diff options
Diffstat (limited to 'mathcomp')
| -rw-r--r-- | mathcomp/algebra/rat.v | 4 | ||||
| -rw-r--r-- | mathcomp/algebra/ssrint.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/ssrnum.v | 22 | ||||
| -rw-r--r-- | mathcomp/field/algC.v | 4 |
4 files changed, 16 insertions, 16 deletions
diff --git a/mathcomp/algebra/rat.v b/mathcomp/algebra/rat.v index 15cc4fc..14b5035 100644 --- a/mathcomp/algebra/rat.v +++ b/mathcomp/algebra/rat.v @@ -576,7 +576,7 @@ Canonical rat_porderType := POrderType ring_display rat ratLeMixin. Canonical rat_distrLatticeType := DistrLatticeType rat ratLeMixin. Canonical rat_orderType := OrderType rat le_rat_total. Canonical rat_numDomainType := NumDomainType rat ratLeMixin. -Canonical rat_normedZmodType := NormedZmoduleType rat rat ratLeMixin. +Canonical rat_normedZmodType := NormedZmodType rat rat ratLeMixin. Canonical rat_numFieldType := [numFieldType of rat]. Canonical rat_realDomainType := [realDomainType of rat]. Canonical rat_realFieldType := [realFieldType of rat]. @@ -811,7 +811,7 @@ Qed. Require setoid_ring.Field_theory setoid_ring.Field_tac. -Lemma rat_field_theory : +Lemma rat_field_theory : Field_theory.field_theory 0%Q 1%Q addq mulq subq oppq divq invq eq. Proof. split => //; first exact rat_ring_theory. diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v index fabe541..feaa884 100644 --- a/mathcomp/algebra/ssrint.v +++ b/mathcomp/algebra/ssrint.v @@ -434,7 +434,7 @@ Canonical int_porderType := POrderType ring_display int intOrdered.Mixin. Canonical int_distrLatticeType := DistrLatticeType int intOrdered.Mixin. Canonical int_orderType := OrderType int intOrdered.lez_total. Canonical int_numDomainType := NumDomainType int intOrdered.Mixin. -Canonical int_normedZmodType := NormedZmoduleType int int intOrdered.Mixin. +Canonical int_normedZmodType := NormedZmodType int int intOrdered.Mixin. Canonical int_realDomainType := [realDomainType of int]. Section intOrderedTheory. diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v index 36adce0..d607291 100644 --- a/mathcomp/algebra/ssrnum.v +++ b/mathcomp/algebra/ssrnum.v @@ -26,7 +26,7 @@ From mathcomp Require Import ssralg poly. (* normedZmodType R *) (* == interface for a normed Zmodule structure indexed by *) (* numDomainType R. *) -(* NormedZmoduleType R T m *) +(* NormedZmodType R T m *) (* == pack the normed Zmodule mixin into a normedZmodType. *) (* The carrier T must have an integral domain structure. *) (* [normedZmodType R of T for S] *) @@ -64,7 +64,7 @@ From mathcomp Require Import ssralg poly. (* * ArchiField (A Real Field with the archimedean axiom) *) (* archiFieldType == interface for an archimedean field. *) (* ArchiFieldType T r *) -(* == packs the archimeadean axiom r into an archiFieldType. *) +(* == packs the archimedean axiom r into an archiFieldType. *) (* The carrier T must have a real field type structure. *) (* [archiFieldType of T for S] *) (* == T-clone of the archiFieldType structure S. *) @@ -310,8 +310,8 @@ Canonical zmodType. Coercion numDomain_normedZmodType : NumDomain.type >-> type. Canonical numDomain_normedZmodType. Notation normedZmodType R := (type (Phant R)). -Notation NormedZmoduleType R T m := (@pack _ (Phant R) T _ m). -Notation NormedZmoduleMixin := Mixin. +Notation NormedZmodType R T m := (@pack _ (Phant R) T _ m). +Notation NormedZmodMixin := Mixin. Notation "[ 'normedZmodType' R 'of' T 'for' cT ]" := (@clone _ (Phant R) T cT _ idfun) (at level 0, format "[ 'normedZmodType' R 'of' T 'for' cT ]") : @@ -548,7 +548,7 @@ Definition idomainType := @GRing.IntegralDomain.Pack cT xclass. Definition porderType := @Order.POrder.Pack ring_display cT xclass. Definition numDomainType := @NumDomain.Pack cT xclass. Definition fieldType := @GRing.Field.Pack cT xclass. -Definition normedZmodType := NormedZmoduleType numDomainType cT xclass. +Definition normedZmodType := NormedZmodType numDomainType cT xclass. Definition porder_fieldType := @GRing.Field.Pack porderType xclass. Definition normedZmod_fieldType := @GRing.Field.Pack normedZmodType xclass. @@ -648,7 +648,7 @@ Definition fieldType := @GRing.Field.Pack cT xclass. Definition numFieldType := @NumField.Pack cT xclass. Definition decFieldType := @GRing.DecidableField.Pack cT xclass. Definition closedFieldType := @GRing.ClosedField.Pack cT xclass. -Definition normedZmodType := NormedZmoduleType numDomainType cT xclass. +Definition normedZmodType := NormedZmodType numDomainType cT xclass. Definition porder_decFieldType := @GRing.DecidableField.Pack porderType xclass. Definition normedZmod_decFieldType := @GRing.DecidableField.Pack normedZmodType xclass. @@ -764,7 +764,7 @@ Definition porderType := @Order.POrder.Pack ring_display cT xclass. Definition distrLatticeType := @Order.DistrLattice.Pack ring_display cT xclass. Definition orderType := @Order.Total.Pack ring_display cT xclass. Definition numDomainType := @NumDomain.Pack cT xclass. -Definition normedZmodType := NormedZmoduleType numDomainType cT xclass. +Definition normedZmodType := NormedZmodType numDomainType cT xclass. Definition zmod_distrLatticeType := @Order.DistrLattice.Pack ring_display zmodType xclass. Definition ring_distrLatticeType := @@ -897,7 +897,7 @@ Definition orderType := @Order.Total.Pack ring_display cT xclass. Definition realDomainType := @RealDomain.Pack cT xclass. Definition fieldType := @GRing.Field.Pack cT xclass. Definition numFieldType := @NumField.Pack cT xclass. -Definition normedZmodType := NormedZmoduleType numDomainType cT xclass. +Definition normedZmodType := NormedZmodType numDomainType cT xclass. Definition field_distrLatticeType := @Order.DistrLattice.Pack ring_display fieldType xclass. Definition field_orderType := @Order.Total.Pack ring_display fieldType xclass. @@ -996,7 +996,7 @@ Definition realDomainType := @RealDomain.Pack cT xclass. Definition fieldType := @GRing.Field.Pack cT xclass. Definition numFieldType := @NumField.Pack cT xclass. Definition realFieldType := @RealField.Pack cT xclass. -Definition normedZmodType := NormedZmoduleType numDomainType cT xclass. +Definition normedZmodType := NormedZmodType numDomainType cT xclass. End ClassDef. @@ -1084,7 +1084,7 @@ Definition realDomainType := @RealDomain.Pack cT xclass. Definition fieldType := @GRing.Field.Pack cT xclass. Definition numFieldType := @NumField.Pack cT xclass. Definition realFieldType := @RealField.Pack cT xclass. -Definition normedZmodType := NormedZmoduleType numDomainType cT xclass. +Definition normedZmodType := NormedZmodType numDomainType cT xclass. End ClassDef. @@ -5064,7 +5064,7 @@ Definition normedZmodMixin : @normed_mixin_of R [zmodType of U * V] (Num.RealDomain.class R) := @Num.NormedMixin _ _ _ norm normD norm_eq0 normrMn normrN. -Canonical normedZmodType := NormedZmoduleType R (U * V) normedZmodMixin. +Canonical normedZmodType := NormedZmodType R (U * V) normedZmodMixin. Lemma prod_normE (x : U * V) : `|x| = Num.max `|x.1| `|x.2|. Proof. by []. Qed. diff --git a/mathcomp/field/algC.v b/mathcomp/field/algC.v index aee2b85..0e3005d 100644 --- a/mathcomp/field/algC.v +++ b/mathcomp/field/algC.v @@ -232,7 +232,7 @@ Canonical closedFieldType := ClosedFieldType type closedFieldAxiom. Parameter numMixin : numMixin idomainType. Canonical porderType := POrderType ring_display type numMixin. Canonical numDomainType := NumDomainType type numMixin. -Canonical normedZmodType := NormedZmoduleType type type numMixin. +Canonical normedZmodType := NormedZmodType type type numMixin. Canonical numFieldType := [numFieldType of type]. Parameter conjMixin : Num.ClosedField.imaginary_mixin_of numDomainType. @@ -432,7 +432,7 @@ Definition numMixin : numMixin closedFieldType := sval (ComplexNumMixin conjK conj_nt). Canonical porderType := POrderType ring_display type numMixin. Canonical numDomainType := NumDomainType type numMixin. -Canonical normedZmodType := NormedZmoduleType type type numMixin. +Canonical normedZmodType := NormedZmodType type type numMixin. Canonical numFieldType := [numFieldType of type]. Lemma normK u : `|u| ^+ 2 = u * conj u. |
