| Age | Commit message (Collapse) | Author |
|
- The `deprecate` notation and `iota_add` have been deprecated. All the uses of
the `deprecate` notation have been replaced with the `deprecated` attribute.
- Deprecation aliases in `ssrnat` and `ssrnum` introduced in MathComp 1.11+beta1
have been removed.
- Remove `VDFILE` related hacks from `Makefile.common`.
|
|
fun_scope
|
|
Using Arguments / to deal with volatile definitions
|
|
|
|
|
|
|
|
|
|
Adding bigop lemmas for ring : expr_sum and prodr_natmul
|
|
- Add `iter_addr`, `iter_mulr(_1)`, and `prodr_const_nat`.
- Export `iter_addr_0`, `sumr_const_nat`, and the above lemmas from
`GRing.Theory`.
|
|
|
|
|
|
|
|
|
|
- Replace `altP eqP` and `altP (_ =P _)` with `eqVneq`:
The improved `eqVneq` lemma (#351) is redesigned as a comparison predicate and
introduces a hypothesis in the form of `x != y` in the second case. Thus,
`case: (altP eqP)`, `case: (altP (x =P _))` and `case: (altP (x =P y))` idioms
can be replaced with `case: eqVneq`, `case: (eqVneq x)` and
`case: (eqVneq x y)` respectively. This replacement slightly simplifies and
reduces proof scripts.
- use `have [] :=` rather than `case` if it is better.
- `by apply:` -> `exact:`.
- `apply/lem1; apply/lem2` or `apply: lem1; apply: lem2` -> `apply/lem1/lem2`.
- `move/lem1; move/lem2` -> `move/lem1/lem2`.
- Remove `GRing.` prefix if applicable.
- `negbTE` -> `negPf`, `eq_refl` -> `eqxx` and `sym_equal` -> `esym`.
|
|
amounts to the difference being real, and consequences
|
|
* Redefine `normedDomainType` (now `normedZmodType`)
- Redefine `normedDomainType` to drop ring and integral domain axioms.
- Add canonical instance of `normedZmodType` for `prod`.
|
|
#283, #285, #286, #288, #296, #330, #334, and #341)
ssrnum related changes:
- Redefine the intermediate structure between `idomainType` and `numDomainType`,
which is `normedDomainType` (normed integral domain without an order).
- Generalize (by using `normedDomainType` or the order structures), relocate
(to order.v), and rename ssrnum related definitions and lemmas.
- Add a compatibility module `Num.mc_1_9` and export it to check compilation.
- Remove the use of the deprecated definitions and lemmas from entire theories.
- Implement factories mechanism to construct several ordered and num structures
from fewer axioms.
order related changes:
- Reorganize the hierarchy of finite lattice structures. Finite lattices have
top and bottom elements except for empty set. Therefore we removed finite
lattice structures without top and bottom.
- Reorganize the theory modules in order.v:
+ `LTheory` (lattice and partial order, without complement and totality)
+ `CTheory` (`LTheory` + complement)
+ `Theory` (all)
- Give a unique head symbol for `Total.mixin_of`.
- Replace reverse and `^r` with converse and `^c` respectively.
- Fix packing and cloning functions and notations.
- Provide more ordered type instances:
Products and lists can be ordered in two different ways: the lexicographical
ordering and the pointwise ordering. Now their canonical instances are not
exported to make the users choose them.
- Export `Order.*.Exports` modules by default.
- Specify the core hint database explicitly in order.v. (see #252)
- Apply 80 chars per line restriction.
General changes:
- Give consistency to shape of formulae and namings of `lt_def` and `lt_neqAle`
like lemmas:
lt_def x y : (x < y) = (y != x) && (x <= y),
lt_neqAle x y : (x < y) = (x != y) && (x <= y).
- Enable notation overloading by using scopes and displays:
+ Define `min` and `max` notations (`minr` and `maxr` for `ring_display`) as
aliases of `meet` and `join` specialized for `total_display`.
+ Provide the `ring_display` version of `le`, `lt`, `ge`, `gt`, `leif`, and
`comparable` notations and their explicit variants in `Num.Def`.
+ Define 3 variants of `[arg min_(i < n | P) F]` and `[arg max_(i < n | P) F]`
notations in `nat_scope` (specialized for nat), `order_scope` (general
version), and `ring_scope` (specialized for `ring_display`).
- Update documents and put CHANGELOG entries.
|
|
* missing exports of lemmas `commrB`, `commr_sum` and `commr_prod`
* missing `regular_*` canonical exports
|
|
|
|
* Lemmas on commutation with big sum and prod
* Added commrB Lemma
* @CohenCyril review
* apply -> apply:
|
|
add existsPn/forallPn lemmas
|
|
Commutative Algebras
|
|
|
|
|
|
|
|
Initial properties of polynomials in R-algebras
|
|
`V` was wrongly eta-expanded before:
GRing.scale
: forall (R : ringType) (V : lmodType R),
R -> GRing.Zmodule.Pack (GRing.Lmodule.class V) ->
GRing.Zmodule.Pack (GRing.Lmodule.class V)
|
|
|
|
Use `{pred T}` systematically for generic _collective_ boolean
predicate.
