aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect/eqtype.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/ssreflect/eqtype.v')
-rw-r--r--mathcomp/ssreflect/eqtype.v6
1 files changed, 3 insertions, 3 deletions
diff --git a/mathcomp/ssreflect/eqtype.v b/mathcomp/ssreflect/eqtype.v
index f5d95e8..296f85e 100644
--- a/mathcomp/ssreflect/eqtype.v
+++ b/mathcomp/ssreflect/eqtype.v
@@ -38,7 +38,7 @@ From mathcomp Require Import ssreflect ssrfun ssrbool.
(* x != y :> T <=> x and y compare unequal at type T. *)
(* x =P y :: a proof of reflect (x = y) (x == y); x =P y coerces *)
(* to x == y -> x = y. *)
-(* eq_op == the boolean relation behing the == notation. *)
+(* eq_op == the boolean relation behind the == notation. *)
(* pred1 a == the singleton predicate [pred x | x == a]. *)
(* pred2, pred3, pred4 == pair, triple, quad predicates. *)
(* predC1 a == [pred x | x != a]. *)
@@ -73,7 +73,7 @@ From mathcomp Require Import ssreflect ssrfun ssrbool.
(* insub x = Some u with val u = x if P x, *)
(* None if ~~ P x *)
(* The insubP lemma encapsulates this dichotomy. *)
-(* P should be infered from the expected return type. *)
+(* P should be inferred from the expected return type. *)
(* innew x == total (non-option) variant of insub when P = predT. *)
(* {? x | P} == option {x | P} (syntax for casting insub x). *)
(* insubd u0 x == the generic projection with default value u0. *)
@@ -92,7 +92,7 @@ From mathcomp Require Import ssreflect ssrfun ssrbool.
(* [subType for S_val by Srect], [newType for S_val by Srect] *)
(* variants of the above where the eliminator is explicitly provided. *)
(* Here S no longer needs to be syntactically identical to {x | P x} or *)
-(* wrapped T, but it must have a derived constructor S_Sub statisfying an *)
+(* wrapped T, but it must have a derived constructor S_Sub satisfying an *)
(* eliminator Srect identical to the one the Coq Inductive command would *)
(* have generated, and S_val (S_Sub x Px) (resp. S_val (S_sub x) for the *)
(* newType form) must be convertible to x. *)