diff options
Diffstat (limited to 'mathcomp/ssreflect/eqtype.v')
| -rw-r--r-- | mathcomp/ssreflect/eqtype.v | 32 |
1 files changed, 15 insertions, 17 deletions
diff --git a/mathcomp/ssreflect/eqtype.v b/mathcomp/ssreflect/eqtype.v index 76b0521..4487ab4 100644 --- a/mathcomp/ssreflect/eqtype.v +++ b/mathcomp/ssreflect/eqtype.v @@ -171,7 +171,7 @@ Proof. by []. Qed. Lemma eqP T : Equality.axiom (@eq_op T). Proof. by case: T => ? []. Qed. -Arguments eqP [T x y]. +Arguments eqP {T x y}. Delimit Scope eq_scope with EQ. Open Scope eq_scope. @@ -254,8 +254,8 @@ Proof. by rewrite eq_sym; apply: ifN. Qed. End Contrapositives. -Arguments memPn [T1 A x]. -Arguments memPnC [T1 A x]. +Arguments memPn {T1 A x}. +Arguments memPnC {T1 A x}. Theorem eq_irrelevance (T : eqType) x y : forall e1 e2 : x = y :> T, e1 = e2. Proof. @@ -363,10 +363,10 @@ Proof. by case: eqP; [left | right]. Qed. End EqPred. -Arguments predU1P [T x y b]. -Arguments pred2P [T T2 x y z u]. -Arguments predD1P [T x y b]. -Prenex Implicits pred1 pred2 pred3 pred4 predU1 predC1 predD1 predU1P. +Arguments predU1P {T x y b}. +Arguments pred2P {T T2 x y z u}. +Arguments predD1P {T x y b}. +Prenex Implicits pred1 pred2 pred3 pred4 predU1 predC1 predD1. Notation "[ 'predU1' x & A ]" := (predU1 x [mem A]) (at level 0, format "[ 'predU1' x & A ]") : fun_scope. @@ -597,14 +597,14 @@ Qed. End SubType. Arguments SubType [T P]. -Arguments Sub [T P s]. -Arguments vrefl [T P]. -Arguments vrefl_rect [T P]. +Arguments Sub {T P s}. +Arguments vrefl {T P}. +Arguments vrefl_rect {T P}. Arguments clone_subType [T P] U v [sT] _ [c Urec cK]. -Arguments insub [T P sT]. +Arguments insub {T P sT}. Arguments insubT [T] P [sT x]. -Arguments val_inj [T P sT]. -Prenex Implicits val Sub vrefl vrefl_rect insub insubd val_inj. +Arguments val_inj {T P sT}. +Prenex Implicits val insubd. Local Notation inlined_sub_rect := (fun K K_S u => let (x, Px) as u return K u := u in K_S x Px). @@ -646,8 +646,7 @@ Notation "[ 'newType' 'for' v 'by' rec ]" := (NewType v _ rec vrefl) (at level 0, format "[ 'newType' 'for' v 'by' rec ]") : form_scope. Definition innew T nT x := @Sub T predT nT x (erefl true). -Arguments innew [T nT]. -Prenex Implicits innew. +Arguments innew {T nT}. Lemma innew_val T nT : cancel val (@innew T nT). Proof. by move=> u; apply: val_inj; apply: SubK. Qed. @@ -737,8 +736,7 @@ Proof. by []. Qed. End SubEqType. -Arguments val_eqP [T P sT x y]. -Prenex Implicits val_eqP. +Arguments val_eqP {T P sT x y}. Notation "[ 'eqMixin' 'of' T 'by' <: ]" := (SubEqMixin _ : Equality.class_of T) (at level 0, format "[ 'eqMixin' 'of' T 'by' <: ]") : form_scope. |
