aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/ssreflect/seq.v2
1 files changed, 1 insertions, 1 deletions
diff --git a/mathcomp/ssreflect/seq.v b/mathcomp/ssreflect/seq.v
index 5574892..8969e62 100644
--- a/mathcomp/ssreflect/seq.v
+++ b/mathcomp/ssreflect/seq.v
@@ -2227,7 +2227,7 @@ Qed.
Lemma iota_addl m1 m2 n : iota (m1 + m2) n = map (addn m1) (iota m2 n).
Proof. by elim: n m2 => //= n IHn m2; rewrite -addnS IHn. Qed.
-Lemma nth_iota m n i : i < n -> nth 0 (iota m n) i = m + i.
+Lemma nth_iota p m n i : i < n -> nth p (iota m n) i = m + i.
Proof.
by move/subnKC <-; rewrite addSnnS iota_add nth_cat size_iota ltnn subnn.
Qed.