aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/algebra/polydiv.v4
-rw-r--r--mathcomp/algebra/rat.v2
-rw-r--r--mathcomp/attic/algnum_basic.v32
-rw-r--r--mathcomp/field/closed_field.v12
-rw-r--r--mathcomp/odd_order/PFsection7.v2
-rw-r--r--mathcomp/real_closed/cauchyreals.v2
-rw-r--r--mathcomp/real_closed/complex.v2
-rw-r--r--mathcomp/solvable/burnside_app.v6
-rw-r--r--mathcomp/solvable/gfunctor.v2
-rw-r--r--mathcomp/solvable/jordanholder.v2
-rw-r--r--mathcomp/ssreflect/path.v4
11 files changed, 35 insertions, 35 deletions
diff --git a/mathcomp/algebra/polydiv.v b/mathcomp/algebra/polydiv.v
index b6f8936..a3b7ad6 100644
--- a/mathcomp/algebra/polydiv.v
+++ b/mathcomp/algebra/polydiv.v
@@ -2138,9 +2138,9 @@ Proof. by rewrite mulrC; apply: Gauss_dvdpl. Qed.
Lemma Gauss_dvdp m n p : coprimep m n -> (m * n %| p) = (m %| p) && (n %| p).
Proof.
case: (eqVneq m 0) => [-> | mn0].
- by rewrite coprime0p; move/eqp_dvdl->; rewrite !mul0r dvd0p dvd1p andbT.
+ by rewrite coprime0p => /eqp_dvdl->; rewrite !mul0r dvd0p dvd1p andbT.
case: (eqVneq n 0) => [-> | nn0].
- by rewrite coprimep0; move/eqp_dvdl->; rewrite !mulr0 dvd1p.
+ by rewrite coprimep0 => /eqp_dvdl->; rewrite !mulr0 dvd1p.
move=> hc; apply/idP/idP.
move/Gauss_dvdpl: hc => <- h; move/(dvdp_mull m): (h); rewrite dvdp_mul2l //.
move->; move/(dvdp_mulr n): (h); rewrite dvdp_mul2r // andbT.
diff --git a/mathcomp/algebra/rat.v b/mathcomp/algebra/rat.v
index e837ed2..393b37b 100644
--- a/mathcomp/algebra/rat.v
+++ b/mathcomp/algebra/rat.v
@@ -101,7 +101,7 @@ Proof. by apply: val_inj; rewrite /= gcdn1 !divn1 abszE mulr_sign_norm. Qed.
Fact valqK x : fracq (valq x) = x.
Proof.
move: x => [[n d] /= Pnd]; apply: val_inj=> /=.
-move: Pnd; rewrite /coprime /fracq /= => -/andP[] hd -/eqP hnd.
+move: Pnd; rewrite /coprime /fracq /= => /andP[] hd -/eqP hnd.
by rewrite ltr_gtF ?gtr_eqF //= hnd !divn1 mulz_sign_abs abszE gtr0_norm.
Qed.
diff --git a/mathcomp/attic/algnum_basic.v b/mathcomp/attic/algnum_basic.v
index 54cb1c5..d908b09 100644
--- a/mathcomp/attic/algnum_basic.v
+++ b/mathcomp/attic/algnum_basic.v
@@ -126,7 +126,7 @@ Qed.
Lemma int_clos_incl a : a \in A -> integral a.
Proof.
move=> ainA; exists ('X - a%:P); rewrite monicXsubC root_XsubC.
-rewrite polyOverXsubC => //; by apply Asubr.
+rewrite polyOverXsubC => //; by apply: Asubr.
Qed.
Lemma intPl (I : eqType) G (r : seq I) l : has (fun x => G x != 0) r ->
@@ -162,7 +162,7 @@ have rs : size r = n.-1 by rewrite /r size_takel // size_opp leq_pred.
exists r; split.
apply/eqP => /nilP; rewrite /nilp /r size_takel; last by rewrite size_opp leq_pred.
by rewrite -subn1 subn_eq0 leqNgt ps.
- have : - p \is a polyOver A by rewrite rpredN //; apply Asubr.
+ have : - p \is a polyOver A by rewrite rpredN //; apply: Asubr.
by move=> /allP-popA; apply/allP => x /mem_take /popA.
move: pr => /rootP; rewrite horner_coef -(prednK (n := size p)); last by rewrite ltnW.
rewrite big_ord_recr /= rs; have := monicP pm; rewrite /lead_coef => ->; rewrite mul1r => /eqP.
