aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/algebra/matrix.v32
-rw-r--r--mathcomp/character/mxrepresentation.v4
-rw-r--r--mathcomp/ssreflect/bigop.v23
-rw-r--r--mathcomp/ssreflect/seq.v20
4 files changed, 37 insertions, 42 deletions
diff --git a/mathcomp/algebra/matrix.v b/mathcomp/algebra/matrix.v
index 77d2e4f..b67bdba 100644
--- a/mathcomp/algebra/matrix.v
+++ b/mathcomp/algebra/matrix.v
@@ -1935,7 +1935,7 @@ Proof. by rewrite scale_scalar_mx mulr1. Qed.
Lemma scalar_mx_sum_delta a : a%:M = \sum_i a *: delta_mx i i.
Proof.
-by rewrite -diag_const_mx diag_mx_sum_delta; apply: eq_bigr => i _; rewrite mxE.
+by rewrite -diag_const_mx diag_mx_sum_delta; under eq_bigr do rewrite mxE.
Qed.
Lemma mx1_sum_delta : 1%:M = \sum_i delta_mx i i.
@@ -1996,11 +1996,9 @@ Local Notation "A *m B" := (mulmx A B) : ring_scope.
Lemma mulmxA m n p q (A : 'M_(m, n)) (B : 'M_(n, p)) (C : 'M_(p, q)) :
A *m (B *m C) = A *m B *m C.
Proof.
-apply/matrixP=> i l; rewrite !mxE.
-transitivity (\sum_j (\sum_k (A i j * (B j k * C k l)))).
- by apply: eq_bigr => j _; rewrite mxE big_distrr.
+apply/matrixP=> i l; rewrite !mxE; under eq_bigr do rewrite mxE big_distrr/=.
rewrite exchange_big; apply: eq_bigr => j _; rewrite mxE big_distrl /=.
-by apply: eq_bigr => k _; rewrite mulrA.
+by under eq_bigr do rewrite mulrA.
Qed.
Lemma mul0mx m n p (A : 'M_(n, p)) : 0 *m A = 0 :> 'M_(m, p).
@@ -2016,13 +2014,13 @@ Qed.
Lemma mulmxN m n p (A : 'M_(m, n)) (B : 'M_(n, p)) : A *m (- B) = - (A *m B).
Proof.
apply/matrixP=> i k; rewrite !mxE -sumrN.
-by apply: eq_bigr => j _; rewrite mxE mulrN.
+by under eq_bigr do rewrite mxE mulrN.
Qed.
Lemma mulNmx m n p (A : 'M_(m, n)) (B : 'M_(n, p)) : - A *m B = - (A *m B).
Proof.
apply/matrixP=> i k; rewrite !mxE -sumrN.
-by apply: eq_bigr => j _; rewrite mxE mulNr.
+by under eq_bigr do rewrite mxE mulNr.
Qed.
Lemma mulmxDl m n p (A1 A2 : 'M_(m, n)) (B : 'M_(n, p)) :
@@ -2083,12 +2081,12 @@ Proof. by rewrite !rowE mulmxA. Qed.
Lemma mulmx_sum_row m n (u : 'rV_m) (A : 'M_(m, n)) :
u *m A = \sum_i u 0 i *: row i A.
Proof.
-by apply/rowP=> j; rewrite mxE summxE; apply: eq_bigr => i _; rewrite !mxE.
+by apply/rowP=> j; rewrite mxE summxE; under [RHS]eq_bigr do rewrite !mxE.
Qed.
Lemma mxsub_mul m n m' n' p f g (A : 'M_(m, p)) (B : 'M_(p, n)) :
mxsub f g (A *m B) = rowsub f A *m colsub g B :> 'M_(m', n').
-Proof. by split_mxE; apply: eq_bigr => k _; rewrite !mxE. Qed.
+Proof. by split_mxE; under [RHS]eq_bigr do rewrite !mxE. Qed.
Lemma mul_rowsub_mx m n m' p f (A : 'M_(m, p)) (B : 'M_(p, n)) :
rowsub f A *m B = rowsub f (A *m B) :> 'M_(m', n).
