diff options
Diffstat (limited to 'mathcomp/ssreflect/finset.v')
| -rw-r--r-- | mathcomp/ssreflect/finset.v | 10 |
1 files changed, 6 insertions, 4 deletions
diff --git a/mathcomp/ssreflect/finset.v b/mathcomp/ssreflect/finset.v index 4a3eaf1..5b6e4d0 100644 --- a/mathcomp/ssreflect/finset.v +++ b/mathcomp/ssreflect/finset.v @@ -2289,7 +2289,7 @@ Definition fixset := iterF n. Lemma fixsetK : F fixset = fixset. Proof. suff /'exists_eqP[x /= e]: [exists k : 'I_n.+1, iterF k == iterF k.+1]. - by rewrite /fixset -(subnK (leq_ord x)) /iterF iter_add iter_fix. + by rewrite /fixset -(subnK (leq_ord x)) /iterF iterD iter_fix. apply: contraT => /existsPn /(_ (Ordinal _)) /= neq_iter. suff iter_big k : k <= n.+1 -> k <= #|iter k F set0|. by have := iter_big _ (leqnn _); rewrite ltnNge max_card. @@ -2312,7 +2312,7 @@ Proof. by rewrite iter_fix. Qed. Lemma iter_sub_fix k : iterF k \subset fixset. Proof. have [/subset_iter //|/ltnW/subnK<-] := leqP k n; -by rewrite /iterF iter_add fixsetKn. +by rewrite /iterF iterD fixsetKn. Qed. Lemma fix_order_proof x : x \in fixset -> exists n, x \in iterF n. @@ -2396,6 +2396,8 @@ End Greatest. End SetFixpoint. Notation mem_imset := - ((fun aT rT D x f xD => deprecate mem_imset imset_f aT rT f D x xD) _ _ _ _). + ((fun aT rT D x f xD => deprecate mem_imset imset_f aT rT f D x xD) _ _ _ _) + (only parsing). Notation mem_imset2 := ((fun aT aT2 rT D D2 x x2 f xD xD2 => - deprecate mem_imset2 imset2_f aT aT2 rT f D D2 x x2 xD xD2) _ _ _ _ _ _ _). + deprecate mem_imset2 imset2_f aT aT2 rT f D D2 x x2 xD xD2) _ _ _ _ _ _ _) + (only parsing). |
