diff options
Diffstat (limited to 'mathcomp/ssreflect/eqtype.v')
| -rw-r--r-- | mathcomp/ssreflect/eqtype.v | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/mathcomp/ssreflect/eqtype.v b/mathcomp/ssreflect/eqtype.v index e9da3ec..f5d95e8 100644 --- a/mathcomp/ssreflect/eqtype.v +++ b/mathcomp/ssreflect/eqtype.v @@ -916,9 +916,9 @@ Hypothesis aR'E : forall x y, aR' x y = (x != y) && (aR x y). Hypothesis rR'E : forall x y, rR' x y = (x != y) && (rR x y). Let aRE x y : aR x y = (x == y) || (aR' x y). -Proof. by rewrite aR'E; case: (altP eqP) => //= ->; apply: aR_refl. Qed. +Proof. by rewrite aR'E; case: eqVneq => //= ->; apply: aR_refl. Qed. Let rRE x y : rR x y = (x == y) || (rR' x y). -Proof. by rewrite rR'E; case: (altP eqP) => //= ->; apply: rR_refl. Qed. +Proof. by rewrite rR'E; case: eqVneq => //= ->; apply: rR_refl. Qed. Section InDom. Variable D : pred aT. @@ -962,7 +962,7 @@ Lemma total_homo_mono_in : total aR -> {in D &, {mono f : x y / aR x y >-> rR x y}}. Proof. move=> aR_tot mf x y xD yD. -have [->|neq_xy] := altP (x =P y); first by rewrite ?eqxx ?aR_refl ?rR_refl. +have [->|neq_xy] := eqVneq x y; first by rewrite ?eqxx ?aR_refl ?rR_refl. have [xy|] := (boolP (aR x y)); first by rewrite rRE mf ?orbT// aR'E neq_xy. have /orP [->//|] := aR_tot x y. rewrite aRE eq_sym (negPf neq_xy) /= => /mf -/(_ yD xD). |