@@ -2330,14 +2328,14 @@ Lemma mul_mx_row m n p1 p2 (A : 'M_(m, n)) (Bl : 'M_(n, p1)) (Br : 'M_(n, p2)) :
A *m row_mx Bl Br = row_mx (A *m Bl) (A *m Br).
Proof.
apply/matrixP=> i k; rewrite !mxE.
-by case defk: (split k); rewrite mxE; apply: eq_bigr => j _; rewrite mxE defk.
+by case defk: (split k); rewrite mxE; under eq_bigr do rewrite mxE defk.
Qed.
Lemma mul_col_mx m1 m2 n p (Au : 'M_(m1, n)) (Ad : 'M_(m2, n)) (B : 'M_(n, p)) :
col_mx Au Ad *m B = col_mx (Au *m B) (Ad *m B).
Proof.
apply/matrixP=> i k; rewrite !mxE.
-by case defi: (split i); rewrite mxE; apply: eq_bigr => j _; rewrite mxE defi.
+by case defi: (split i); rewrite mxE; under eq_bigr do rewrite mxE defi.
Qed.
Lemma mul_row_col m n1 n2 p (Al : 'M_(m, n1)) (Ar : 'M_(m, n2))
@@ -2465,8 +2463,8 @@ Proof. by apply: eq_bigr=> i _; rewrite mxE. Qed.
Lemma mxtrace_is_scalar : scalar mxtrace.
Proof.
-move=> a A B; rewrite mulr_sumr -big_split /=; apply: eq_bigr=> i _.
-by rewrite !mxE.
+move=> a A B; rewrite mulr_sumr -big_split /=.
+by apply: eq_bigr=> i _; rewrite !mxE.
Qed.
Canonical mxtrace_additive := Additive mxtrace_is_scalar.
Canonical mxtrace_linear := Linear mxtrace_is_scalar.
@@ -2480,8 +2478,8 @@ Proof. by apply: eq_bigr => j _; rewrite mxE eqxx. Qed.
Lemma mxtrace_scalar a : \tr a%:M = a *+ n.
Proof.
-rewrite -diag_const_mx mxtrace_diag.
-by rewrite (eq_bigr _ (fun j _ => mxE _ _ 0 j)) sumr_const card_ord.
+rewrite -diag_const_mx mxtrace_diag; under eq_bigr do rewrite mxE.
+by rewrite sumr_const card_ord.
Qed.
Lemma mxtrace1 : \tr 1%:M = n%:R. Proof. exact: mxtrace_scalar. Qed.
@@ -2496,7 +2494,7 @@ Lemma mxtrace_block n1 n2 (Aul : 'M_n1) Aur Adl (Adr : 'M_n2) :
\tr (block_mx Aul Aur Adl Adr) = \tr Aul + \tr Adr.
Proof.
rewrite /(\tr _) big_split_ord /=.
-by congr (_ + _); apply: eq_bigr => i _; rewrite (block_mxEul, block_mxEdr).
+by congr (_ + _); under eq_bigr do rewrite (block_mxEul, block_mxEdr).
Qed.
(* The matrix ring structure requires a strutural condition (dimension of the *)
@@ -3057,7 +3055,7 @@ Lemma expand_det_col n (A : 'M[R]_n) j0 :
\det A = \sum_i (A i j0 * cofactor A i j0).
Proof.
rewrite -det_tr (expand_det_row _ j0).
-by apply: eq_bigr => i _; rewrite cofactor_tr mxE.
+by under eq_bigr do rewrite cofactor_tr mxE.
Qed.
Lemma trmx_adj n (A : 'M[R]_n) : (\adj A)^T = \adj A^T.
diff --git a/mathcomp/character/mxrepresentation.v b/mathcomp/character/mxrepresentation.v
index e94e69f..4202c6e 100644
--- a/mathcomp/character/mxrepresentation.v
+++ b/mathcomp/character/mxrepresentation.v
@@ -5684,9 +5684,9 @@ elim: t => //=.
- by move=> k _; apply/rowP=> i; rewrite !mxE /= nth_row_env nth_map_rVval.
- by move=> x _; rewrite eval_mx_term.
- by move=> x _; rewrite eval_mx_term.
