diff options
Diffstat (limited to 'mathcomp/ssreflect/fingraph.v')
| -rw-r--r-- | mathcomp/ssreflect/fingraph.v | 15 |
1 files changed, 8 insertions, 7 deletions
diff --git a/mathcomp/ssreflect/fingraph.v b/mathcomp/ssreflect/fingraph.v index 42346e2..70536dc 100644 --- a/mathcomp/ssreflect/fingraph.v +++ b/mathcomp/ssreflect/fingraph.v @@ -238,7 +238,7 @@ Notation fclosure f a := (closure (coerced_frel f) a). Section EqConnect. Variable T : finType. -Implicit Types (e : rel T) (a : pred T). +Implicit Types (e : rel T) (a : {pred T}). Lemma connect_sub e e' : subrel e (connect e') -> subrel (connect e) (connect e'). @@ -289,7 +289,7 @@ Section Closure. Variables (T : finType) (e : rel T). Hypothesis sym_e : connect_sym e. -Implicit Type a : pred T. +Implicit Type a : {pred T}. Lemma same_connect_rev : connect e =2 connect (fun x y => e y x). Proof. @@ -465,7 +465,7 @@ End Loop. Section orbit_in. -Variable S : pred_sort (predPredType T). +Variable S : {pred T}. Hypothesis f_in : {in S, forall x, f x \in S}. Hypothesis injf : {in S &, injective f}. @@ -579,7 +579,7 @@ Proof. exact: eq_n_comp same_fconnect_finv. Qed. Definition order_set n : pred T := [pred x | order x == n]. -Lemma fcard_order_set n (a : pred T) : +Lemma fcard_order_set n (a : {pred T}) : a \subset order_set n -> fclosed f a -> fcard f a * n = #|a|. Proof. move=> a_n cl_a; rewrite /n_comp_mem; set b := [predI froots f & a]. @@ -598,7 +598,8 @@ rewrite -(cardID (fconnect f x)); congr (_ + _); apply: eq_card => y. by congr (~~ _ && _); rewrite /= /in_mem /= symf -(root_connect symf) r_x. Qed. -Lemma fclosed1 (a : pred T) : fclosed f a -> forall x, (x \in a) = (f x \in a). +Lemma fclosed1 (a : {pred T}) : + fclosed f a -> forall x, (x \in a) = (f x \in a). Proof. by move=> cl_a x; apply: cl_a (eqxx _). Qed. Lemma same_fconnect1 x : fconnect f x =1 fconnect f (f x). @@ -630,7 +631,7 @@ Proof. by rewrite /roots -fconnect_id connect_root. Qed. Lemma froot_id (x : T) : froot id x = x. Proof. by apply/eqP; apply: froots_id. Qed. -Lemma fcard_id (a : pred T) : fcard id a = #|a|. +Lemma fcard_id (a : {pred T}) : fcard id a = #|a|. Proof. by apply: eq_card => x; rewrite inE froots_id. Qed. End FconnectId. @@ -694,7 +695,7 @@ Record rel_adjunction_mem m_a := RelAdjunction { in_mem (h x') m_a -> connect e' x' y' = connect e (h x') (h y') }. -Variable a : pred T. +Variable a : {pred T}. Hypothesis cl_a : closed e a. Local Notation rel_adjunction := (rel_adjunction_mem (mem a)). |
