diff options
Diffstat (limited to 'mathcomp/ssreflect/seq.v')
| -rw-r--r-- | mathcomp/ssreflect/seq.v | 34 |
1 files changed, 16 insertions, 18 deletions
diff --git a/mathcomp/ssreflect/seq.v b/mathcomp/ssreflect/seq.v index 9c13df3..ba1f969 100644 --- a/mathcomp/ssreflect/seq.v +++ b/mathcomp/ssreflect/seq.v @@ -786,12 +786,12 @@ End Sequences. Definition rev T (s : seq T) := nosimpl (catrev s [::]). -Arguments nilP [T s]. -Arguments all_filterP [T a s]. +Arguments nilP {T s}. +Arguments all_filterP {T a s}. -Prenex Implicits size nilP head ohead behead last rcons belast. +Prenex Implicits size head ohead behead last rcons belast. Prenex Implicits cat take drop rev rot rotr. -Prenex Implicits find count nth all has filter all_filterP. +Prenex Implicits find count nth all has filter. Notation count_mem x := (count (pred_of_simpl (pred1 x))). @@ -1354,10 +1354,9 @@ Proof. by elim: s n => [|y s' IHs] [|n] /=; auto. Qed. Lemma headI T s (x : T) : rcons s x = head x s :: behead (rcons s x). Proof. by case: s. Qed. -Arguments nthP [T s x]. -Arguments has_nthP [T a s]. -Arguments all_nthP [T a s]. -Prenex Implicits nthP has_nthP all_nthP. +Arguments nthP {T s x}. +Arguments has_nthP {T a s}. +Arguments all_nthP {T a s}. Definition bitseq := seq bool. Canonical bitseq_eqType := Eval hnf in [eqType of bitseq]. @@ -1598,10 +1597,10 @@ End PermSeq. Notation perm_eql s1 s2 := (perm_eq s1 =1 perm_eq s2). Notation perm_eqr s1 s2 := (perm_eq^~ s1 =1 perm_eq^~ s2). -Arguments perm_eqP [T s1 s2]. -Arguments perm_eqlP [T s1 s2]. -Arguments perm_eqrP [T s1 s2]. -Prenex Implicits perm_eq perm_eqP perm_eqlP perm_eqrP. +Arguments perm_eqP {T s1 s2}. +Arguments perm_eqlP {T s1 s2}. +Arguments perm_eqrP {T s1 s2}. +Prenex Implicits perm_eq. Hint Resolve perm_eq_refl. Section RotrLemmas. @@ -1875,7 +1874,7 @@ Proof. by case/subseqP=> m _ -> Us2; apply: mask_uniq. Qed. End Subseq. Prenex Implicits subseq. -Arguments subseqP [T s1 s2]. +Arguments subseqP {T s1 s2}. Hint Resolve subseq_refl. @@ -2119,8 +2118,7 @@ Proof. by apply: map_inj_in_uniq; apply: in2W. Qed. End EqMap. -Arguments mapP [T1 T2 f s y]. -Prenex Implicits mapP. +Arguments mapP {T1 T2 f s y}. Lemma map_of_seq (T1 : eqType) T2 (s : seq T1) (fs : seq T2) (y0 : T2) : {f | uniq s -> size fs = size s -> map f s = fs}. @@ -2685,7 +2683,7 @@ elim: A => /= [|s A /iffP IH_A]; [by right; case | rewrite mem_cat]. have [s_x|s'x] := @idP (x \in s); first by left; exists s; rewrite ?mem_head. by apply: IH_A => [[t] | [t /predU1P[->|]]]; exists t; rewrite // mem_behead. Qed. -Arguments flattenP [A x]. +Arguments flattenP {A x}. Lemma flatten_mapP (A : S -> seq T) s y : reflect (exists2 x, x \in s & y \in A x) (y \in flatten (map A s)). @@ -2696,8 +2694,8 @@ Qed. End EqFlatten. -Arguments flattenP [T A x]. -Arguments flatten_mapP [S T A s y]. +Arguments flattenP {T A x}. +Arguments flatten_mapP {S T A s y}. Lemma perm_undup_count (T : eqType) (s : seq T) : perm_eq (flatten [seq nseq (count_mem x s) x | x <- undup s]) s. |
