingraph.html#n_comp">n_comp</a> [abbreviation, in <a href="mathcomp.ssreflect.fingraph.html">mathcomp.ssreflect.fingraph</a>]<br/>
<a href="mathcomp.ssreflect.fingraph.html#n_comp_mem">n_comp_mem</a> [definition, in <a href="mathcomp.ssreflect.fingraph.html">mathcomp.ssreflect.fingraph</a>]<br/>
<a href="mathcomp.character.mxabelem.html#n'">n'</a> [abbreviation, in <a href="mathcomp.character.mxabelem.html">mathcomp.character.mxabelem</a>]<br/>
<br/><br/><hr/><table>
<tr>
<td>Global Index</td>
<td><a href="index_global_A.html">A</a></td>
<td><a href="index_global_B.html">B</a></td>
<td><a href="index_global_C.html">C</a></td>
<td><a href="index_global_D.html">D</a></td>
<td><a href="index_global_E.html">E</a></td>
<td><a href="index_global_F.html">F</a></td>
<td><a href="index_global_G.html">G</a></td>
<td><a href="index_global_H.html">H</a></td>
<td><a href="index_global_I.html">I</a></td>
<td><a href="index_global_J.html">J</a></td>
<td><a href="index_global_K.html">K</a></td>
<td><a href="index_global_L.html">L</a></td>
<td><a href="index_global_M.html">M</a></td>
<td><a href="index_global_N.html">N</a></td>
<td><a href="index_global_O.html">O</a></td>
<td><a href="index_global_P.html">P</a></td>
<td><a href="index_global_Q.html">Q</a></td>
<td><a href="index_global_R.html">R</a></td>
<td><a href="index_global_S.html">S</a></td>
<td><a href="index_global_T.html">T</a></td>
<td><a href="index_global_U.html">U</a></td>
<td><a href="index_global_V.html">V</a></td>
<td><a href="index_global_W.html">W</a></td>
<td><a href="index_global_X.html">X</a></td>
<td>Y</td>
<td><a href="index_global_Z.html">Z</a></td>
<td>_</td>
<td><a href="index_global_*.html">other</a></td>
<td>(23233 entries)</td>
</tr>
<tr>
<td>Notation Index</td>
<td><a href="index_notation_A.html">A</a></td>
<td><a href="index_notation_B.html">B</a></td>
<td><a href="index_notation_C.html">C</a></td>
<td><a href="index_notation_D.html">D</a></td>
<td><a href="index_notation_E.html">E</a></td>
<td><a href="index_notation_F.html">F</a></td>
<td><a href="index_notation_G.html">G</a></td>
<td>H</td>
<td><a href="index_notation_I.html">I</a></td>
<td>J</td>
<td><a href="index_notation_K.html">K</a></td>
<td><a href="index_notation_L.html">L</a></td>
<td><a href="index_notation_M.html">M</a></td>
<td><a href="index_notation_N.html">N</a></td>
<td>O</td>
<td><a href="index_notation_P.html">P</a></td>
<td><a href="index_notation_Q.html">Q</a></td>
<td><a href="index_notation_R.html">R</a></td>
<td><a href="index_notation_S.html">S</a></td>
<td>T</td>
<td><a href="index_notation_U.html">U</a></td>
<td><a href="index_notation_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_notation_Z.html">Z</a></td>
<td>_</td>
<td><a href="index_notation_*.html">other</a></td>
<td>(1373 entries)</td>
</tr>
<tr>
<td>Module Index</td>
<td><a href="index_module_A.html">A</a></td>
<td><a href="index_module_B.html">B</a></td>
<td><a href="index_module_C.html">C</a></td>
<td>D</td>
<td><a href="index_module_E.html">E</a></td>
<td><a href="index_module_F.html">F</a></td>
<td><a href="index_module_G.html">G</a></td>
<td>H</td>
<td><a href="index_module_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td><a href="index_module_M.html">M</a></td>
<td><a href="index_module_N.html">N</a></td>
<td>O</td>
<td><a href="index_module_P.html">P</a></td>
<td><a href="index_module_Q.html">Q</a></td>
<td><a href="index_module_R.html">R</a></td>
<td><a href="index_module_S.html">S</a></td>
<td>T</td>
<td><a href="index_module_U.html">U</a></td>
<td><a href="index_module_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>_</td>
<td>other</td>
<td>(213 entries)</td>
</tr>
<tr>
<td>Variable Index</td>
<td><a href="index_variable_A.html">A</a></td>
<td><a href="index_variable_B.html">B</a></td>
<td><a href="index_variable_C.html">C</a></td>
<td><a href="index_variable_D.html">D</a></td>
<td><a href="index_variable_E.html">E</a></td>
<td><a href="index_variable_F.html">F</a></td>