-- move=> t1 IH1 t2 IH2 /andP[rt1 rt2]; rewrite -{}IH1 // -{}IH2 //.
+- move=> t1 + t2 + /andP[rt1 rt2] => <-// <-//.
by apply/rowP=> k; rewrite !mxE.
-- by move=> t1 IH1 rt1; rewrite -{}IH1 //; apply/rowP=> k; rewrite !mxE.
+- by move=> t1 + rt1 => <-//; apply/rowP=> k; rewrite !mxE.
- move=> t1 IH1 n1 rt1; rewrite eval_mulmx eval_mx_term mul_scalar_mx.
by rewrite scaler_nat {}IH1 //; elim: n1 => //= n1 IHn1; rewrite !mulrS IHn1.
- by move=> t1 IH1 t2 IH2 /andP[rt1 rt2]; rewrite eval_mulT IH1 ?IH2.
diff --git a/mathcomp/ssreflect/bigop.v b/mathcomp/ssreflect/bigop.v
index 0ece733..0c9e94f 100644
--- a/mathcomp/ssreflect/bigop.v
+++ b/mathcomp/ssreflect/bigop.v
@@ -1045,8 +1045,8 @@ Lemma big_index_uniq (I : eqType) (r : seq I) (E : 'I_(size r) -> R) :
uniq r ->
\big[op/idx]_i E i = \big[op/idx]_(x <- r) oapp E idx (insub (index x r)).
Proof.
-move=> Ur; apply/esym; rewrite big_tnth; apply: eq_bigr => i _.
-by rewrite index_uniq // valK.
+move=> Ur; apply/esym; rewrite big_tnth.
+by under [LHS]eq_bigr do rewrite index_uniq// valK.
Qed.
Lemma big_tuple I n (t : n.-tuple I) (P : pred I) F :
@@ -1087,9 +1087,8 @@ Lemma big_ord_recl n F :
op (F ord0) (\big[op/idx]_(i < n) F (@lift n.+1 ord0 i)).
Proof.
pose G i := F (inord i); have eqFG i: F i = G i by rewrite /G inord_val.
-rewrite (eq_bigr _ (fun i _ => eqFG i)) -(big_mkord _ (fun _ => _) G) eqFG.
-rewrite big_ltn // big_add1 /= big_mkord; congr op.
-by apply: eq_bigr => i _; rewrite eqFG.
+under eq_bigr do rewrite eqFG; under [in RHS]eq_bigr do rewrite eqFG.
+by rewrite -(big_mkord _ (fun _ => _) G) eqFG big_ltn // big_add1 /= big_mkord.
Qed.
Lemma big_nseq_cond I n a (P : pred I) F :
@@ -1624,8 +1623,8 @@ Lemma exchange_big_dep I J rI rJ (P : pred I) (Q : I -> pred J)
\big[*%M/1]_(j <- rJ | xQ j) \big[*%M/1]_(i <- rI | P i && Q i j) F i j.
Proof.
move=> PQxQ; pose p u := (u.2, u.1).
-rewrite (eq_bigr _ _ _ (fun _ _ => big_tnth _ _ rI _ _)) (big_tnth _ _ rJ).
-rewrite (eq_bigr _ _ _ (fun _ _ => (big_tnth _ _ rJ _ _))) big_tnth.
+under [LHS]eq_bigr do rewrite big_tnth; rewrite [LHS]big_tnth.
+under [RHS]eq_bigr do rewrite big_tnth; rewrite [RHS]big_tnth.
rewrite !pair_big_dep (reindex_onto (p _ _) (p _ _)) => [|[]] //=.
apply: eq_big => [] [j i] //=; symmetry; rewrite eqxx andbT andb_idl //.
by case/andP; apply: PQxQ.
@@ -1636,8 +1635,8 @@ Lemma exchange_big I J rI rJ (P : pred I) (Q : pred J) F :
\big[*%M/1]_(i <- rI | P i) \big[*%M/1]_(j <- rJ | Q j) F i j =
\big[*%M/1]_(j <- rJ | Q j) \big[*%M/1]_(i <- rI | P i) F i j.
Proof.
