aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect/finset.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/ssreflect/finset.v')
-rw-r--r--mathcomp/ssreflect/finset.v10
1 files changed, 6 insertions, 4 deletions
diff --git a/mathcomp/ssreflect/finset.v b/mathcomp/ssreflect/finset.v
index 4a3eaf1..5b6e4d0 100644
--- a/mathcomp/ssreflect/finset.v
+++ b/mathcomp/ssreflect/finset.v
@@ -2289,7 +2289,7 @@ Definition fixset := iterF n.
Lemma fixsetK : F fixset = fixset.
Proof.
suff /'exists_eqP[x /= e]: [exists k : 'I_n.+1, iterF k == iterF k.+1].
- by rewrite /fixset -(subnK (leq_ord x)) /iterF iter_add iter_fix.
+ by rewrite /fixset -(subnK (leq_ord x)) /iterF iterD iter_fix.
apply: contraT => /existsPn /(_ (Ordinal _)) /= neq_iter.
suff iter_big k : k <= n.+1 -> k <= #|iter k F set0|.
by have := iter_big _ (leqnn _); rewrite ltnNge max_card.
@@ -2312,7 +2312,7 @@ Proof. by rewrite iter_fix. Qed.
Lemma iter_sub_fix k : iterF k \subset fixset.
Proof.
have [/subset_iter //|/ltnW/subnK<-] := leqP k n;
-by rewrite /iterF iter_add fixsetKn.
+by rewrite /iterF iterD fixsetKn.
Qed.
Lemma fix_order_proof x : x \in fixset -> exists n, x \in iterF n.
@@ -2396,6 +2396,8 @@ End Greatest.
End SetFixpoint.
Notation mem_imset :=
- ((fun aT rT D x f xD => deprecate mem_imset imset_f aT rT f D x xD) _ _ _ _).
+ ((fun aT rT D x f xD => deprecate mem_imset imset_f aT rT f D x xD) _ _ _ _)
+ (only parsing).
Notation mem_imset2 := ((fun aT aT2 rT D D2 x x2 f xD xD2 =>
- deprecate mem_imset2 imset2_f aT aT2 rT f D D2 x x2 xD xD2) _ _ _ _ _ _ _).
+ deprecate mem_imset2 imset2_f aT aT2 rT f D D2 x x2 xD xD2) _ _ _ _ _ _ _)
+ (only parsing).