<td><a href="index_variable_G.html">G</a></td>
<td><a href="index_variable_H.html">H</a></td>
<td><a href="index_variable_I.html">I</a></td>
<td>J</td>
<td><a href="index_variable_K.html">K</a></td>
<td><a href="index_variable_L.html">L</a></td>
<td><a href="index_variable_M.html">M</a></td>
<td><a href="index_variable_N.html">N</a></td>
<td><a href="index_variable_O.html">O</a></td>
<td><a href="index_variable_P.html">P</a></td>
<td><a href="index_variable_Q.html">Q</a></td>
<td><a href="index_variable_R.html">R</a></td>
<td><a href="index_variable_S.html">S</a></td>
<td><a href="index_variable_T.html">T</a></td>
<td><a href="index_variable_U.html">U</a></td>
<td><a href="index_variable_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_variable_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(3475 entries)</td>
</tr>
<tr>
<td>Library Index</td>
<td><a href="index_library_A.html">A</a></td>
<td><a href="index_library_B.html">B</a></td>
<td><a href="index_library_C.html">C</a></td>
<td><a href="index_library_D.html">D</a></td>
<td><a href="index_library_E.html">E</a></td>
<td><a href="index_library_F.html">F</a></td>
<td><a href="index_library_G.html">G</a></td>
<td><a href="index_library_H.html">H</a></td>
<td><a href="index_library_I.html">I</a></td>
<td><a href="index_library_J.html">J</a></td>
<td>K</td>
<td>L</td>
<td><a href="index_library_M.html">M</a></td>
<td><a href="index_library_N.html">N</a></td>
<td>O</td>
<td><a href="index_library_P.html">P</a></td>
<td><a href="index_library_Q.html">Q</a></td>
<td><a href="index_library_R.html">R</a></td>
<td><a href="index_library_S.html">S</a></td>
<td><a href="index_library_T.html">T</a></td>
<td>U</td>
<td><a href="index_library_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_library_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(89 entries)</td>
</tr>
<tr>
<td>Lemma Index</td>
<td><a href="index_lemma_A.html">A</a></td>
<td><a href="index_lemma_B.html">B</a></td>
<td><a href="index_lemma_C.html">C</a></td>
<td><a href="index_lemma_D.html">D</a></td>
<td><a href="index_lemma_E.html">E</a></td>
<td><a href="index_lemma_F.html">F</a></td>
<td><a href="index_lemma_G.html">G</a></td>
<td><a href="index_lemma_H.html">H</a></td>
<td><a href="index_lemma_I.html">I</a></td>
<td><a href="index_lemma_J.html">J</a></td>
<td><a href="index_lemma_K.html">K</a></td>
<td><a href="index_lemma_L.html">L</a></td>
<td><a href="index_lemma_M.html">M</a></td>
<td><a href="index_lemma_N.html">N</a></td>
<td><a href="index_lemma_O.html">O</a></td>
<td><a href="index_lemma_P.html">P</a></td>
<td><a href="index_lemma_Q.html">Q</a></td>
<td><a href="index_lemma_R.html">R</a></td>
<td><a href="index_lemma_S.html">S</a></td>
<td><a href="index_lemma_T.html">T</a></td>
<td><a href="index_lemma_U.html">U</a></td>
<td><a href="index_lemma_V.html">V</a></td>
<td><a href="index_lemma_W.html">W</a></td>
<td><a href="index_lemma_X.html">X</a></td>
<td>Y</td>
<td><a href="index_lemma_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(11853 entries)</td>
</tr>
<tr>
<td>Constructor Index</td>
<td><a href="index_constructor_A.html">A</a></td>
<td><a href="index_constructor_B.html">B</a></td>
<td><a href="index_constructor_C.html">C</a></td>
<td><a href="index_constructor_D.html">D</a></td>
<td><a href="index_constructor_E.html">E</a></td>
<td><a href="index_constructor_F.html">F</a></td>
<td><a href="index_constructor_G.html">G</a></td>
<td><a href="index_constructor_H.html">H</a></td>
<td><a href="index_constructor_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td><a href="index_constructor_L.html">L</a></td>
<td><a href="index_constructor_M.html">M</a></td>
<td><a href="index_constructor_N.html">N</a></td>
<td><a href="index_constructor_O.html">O</a></td>
<td><a href="index_constructor_P.html">P</a></td>
<td><a href="index_constructor_Q.html">Q</a></td>
<td><a href="index_constructor_R.html">R</a></td>
<td><a href="index_constructor_S.html">S</a></td>
<td><a href="index_constructor_T.html">T</a></td>