-rewrite (exchange_big_dep Q) //; apply: eq_bigr => i /= Qi.
-by apply: eq_bigl => j; rewrite Qi andbT.
+rewrite (exchange_big_dep Q) //.
+by under eq_bigr => i Qi do under eq_bigl do rewrite Qi andbT.
Qed.
Lemma exchange_big_dep_nat m1 n1 m2 n2 (P : pred nat) (Q : rel nat)
@@ -1647,7 +1646,7 @@ Lemma exchange_big_dep_nat m1 n1 m2 n2 (P : pred nat) (Q : rel nat)
\big[*%M/1]_(m2 <= j < n2 | xQ j)
\big[*%M/1]_(m1 <= i < n1 | P i && Q i j) F i j.
Proof.
-move=> PQxQ; rewrite (eq_bigr _ _ _ (fun _ _ => big_seq_cond _ _ _ _ _)).
+move=> PQxQ; under eq_bigr do rewrite big_seq_cond.
rewrite big_seq_cond /= (exchange_big_dep xQ) => [|i j]; last first.
by rewrite !mem_index_iota => /andP[mn_i Pi] /andP[mn_j /PQxQ->].
rewrite 2!(big_seq_cond _ _ _ xQ); apply: eq_bigr => j /andP[-> _] /=.
@@ -1660,7 +1659,7 @@ Lemma exchange_big_nat m1 n1 m2 n2 (P Q : pred nat) F :
\big[*%M/1]_(m2 <= j < n2 | Q j) \big[*%M/1]_(m1 <= i < n1 | P i) F i j.
Proof.
rewrite (exchange_big_dep_nat Q) //.
-by apply: eq_bigr => i /= Qi; apply: eq_bigl => j; rewrite Qi andbT.
+by under eq_bigr => i Qi do under eq_bigl do rewrite Qi andbT.
Qed.
End Abelian.
@@ -1754,7 +1753,7 @@ Proof. by rewrite big_endo ?mulm0 // => x y; apply: mulmDr. Qed.
Lemma big_distrlr I J rI rJ (pI : pred I) (pJ : pred J) F G :
(\big[+%M/0]_(i <- rI | pI i) F i) * (\big[+%M/0]_(j <- rJ | pJ j) G j)
= \big[+%M/0]_(i <- rI | pI i) \big[+%M/0]_(j <- rJ | pJ j) (F i * G j).
-Proof. by rewrite big_distrl; apply: eq_bigr => i _; rewrite big_distrr. Qed.
+Proof. by rewrite big_distrl; under eq_bigr do rewrite big_distrr. Qed.
Lemma big_distr_big_dep (I J : finType) j0 (P : pred I) (Q : I -> pred J) F :
\big[*%M/1]_(i | P i) \big[+%M/0]_(j | Q i j) F i j =
diff --git a/mathcomp/ssreflect/seq.v b/mathcomp/ssreflect/seq.v
index 9747171..6c70502 100644
--- a/mathcomp/ssreflect/seq.v
+++ b/mathcomp/ssreflect/seq.v
@@ -3059,7 +3059,7 @@ move=> sz_s; apply/(canLR revK)/eq_from_flatten_shape.
transitivity (rev (shape (reshape (rev sh) (rev s)))).
by rewrite !reshapeKl ?revK ?size_rev ?sz_s ?sumn_rev.
rewrite shape_rev; congr (rev _); rewrite -[RHS]map_comp.
-by apply: eq_map => t /=; rewrite size_rev.
+by under eq_map do rewrite /= size_rev.
Qed.
Lemma reshape_rcons s sh n (m := sumn sh) :
@@ -3246,12 +3246,11 @@ Proof. by []. Qed.
Lemma eq_allpairs (f1 f2 : forall x, T x -> R) s t :
(forall x, f1 x =1 f2 x) ->
[seq f1 x y | x <- s, y <- t x] = [seq f2 x y | x <- s, y <- t x].
-Proof. by move=> eq_f; rewrite (eq_map (fun x => eq_map (eq_f x) (t x))). Qed.
+Proof. by move=> eq_f; under eq_map do under eq_map do rewrite eq_f. Qed.
