aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/ssreflect/fintype.v8
-rw-r--r--mathcomp/ssreflect/ssrbool.v22
2 files changed, 15 insertions, 15 deletions
diff --git a/mathcomp/ssreflect/fintype.v b/mathcomp/ssreflect/fintype.v
index 29d1f3e..94fa2d8 100644
--- a/mathcomp/ssreflect/fintype.v
+++ b/mathcomp/ssreflect/fintype.v
@@ -977,7 +977,7 @@ Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" :=
(arg_min i0 (fun i => P%B) (fun i => F))
(at level 0, i, i0 at level 10,
format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : form_scope.
-
+
Notation "[ 'arg' 'min_' ( i < i0 'in' A ) F ]" :=
[arg min_(i < i0 | i \in A) F]
(at level 0, i, i0 at level 10,
@@ -986,12 +986,12 @@ Notation "[ 'arg' 'min_' ( i < i0 'in' A ) F ]" :=
Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F]
(at level 0, i, i0 at level 10,
format "[ 'arg' 'min_' ( i < i0 ) F ]") : form_scope.
-
+
Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" :=
(arg_max i0 (fun i => P%B) (fun i => F))
(at level 0, i, i0 at level 10,
format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : form_scope.
-
+
Notation "[ 'arg' 'max_' ( i > i0 'in' A ) F ]" :=
[arg max_(i > i0 | i \in A) F]
(at level 0, i, i0 at level 10,
@@ -1491,7 +1491,7 @@ Proof. exact: Finite.uniq_enumP (undup_uniq _) mem_seq_sub_enum. Qed.
Definition seq_sub_finMixin := Finite.Mixin seq_sub_countMixin seq_sub_axiom.
(* Beware: these are not the canonical instances, as they are not consistent *)
-(* the generic sub_choiceType canonical instance. *)
+(* with the generic sub_choiceType canonical instance. *)
Definition adhoc_seq_sub_choiceMixin := PcanChoiceMixin seq_sub_pickleK.
Definition adhoc_seq_sub_choiceType :=
Eval hnf in ChoiceType seq_sub adhoc_seq_sub_choiceMixin.
diff --git a/mathcomp/ssreflect/ssrbool.v b/mathcomp/ssreflect/ssrbool.v
index 5343893..0bcfda2 100644
--- a/mathcomp/ssreflect/ssrbool.v
+++ b/mathcomp/ssreflect/ssrbool.v
@@ -25,7 +25,7 @@ Require Import ssrfun.
(* decidable P <-> P is effectively decidable (:= {P} + {~ P}. *)
(* contra, contraL, ... :: contraposition lemmas. *)
(* altP my_viewP :: natural alternative for reflection; given *)
-(* lemma myvieP: reflect my_Prop my_formula, *)
+(* lemma myviewP: reflect my_Prop my_formula, *)
(* have [myP | not_myP] := altP my_viewP. *)
(* generates two subgoals, in which my_formula has *)
(* been replaced by true and false, resp., with *)
@@ -1329,22 +1329,22 @@ Implicit Arguments has_quality [T].
Lemma qualifE n T p x : (x \in @Qualifier n T p) = p x. Proof. by []. Qed.
-Notation "x \is A" := (x \in has_quality 0 A)
+Notation "x \is A" := (x \in has_quality 0 A)
(at level 70, no associativity,
format "'[hv' x '/ ' \is A ']'") : bool_scope.
-Notation "x \is 'a' A" := (x \in has_quality 1 A)
+Notation "x \is 'a' A" := (x \in has_quality 1 A)
(at level 70, no associativity,
format "'[hv' x '/ ' \is 'a' A ']'") : bool_scope.
-Notation "x \is 'an' A" := (x \in has_quality 2 A)
+Notation "x \is 'an' A" := (x \in has_quality 2 A)
(at level 70, no associativity,
format "'[hv' x '/ ' \is 'an' A ']'") : bool_scope.
-Notation "x \isn't A" := (x \notin has_quality 0 A)
+Notation "x \isn't A" := (x \notin has_quality 0 A)
(at level 70, no associativity,
format "'[hv' x '/ ' \isn't A ']'") : bool_scope.
-Notation "x \isn't 'a' A" := (x \notin has_quality 1 A)
+Notation "x \isn't 'a' A" := (x \notin has_quality 1 A)
(at level 70, no associativity,
format "'[hv' x '/ ' \isn't 'a' A ']'") : bool_scope.
-Notation "x \isn't 'an' A" := (x \notin has_quality 2 A)
+Notation "x \isn't 'an' A" := (x \notin has_quality 2 A)
(at level 70, no associativity,
format "'[hv' x '/ ' \isn't 'an' A ']'") : bool_scope.
Notation "[ 'qualify' x | P ]" := (Qualifier 0 (fun x => P%B))
@@ -1411,11 +1411,11 @@ Canonical keyed_qualifier_keyed := PackKeyedPred k keyed_qualifier_suproof.
End KeyedQualifier.
-Notation "x \i 's' A" := (x \i n has_quality 0 A)
+Notation "x \i 's' A" := (x \i n has_quality 0 A)
(at level 70, format "'[hv' x '/ ' \i 's' A ']'") : bool_scope.
-Notation "x \i 's' 'a' A" := (x \i n has_quality 1 A)
+Notation "x \i 's' 'a' A" := (x \i n has_quality 1 A)
(at level 70, format "'[hv' x '/ ' \i 's' 'a' A ']'") : bool_scope.
-Notation "x \i 's' 'an' A" := (x \i n has_quality 2 A)
+Notation "x \i 's' 'an' A" := (x \i n has_quality 2 A)
(at level 70, format "'[hv' x '/ ' \i 's' 'an' A ']'") : bool_scope.
Module DefaultKeying.
@@ -1469,7 +1469,7 @@ Definition pre_symmetric := forall x y, R x y -> R y x.
Lemma symmetric_from_pre : pre_symmetric -> symmetric.
Proof. by move=> symR x y; apply/idP/idP; apply: symR. Qed.
-
+
Definition reflexive := forall x, R x x.
Definition irreflexive := forall x, R x x = false.