aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/algebra/ssrnum.v1
-rw-r--r--mathcomp/ssreflect/order.v2
2 files changed, 3 insertions, 0 deletions
diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v
index 6dbfaf7..f7b2e0f 100644
--- a/mathcomp/algebra/ssrnum.v
+++ b/mathcomp/algebra/ssrnum.v
@@ -5619,6 +5619,7 @@ Ltac mexact x := by mapply x.
Local Notation min := minr.
Local Notation max := maxr.
+Lemma minrC : @commutative R R min. Proof. mexact @minC. Qed.
Lemma minrr : @idempotent R min. Proof. mexact @minxx. Qed.
Lemma minr_l x y : x <= y -> min x y = x. Proof. mexact @min_l. Qed.
Lemma minr_r x y : y <= x -> min x y = y. Proof. mexact @min_r. Qed.
diff --git a/mathcomp/ssreflect/order.v b/mathcomp/ssreflect/order.v
index d8bcff1..59de10c 100644
--- a/mathcomp/ssreflect/order.v
+++ b/mathcomp/ssreflect/order.v
@@ -74,6 +74,8 @@ From mathcomp Require Import path fintype tuple bigop finset div prime.
(* For x, y of type T, where T is canonically a porderType d: *)
(* x <= y <-> x is less than or equal to y. *)
(* x < y <-> x is less than y (:= (y != x) && (x <= y)). *)
+(* min x y <-> if x < y then x else y *)
+(* max x y <-> if x < y then y else x *)
(* x >= y <-> x is greater than or equal to y (:= y <= x). *)
(* x > y <-> x is greater than y (:= y < x). *)
(* x <= y ?= iff C <-> x is less than y, or equal iff C is true. *)