<td><a href="index_constructor_U.html">U</a></td>
<td><a href="index_constructor_V.html">V</a></td>
<td>W</td>
<td><a href="index_constructor_X.html">X</a></td>
<td>Y</td>
<td><a href="index_constructor_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(359 entries)</td>
</tr>
<tr>
<td>Axiom Index</td>
<td><a href="index_axiom_A.html">A</a></td>
<td><a href="index_axiom_B.html">B</a></td>
<td><a href="index_axiom_C.html">C</a></td>
<td>D</td>
<td><a href="index_axiom_E.html">E</a></td>
<td><a href="index_axiom_F.html">F</a></td>
<td>G</td>
<td>H</td>
<td><a href="index_axiom_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td><a href="index_axiom_P.html">P</a></td>
<td>Q</td>
<td><a href="index_axiom_R.html">R</a></td>
<td><a href="index_axiom_S.html">S</a></td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>_</td>
<td>other</td>
<td>(47 entries)</td>
</tr>
<tr>
<td>Inductive Index</td>
<td><a href="index_inductive_A.html">A</a></td>
<td><a href="index_inductive_B.html">B</a></td>
<td><a href="index_inductive_C.html">C</a></td>
<td><a href="index_inductive_D.html">D</a></td>
<td><a href="index_inductive_E.html">E</a></td>
<td><a href="index_inductive_F.html">F</a></td>
<td><a href="index_inductive_G.html">G</a></td>
<td><a href="index_inductive_H.html">H</a></td>
<td><a href="index_inductive_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td><a href="index_inductive_L.html">L</a></td>
<td><a href="index_inductive_M.html">M</a></td>
<td><a href="index_inductive_N.html">N</a></td>
<td><a href="index_inductive_O.html">O</a></td>
<td><a href="index_inductive_P.html">P</a></td>
<td>Q</td>
<td><a href="index_inductive_R.html">R</a></td>
<td><a href="index_inductive_S.html">S</a></td>
<td><a href="index_inductive_T.html">T</a></td>
<td><a href="index_inductive_U.html">U</a></td>
<td><a href="index_inductive_V.html">V</a></td>
<td>W</td>
<td><a href="index_inductive_X.html">X</a></td>
<td>Y</td>
<td>Z</td>
<td>_</td>
<td>other</td>
<td>(103 entries)</td>
</tr>
<tr>
<td>Projection Index</td>
<td><a href="index_projection_A.html">A</a></td>
<td><a href="index_projection_B.html">B</a></td>
<td><a href="index_projection_C.html">C</a></td>
<td>D</td>
<td><a href="index_projection_E.html">E</a></td>
<td><a href="index_projection_F.html">F</a></td>
<td><a href="index_projection_G.html">G</a></td>
<td>H</td>
<td><a href="index_projection_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td><a href="index_projection_M.html">M</a></td>
<td><a href="index_projection_N.html">N</a></td>
<td>O</td>
<td><a href="index_projection_P.html">P</a></td>
<td><a href="index_projection_Q.html">Q</a></td>
<td><a href="index_projection_R.html">R</a></td>
<td><a href="index_projection_S.html">S</a></td>
<td><a href="index_projection_T.html">T</a></td>
<td><a href="index_projection_U.html">U</a></td>
<td><a href="index_projection_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_projection_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(266 entries)</td>
</tr>
<tr>
<td>Section Index</td>
<td><a href="index_section_A.html">A</a></td>
<td><a href="index_section_B.html">B</a></td>
<td><a href="index_section_C.html">C</a></td>
<td><a href="index_section_D.html">D</a></td>
<td><a href="index_section_E.html">E</a></td>
<td><a href="index_section_F.html">F</a></td>
<td><a href="index_section_G.html">G</a></td>
<td><a href="index_section_H.html">H</a></td>
<td><a href="index_section_I.html">I</a></td>
<td>J</td>
<td><a href="index_section_K.html">K</a></td>
<td><a href="index_section_L.html">L</a></td>
<td><a href="index_section_M.html">M</a></td>
<td><a href="index_section_N.html">N</a></td>
<td><a href="index_section_O.html">O</a></td>
<td><a href="index_section_P.html">P</a></td>
<td><a href="index_section_Q.html">Q</a></td>
<td><a href="index_section_R.html">R</a></td>
<td><a href="index_section_S.html">S</a></td>
<td><a href="index_section_T.html">T</a></td>
<td><a href="index_section_U.html">U</a></td>
