aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/field/algnum.v
AgeCommit message (Collapse)Author
2020-11-19Removing duplicate clears and turning the warning into an errorCyril Cohen
2020-11-19add declare scopesReynald Affeldt
2020-09-03Lemmas reindex_omap and bigD1_ordCyril Cohen
+ eq_liftF and lift_eqF + proof simplificaions
2020-04-09Merge pull request #431 from ppedrot/rm-constr-hint-declsaffeldt-aist
Remove hint declarations using non-global definitions.
2020-04-08fix typos in documentation: textAntonio Nikishaev
2020-04-08Remove hint declarations using non-global definitions.Pierre-Marie Pédrot
2019-12-28Refactoring and linting especially polydivKazuhiko Sakaguchi
- Replace `altP eqP` and `altP (_ =P _)` with `eqVneq`: The improved `eqVneq` lemma (#351) is redesigned as a comparison predicate and introduces a hypothesis in the form of `x != y` in the second case. Thus, `case: (altP eqP)`, `case: (altP (x =P _))` and `case: (altP (x =P y))` idioms can be replaced with `case: eqVneq`, `case: (eqVneq x)` and `case: (eqVneq x y)` respectively. This replacement slightly simplifies and reduces proof scripts. - use `have [] :=` rather than `case` if it is better. - `by apply:` -> `exact:`. - `apply/lem1; apply/lem2` or `apply: lem1; apply: lem2` -> `apply/lem1/lem2`. - `move/lem1; move/lem2` -> `move/lem1/lem2`. - Remove `GRing.` prefix if applicable. - `negbTE` -> `negPf`, `eq_refl` -> `eqxx` and `sym_equal` -> `esym`.
2019-12-11Make an appropriate use of the order library everywhere (#278, #280, #282, ↵Kazuhiko Sakaguchi
#283, #285, #286, #288, #296, #330, #334, and #341) ssrnum related changes: - Redefine the intermediate structure between `idomainType` and `numDomainType`, which is `normedDomainType` (normed integral domain without an order). - Generalize (by using `normedDomainType` or the order structures), relocate (to order.v), and rename ssrnum related definitions and lemmas. - Add a compatibility module `Num.mc_1_9` and export it to check compilation. - Remove the use of the deprecated definitions and lemmas from entire theories. - Implement factories mechanism to construct several ordered and num structures from fewer axioms. order related changes: - Reorganize the hierarchy of finite lattice structures. Finite lattices have top and bottom elements except for empty set. Therefore we removed finite lattice structures without top and bottom. - Reorganize the theory modules in order.v: + `LTheory` (lattice and partial order, without complement and totality) + `CTheory` (`LTheory` + complement) + `Theory` (all) - Give a unique head symbol for `Total.mixin_of`. - Replace reverse and `^r` with converse and `^c` respectively. - Fix packing and cloning functions and notations. - Provide more ordered type instances: Products and lists can be ordered in two different ways: the lexicographical ordering and the pointwise ordering. Now their canonical instances are not exported to make the users choose them. - Export `Order.*.Exports` modules by default. - Specify the core hint database explicitly in order.v. (see #252) - Apply 80 chars per line restriction. General changes: - Give consistency to shape of formulae and namings of `lt_def` and `lt_neqAle` like lemmas: lt_def x y : (x < y) = (y != x) && (x <= y), lt_neqAle x y : (x < y) = (x != y) && (x <= y). - Enable notation overloading by using scopes and displays: + Define `min` and `max` notations (`minr` and `maxr` for `ring_display`) as aliases of `meet` and `join` specialized for `total_display`. + Provide the `ring_display` version of `le`, `lt`, `ge`, `gt`, `leif`, and `comparable` notations and their explicit variants in `Num.Def`. + Define 3 variants of `[arg min_(i < n | P) F]` and `[arg max_(i < n | P) F]` notations in `nat_scope` (specialized for nat), `order_scope` (general version), and `ring_scope` (specialized for `ring_display`). - Update documents and put CHANGELOG entries.
2019-11-22New generalised induction idiom (#434)Georges Gonthier
Replaced the legacy generalised induction idiom with a more robust one that does not rely on the `{-2}` numerical occurrence selector, using either new helper lemmas `ubnP` and `ltnSE` or a specific `nat` induction principle `ltn_ind`. Added (non-strict in)equality induction helper lemmas Added `ubnP[lg]?eq` helper lemmas that abstract an integer expression along with some (in)equality, in preparation for some generalised induction. Note that while `ubnPleq` is very similar to `ubnP` (indeed `ubnP M` is basically `ubnPleq M.+1`), `ubnPgeq` is used to remember that the inductive value remains below the initial one. Used the change log to give notice to users to update the generalised induction idioms in their proofs to one of the new forms before Mathcomp 1.11.
2019-10-30Change the order of arguments in `ltngtP`Kazuhiko Sakaguchi
from `ltngtP m n : compare_nat m n (m <= n) (n <= m) (m < n) (n < m) (n == m) (m == n)` to `ltngtP m n : compare_nat m n (n == m) (m == n) (n <= m) (m <= n) (n < m) (m < n)`, to make it tries to match subterms with `m < n` first, `m <= n`, then `m == n`.
2019-04-29Generalise use of `{pred T}` from coq/coq#9995Georges Gonthier
Use `{pred T}` systematically for generic _collective_ boolean predicate. Use `PredType` to construct `predType` instances. Instrument core `ssreflect` files to replicate these and other new features introduces by coq/coq#9555 (`nonPropType` interface, `simpl_rel` that simplifies with `inE`).
2019-04-26Cleaning Require and Require ImportsCyril Cohen
2018-12-13Adjust implicits of cancellation lemmasGeorges Gonthier
Like injectivity lemmas, instances of cancellation lemmas (whose conclusion is `cancel ? ?`, `{in ?, cancel ? ?}`, `pcancel`, or `ocancel`) are passed to generic lemmas such as `canRL` or `canLR_in`. Thus such lemmas should not have trailing on-demand implicits _just before_ the `cancel` conclusion, as these would be inconvenient to insert (requiring essentially an explicit eta-expansion). We therefore use `Arguments` or `Prenex Implicits` directives to make all such arguments maximally inserted implicits. We don’t, however make other arguments implicit, so as not to spoil direct instantiation of the lemmas (in, e.g., `rewrite -[y](invmK injf)`). We have also tried to do this with lemmas whose statement matches a `cancel`, i.e., ending in `forall x, g (E[x]) = x` (where pattern unification will pick up `f = fun x => E[x]`). We also adjusted implicits of a few stray injectivity lemmas, and defined constants. We provide a shorthand for reindexing a bigop with a permutation. Finally we used the new implicit signatures to simplify proofs that use injectivity or cancellation lemmas.
2018-12-11Fix some new warnings emitted by Coq 8.10:Anton Trunov
``` Warning: Adding and removing hints in the core database implicitly is deprecated. Please specify a hint database. [implicit-core-hint-db,deprecated] ```
2018-09-04[warnings] -w "+compatibility-notation" cleanEnrico Tassi
2018-02-06running semi-automated linting on the whole libraryCyril Cohen
2016-11-07update copyright bannerAssia Mahboubi
2015-07-28update copyright bannerEnrico Tassi
2015-07-17Updating files + reorganizing everythingCyril Cohen
2015-04-09field for v8.5Cyril Cohen
2015-03-09Initial commitEnrico Tassi