aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/ssreflect/ssrbool.v27
1 files changed, 13 insertions, 14 deletions
diff --git a/mathcomp/ssreflect/ssrbool.v b/mathcomp/ssreflect/ssrbool.v
index 3248e57..fb4ba3d 100644
--- a/mathcomp/ssreflect/ssrbool.v
+++ b/mathcomp/ssreflect/ssrbool.v
@@ -86,7 +86,7 @@ Arguments mono_sym_in {aT rT} [aR rR f aD].
Arguments homo_sym_in11 {aT rT} [aR rR f aD aD'].
Arguments mono_sym_in11 {aT rT} [aR rR f aD aD'].
-Section onW_can.
+Section CancelOn.
Variables (aT rT : predArgType) (aD : {pred aT}) (rD : {pred rT}).
Variables (f : aT -> rT) (g : rT -> aT).
@@ -100,24 +100,24 @@ Proof. by move=> fgK x xrD xaD; apply: fgK. Qed.
Lemma in_onW_can : cancel g f -> {in rD, {on aD, cancel g & f}}.
Proof. by move=> fgK x xrD xaD; apply: fgK. Qed.
-Lemma onT_can : (forall x, g x \in aD) -> {on aD, cancel g & f} -> cancel g f.
+Lemma onS_can : (forall x, g x \in aD) -> {on aD, cancel g & f} -> cancel g f.
Proof. by move=> mem_g fgK x; apply: fgK. Qed.
-Lemma onT_can_in : {homo g : x / x \in rD >-> x \in aD} ->
+Lemma onS_can_in : {homo g : x / x \in rD >-> x \in aD} ->
{in rD, {on aD, cancel g & f}} -> {in rD, cancel g f}.
Proof. by move=> mem_g fgK x x_rD; apply/fgK/mem_g. Qed.
-Lemma in_onT_can : (forall x, g x \in aD) ->
+Lemma in_onS_can : (forall x, g x \in aD) ->
{in rT, {on aD, cancel g & f}} -> cancel g f.
Proof. by move=> mem_g fgK x; apply/fgK. Qed.
-End onW_can.
+End CancelOn.
Arguments onW_can {aT rT} aD {f g}.
Arguments onW_can_in {aT rT} aD {rD f g}.
Arguments in_onW_can {aT rT} aD rD {f g}.
-Arguments onT_can {aT rT} aD {f g}.
-Arguments onW_can_in {aT rT} aD {rD f g}.
-Arguments in_onT_can {aT rT} aD {f g}.
+Arguments onS_can {aT rT} aD {f g}.
+Arguments onS_can_in {aT rT} aD {rD f g}.
+Arguments in_onS_can {aT rT} aD {f g}.
Section MonoHomoMorphismTheory_in.
@@ -173,18 +173,17 @@ Section inj_can_sym_in_on.
Variables (aT rT : predArgType) (aD : {pred aT}) (rD : {pred rT}).
Variables (f : aT -> rT) (g : rT -> aT).
-Lemma inj_can_sym_in_on : {homo f : x / x \in aD >-> x \in rD} ->
- {in aD, {on rD, cancel f & g}} ->
- {in [pred x | x \in rD & g x \in aD], injective g} ->
- {in rD, {on aD, cancel g & f}}.
+Lemma inj_can_sym_in_on :
+ {homo f : x / x \in aD >-> x \in rD} -> {in aD, {on rD, cancel f & g}} ->
+ {in rD &, {on aD &, injective g}} -> {in rD, {on aD, cancel g & f}}.
Proof. by move=> fD fK gI x x_rD gx_aD; apply: gI; rewrite ?inE ?fK ?fD. Qed.
Lemma inj_can_sym_on : {in aD, cancel f g} ->
- {in [pred x | g x \in aD], injective g} -> {on aD, cancel g & f}.
+ {on aD &, injective g} -> {on aD, cancel g & f}.
Proof. by move=> fK gI x gx_aD; apply: gI; rewrite ?inE ?fK. Qed.
Lemma inj_can_sym_in : {homo f \o g : x / x \in rD} -> {on rD, cancel f & g} ->
- {in rD, injective g} -> {in rD, cancel g f}.
+ {in rD &, injective g} -> {in rD, cancel g f}.
Proof. by move=> fgD fK gI x x_rD; apply: gI; rewrite ?fK ?fgD. Qed.
End inj_can_sym_in_on.