Use `PredType` to construct `predType` instances.
Instrument core `ssreflect` files to replicate these and other new
features introduces by coq/coq#9555 (`nonPropType` interface,
`simpl_rel` that simplifies with `inE`).
|
|
|
|
|
|
Like injectivity lemmas, instances of cancellation lemmas (whose
conclusion is `cancel ? ?`, `{in ?, cancel ? ?}`, `pcancel`, or
`ocancel`) are passed to
generic lemmas such as `canRL` or `canLR_in`. Thus such lemmas should
not have trailing on-demand implicits _just before_ the `cancel`
conclusion, as these would be inconvenient to insert (requiring
essentially an explicit eta-expansion).
We therefore use `Arguments` or `Prenex Implicits` directives to make
all such arguments maximally inserted implicits. We don’t, however make
other arguments implicit, so as not to spoil direct instantiation of
the lemmas (in, e.g., `rewrite -[y](invmK injf)`).
We have also tried to do this with lemmas whose statement matches a
`cancel`, i.e., ending in `forall x, g (E[x]) = x` (where pattern
unification will pick up `f = fun x => E[x]`).
We also adjusted implicits of a few stray injectivity
lemmas, and defined constants.
We provide a shorthand for reindexing a bigop with a permutation.
Finally we used the new implicit signatures to simplify proofs that
use injectivity or cancellation lemmas.
|
|
```
Warning: Adding and removing hints in the core database implicitly is
deprecated. Please specify a hint database.
[implicit-core-hint-db,deprecated]
```
|
|
This increases performance 10% - 15% for Coq v8.6.1 - v8.9.dev.
Tested on a Debain-based 16-core build server and
a Macbook Pro laptop with 2,3 GHz Intel Core i5.
| | Compilation time, old | Compilation | Speedup |
| | (mathcomp commit 967088a6f87) | time, new | |
| Coq 8.6.1 | 10min 33s | 9min 10s | 15% |
| Coq 8.7.2 | 10min 12s | 8min 50s | 15% |
| Coq 8.8.2 | 9min 39s | 8min 32s | 13% |
| Coq 8.9.dev(05d827c800544) | 9min 12s | 8min 16s | 11% |
| | | | |
It seems Coq at some point fixed the problem `_ : Type` was
supposed to solve.
|
|
Document parameter names whenever possible
|
|
As suggested by @ggonthier
[here](https://github.com/math-comp/math-comp/pull/249#pullrequestreview-177938295)
> One of the design ideas for the `Arguments` command was that it would allow
to centralise the documentation of the application of constants.
In that spirit it would be in my opinion better to make as much use of this
as possible, and to document the parameter names whenever possible,
especially that of implicit parameters.
and
[here](https://github.com/math-comp/math-comp/pull/253#discussion_r237434163):
> As a general rule, defined functional constants should have maximal prenex
implicit arguments, as this facilitates their use as arguments to functionals,
because this mimics the way function constants are treated in functional
programming languages with Hindley-Milner type inference. Conversely, lemmas and
theorems should have on-demand implicit arguments, possibly interspersed with
explicit ones, as it's fairly common for other lemmas to have universally
quantified premises; also, this makes it easier to specify such arguments with
the apply: tactic. This policy may be amended for lemmas that are used as
functional arguments, such as reflection or cancellation lemmas. Unfortunately
there is currently no easy way to tell Coq to use different defaults for
definitions and lemmas, so MathComp sticks to the on-demand default, as there
are significantly more lemmas than definition, and use the Prenex Implicits to
redress matters in bulk for definitions. However, this is not completely
systematic, and is sometimes omitted for constants that are not used as
functional arguments in the library, or inside the sections in which the
definition occur, since such commands need to be repeated after the section is
closed. Since Arguments commands should document the intended constant usage as
best as possible, they should follow the implicits policy - even in cases such
as this where the Prenex Implicits had been skipped.
|
|
Documentation of FieldUnitMixin and FieldMixin corrected to reflect
actual arguments, with mulVf and inv0 made explicit arguments for
FieldMixin (they were implicit due to the extended signature of
Field.mixin_of). Type of FieldMixin changed to a convertible variant to
facilitate construction of on-the-fly in-proof construction of
fieldType instances, exposing an idomainType instance.
|
|
See the discussion here:
https://github.com/math-comp/math-comp/pull/242#discussion_r233778114
|
|
|
|
|
|
|
|
|
|
|
|
fixes #169
|
|
|
|
|
|
|
|
complex and algC.
The definitions of 'i, conjC, Re, Im, n.-root, sqrtC and their theory
have been moved to the numClosedFieldType structure in ssrnum.
This covers boths the uses in algC and complex.v. To that end the
numClosedFieldType structure has been enriched with conjugation and 'i.
Note that 'i can be deduced from the property of algebraic closure and is
only here to let the user chose which definitional equality should hold
on 'i. Same thing for conjC that could be written `|x|^+2/x, the only
nontrivial (up to my knowledge) property is the fact that conjugation
is a ring morphism.
|
|
|
|
|