diff options
Diffstat (limited to 'mathcomp/ssreflect/plugin')
| -rw-r--r-- | mathcomp/ssreflect/plugin/v8.6/ssrbool.v | 12 | ||||
| -rw-r--r-- | mathcomp/ssreflect/plugin/v8.6/ssreflect.v | 6 | ||||
| -rw-r--r-- | mathcomp/ssreflect/plugin/v8.6/ssrfun.v | 4 |
3 files changed, 11 insertions, 11 deletions
diff --git a/mathcomp/ssreflect/plugin/v8.6/ssrbool.v b/mathcomp/ssreflect/plugin/v8.6/ssrbool.v index f81e16e..2342ec6 100644 --- a/mathcomp/ssreflect/plugin/v8.6/ssrbool.v +++ b/mathcomp/ssreflect/plugin/v8.6/ssrbool.v @@ -442,7 +442,7 @@ Section BoolIf. Variables (A B : Type) (x : A) (f : A -> B) (b : bool) (vT vF : A). -CoInductive if_spec (not_b : Prop) : bool -> A -> Set := +Variant if_spec (not_b : Prop) : bool -> A -> Set := | IfSpecTrue of b : if_spec not_b true vT | IfSpecFalse of not_b : if_spec not_b false vF. @@ -577,7 +577,7 @@ Lemma rwP2 : reflect Q b -> (P <-> Q). Proof. by move=> Qb; split=> ?; [apply: appP | apply: elimT; case: Qb]. Qed. (* Predicate family to reflect excluded middle in bool. *) -CoInductive alt_spec : bool -> Type := +Variant alt_spec : bool -> Type := | AltTrue of P : alt_spec true | AltFalse of ~~ b : alt_spec false. @@ -595,7 +595,7 @@ Hint View for apply// equivPif|3 xorPif|3 equivPifn|3 xorPifn|3. (* Allow the direct application of a reflection lemma to a boolean assertion. *) Coercion elimT : reflect >-> Funclass. -CoInductive implies P Q := Implies of P -> Q. +Variant implies P Q := Implies of P -> Q. Lemma impliesP P Q : implies P Q -> P -> Q. Proof. by case. Qed. Lemma impliesPn (P Q : Prop) : implies P Q -> ~ Q -> ~ P. Proof. by case=> iP ? /iP. Qed. @@ -1111,7 +1111,7 @@ Proof. by move=> *; apply/orP; left. Qed. Lemma subrelUr r1 r2 : subrel r2 (relU r1 r2). Proof. by move=> *; apply/orP; right. Qed. -CoInductive mem_pred := Mem of pred T. +Variant mem_pred := Mem of pred T. Definition isMem pT topred mem := mem = (fun p : pT => Mem [eta topred p]). @@ -1321,7 +1321,7 @@ End simpl_mem. (* Qualifiers and keyed predicates. *) -CoInductive qualifier (q : nat) T := Qualifier of predPredType T. +Variant qualifier (q : nat) T := Qualifier of predPredType T. Coercion has_quality n T (q : qualifier n T) : pred_class := fun x => let: Qualifier p := q in p x. @@ -1368,7 +1368,7 @@ Notation "[ 'qualify' 'an' x : T | P ]" := (Qualifier 2 (fun x : T => P%B)) Section KeyPred. Variable T : Type. -CoInductive pred_key (p : predPredType T) := DefaultPredKey. +Variant pred_key (p : predPredType T) := DefaultPredKey. Variable p : predPredType T. Structure keyed_pred (k : pred_key p) := diff --git a/mathcomp/ssreflect/plugin/v8.6/ssreflect.v b/mathcomp/ssreflect/plugin/v8.6/ssreflect.v index 860f0a1..e63b45b 100644 --- a/mathcomp/ssreflect/plugin/v8.6/ssreflect.v +++ b/mathcomp/ssreflect/plugin/v8.6/ssreflect.v @@ -174,7 +174,7 @@ Notation "T (* n *)" := (abstract T n abstract_key). Module TheCanonical. -CoInductive put vT sT (v1 v2 : vT) (s : sT) := Put. +Variant put vT sT (v1 v2 : vT) (s : sT) := Put. Definition get vT sT v s (p : @put vT sT v v s) := let: Put := p in s. @@ -265,10 +265,10 @@ Notation "{ 'type' 'of' c 'for' s }" := (dependentReturnType c s) (* We also define a simpler version ("phant" / "Phant") of phantom for the *) (* common case where p_type is Type. *) -CoInductive phantom T (p : T) := Phantom. +Variant phantom T (p : T) := Phantom. Implicit Arguments phantom []. Implicit Arguments Phantom []. -CoInductive phant (p : Type) := Phant. +Variant phant (p : Type) := Phant. (* Internal tagging used by the implementation of the ssreflect elim. *) diff --git a/mathcomp/ssreflect/plugin/v8.6/ssrfun.v b/mathcomp/ssreflect/plugin/v8.6/ssrfun.v index c517b92..7cb30ff 100644 --- a/mathcomp/ssreflect/plugin/v8.6/ssrfun.v +++ b/mathcomp/ssreflect/plugin/v8.6/ssrfun.v @@ -419,7 +419,7 @@ Section SimplFun. Variables aT rT : Type. -CoInductive simpl_fun := SimplFun of aT -> rT. +Variant simpl_fun := SimplFun of aT -> rT. Definition fun_of_simpl f := fun x => let: SimplFun lam := f in lam x. @@ -777,7 +777,7 @@ Section Bijections. Variables (A B : Type) (f : B -> A). -CoInductive bijective : Prop := Bijective g of cancel f g & cancel g f. +Variant bijective : Prop := Bijective g of cancel f g & cancel g f. Hypothesis bijf : bijective. |
