aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/ssreflect/bigop.v2
1 files changed, 1 insertions, 1 deletions
diff --git a/mathcomp/ssreflect/bigop.v b/mathcomp/ssreflect/bigop.v
index 5f1b7d7..c6b2dfc 100644
--- a/mathcomp/ssreflect/bigop.v
+++ b/mathcomp/ssreflect/bigop.v
@@ -1823,7 +1823,7 @@ Lemma prod_nat_const n : \prod_(i in A) n = n ^ #|A|.
Proof. by rewrite big_const -Monoid.iteropE. Qed.
Lemma sum_nat_const_nat n1 n2 n : \sum_(n1 <= i < n2) n = (n2 - n1) * n.
-Proof. by rewrite big_const_nat; elim: (_ - _) => //= ? ->. Qed.
+Proof. by rewrite big_const_nat iter_addn_0 mulnC. Qed.
Lemma prod_nat_const_nat n1 n2 n : \prod_(n1 <= i < n2) n = n ^ (n2 - n1).
Proof. by rewrite big_const_nat -Monoid.iteropE. Qed.