@@ -178,7 +178,7 @@ move=> /intPr[ra [/negbTE-ran raA raS]] /intPr[rb [/negbTE-rbn rbA rbS]].
pose n := size ra; pose m := size rb; pose r := Finite.enum [finType of 'I_n * 'I_m].
pose G (z : 'I_n * 'I_m) := let (k, l) := z in a ^ k * b ^l.
have [nz mz] : 0 < n /\ 0 < m.
- by rewrite !lt0n; split; apply/negP => - /nilP/eqP; rewrite ?ran ?rbn.
+ by rewrite !lt0n; split; apply/negP => /nilP/eqP; rewrite ?ran ?rbn.
have rnn : has (fun x => G x != 0) r.
apply/hasP; exists (Ordinal nz, Ordinal mz); first by rewrite /r -enumT mem_enum.
by rewrite /G mulr1 oner_neq0.
@@ -248,7 +248,7 @@ Hypothesis Aint : int_closed A.
Hypothesis Afrac : is_frac_field A 1%AS.
Lemma tr_int k l : integral A k -> integral A l -> (tr k l)%:A \in A.
-Proof. admit. Qed.
+Proof. admit. Admitted.
Section NDeg.
@@ -367,7 +367,7 @@ Hypothesis Afrac : is_frac_field A K.
Hypothesis AsubL : {subset A <= L}.
Lemma trK_int k l : integral A k -> integral A l -> ((trK k l)%:A : L0') \in A.
-Proof. admit. Qed.
+Proof. admit. Admitted.
End TraceFieldOver.
@@ -429,8 +429,8 @@ suffices FisK (F : fieldType) (L0 : fieldExtType F) (A : pred L0) (L : {subfield
have [X Xsize [Xf [Xs Xi]]] := FisK _ L0 _ _ Isubr Iint Ipid Ifrac1 Lnd.
rewrite -dim_aspaceOver => //; have /eqP <- := Xsize; exists (in_tuple X); split; last first.
split => m; last by move=> /Xi; rewrite /int_closure LK.
- by rewrite /int_closure -LK => - /Xs.
- move: Xf; rewrite -{1}(in_tupleE X) => - /freeP-XfL0; apply/freeP => k.
+ by rewrite /int_closure -LK => /Xs.
+ move: Xf; rewrite -{1}(in_tupleE X) => /freeP-XfL0; apply/freeP => k.
have [k' kk'] : exists k' : 'I_(size X) -> F, forall i, (k i)%:A = vsval (k' i).
by exists (fun i => vsproj Ifr (k i)%:A) => i; rewrite vsprojK ?rpredZ ?mem1v.
pose Ainj := fmorph_inj [rmorphism of in_alg E].
@@ -477,7 +477,7 @@ have Mbasis k (X : k.-tuple L0) M : free X -> module A M -> submod M (span_mod A
have seqF (s : seq L0) : all A s -> exists s', s = [seq c%:A | c <- s'].
elim: s => [_| a l IHl /= /andP[/Asub1/vlineP[c ->]]]; first by exists [::].
by move=> /IHl[s' ->]; exists (c :: s').
- move=> mM; have := Ms m mM; rewrite /span_mod !size_tuple => - [r rA rS].
+ move=> mM; have := Ms m mM; rewrite /span_mod !size_tuple => -[r rA rS].
exists r; split => //; have [rF rFr] := seqF r rA => {seqF}; rewrite rFr in rA.
have rFs : size rF = k.+1 by rewrite -(size_tuple r) rFr size_map.
have -> : m = \sum_(i < k.+1) rF`_i *: X`_i.
@@ -489,13 +489,13 @@ have Mbasis k (X : k.-tuple L0) M : free X -> module A M -> submod M (span_mod A
rewrite /module /M1 linear0; split => // a x y aA [xM xfc0] [yM yfc0].
have := Mm a x y aA xM yM; move: aA => /Asub1/vlineP[r] ->; rewrite mulr_algl => msc.
by rewrite /M1 linearB linearZ /= xfc0 yfc0 subr0 mulr0.
- move=> m [mM mfc0]; have := span_coord m mM => - [r [rA rS rC]].
- move: mfc0 (rC 0) ->; rewrite scale0r => - r0; rewrite /span_mod size_tuple.
+ move=> m [mM mfc0]; have := span_coord m mM => -[r [rA rS rC]].
+ move: mfc0 (rC 0) ->; rewrite scale0r => r0; rewrite /span_mod size_tuple.
exists [tuple of behead r]; first by apply/allP => a /mem_behead/(allP rA).
by rewrite rS big_ord_recl -r0 mul0r add0r; apply/eq_bigr => i _; rewrite !nth_behead.
have [a [w wM wC] aG] : exists2 a, M2 a & forall v, M2 v -> exists2 d, d \in A & d * a = v.
apply/Apid; split.
