aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect/plugin
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/ssreflect/plugin')
-rw-r--r--mathcomp/ssreflect/plugin/v8.6/ssrbool.v12
-rw-r--r--mathcomp/ssreflect/plugin/v8.6/ssreflect.v6
-rw-r--r--mathcomp/ssreflect/plugin/v8.6/ssrfun.v4
3 files changed, 11 insertions, 11 deletions
diff --git a/mathcomp/ssreflect/plugin/v8.6/ssrbool.v b/mathcomp/ssreflect/plugin/v8.6/ssrbool.v
index f81e16e..2342ec6 100644
--- a/mathcomp/ssreflect/plugin/v8.6/ssrbool.v
+++ b/mathcomp/ssreflect/plugin/v8.6/ssrbool.v
@@ -442,7 +442,7 @@ Section BoolIf.
Variables (A B : Type) (x : A) (f : A -> B) (b : bool) (vT vF : A).
-CoInductive if_spec (not_b : Prop) : bool -> A -> Set :=
+Variant if_spec (not_b : Prop) : bool -> A -> Set :=
| IfSpecTrue of b : if_spec not_b true vT
| IfSpecFalse of not_b : if_spec not_b false vF.
@@ -577,7 +577,7 @@ Lemma rwP2 : reflect Q b -> (P <-> Q).
Proof. by move=> Qb; split=> ?; [apply: appP | apply: elimT; case: Qb]. Qed.
(* Predicate family to reflect excluded middle in bool. *)
-CoInductive alt_spec : bool -> Type :=
+Variant alt_spec : bool -> Type :=
| AltTrue of P : alt_spec true
| AltFalse of ~~ b : alt_spec false.
@@ -595,7 +595,7 @@ Hint View for apply// equivPif|3 xorPif|3 equivPifn|3 xorPifn|3.
(* Allow the direct application of a reflection lemma to a boolean assertion. *)
Coercion elimT : reflect >-> Funclass.
-CoInductive implies P Q := Implies of P -> Q.
+Variant implies P Q := Implies of P -> Q.
Lemma impliesP P Q : implies P Q -> P -> Q. Proof. by case. Qed.
Lemma impliesPn (P Q : Prop) : implies P Q -> ~ Q -> ~ P.
Proof. by case=> iP ? /iP. Qed.
@@ -1111,7 +1111,7 @@ Proof. by move=> *; apply/orP; left. Qed.
Lemma subrelUr r1 r2 : subrel r2 (relU r1 r2).
Proof. by move=> *; apply/orP; right. Qed.
-CoInductive mem_pred := Mem of pred T.
+Variant mem_pred := Mem of pred T.
Definition isMem pT topred mem := mem = (fun p : pT => Mem [eta topred p]).
@@ -1321,7 +1321,7 @@ End simpl_mem.
(* Qualifiers and keyed predicates. *)
-CoInductive qualifier (q : nat) T := Qualifier of predPredType T.
+Variant qualifier (q : nat) T := Qualifier of predPredType T.
Coercion has_quality n T (q : qualifier n T) : pred_class :=
fun x => let: Qualifier p := q in p x.
@@ -1368,7 +1368,7 @@ Notation "[ 'qualify' 'an' x : T | P ]" := (Qualifier 2 (fun x : T => P%B))
Section KeyPred.
Variable T : Type.
-CoInductive pred_key (p : predPredType T) := DefaultPredKey.
+Variant pred_key (p : predPredType T) := DefaultPredKey.
Variable p : predPredType T.
Structure keyed_pred (k : pred_key p) :=
diff --git a/mathcomp/ssreflect/plugin/v8.6/ssreflect.v b/mathcomp/ssreflect/plugin/v8.6/ssreflect.v
index 860f0a1..e63b45b 100644
--- a/mathcomp/ssreflect/plugin/v8.6/ssreflect.v
+++ b/mathcomp/ssreflect/plugin/v8.6/ssreflect.v
@@ -174,7 +174,7 @@ Notation "T (* n *)" := (abstract T n abstract_key).
Module TheCanonical.
-CoInductive put vT sT (v1 v2 : vT) (s : sT) := Put.
+Variant put vT sT (v1 v2 : vT) (s : sT) := Put.
Definition get vT sT v s (p : @put vT sT v v s) := let: Put := p in s.
@@ -265,10 +265,10 @@ Notation "{ 'type' 'of' c 'for' s }" := (dependentReturnType c s)
(* We also define a simpler version ("phant" / "Phant") of phantom for the *)
(* common case where p_type is Type. *)
-CoInductive phantom T (p : T) := Phantom.
+Variant phantom T (p : T) := Phantom.
Implicit Arguments phantom [].
Implicit Arguments Phantom [].
-CoInductive phant (p : Type) := Phant.
+Variant phant (p : Type) := Phant.
(* Internal tagging used by the implementation of the ssreflect elim. *)
diff --git a/mathcomp/ssreflect/plugin/v8.6/ssrfun.v b/mathcomp/ssreflect/plugin/v8.6/ssrfun.v
index c517b92..7cb30ff 100644
--- a/mathcomp/ssreflect/plugin/v8.6/ssrfun.v
+++ b/mathcomp/ssreflect/plugin/v8.6/ssrfun.v
@@ -419,7 +419,7 @@ Section SimplFun.
Variables aT rT : Type.
-CoInductive simpl_fun := SimplFun of aT -> rT.
+Variant simpl_fun := SimplFun of aT -> rT.
Definition fun_of_simpl f := fun x => let: SimplFun lam := f in lam x.
@@ -777,7 +777,7 @@ Section Bijections.
Variables (A B : Type) (f : B -> A).
-CoInductive bijective : Prop := Bijective g of cancel f g & cancel g f.
+Variant bijective : Prop := Bijective g of cancel f g & cancel g f.
Hypothesis bijf : bijective.