diff options
Diffstat (limited to 'mathcomp/ssreflect/fintype.v')
| -rw-r--r-- | mathcomp/ssreflect/fintype.v | 13 |
1 files changed, 8 insertions, 5 deletions
diff --git a/mathcomp/ssreflect/fintype.v b/mathcomp/ssreflect/fintype.v index 726b8c2..422d760 100644 --- a/mathcomp/ssreflect/fintype.v +++ b/mathcomp/ssreflect/fintype.v @@ -2041,20 +2041,20 @@ Qed. Lemma unbumpK {h} : {in predC1 h, cancel (unbump h) (bump h)}. Proof. by move=> i /negbTE-neq_h_i; rewrite unbumpKcond neq_h_i. Qed. -Lemma bump_addl h i k : bump (k + h) (k + i) = k + bump h i. +Lemma bumpDl h i k : bump (k + h) (k + i) = k + bump h i. Proof. by rewrite /bump leq_add2l addnCA. Qed. Lemma bumpS h i : bump h.+1 i.+1 = (bump h i).+1. Proof. exact: addnS. Qed. -Lemma unbump_addl h i k : unbump (k + h) (k + i) = k + unbump h i. +Lemma unbumpDl h i k : unbump (k + h) (k + i) = k + unbump h i. Proof. apply: (can_inj (bumpK (k + h))). -by rewrite bump_addl !unbumpKcond eqn_add2l addnCA. +by rewrite bumpDl !unbumpKcond eqn_add2l addnCA. Qed. Lemma unbumpS h i : unbump h.+1 i.+1 = (unbump h i).+1. -Proof. exact: unbump_addl 1. Qed. +Proof. exact: unbumpDl 1. Qed. Lemma leq_bump h i j : (i <= bump h j) = (unbump h i <= j). Proof. @@ -2238,7 +2238,7 @@ Proof. by rewrite /inord /insubd valK. Qed. Lemma enum_ordS : enum 'I_n = ord0 :: map (lift ord0) (enum 'I_n'). Proof. apply: (inj_map val_inj); rewrite val_enum_ord /= -map_comp. -by rewrite (map_comp (addn 1)) val_enum_ord -iota_addl. +by rewrite (map_comp (addn 1)) val_enum_ord -iotaDl. Qed. Lemma lift_max (i : 'I_n') : lift ord_max i = i :> nat. @@ -2345,3 +2345,6 @@ Lemma card_sum : #|{: T1 + T2}| = #|T1| + #|T2|. Proof. by rewrite !cardT !enumT [in LHS]unlock size_cat !size_map. Qed. End SumFinType. + +Notation bump_addl := (deprecate bump_addl bumpDl) (only parsing). +Notation unbump_addl := (deprecate unbump_addl unbumpDl) (only parsing). |
