aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect/fingraph.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/ssreflect/fingraph.v')
-rw-r--r--mathcomp/ssreflect/fingraph.v15
1 files changed, 8 insertions, 7 deletions
diff --git a/mathcomp/ssreflect/fingraph.v b/mathcomp/ssreflect/fingraph.v
index 42346e2..70536dc 100644
--- a/mathcomp/ssreflect/fingraph.v
+++ b/mathcomp/ssreflect/fingraph.v
@@ -238,7 +238,7 @@ Notation fclosure f a := (closure (coerced_frel f) a).
Section EqConnect.
Variable T : finType.
-Implicit Types (e : rel T) (a : pred T).
+Implicit Types (e : rel T) (a : {pred T}).
Lemma connect_sub e e' :
subrel e (connect e') -> subrel (connect e) (connect e').
@@ -289,7 +289,7 @@ Section Closure.
Variables (T : finType) (e : rel T).
Hypothesis sym_e : connect_sym e.
-Implicit Type a : pred T.
+Implicit Type a : {pred T}.
Lemma same_connect_rev : connect e =2 connect (fun x y => e y x).
Proof.
@@ -465,7 +465,7 @@ End Loop.
Section orbit_in.
-Variable S : pred_sort (predPredType T).
+Variable S : {pred T}.
Hypothesis f_in : {in S, forall x, f x \in S}.
Hypothesis injf : {in S &, injective f}.
@@ -579,7 +579,7 @@ Proof. exact: eq_n_comp same_fconnect_finv. Qed.
Definition order_set n : pred T := [pred x | order x == n].
-Lemma fcard_order_set n (a : pred T) :
+Lemma fcard_order_set n (a : {pred T}) :
a \subset order_set n -> fclosed f a -> fcard f a * n = #|a|.
Proof.
move=> a_n cl_a; rewrite /n_comp_mem; set b := [predI froots f & a].
@@ -598,7 +598,8 @@ rewrite -(cardID (fconnect f x)); congr (_ + _); apply: eq_card => y.
by congr (~~ _ && _); rewrite /= /in_mem /= symf -(root_connect symf) r_x.
Qed.
-Lemma fclosed1 (a : pred T) : fclosed f a -> forall x, (x \in a) = (f x \in a).
+Lemma fclosed1 (a : {pred T}) :
+ fclosed f a -> forall x, (x \in a) = (f x \in a).
Proof. by move=> cl_a x; apply: cl_a (eqxx _). Qed.
Lemma same_fconnect1 x : fconnect f x =1 fconnect f (f x).
@@ -630,7 +631,7 @@ Proof. by rewrite /roots -fconnect_id connect_root. Qed.
Lemma froot_id (x : T) : froot id x = x.
Proof. by apply/eqP; apply: froots_id. Qed.
-Lemma fcard_id (a : pred T) : fcard id a = #|a|.
+Lemma fcard_id (a : {pred T}) : fcard id a = #|a|.
Proof. by apply: eq_card => x; rewrite inE froots_id. Qed.
End FconnectId.
@@ -694,7 +695,7 @@ Record rel_adjunction_mem m_a := RelAdjunction {
in_mem (h x') m_a -> connect e' x' y' = connect e (h x') (h y')
}.
-Variable a : pred T.
+Variable a : {pred T}.
Hypothesis cl_a : closed e a.
Local Notation rel_adjunction := (rel_adjunction_mem (mem a)).