- move=> c [m mM <-]; have := span_coord m mM => - [r [/all_nthP-rA _ rC]].
+ move=> c [m mM <-]; have := span_coord m mM => -[r [/all_nthP-rA _ rC]].
by move: rC ->; apply/rA; rewrite size_tuple.
split; first by exists 0 => //; rewrite linear0 scale0r.
move=> c x y cA [mx mxM mxC] [my myM myC]; have := Mm c mx my cA mxM myM.
@@ -510,10 +510,10 @@ have Mbasis k (X : k.-tuple L0) M : free X -> module A M -> submod M (span_mod A
by rewrite a0 mulr0 scale0r.
exists (w :: B1); split.
rewrite free_cons B1f andbT; move: an0; apply/contra; move: wC <-.
- rewrite -(in_tupleE B1) => - /coord_span ->; apply/eqP.
+ rewrite -(in_tupleE B1) => /coord_span ->; apply/eqP.
rewrite linear_sum big1 ?scale0r => //= i _; rewrite linearZ /=.
by have [_] := B1A B1`_i (mem_nth 0 (ltn_ord _)) => ->; rewrite mulr0.
- split => [m mM | m]; last by rewrite in_cons => - /orP; case=> [/eqP ->|/B1A[mM]].
+ split => [m mM | m]; last by rewrite in_cons => /orP; case=> [/eqP ->|/B1A[mM]].
have [d dA dam] := mcM1 m mM; have mdwM1 : M1 (m - d * w).
split; [have Mdwm := Mm d w m dA wM mM; have := Mm _ _ _ A0 Mdwm Mdwm |].
by rewrite mul0r sub0r opprB.
@@ -525,16 +525,16 @@ have [X Xb] : exists X, basis_of_mod A (int_closure A L) X.
apply/(Mbasis _ b2 _ b2f) => [| m [mL mI]]; first by apply/int_mod_closed.
pose r : n.-tuple L0 := [tuple (coord b2 i m)%:A | i < n]; rewrite /span_mod size_tuple.
exists r; have rci (i : 'I_n) : r`_i = (coord b2 i m)%:A by rewrite -tnth_nth tnth_mktuple.
- apply/(all_nthP 0) => i; rewrite size_tuple => - iB.
+ apply/(all_nthP 0) => i; rewrite size_tuple => iB.
by have -> := rci (Ordinal iB); apply/b2H.
- move: mL; rewrite -b2s => - /coord_span ->; apply/eq_bigr => i _.
+ move: mL; rewrite -b2s => /coord_span ->; apply/eq_bigr => i _.
by rewrite rci mulr_algl.
exists X => //; move: Xb => [/eqP-Xf [Xs Xg]]; rewrite -Xf eqn_leq; apply/andP; split.
by apply/dimvS/span_subvP => m /Xg[mL _].
have /andP[/eqP-b1s _] := b1B; rewrite -b1s; apply/dimvS/span_subvP => b /tnthP-[i ->] {b}.
rewrite (tnth_nth 0); have [r /all_tnthP-rA ->] : span_mod A X b1`_i.
by apply/Xs; rewrite /int_closure (basis_mem b1B) ?mem_nth ?size_tuple => //.
-apply/rpred_sum => j _; have := rA j; rewrite (tnth_nth 0) => - /Asub1/vlineP[c ->].
+apply/rpred_sum => j _; have := rA j; rewrite (tnth_nth 0) => /Asub1/vlineP[c ->].
by rewrite mulr_algl; apply/rpredZ/memv_span/mem_nth.
Qed.
diff --git a/mathcomp/field/closed_field.v b/mathcomp/field/closed_field.v
index 05cf477..5c57df8 100644
--- a/mathcomp/field/closed_field.v
+++ b/mathcomp/field/closed_field.v
@@ -156,8 +156,8 @@ Lemma eval_sumpT (p q : polyF) (e : seq F) :
Proof.
elim: p q => [|a p Hp] q /=; first by rewrite add0r.
case: q => [|b q] /=; first by rewrite addr0.
-rewrite Hp mulrDl -!addrA; congr (_+_); rewrite polyC_add addrC -addrA.
-by congr (_+_); rewrite addrC.
+rewrite Hp mulrDl -!addrA; congr (_ + _); rewrite polyC_add addrC -addrA.
+by congr (_ + _); rewrite addrC.
Qed.
Lemma rsumpT (p q : polyF) : rpoly p -> rpoly q -> rpoly (sumpT p q).
@@ -174,7 +174,7 @@ Lemma eval_mulpT (p q : polyF) (e : seq F) :
eval_poly e (mulpT p q) = (eval_poly e p) * (eval_poly e q).