<td><a href="index_section_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_section_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(1118 entries)</td>
</tr>
<tr>
<td>Abbreviation Index</td>
<td><a href="index_abbreviation_A.html">A</a></td>
<td><a href="index_abbreviation_B.html">B</a></td>
<td><a href="index_abbreviation_C.html">C</a></td>
<td><a href="index_abbreviation_D.html">D</a></td>
<td><a href="index_abbreviation_E.html">E</a></td>
<td><a href="index_abbreviation_F.html">F</a></td>
<td><a href="index_abbreviation_G.html">G</a></td>
<td><a href="index_abbreviation_H.html">H</a></td>
<td><a href="index_abbreviation_I.html">I</a></td>
<td><a href="index_abbreviation_J.html">J</a></td>
<td><a href="index_abbreviation_K.html">K</a></td>
<td><a href="index_abbreviation_L.html">L</a></td>
<td><a href="index_abbreviation_M.html">M</a></td>
<td><a href="index_abbreviation_N.html">N</a></td>
<td><a href="index_abbreviation_O.html">O</a></td>
<td><a href="index_abbreviation_P.html">P</a></td>
<td><a href="index_abbreviation_Q.html">Q</a></td>
<td><a href="index_abbreviation_R.html">R</a></td>
<td><a href="index_abbreviation_S.html">S</a></td>
<td><a href="index_abbreviation_T.html">T</a></td>
<td><a href="index_abbreviation_U.html">U</a></td>
<td><a href="index_abbreviation_V.html">V</a></td>
<td><a href="index_abbreviation_W.html">W</a></td>
<td><a href="index_abbreviation_X.html">X</a></td>
<td>Y</td>
<td><a href="index_abbreviation_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(691 entries)</td>
</tr>
<tr>
<td>Definition Index</td>
<td><a href="index_definition_A.html">A</a></td>
<td><a href="index_definition_B.html">B</a></td>
<td><a href="index_definition_C.html">C</a></td>
<td><a href="index_definition_D.html">D</a></td>
<td><a href="index_definition_E.html">E</a></td>
<td><a href="index_definition_F.html">F</a></td>
<td><a href="index_definition_G.html">G</a></td>
<td><a href="index_definition_H.html">H</a></td>
<td><a href="index_definition_I.html">I</a></td>
<td><a href="index_definition_J.html">J</a></td>
<td><a href="index_definition_K.html">K</a></td>
<td><a href="index_definition_L.html">L</a></td>
<td><a href="index_definition_M.html">M</a></td>
<td><a href="index_definition_N.html">N</a></td>
<td><a href="index_definition_O.html">O</a></td>
<td><a href="index_definition_P.html">P</a></td>
<td><a href="index_definition_Q.html">Q</a></td>
<td><a href="index_definition_R.html">R</a></td>
<td><a href="index_definition_S.html">S</a></td>
<td><a href="index_definition_T.html">T</a></td>
<td><a href="index_definition_U.html">U</a></td>
<td><a href="index_definition_V.html">V</a></td>
<td><a href="index_definition_W.html">W</a></td>
<td><a href="index_definition_X.html">X</a></td>
<td>Y</td>
<td><a href="index_definition_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(3461 entries)</td>
</tr>
<tr>
<td>Record Index</td>
<td><a href="index_record_A.html">A</a></td>
<td>B</td>
<td><a href="index_record_C.html">C</a></td>
<td>D</td>
<td><a href="index_record_E.html">E</a></td>
<td><a href="index_record_F.html">F</a></td>
<td><a href="index_record_G.html">G</a></td>
<td>H</td>
<td><a href="index_record_I.html">I</a></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td><a href="index_record_M.html">M</a></td>
<td><a href="index_record_N.html">N</a></td>
<td>O</td>
<td><a href="index_record_P.html">P</a></td>
<td><a href="index_record_Q.html">Q</a></td>
<td><a href="index_record_R.html">R</a></td>
<td><a href="index_record_S.html">S</a></td>
<td><a href="index_record_T.html">T</a></td>
<td><a href="index_record_U.html">U</a></td>
<td><a href="index_record_V.html">V</a></td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td><a href="index_record_Z.html">Z</a></td>
<td>_</td>
<td>other</td>
<td>(185 entries)</td>
</tr>
</table>
</div>
<div id="footer">
<hr/><a href="index.html">Index</a><hr/>This page has been generated by <a href="http://coq.inria.fr/">coqdoc</a>
</div>
</div>
</body>
</html>
|