aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect/eqtype.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/ssreflect/eqtype.v')
-rw-r--r--mathcomp/ssreflect/eqtype.v6
1 files changed, 3 insertions, 3 deletions
diff --git a/mathcomp/ssreflect/eqtype.v b/mathcomp/ssreflect/eqtype.v
index e9da3ec..f5d95e8 100644
--- a/mathcomp/ssreflect/eqtype.v
+++ b/mathcomp/ssreflect/eqtype.v
@@ -916,9 +916,9 @@ Hypothesis aR'E : forall x y, aR' x y = (x != y) && (aR x y).
Hypothesis rR'E : forall x y, rR' x y = (x != y) && (rR x y).
Let aRE x y : aR x y = (x == y) || (aR' x y).
-Proof. by rewrite aR'E; case: (altP eqP) => //= ->; apply: aR_refl. Qed.
+Proof. by rewrite aR'E; case: eqVneq => //= ->; apply: aR_refl. Qed.
Let rRE x y : rR x y = (x == y) || (rR' x y).
-Proof. by rewrite rR'E; case: (altP eqP) => //= ->; apply: rR_refl. Qed.
+Proof. by rewrite rR'E; case: eqVneq => //= ->; apply: rR_refl. Qed.
Section InDom.
Variable D : pred aT.
@@ -962,7 +962,7 @@ Lemma total_homo_mono_in : total aR ->
{in D &, {mono f : x y / aR x y >-> rR x y}}.
Proof.
move=> aR_tot mf x y xD yD.
-have [->|neq_xy] := altP (x =P y); first by rewrite ?eqxx ?aR_refl ?rR_refl.
+have [->|neq_xy] := eqVneq x y; first by rewrite ?eqxx ?aR_refl ?rR_refl.
have [xy|] := (boolP (aR x y)); first by rewrite rRE mf ?orbT// aR'E neq_xy.
have /orP [->//|] := aR_tot x y.
rewrite aRE eq_sym (negPf neq_xy) /= => /mf -/(_ yD xD).