diff options
Diffstat (limited to 'mathcomp/solvable/sylow.v')
| -rw-r--r-- | mathcomp/solvable/sylow.v | 7 |
1 files changed, 3 insertions, 4 deletions
diff --git a/mathcomp/solvable/sylow.v b/mathcomp/solvable/sylow.v index 2a46564..f3ecae2 100644 --- a/mathcomp/solvable/sylow.v +++ b/mathcomp/solvable/sylow.v @@ -514,7 +514,7 @@ Qed. Lemma nil_Zgroup_cyclic G : Zgroup G -> nilpotent G -> cyclic G. Proof. -elim: {G}_.+1 {-2}G (ltnSn #|G|) => // n IHn G; rewrite ltnS => leGn ZgG nilG. +have [n] := ubnP #|G|; elim: n G => // n IHn G /ltnSE-leGn ZgG nilG. have [->|[p pr_p pG]] := trivgVpdiv G; first by rewrite -cycle1 cycle_cyclic. have /dprodP[_ defG Cpp' _] := nilpotent_pcoreC p nilG. have /cyclicP[x def_p]: cyclic 'O_p(G). @@ -567,9 +567,8 @@ Theorem Baer_Suzuki x G : x \in G -> (forall y, y \in G -> p.-group <<[set x; x ^ y]>>) -> x \in 'O_p(G). Proof. -elim: {G}_.+1 {-2}G x (ltnSn #|G|) => // n IHn G x; rewrite ltnS. -set E := x ^: G => leGn Gx pE. -have{pE} pE: {in E &, forall x1 x2, p.-group <<[set x1; x2]>>}. +have [n] := ubnP #|G|; elim: n G x => // n IHn G x /ltnSE-leGn Gx pE. +set E := x ^: G; have{pE} pE: {in E &, forall x1 x2, p.-group <<[set x1; x2]>>}. move=> _ _ /imsetP[y1 Gy1 ->] /imsetP[y2 Gy2 ->]. rewrite -(mulgKV y1 y2) conjgM -2!conjg_set1 -conjUg genJ pgroupJ. by rewrite pE // groupMl ?groupV. |
