aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/algebra/ssralg.v18
-rw-r--r--mathcomp/algebra/ssrint.v2
2 files changed, 10 insertions, 10 deletions
diff --git a/mathcomp/algebra/ssralg.v b/mathcomp/algebra/ssralg.v
index d1f3072..de8b513 100644
--- a/mathcomp/algebra/ssralg.v
+++ b/mathcomp/algebra/ssralg.v
@@ -684,9 +684,9 @@ Definition opp V := Zmodule.opp (Zmodule.class V).
Definition add V := Zmodule.add (Zmodule.class V).
Local Notation "0" := (zero _) : ring_scope.
-Local Notation "-%R" := (@opp _) : ring_scope.
+Local Notation "-%R" := (@opp _) : fun_scope.
Local Notation "- x" := (opp x) : ring_scope.
-Local Notation "+%R" := (@add _) : ring_scope.
+Local Notation "+%R" := (@add _) : fun_scope.
Local Notation "x + y" := (add x y) : ring_scope.
Local Notation "x - y" := (x + - y) : ring_scope.
@@ -980,7 +980,7 @@ Definition rreg R x := injective ((@mul R)^~ x).
Local Notation "1" := (one _) : ring_scope.
Local Notation "- 1" := (- (1)) : ring_scope.
Local Notation "n %:R" := (1 *+ n) : ring_scope.
-Local Notation "*%R" := (@mul _).
+Local Notation "*%R" := (@mul _) : fun_scope.
Local Notation "x * y" := (mul x y) : ring_scope.
Local Notation "x ^+ n" := (exp x n) : ring_scope.
@@ -1606,7 +1606,7 @@ Import Lmodule.Exports.
Definition scale (R : ringType) (V : lmodType R) : R -> V -> V :=
Lmodule.scale (Lmodule.class V).
-Local Notation "*:%R" := (@scale _ _).
+Local Notation "*:%R" := (@scale _ _) : fun_scope.
Local Notation "a *: v" := (scale a v) : ring_scope.
Section LmoduleTheory.
@@ -1614,7 +1614,7 @@ Section LmoduleTheory.
Variables (R : ringType) (V : lmodType R).
Implicit Types (a b c : R) (u v : V).
-Local Notation "*:%R" := (@scale R V).
+Local Notation "*:%R" := (@scale R V) : fun_scope.
Lemma scalerA a b v : a *: (b *: v) = a * b *: v.
Proof. by case: V v => ? [] ? []. Qed.
@@ -6063,9 +6063,9 @@ Export Pred.Exports SubType.Exports.
Notation QEdecFieldMixin := QEdecFieldMixin.
Notation "0" := (zero _) : ring_scope.
-Notation "-%R" := (@opp _) : ring_scope.
+Notation "-%R" := (@opp _) : fun_scope.
Notation "- x" := (opp x) : ring_scope.
-Notation "+%R" := (@add _).
+Notation "+%R" := (@add _) : fun_scope.
Notation "x + y" := (add x y) : ring_scope.
Notation "x - y" := (add x (- y)) : ring_scope.
Notation "x *+ n" := (natmul x n) : ring_scope.
@@ -6079,14 +6079,14 @@ Notation "- 1" := (opp 1) : ring_scope.
Notation "n %:R" := (natmul 1 n) : ring_scope.
Notation "[ 'char' R ]" := (char (Phant R)) : ring_scope.
Notation Frobenius_aut chRp := (Frobenius_aut chRp).
-Notation "*%R" := (@mul _).
+Notation "*%R" := (@mul _) : fun_scope.
Notation "x * y" := (mul x y) : ring_scope.
Notation "x ^+ n" := (exp x n) : ring_scope.
Notation "x ^-1" := (inv x) : ring_scope.
Notation "x ^- n" := (inv (x ^+ n)) : ring_scope.
Notation "x / y" := (mul x y^-1) : ring_scope.
-Notation "*:%R" := (@scale _ _).
+Notation "*:%R" := (@scale _ _) : fun_scope.
Notation "a *: m" := (scale a m) : ring_scope.
Notation "k %:A" := (scale k 1) : ring_scope.
Notation "\0" := (null_fun _) : ring_scope.
diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v
index 9ea0ce4..a51ec47 100644
--- a/mathcomp/algebra/ssrint.v
+++ b/mathcomp/algebra/ssrint.v
@@ -507,7 +507,7 @@ Definition intmul (R : zmodType) (x : R) (n : int) := nosimpl
| Negz n => (x *- (n.+1))%R
end.
-Notation "*~%R" := (@intmul _) (at level 0, format " *~%R") : ring_scope.
+Notation "*~%R" := (@intmul _) (at level 0, format " *~%R") : fun_scope.
Notation "x *~ n" := (intmul x n)
(at level 40, left associativity, format "x *~ n") : ring_scope.
Notation intr := ( *~%R 1).