aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect/seq.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/ssreflect/seq.v')
-rw-r--r--mathcomp/ssreflect/seq.v2
1 files changed, 1 insertions, 1 deletions
diff --git a/mathcomp/ssreflect/seq.v b/mathcomp/ssreflect/seq.v
index 74b3f15..5566a44 100644
--- a/mathcomp/ssreflect/seq.v
+++ b/mathcomp/ssreflect/seq.v
@@ -1453,7 +1453,7 @@ Definition perm_eq s1 s2 :=
Lemma permP s1 s2 : reflect (count^~ s1 =1 count^~ s2) (perm_eq s1 s2).
Proof.
apply: (iffP allP) => /= [eq_cnt1 a | eq_cnt x _]; last exact/eqP.
-elim: {a}_.+1 {-2}a (ltnSn (count a (s1 ++ s2))) => // n IHn a le_an.
+have [n le_an] := ubnP (count a (s1 ++ s2)); elim: n => // n IHn in a le_an *.
have [/eqP|] := posnP (count a (s1 ++ s2)).
by rewrite count_cat addn_eq0; do 2!case: eqP => // ->.
rewrite -has_count => /hasP[x s12x a_x]; pose a' := predD1 a x.