diff options
Diffstat (limited to 'mathcomp/ssreflect')
| -rw-r--r-- | mathcomp/ssreflect/eqtype.v | 6 | ||||
| -rw-r--r-- | mathcomp/ssreflect/ssrnat.v | 4 |
2 files changed, 5 insertions, 5 deletions
diff --git a/mathcomp/ssreflect/eqtype.v b/mathcomp/ssreflect/eqtype.v index 01ce7a9..7721f0e 100644 --- a/mathcomp/ssreflect/eqtype.v +++ b/mathcomp/ssreflect/eqtype.v @@ -784,9 +784,9 @@ Canonical option_eqType := Eval hnf in EqType (option T) option_eqMixin. End OptionEqType. -Definition tag := projS1. -Definition tagged I T_ : forall u, T_(tag u) := @projS2 I [eta T_]. -Definition Tagged I i T_ x := @existS I [eta T_] i x. +Definition tag := projT1. +Definition tagged I T_ : forall u, T_(tag u) := @projT2 I [eta T_]. +Definition Tagged I i T_ x := @existT I [eta T_] i x. Arguments Tagged [I i]. Prenex Implicits tag tagged Tagged. diff --git a/mathcomp/ssreflect/ssrnat.v b/mathcomp/ssreflect/ssrnat.v index b7ff16c..f7cd700 100644 --- a/mathcomp/ssreflect/ssrnat.v +++ b/mathcomp/ssreflect/ssrnat.v @@ -1445,7 +1445,7 @@ End NatTrec. Notation natTrecE := NatTrec.trecE. -Lemma eq_binP : Equality.axiom Ndec.Neqb. +Lemma eq_binP : Equality.axiom N.eqb. Proof. move=> p q; apply: (iffP idP) => [|<-]; last by case: p => //; elim. by case: q; case: p => //; elim=> [p IHp|p IHp|] [q|q|] //=; case/IHp=> ->. @@ -1499,7 +1499,7 @@ case=> //=; elim=> //= p; case: (nat_of_pos p) => //= n [<-]. by rewrite natTrecE addnS /= addnS {2}addnn; elim: {1 3}n. Qed. -Lemma nat_of_succ_gt0 p : Psucc p = p.+1 :> nat. +Lemma nat_of_succ_gt0 p : Pos.succ p = p.+1 :> nat. Proof. by elim: p => //= p ->; rewrite !natTrecE. Qed. Lemma nat_of_addn_gt0 p q : (p + q)%positive = p + q :> nat. |