Lemma eq_allpairsr (f : forall x, T x -> R) s t1 t2 : (forall x, t1 x = t2 x) ->
[seq f x y | x <- s, y <- t1 x] = [seq f x y | x <- s, y <- t2 x].
-(* From Coq 8.10 Proof. by move=> eq_t; under eq_map do rewrite eq_t. Qed. *)
-Proof. by move=> eq_t; congr flatten; apply: eq_map => x; rewrite eq_t. Qed.
+Proof. by move=> eq_t; under eq_map do rewrite eq_t. Qed.
Lemma allpairs_cat f s1 s2 t :
[seq f x y | x <- s1 ++ s2, y <- t x] =
@@ -3270,7 +3269,7 @@ Proof. by rewrite -map_comp. Qed.
Lemma allpairs_mapr f (g : forall x, T' x -> T x) s t :
[seq f x y | x <- s, y <- map (g x) (t x)] =
[seq f x (g x y) | x <- s, y <- t x].
-Proof. by rewrite -(eq_map (fun=> map_comp _ _ _)). Qed.
+Proof. by under eq_map do rewrite -map_comp. Qed.
End AllPairsDep.
@@ -3517,8 +3516,7 @@ Local Notation tseq := tally_seq.
Lemma size_tally_seq bs : size (tally_seq bs) = sumn (unzip2 bs).
Proof.
-rewrite size_flatten /shape -map_comp; congr sumn.
-by apply/eq_map=> b; apply: size_nseq.
+by rewrite size_flatten /shape -map_comp; under eq_map do rewrite /= size_nseq.
Qed.
Lemma tally_seqK : {in wf_tally, cancel tally_seq tally}.
@@ -3570,7 +3568,7 @@ Proof.
have /andP[Ubs _] := tallyP s; pose b := [fun s x => (x, count_mem x (tseq s))].
suffices /permPl->: perm_eq (tally s) (map (b (tally s)) (unzip1 (tally s))).
congr perm_eq: (perm_map (b (tally s)) (tallyEl s)).
- by apply/eq_map=> x; rewrite /= (permP (tallyK s)).
+ by under eq_map do rewrite /= (permP (tallyK s)).
elim: (tally s) Ubs => [|[x m] bs IH] //= /andP[bs'x /IH-IHbs {IH}].
rewrite /tseq /= -/(tseq _) count_cat count_nseq /= eqxx mul1n.
rewrite (count_memPn _) ?addn0 ?perm_cons; last first.
@@ -3583,7 +3581,7 @@ Qed.
Lemma perm_tally s1 s2 : perm_eq s1 s2 -> perm_eq (tally s1) (tally s2).
Proof.
move=> eq_s12; apply: (@perm_trans _ [seq (x, count_mem x s2) | x <- undup s1]).
- by congr perm_eq: (tallyE s1); apply/eq_map=> x; rewrite (permP eq_s12).
+ by congr perm_eq: (tallyE s1); under eq_map do rewrite (permP eq_s12).
by rewrite (permPr (tallyE s2)); apply/perm_map/perm_undup/(perm_mem eq_s12).
Qed.
@@ -3630,8 +3628,8 @@ have cpE: forall f & forall s bs, is_acc (f s bs), is_acc (cons_perms_ f _ _ _).
have prE: is_acc (perms_rec _ _ _) by elim=> //= n IHn s bs; apply: cpE.
pose has_suffix f := forall s : seq T, f s = [seq t ++ s | t <- f [::]].
suffices prEs n bs: has_suffix (fun s => perms_rec n s bs [::]).
- move=> n x bs bs1 bs2 /=; rewrite cpE // prEs; congr (_ ++ _).
- by apply/eq_map=> t; rewrite cats1.
+ move=> n x bs bs1 bs2 /=; rewrite cpE // prEs.
+ by under eq_map do rewrite cats1.
elim: n bs => //= n IHn bs s; elim: bs [::] => [|[x [|m]] bs IHbs] //= bs1.
rewrite cpE // IHbs IHn [in RHS]cpE // [in RHS]IHn map_cat -map_comp.
by congr (_ ++ _); apply: eq_map => t /=; rewrite -catA.