Proof.
elim: p q=> [|a p Hp] q /=; first by rewrite mul0r.
-rewrite eval_sumpT /= Hp addr0 mulrDl addrC mulrAC; congr (_+_).
+rewrite eval_sumpT /= Hp addr0 mulrDl addrC mulrAC; congr (_ + _).
elim: q=> [|b q Hq] /=; first by rewrite mulr0.
by rewrite Hq polyC_mul mulrDr mulrA.
Qed.
@@ -206,7 +206,7 @@ Lemma eval_natmulpT (p : polyF) (n : nat) (e : seq F) :
eval_poly e (natmulpT n p) = (eval_poly e p) *+ n.
Proof.
elim: p; rewrite //= ?mul0rn // => c p ->.
-rewrite mulrnDl mulr_natl polyC_muln; congr (_+_).
+rewrite mulrnDl mulr_natl polyC_muln; congr (_ + _).
by rewrite -mulr_natl mulrAC -mulrA mulr_natl mulrC.
Qed.
@@ -351,7 +351,7 @@ elim: n p q e => /= [| m Pm] p q e.
by rewrite redivpTP; last by move=> *; rewrite Pk.
rewrite redivpTP; last by move=> *; rewrite !isnullP eval_lift.
rewrite isnullP eval_lift; case: (_ == 0); first by rewrite Pk.
-by rewrite redivpTP => - *; rewrite ?Pm !eval_lift.
+by rewrite redivpTP => *; rewrite ?Pm !eval_lift.
Qed.
Lemma rgcdp_loopT_qf (p : polyF) (k : polyF -> formula F) (q : polyF) (n : nat) :
@@ -629,7 +629,7 @@ constructor; first by apply/holds_conj.
by apply/holds_conjn.
Qed.
-Lemma wf_ex_elim: GRing.wf_QE_proj ex_elim.
+Lemma wf_ex_elim : GRing.wf_QE_proj ex_elim.
Proof. by move=> i bc /= rbc; apply: ex_elim_qf. Qed.
Definition closed_fields_QEMixin :=
diff --git a/mathcomp/odd_order/PFsection7.v b/mathcomp/odd_order/PFsection7.v
index deb1698..559ed7c 100644
--- a/mathcomp/odd_order/PFsection7.v
+++ b/mathcomp/odd_order/PFsection7.v
@@ -426,7 +426,7 @@ split=> // [ | chi /irrP[t def_chi] o_chiSnu].
have hu: h * u = e^-1 * (h - 1) by rewrite mulrCA (mulrBr h) mulr1 divff.
have ->: '[(nu zeta)^\rho] = u * a ^+ 2 - v * a *+ 2 + w.
have defT1: perm_eq calT [:: phi, Ind1H, zeta & S2].
- by rewrite defT defS1 (perm_catCA [::_; _] phi).
+ by rewrite defT defS1 (perm_catCA [:: _; _] phi).
have [c ua _ ->] := invDade_seqInd_sum (nu zeta) defT1.
have def_c xi: xi \in calS -> c xi = '[xi, zeta].
move=> S2xi; rewrite /c mulrC -{1}[xi]scale1r -(mulVf nz_phi1) -!scalerA.
diff --git a/mathcomp/real_closed/cauchyreals.v b/mathcomp/real_closed/cauchyreals.v
index 1d7d7ab..1456991 100644
--- a/mathcomp/real_closed/cauchyreals.v
+++ b/mathcomp/real_closed/cauchyreals.v
@@ -1325,7 +1325,7 @@ have upx_eq0 : u.[x] * p.[x] == 0 by rewrite px0 mul_creal0.
pose_big_enough i.
have := (erefl ((1 : {poly F}).[x i])).
rewrite -{1}hpq /= hornerD hornerC.
- set upxi := (u * _).[_] => - hpqi.
+ set upxi := (u * _).[_] => hpqi.
apply: (@neq_crealP ((ubound v.[x])%CR^-1 / 2%:R) i i) => //.
by rewrite pmulr_rgt0 ?gtr0E // ubound_gt0.
rewrite /= subr0 ler_pdivr_mull ?ubound_gt0 //.
diff --git a/mathcomp/real_closed/complex.v b/mathcomp/real_closed/complex.v
index 30b4b04..22edf79 100644
--- a/mathcomp/real_closed/complex.v
+++ b/mathcomp/real_closed/complex.v
@@ -58,7 +58,7 @@ Section ComplexEqChoice.
Variable R : Type.
-Definition sqR_of_complex (x : R[i]) := let: a +i* b := x in [::a; b].
+Definition sqR_of_complex (x : R[i]) := let: a +i* b := x in [:: a; b].
Definition complex_of_sqR (x : seq R) :=
if x is [:: a; b] then Some (a +i* b) else None.
diff --git a/mathcomp/solvable/burnside_app.v b/mathcomp/solvable/burnside_app.v
index d602d0a..d9010d5 100644
--- a/mathcomp/solvable/burnside_app.v
+++ b/mathcomp/solvable/burnside_app.v
@@ -75,7 +75,7 @@ Ltac inj_tac :=
move: (erefl rot_inv); unfold rot_inv;
match goal with |- ?X = _ -> injective ?Y =>
move=> _; let x := get_inv Y X in
- apply: (can_inj (g:=x)); move => [val H1]
+ apply: (can_inj (g:=x)); move=> [val H1]
end.
Lemma R1_inj : injective R1.
@@ -1137,10 +1137,10 @@ Qed.
Lemma uniq4_uniq6 : forall x y z t : cube,
uniq [:: x; y; z; t] -> exists u, exists v, uniq [:: x; y; z; t; u; v].
Proof.
-move=> x y z t Uxt; move: ( cardC (mem [:: x; y; z; t])).
+move=> x y z t Uxt; move: (cardC (mem [:: x; y; z; t])).
rewrite card_ord (card_uniq_tuple Uxt) => hcard.
have hcard2: #|predC (mem [:: x; y; z; t])| = 2.
- by apply: ( @addnI 4); rewrite /injective hcard.
+ by apply: (@addnI 4); rewrite /injective hcard.
have: #|predC (mem [:: x; y; z; t])| != 0 by rewrite hcard2.
case/existsP=> u Hu; exists u.
move: (cardC (mem [:: x; y; z; t; u])); rewrite card_ord => hcard5.
diff --git a/mathcomp/solvable/gfunctor.v b/mathcomp/solvable/gfunctor.v
index 7fbee8c..fc8385d 100644
--- a/mathcomp/solvable/gfunctor.v
+++ b/mathcomp/solvable/gfunctor.v
@@ -158,7 +158,7 @@ End Definitions.
Section ClassDefinitions.
Structure iso_map := IsoMap {
- apply: object_map;
+ apply : object_map;
_ : group_valued apply;
_ : closed apply;
_ : iso_continuous apply
diff --git a/mathcomp/solvable/jordanholder.v b/mathcomp/solvable/jordanholder.v
index 66f6156..7f60bed 100644
--- a/mathcomp/solvable/jordanholder.v
+++ b/mathcomp/solvable/jordanholder.v
@@ -531,7 +531,7 @@ have: K' :=: 1%G \/ K' :=: (G / H).
case; last first.
move/quotient_injG; rewrite !inE /=; move/(_ nKH nHG)=> c; move: nsGK.
by rewrite c subxx.
-rewrite /= -trivg_quotient => - tK'; apply: (congr1 (@gval _)); move: tK'.
+rewrite /= -trivg_quotient => tK'; apply: (congr1 (@gval _)); move: tK'.
by apply: (@quotient_injG _ H); rewrite ?inE /= ?normal_refl.
Qed.
diff --git a/mathcomp/ssreflect/path.v b/mathcomp/ssreflect/path.v
index 6ab7926..4f3beb4 100644
--- a/mathcomp/ssreflect/path.v
+++ b/mathcomp/ssreflect/path.v
@@ -542,9 +542,9 @@ have: perm_eq (catss ss ++ s) (merge_sort_pop s ss).
by rewrite perm_catC catA perm_catC perm_cat2l -perm_merge.
case: s => // x1 [//|x2 s _]; move/ltnW; move/IHn=> {n IHn}IHs.
rewrite -{IHs}(perm_eqrP (IHs _)) ifE; set s1 := if_expr _ _ _.
-rewrite (catA _ [::_; _] s) {s}perm_cat2r.
+rewrite (catA _ [:: _; _] s) {s}perm_cat2r.
apply: (@perm_eq_trans _ (catss ss ++ s1)).
- by rewrite perm_cat2l /s1 -ifE; case: ifP; rewrite // (perm_catC [::_]).
+ by rewrite perm_cat2l /s1 -ifE; case: ifP; rewrite // (perm_catC [:: _]).
elim: ss {x1 x2}s1 => /= [|s2 ss IHss] s1; first by rewrite cats0.
rewrite perm_catC; case def_s2: {2}s2=> /= [|y s2']; first by rewrite def_s2.
by rewrite catA -{IHss}(perm_eqrP (IHss _)) perm_catC perm_cat2l -perm_merge.